
Trust Dies in Darkness:
Shedding Light on Samsung’s TrustZone Keymaster Design

Alon Shakevsky
shakevsky@mail.tau.ac.il

Eyal Ronen
eyal.ronen@cs.tau.ac.il

Tel-Aviv University

Avishai Wool
yash@eng.tau.ac.il

Abstract
ARM-based Android smartphones rely on the TrustZone

hardware support for a Trusted Execution Environment (TEE)
to implement security-sensitive functions. The TEE runs a
separate, isolated, TrustZone Operating System (TZOS), in
parallel to Android. The implementation of the cryptographic
functions within the TZOS is left to the device vendors, who
create proprietary undocumented designs.

In this work, we expose the cryptographic design and imple-
mentation of Android’s Hardware-Backed Keystore in Sam-
sung’s Galaxy S8, S9, S10, S20, and S21 flagship devices.
We reversed-engineered and provide a detailed description of
the cryptographic design and code structure, and we unveil
severe design flaws. We present an IV reuse attack on AES-
GCM that allows an attacker to extract hardware-protected
key material, and a downgrade attack that makes even the
latest Samsung devices vulnerable to the IV reuse attack. We
demonstrate working key extraction attacks on the latest de-
vices. We also show the implications of our attacks on two
higher-level cryptographic protocols between the TrustZone
and a remote server: we demonstrate a working FIDO2 We-
bAuthn login bypass and a compromise of Google’s Secure
Key Import.

We discuss multiple flaws in the design flow of TrustZone
based protocols. Although our specific attacks only apply to
the ≈100 million devices made by Samsung, it raises the
much more general requirement for open and proven stan-
dards for critical cryptographic and security designs.

1 Introduction

Beyond their usage in many and various daily activities, smart-
phones are increasingly used for many security-critical tasks,
such as the protection of sensitive data (messages, images,
files), cryptographic key management [26], FIDO2 web au-
thentication [69], Digital Rights Management [68] (DRM),
mobile payment services [57] (e.g., Samsung Pay) and enter-
prise identity management [57].

Simultaneously, smartphones are becoming more and more
complex and present an increasingly larger attack surface. The
result is that they have become a major target for malware and
malicious attackers. There have been many public exploits
that allow an attacker to escalate privileges in the Android OS,
gaining execution as root or even as the OS kernel [9, 14, 20,
21,43]. Ideally, such attacks should not be able to compromise
the devices’ security-critical tasks.

Trusted Execution Environments (TEEs) are largely used
in modern mobile devices to provide an isolated environment
for execution of Trusted Applications (TAs) that can securely
perform security-critical tasks. They have a relatively small
codebase and limited APIs.

In contrast, the Rich Execution Environments (REEs), such
as Android OS, cannot be fully audited and trusted (due to
their complexity). An isolated TEE can be used alongside the
REE to implement security-sensitive functions. This makes
it harder for an attacker to compromise these functions, as
the attack surface is significantly reduced and is limited to
communication with the TEE.

In other words, the goal of the TEE is to withstand attacks
from a fully compromised REE, including by privileged ad-
versaries with kernel or root capabilities.

ARM is the most widely used processor in the mobile
and embedded markets [50], and it provides TEE hardware
support with ARM TrustZone [3, 8]. TrustZone separates the
device into two execution environments:

1. A non-secure REE where the “Normal World” operating
system runs.

2. A secure TEE where the “Secure World” operating sys-
tem runs.

The REE and TEE use separate resources (e.g., memory, pe-
ripherals), and the hardware enforces the protection of Secure
World.

In most mobile devices, the Android OS runs the non-
secure Normal World. As for the Secure World, there are
more choices. Even among Samsung devices, there are at

1

least three different TrustZone Operating Systems (TZOS) in
use (see Section 2.2).

The Android Keystore [31] provides hardware-backed cryp-
tographic key management services through a Hardware Ab-
straction Layer (HAL) that vendors such as Samsung imple-
ment. The Keystore exposes an API to Android applications,
including cryptographic key generation, secure key storage,
and key usage (e.g., encryption or signing actions). Samsung
implements the HAL through a Trusted Application (TA)
called the Keymaster TA, which runs in the TrustZone.1 The
Keymaster TA performs the cryptographic operations in the
Secure World using hardware peripherals, including a crypto-
graphic engine.

The Keymaster TA’s secure key storage uses blobs: these
are “wrapped” (encrypted) keys that are stored on the REE’s
file system. The “wrapping”, “unwrapping”, and usage of
the keys are done inside the Keymaster TA using a device-
unique hardware AES key. Only the Keymaster TA should
have access to the secret key material; the Normal World
should only see opaque key blobs.

Although it is crucial to rigorously verify and test such
cryptographic designs, real-world TrustZone implementations
received relatively little attention in the literature. We believe
that this is mainly due to the fact that most device vendors
do not provide detailed documentation of their TZOS and
proprietary TAs and share little-to-no information regarding
how the sensitive data is protected. To advance and motivate
this research area, we decided to use the leading Android
vendor Samsung as a test case. We reversed-engineered the
full cryptographic design and API of several generations of
Samsung’s Keymaster TA, and asked the following questions:

Does the hardware-based protection of cryptographic keys
remain secure even when the Normal World is compromised?
How does the cryptographic design of this protection affect
the security of various protocols that rely on its security?

1.1 Our Contribution

In this work, we focus on the Keymaster TA used by Sam-
sung’s flagship devices, including the Samsung Galaxy S8,
S9, S10, S20, and S21. For the first time, we expose its crypto-
graphic design, and unveil severe design flaws that can allow
an attacker to extract hardware-protected key material. We
present an IV reuse attack on AES-GCM that allows the at-
tackers to extract keys from hardware-protected key blobs;
and a downgrade attack that makes even the latest Samsung
flagship devices vulnerable to our IV reuse attack. As sum-
marised in Table 1, our attacks affect over 100 million de-
vices [70].

We also show the implications of these vulnerabilities
on bypassing key usage restrictions and on the security of
two higher-level cryptographic protocols between the Trust-

1For brevity, we refer to TrustZone-based TEEs simply as “TrustZone”.

Zone and a remote server. We demonstrate working Proof-of-
Concept attacks on Galaxy S9, S10, and the latest S21 model.
To summarise our contributions:

1. We expose the proprietary Keymaster TA implementa-
tion in Samsung devices, focusing on its key derivation
and blob encryption implementation.

2. We show that the hardware protection in Samsung
Galaxy S9 devices is vulnerable to an IV reuse attack
on AES-GCM, allowing the extraction of protected key
material.

3. We show a downgrade attack on Samsung Galaxy S10,
S20, and S21 devices, making them vulnerable to our IV
reuse attack.

4. We evaluate the impact of our attacks and describe how
to exploit them to misuse the Keystore key attestation
to bypass FIDO2 WebAuthn login and compromise
Google’s Secure Key Import.

5. We discuss the root causes leading to each of the vulner-
abilities we identified, focusing on possible countermea-
sures and problems in the closed cryptographic design
methodology.

In order to implement our attacks, we developed an open-
source Keymaster client that we will make available on [62].
Our client interacts with the Keymaster TA without passing
through the Keymaster HAL API, which allows us full control
of the input passed to the Trusted Application.

1.2 Responsible Disclosure
We reported our IV reuse attack on S9 to Samsung Mobile
Security in May 2021. In August 2021 Samsung assigned
CVE-2021-25444 with High severity to the issue and released
a patch that prevents malicious IV reuse by removing the
option to add a custom IV from the API. According to Sam-
sung [61], the list of patched devices includes: S9, J3 Top, J7
Top, J7 Duo, TabS4, Tab-A-S-Lite, A6 Plus, A9S.

We reported the downgrade attack on S10, S20 and S21 in
July 2021. In October 2021 Samsung assigned CVE-2021-
25490 with High severity to the downgrade attack and patched
models that were sold with Android P OS or later, including
S10, S20, and S21. The patch completely removes the legacy
key blob implementation.

1.3 Structure of the Paper
Section 2 provides some background on TrustZone. In Sec-
tion 3 we dissect the Keymaster TA in Samsung Galaxy S8,
S9, S10, S20, and S21 devices. In Section 4 we present an
IV reuse attack against hardware-protected keys as well as
a downgrade attack. In Section 5 we show how our attacks

2

Table 1: Susceptibility of Samsung Galaxy devices to IV reuse
and downgrade attack - 3 means vulnerable and 7 means not.

Device IV reuse attack Downgrade attack

S8 7 7

S9 3 3

S10 7 3

S20/S21 7 3

break the composability of higher-level cryptographic proto-
cols, focusing on Google’s Secure Key Import and FIDO2
WebAuthn. In Section 6 we discuss the root causes of the
attacks and gaps in the higher-level protocols’ design. In Sec-
tion 7 we survey related work in TrustZone research, and we
conclude our work in Section 8. Multiple appendices provide
technical details.

2 Background

2.1 AES GCM

The Advanced Encryption Standard (AES) is the most widely
used symmetric block cipher. Galois Counter Mode (GCM)
is a mode of operation for block ciphers that provides Authen-
ticated Encryption. AES-GCM is a stream cipher that uses
AES-CTR (Counter Mode) and the Galois Message Authenti-
cation Code (GMAC) internally.

Like every stream cipher, AES-GCM is vulnerable to Ini-
tialization Vector (IV) reuse attacks. When an IV is reused
while encrypting with the same key, the resulting keystream
is identical. In that case, knowledge of one plaintext immedi-
ately reveals the other. Furthermore, in AES-GCM, Joux [42]
showed how IV reuse could be exploited to break authentica-
tion and create new valid messages.

2.2 ARM TrustZone

The ARM TrustZone technology [7] adds an additional virtual
processor mode called “Secure World” that complements the
“Normal World”. The two modes are separated and can com-
municate using the “Secure Monitor” (running in the high-
est EL3 execution level) or by memory mapping of “World
Shared Memory”. The separation allows to implement a TEE,
since a compromised Normal World will not be able to access
the memory of the Secure World. Fig. 1 shows the compo-
nents in each exception level in the TrustZone architecture.
See Appendix A for a detailed overview of ARM TrustZone
and ARM exception levels.

As the implementation of the TZOS is left to vendors, there
are multiple implementations by various vendors, including:

• Qualcomm Secure Execution Environment (QSEE) by
Qualcomm: used in Google Pixel devices and in Snap-
dragon models of Samsung Galaxy devices.

• Kinibi by Trustonic: used in older Exynos models of
Samsung Galaxy devices, prior to S10.

• TrustedCore (TC) by Huawei.

• TEEGRIS by Samsung (used in newer Exynos models
of Samsung Galaxy devices).

2.3 Trusted Applications
A Trusted Application (TA) is a program that runs in the TEE
and exposes security services to Android client applications.
The application can open a session with the TA and invoke
commands within the session. After receiving a command, a
TA parses the commands input, performs required processing
and sends a response back to the client. See Appendix D for
more details on the TEE client API. Control is transferred
to the TA via the dedicated SMC (Secure Monitor Call) in-
struction, and the TA and Normal World application usually
exchange arguments and output using a shared memory buffer
called World Shared Memory. As performing SMCs requires
EL1 privileges, a device driver in the Android kernel han-
dles the communication with the TA and exposes an API for
Normal World applications.

2.4 Android Hardware Backed Keystore
The Android Keystore [26] allows Normal World applica-
tions to perform cryptographic operations while protecting
the cryptographic keys from extraction or unauthorized use.
On devices with TrustZone technology, Keystore utilizes the
TEE to perform cryptographic operations. This Hardware-
Backed Keystore implementation is called the Keymaster TA.

The Keystore’s main functions are: key generation and im-
port, asymmetric encryption/decryption/signing/verification,
symmetric encryption/decryption and generation/verification
of symmetric MACs.

Keys can be generated and used inside the TrustZone by
the Keymaster TA, and are thus protected from any Normal
World attacker. However, the Keymaster TA relies on the
Normal World application to store the keys [31]. To protect
the key material, the keys are encrypted or “wrapped” with
a hardware-derived key inside the TrustZone. The encrypted
key “blobs” are then passed to the Normal World to be stored.

Fig. 2 shows a simplified overview of an Android appli-
cation using the Keymaster TA. The general flow runs as
follows:

3

Normal World

Application 1

Android Kernel

Application 2

Hypervisor

Secure World

Trusted App 1

TZOS kernel

Trusted App 2

Secure Monitor

EL0

Usermode

EL1

Kernelmode

EL3

EL2

Figure 1: The TrustZone software and hardware isolation architecture 2

Android Keymaster TA in
TrustZone

Request attestation for B

Generate key

B = wrap(key)

Generate attestation cert

key = unwrap(B)

result = operation(key)

result

Request operation for B

(e.g., encrypt/sign)

B

cert

Request key generation

Figure 2: A usage example of an Android application using
a Hardware-Backed Keystore (i.e., the Keymaster TA) for
cryptographic key management: key generation, attestation,
and encryption/signature.2

1. The Android application requests a new key to be gen-
erated. The Keymaster TA generates a new key, and
encrypts it using a hardware-derived key. The result-
ing encrypted key blob B is passed back to the Android
application.

2. The Android application saves the blob B in the Normal
World’s file system.

3. Some protocols such as WebAuthn [69] require that the
Android application must prove that a specific key was
generated securely by the Keymaster TA. In these cases,
the application can pass the encrypted blob B to the Key-
master TA and ask it to generate an attestation certificate.

For details on the attestation process see Section 2.5.

4. The application can ask the Keymaster TA to perform
a cryptographic operation on its behalf. For example,
to sign a message, the application passes the encrypted
blob B and the message to be signed to the Keymaster
TA. The Keymaster TA decrypts the blob to recover the
signing key. It then uses the key to sign the message and
return the resulting signature to the application in the
Normal World.

The Keystore protects keys from extraction using the fol-
lowing measures:

1. Key material is not present in the application memory,
hence compromising the application will not lead to key
material extraction.

2. The Keystore can provide access control that restricts the
usage of keys in various ways, such as restricting a key’s
purpose (e.g., encryption only), setting an expiration
date, rate-limiting, or requiring user authentication (e.g.,
passing biometric authentication/unlocking the screen).

3. Hardware binding: Supported devices can bind keys to
the secure hardware (i.e., the TEE), so they cannot be
used outside of the secure hardware on that device.

In order to support multiple TZOS implementations, the
Android Keystore uses a HAL, as we shall describe in Sec-
tion 3.2. Every TZOS implements the HAL for Android ser-
vices that require hardware support, usually by having a TA
that performs the needed operations. This is the case for Sam-
sung’s Keymaster TA, which is used to implement Android
Hardware-Backed Keystore and is the main focus of our re-
search.

2Designed using resources from Flaticon.com

4

2.5 Android Key Attestation

Keystore Key Attestation [37, 71] allows remote parties to
verify that a key was generated within the secure hardware by
having the Keymaster TA generate a certificate chain whose
root certificate is Google (or Samsung, for applications such
as KNOX attestation). This allows the remote party to trust
public-keys generated within the TrustZone without trusting
the Normal World, despite the fact that all the communications
with the Keymaster TA go through the Normal World. As we
show in Section 5, Secure Key Import and FIDO2 WebAuthn
use key attestation (using Google’s root certificate) exactly
for this purpose.

2.6 The Attack Model

In this paper, we assume that an attacker can fully compro-
mise the Normal World, e.g., an attacker with root or even
kernel privileges. Moreover, we assume that the attacker is
able to compromise the Normal World without setting the
bootloader fuses that are attested by the Keymaster (e.g., boot-
loader unlocked, Samsung’s warranty bit). Such attacks were
shown by [21,48]. The attacker aims to compromise data that
is secured by the Trusted World, such as Keystore hardware-
protected keys, or higher-level protocols that rely on remote
attestation (e.g., cloning a FIDO2 token or by stealing a key
that was securely imported).

We follow the Android Platform Security Model by
Mayrhofer et al. [46] that states that the hardware protection
and isolation of cryptographic keys offered by TrustZone and
the Keymaster TA should prevent any key compromise even
by such an attacker. This is consistent with the attack model
used by Harrison et al. [40] as well as Lapid and Wool [44].

Note that the attacks described in Sections 4 and 5 do not
require us to actually run code in the Android Kernel. For
our attack, we only require code execution in EL0 (Android
user mode) with sufficient privileges to read key blobs, and
appropriate SELinux permissions to communicate with the
TZOS drivers. For instance, a vulnerability in the Android
Keystore user mode daemon/HAL (such as [41]) would likely
suffice. Alternatively, a root malware or a supply-chain attack
that patches the Keymaster HAL can be used for both attacks.

In our experiments, we used Samsung Galaxy S9, S10, and
S21 devices, rooted using Magisk [72]. Note that when we
rooted the devices, the Samsung KNOX warranty fuse was
set. This does not affect our attacks as we don’t target any
KNOX functionality.

3 Dissecting the Keymaster TA

3.1 Survey of the Keymaster TA Family

In this paper we focus on Samsung’s implementation of the
Keymaster TA and its new TZOS named TEEGRIS. Like

other TZOSs and TAs, Samsung’s implementation is vendor-
specific and is a proprietary closed-source system with little-
to-no documentation available. To understand the crypto-
graphic design implemented by the Keymaster TA, we stati-
cally analyzed the binaries of firmwares and TAs in 3 TZOS’s
(TEEGRIS, Kinibi and QSEE) using Ghidra [49]. Addition-
ally, we used the Samsung Open Source [59] website to down-
load the Android kernel sources for our device.

Overall, we evaluated 26 firmwares for both Exynos and
Snapdragon models of S8, S9, S10, S20, and S21 (including
variants such as S9+, Note9, S10+, S20+, etc.) published be-
tween 2018 and 2021. We found that Keymaster TA’s code
base is extremely similar in theses firmwares (except the S8),
even across TZOSs (Kinibi/QSEE/TEEGRIS).

In our analysis, we noticed that there is a significant dif-
ference between the Keymaster TA in S8 and in the newer
models. As we shall see in Section 4, one specific code change
introduced in the S9 makes it and all the newer models vul-
nerable to attacks. Although S20 and S21 models include
the more secure Strongbox Keymaster functionality (using a
dedicated tamper-resistant hardware security module), they
are still vulnerable to our attacks as they share the same vul-
nerable cryptographic design and API.

As Kinibi and QSEE have been more thoroughly studied by
the security community [12, 52, 53], when we discuss details
we refer to TEEGRIS unless otherwise noted. See Appendix
F for details on firmware analysis.

3.2 The Keymaster HAL

The Keymaster HAL is an interface between Android and the
vendor-specific Keymaster implementation. The Android doc-
umentation provides reference guidelines for implementers of
Keymaster HALs [34]. It is implemented in the Android user
mode and communicates with the Keymaster TA using kernel
drivers and World Shared Memory buffers (see Fig. 3). Ap-
pendix E contains a more detailed overview of the Keymaster
HAL in TEEGRIS.

Android provides an open-source API for functions that
the Keymaster should implement [33]. This API includes
many functionalities such as key generation, key import, and
cryptographic operations such as encrypt/decrypt/sign/verify
using the keys stored in the encrypted blobs.

The Keymaster HAL API in TEEGRIS is implemented in
a number of undocumented shared-objects that use TEEGRIS
kernel drivers. To explore the Keymaster TA we reversed
engineered the Keymaster HAL and implemented our own
Keymaster client—an Android process that sends our custom
requests to the Keymaster TA without any input validation or
filtering.

5

Normal World

Applicationkeystore daemon
 Binder

Keymaster HAL
 TEE Interface

TrustZone device drivers

Secure World

Keymaster TA

TEEGRIS kernel

Secure Monitor

SMC

World
Shared
Memory

EL0

Usermode

EL1

Kernelmode

EL3

SMC

Figure 3: Overview of the Hardware backed keystore2

v15 blob
"MDFPP HW Keymaster HEK v15\x00"
.

"ID"
"\x02\x00\x00\x00"
"id"
"DATA"
"\x04\x00\x00\x00"
"data"

v20-s9 blob
"MDFPP HW Keymaster HEK v20\x00"
root_of_trust
"ID"
"\x02\x00\x00\x00"
"id"
"DATA"
"\x04\x00\x00\x00"
"data"
integrity_flags

v20-s10 blob
"MDFPP HW Keymaster HEK v20\x00"
root_of_trust
"ID"
"\x02\x00\x00\x00"
"id"
"DATA"
"\x04\x00\x00\x00"
"data"
integrity_flags
hek_randomness

Figure 4: The three KDF versions for HDK salt derivation, assuming the Application ID is “id” and the Application Data is
“data”. The salt value is the SHA256 digest of the concatenation of the values. Values shaded in blue are optional, values shaded
in green are new to that version.

3.3 Key Blob Encryption

The main focus of our research is how key blobs are decrypt-
ed/encrypted. Based on our analysis and reverse engineering
of the proprietary Keymaster TA, we will now describe the
process at a high level. For a detailed description of the control
flow inside the Keymaster TA, see Appendix B. As mentioned
in Section 2.4, the Keymaster TA encrypts key material inside
a blob. This protects the key material from extraction while
allowing it to be stored by the Normal World application.
As we discovered during our research, each blob contains an
encrypted part that includes the key material and various pa-
rameters. The blob also contains a clear-text part containing
the information required for decryption, such as the IV and
AAD used in the encryption.

The cryptographic foundation which the Keymaster TA
relies upon is a permanent, hardware, device-unique 256-bit
AES key called the Root Encryption Key (REK) [64]. This
key is only present in the secure hardware cryptographic
engine—the Keymaster TA cannot access it directly.

Each key blob is encrypted using its own Hardware Derived

Key (HDK) that is derived from the REK. A blob’s HDK is
derived using a Key Derivation Function (KDF) that mixes
the REK with a blob-specific salt value. The KDF itself is
accessed by the Keymaster TA through a TZOS-internal ioctl
API. The salt for deriving the HDK is computed as the SHA-
256 digest of a concatenation of several values. Samsung’s
salt-generation method evolved between device models, as
we discuss next.

3.4 KDF Versions of Key Blobs
The National Information Assurance Partnership (NIAP) cre-
ated the Mobile Device Fundamentals Protection Profile
(MDFPP) that includes core security requirements for de-
vices. The constant string used in the salt derivation (in all
key blobs flavors) suggests that Samsung complies with the
certification, and indeed Samsung devices are MDFPP CC
certified.

In our analysis, we identified three different blob salt-
derivation versions, which we call v15, v20-s9, and v20-s10.
The differences between the versions are the values used in

6

the string that is hashed to generate the salt for the key deriva-
tion. All versions can include optional values that are called
Application ID and Application Data. These values are set by
the Normal World. Fig. 4 shows example strings for each of
the three blob versions.

The first blob key version, which we call v15, is the version
used in Galaxy S8. The salt in v15 key blobs only depends
on the application ID and data set by the Normal World (and
a constant string).

Galaxy S9 introduced a new version which we call v20-s9.
This version adds two new values to the SHA-256 digest,
which we call root_of_trust and integrity_flags. This
might be due to a new MDFPP regulation that requires derived
keys to be bound to the device’s integrity.

The root_of_trust is “a collection of values that defines
key information about the device’s status” [37]. The Keymas-
ter TA computes integrity_flags based on the integrity
status of the device (a normal device should have 0, a rooted
device has value 7).

In our analysis, we noticed that although S9 uses the new
salt version v20-s9 by default, it still includes code that im-
plements the older v15 blob version. The Keymaster TA API
exposed the option to use this older version to the Normal
World. As we were not able to find any use for this option by
the Normal World, we believe that this is latent code that is
never used.

On S10, S20, and S21 devices, we found a revised KDF that
is very similar to the v20-s9: it uses exactly the same strings,
root of trust and integrity flags, with one crucial addition: in
v20-s10 the salt also includes a fresh per-blob 16-byte ran-
dom value hek_randomness generated inside the TrustZone.
Similar to S9, we also found latent code that implements v15
and is exposed to the Normal World.

4 Attacking the Keymaster TA

This section describes two attacks against the Keymaster TA
that allow us to extract hardware-protected key material. Table
2 includes a summary of the Samsung Galaxy devices that
we’ve examined and their susceptibility to IV reuse.

4.1 IV Reuse Attack on v15 and v20-s9 Blobs

As we discussed in Section 3, the wrapping key used to en-
crypt the key blobs (HDK) is derived using a salt value com-
puted by the Keymaster TA. In v15 and v20-s9 blobs, the
salt is a deterministic function that depends only on the appli-
cation ID and application data (and constant strings), which
the Normal World client fully controls. This means that for a
given application, all key blobs will be encrypted using the
same key. As the blobs are encrypted in AES-GCM mode-
of-operation, the security of the resulting encryption scheme
depends on its IV values never being reused.

Surprisingly, we discovered that the Android client is al-
lowed to set the IV when generating or importing a key. All
that is necessary is to place an attacker-chosen IV as part
of the key parameters, and it is used by the Keymaster TA
instead of a random IV. As the Normal World also controls
the application ID and application data, this means that an
attacker can force the Keymaster TA to reuse the same key
and IV that were previously used to encrypt some other v15 or
v20-s9 blobs. Since AES-GCM is a stream cipher, the attacker
can now recover hardware-protected keys from key blobs.

Given a key blob BA wrapping an unknown key KA, an
attacker can import another key blob BB with a known (suf-
ficiently long) key KB that was encrypted using the same IV
and the same salt. To do so the attacker first extracts the IV
from the key blob BA, and passes this IV and the same appli-
cation ID and data to the Keymaster TA’s import key function.
The known KB will be encrypted using the same blob encryp-
tion key HDK (as the salt only depends on the application ID
and data) and the same IV (by construction) as was used to
encrypt KA.

As with any stream-cipher encryption, we can now use our
knowledge of KB together with the ciphertexts BA and BB to
recover KA. Let us denote the key-stream created from key
HDK with a given IV as E(HDK, IV), then:

BA ⊕BB ⊕KB

= (E(HDK, IV)⊕KA)⊕ (E(HDK, IV)⊕KB)⊕KB

= KA ⊕KB ⊕KB = KA

All key blobs created on the Galaxy S9 are vulnerable, as
its default blob version is the vulnerable v20-s9. However, on
S10, S20, and S21 devices, the default version is v20-s10, and
its salt is randomised by the hek_randomness field (recall
Fig. 4), hence each blob is encrypted with a uniquely derived
encryption key. Although the attacker can still cause IV reuse,
this reuse is not exploitable. We note that, although S8 can
create only blobs with version v15, its Keymaster TA ignores
the IV parameter in key generation and key import functions,
i.e., it does not allow us to set the IV and is thus not vulnerable
to any of our attacks.

To demonstrate our IV reuse attack, we implemented it on
Galaxy S9 (all key blobs), S10, and S21 (by forcing the cre-
ation of v15 key blobs), and we were able to recover securely
generated AES, RSA, and ECDSA keys from encrypted blobs.

4.2 The Downgrade Attack
On S10 and later models, the default blob version is v20-s10.
However, to our surprise, we discovered the existence of latent
code that allows the Normal World to request the creation of
v15 blobs by simply passing an “encryption version” parame-
ter with a specific value. Although the Keymaster HAL API
does not normally pass this parameter, its existence can be
exploited by a privileged attacker to force all new blobs to
version v15.

7

Table 2: Summary of Samsung Galaxy devices Keymaster features that make them vulnerable to IV reuse - 3 means true and
7 means false

Device Default blob version Deterministic HDK Can attacker set IV Vulnerable to IV reuse Can attacker downgrade to v15

S8 v15 3 7 7 N/A

S9 v20-s9 3 3 3v15, 3v20-s9 3

S10 v20-s10 3v15, 7v20-s10 3 3v15, 7v20-s10 3

S20/S21 v20-s10 3v15, 7v20-s10 3 3v15, 7v20-s10 3

This downgrade attack makes newer devices, including
Galaxy S10, S20, and S21 vulnerable to the IV reuse attack
(after the Normal World is compromised). In Section 5 we
show that this can be exploited to attack security-critical pro-
tocols such as Google’s Secure Key Import and FIDO2 We-
bAuthn.

To demonstrate our findings, we wrote a GDB script (see
Appendix G) that intercepts the call to the Keymaster HAL
in the Normal World. We hooked the key generation func-
tion and modified the passed parameters in flight to add the
encryption version parameter with the value 0x f indicating
v15. This caused the Keymaster TA to always generate v15
key blobs and allowed us to recover the encrypted keys using
the IV reuse attack. Creative malware authors could achieve
a similar effect in other ways, such as always returning a pre-
computed v15 key blob, or possibly patching the Keymaster
HAL so that it always downgrades to v15 blobs.

4.3 Persistence of v15 Blobs

According to the Keymaster API [33], key blobs become “old”
when the Keymaster device is updated or when the Normal
World OS is upgraded to a newer version. When a key be-
comes “old”, the API functions return a special error code
that indicates that the key must be “upgraded”. The Key-
master API exposes the upgradeKey method which unwraps
(decrypts) the key, examines the OS versions inside the key
parameters and compares them to the current OS version. If
the current OS version is higher it “upgrades” the key by
wrapping (encrypting) it again (and adding the current OS
version to the key parameters list).

However, we found that the key parameters that are used in
the new blob’s wrapping are the same as those in the old key.
As any key blob created by our downgrade attack includes
the encryption version parameter, “upgrading” such a down-
graded v15 key blob will result in a new but still vulnerable
v15 blob.

According to Samsung [61], this is the intended behavior,
and since the S10 and newer devices have v20-s10 as the
default version, no v15 key should exist “in the wild”. How-
ever, this behavior of the upgradeKey function allows our

downgrade to persist through firmware updates.

5 Implications of the Attacks

In this section, we explore the possible implications of the
attacks described in Section 4. Naturally, an attacker that
controls the Normal World can simply ask the TrustZone
to locally perform any permitted individual cryptographic
operation on their behalf. However, we shall see that by ex-
tracting the keys, the attacker is able to bypass key usage
limitations. Moreover, they can perform advanced attacks that
break cryptographic protocols with remote parties, protocols
specifically designed to utilize the security guarantees offered
by the Secure World.

As we have seen in the recent line of exploits observed
in the wild [14, 25], such normal-world compromises can be
done remotely, covertly, and without changing the state of
the bootloader fuses. The attacker then aims to compromise
the security properties of the higher-level protocols such as
WebAuthn and Secure Key Import. While our attacks can-
not decrypt v20-s10 keys generated before the compromise,
the downgrade attack can break the security of remote at-
testation on the latest devices (including S10, S20, and S21)
by compromising any key that is generated after the covert
compromise.

5.1 Authentication and Confirmation Bypass
The Keymaster TA can be used to enforce restrictions on
the use of cryptographic keys to prevent misuse of the keys
without the user’s consent or knowledge (e.g., by an attacker
controlling the Normal World).

For example, keys can be limited for specific use,
such as signature only. Moreover, applications can create
“authentication-bound” keys that require the user to be re-
cently authenticated in order to use the key, e.g., by specifying
a timeout since the last time the user entered their passcode,
or requiring a biometric prompt authentication [30].

The usage and authentication requirements are enforced by
the Keymaster TA when it is attempting to use the blob. This
prevents attackers from using the keys on a device without

8

the user’s consent — e.g., the secure hardware can refuse to
use the key if the user is not authenticated. For instance, the
attacks shown by Cooijmans et al. [18] and by Breński et
al. [15] fail when the restrictions are enforced.

Similarly, Protected Confirmation [19] allows signing keys
to be used only if the user provides confirmation of the data
to be signed (via a trusted UI interface). Google discussed
some use cases for Protected Confirmation [19], including
Medical applications, such as an injection of insulin by Big-
foot Biomedical [13], and Enterprise applications such as
Two-Factor Authentication including Duo Mobile [10].

However, the security of these restrictions is based on the
assumption that the protected keys cannot be extracted from
inside the TrustZone. An attacker can use our attacks to ex-
tract the keys and completely bypass any restrictions. For
example, they can use “authentication-bound” without knowl-
edge of the user’s password or sign payment transactions
without user interaction or consent. Moreover, they can con-
tinue to use the keys even if they no longer have access to
the device. This is especially useful if the attacker has only
limited-time physical access to the device (e.g., search by
border agents, law enforcement, evil housekeeping).

5.2 Extracting Keys from Secure Key Import
The Keymaster TA supports Secure Key Import [73] which
allows applications to securely provision existing keys into
Keystore. The protocol’s goal is to allow servers to securely
share a secret key with an Android device while preventing the
key from being intercepted or extracted from the device, even
if the device is compromised. The key is encrypted by the
server and only decrypted inside the secure hardware. Thus
it is bound to the device, allowing it to be used in various
scenarios such as SSH/RDP, DRM, secure payment, etc. For
example, Google Pay uses Secure Key Import to provision
some of its keys [73].

Secure Key Import allows a server to securely send some
key material K to the device. A simplified version of the pro-
tocol and our attacks is shown in Fig. 5. For the full protocol
details, see [27]. In high-level, Secure Key Import works as
follows:

1. The application requests the Keymaster TA to generate
an RSA private-public key pair (Pub,Priv), and receives
an encrypted key blob BRSA that contains Priv.

2. The application also requests the Keymaster TA for the
attestation certificate Cert that verifies that BRSA was
generated inside the secure hardware. Cert is signed by
asymmetrically using a dedicated private key that is only
accessible inside the TrustZone, and its corresponding
public key is signed by Google.

3. The application sends Cert to the server. After verifying
Cert, the server uses Pub to encrypt K, generating C =
EncPub(K), and sends C to the device.

4. To finish the import process, the application passes C and
BRSA to the Keymaster TA. The Keymaster TA decrypts
BRSA, and uses Priv to decrypt C and recover K. Then it
returns to the application an encrypted key blob BK that
contains K.

While Secure Key Import protects the keys in transit, after
importing, they are encrypted inside a key blob as other im-
ported keys. Therefore, an attacker that can recover the key
material (as in our attack) can decrypt securely imported keys
and break the security of applications that use Secure Key
Import.

As before, any key K imported into Galaxy S9 can be
extracted using our IV reuse attack on the encrypted blob BK .
However, unlike the regular key import and key generation
functionalities, the Secure Key Import API call does not allow
us to specify the version of the key blob, making it resilient
to our downgrade attack. To be able to break Secure Key
Import on the newer S10, S20, and S21, we need to use a
different approach: Instead of extracting the key from BK ,
we performed our downgrade and IV reuse attacks against
BRSA and used the recovered private key Priv to decrypt C
and recover the encrypted key in transit, as shown in Fig. 5.

Since BRSA was securely generated in the TrustZone — as
a v15 blob — the Keymaster TA function will happily attest
to its validity and generate a valid Cert that will allow us to
continue with the Secure Import process. When we receive the
encrypted key C from the server, we can use Priv to perform
the same decryption process as the Keymaster does to extract
the imported key K.

We demonstrate this attack in our proof-of-concept on
Galaxy S10 and S21 by performing the downgrade attack
from Section 4.2 on the wrapping key BRSA. We intercept the
request to generate the RSA keys and modify it to wrap the
generated RSA keys in blob BRSA with version v15. We then
continue to recover Priv with the IV reuse attack.

5.3 Bypassing FIDO2 WebAuthn
FIDO2 WebAuthn [69] is a specification by W3C and FIDO
that allows the creation and use of public-key cryptography
to register and authenticate to websites instead of passwords.
The authentication keys can be generated and used inside
an internal secure element called a “platform authenticator”
(e.g., TrustZone, Trusted Platform Module (TPM) [38]) or
an external secure element called a “roaming authenticator”
(e.g., Yubikey [74] and Solo [63]). Such secure elements aim
to provide two main security guarantees:

1. An attacker should not be able to extract the keys from
the secure element. Meaning that authentication is only
possible using the secure element, and it can’t be cloned.

2. Authentication can require user presence. For example,
the user can be required to press a button or authenticate
using a biometric scan.

9

Trusted Server Android Keymaster TA in
TrustZone

Request attestation for BRSA

cert

C

Generate (Pub, Priv)

BRSA = wrap(Pub, Priv)

Generate attestation certVerify
certificate

C = EncPub(K)

Import wrapped key

in secure hardware

BK

Request key generation
(attacker downgrades to

v15 blob)

Attacker decrypts K

from C using Priv

(C, BRSA)

BRSA

IV reuse:

recover Priv from BRSA

cert

Figure 5: Simplified Secure Key Import: the “hacker” icons indicate the interception points used in our attack 2

Android devices can use the Android hardware-backed Key-
store to provide similar security guarantees, using TrustZone
instead of a dedicated external hardware secure element.

WebAuthn includes two main stages (see Fig. 6):

1. Registration: the device creates a key pair and sends an
attestation to the web server. If the attestation is verified,
the server associates the public key with the user.

2. Assertion: when the user tries to login, the server sends a
challenge to the device, the device requires user presence
and authentication (e.g., a Biometric Prompt) and after
receiving user consent the device signs the challenge
with the private key. If the server verifies the signature
(with the public key) - the user is logged in.

FIDO2 WebAuthn implementations for Android use the
Hardware-Backed Android Keystore for key generation and
key attestation during registration, and for performing asser-
tions (signing with a key blob) that require user confirmation
at login time. When using a Hardware-backed Keystore, We-
bAuthn is supposed to withstand a compromise of the Nor-
mal World. Similarly to what is done in Secure Key Import
(Section 5.2), the (Pub,Priv) key pair is generated by the
Keymaster inside the TrustZone, and the application receives
only an encrypted key blob BAUT H that contains the key pair.
The application sends the attestation certificate (including
the public key) to the FIDO server. When authentication is
required, the application passes the server’s challenge and
BAUT H to the Keymaster TA, asking it to sign it with Priv.

However, we can use our attacks to extract the private key
used for authentication and to violate the expected security

guarantees. This may allow attackers to clone the “platform
authenticator” and allow attestation from other devices with-
out having further access to the target smartphone. Moreover,
we can use the recovered private keys to authenticate to a
website without the user’s presence or consent. Our attack
is similar to our previous attack against Secure Key Import
(Section 5.2): On Galaxy S9 we use our IV reuse attack to
extract Priv from the BAUT H key blob; and on Galaxy S10,
S20, and S21 we must first perform a downgrade attack. A
simplified version of the protocol and our attack is shown in
Fig. 6. At a high-level, out attack works as follows:

1. When the device is registered to a website (e.g., Pay-
pal.com), the attacker uses the downgrade attack from
Section 4.2. They intercept the request to generate the
keys and modify it to force the generated keys in blob
BAUT H to use the v15 KDF method.

2. The attacker uses the IV reuse attack to extract the private
key material of the key blob.

3. The attacker can now silently authenticate to the website
by signing the Assertion challenge with the private key—
without user confirmation.

We demonstrate this attack on Samsung Galaxy S10 us-
ing StrongKey FIDO sample Android native application and
client for FIDO [65]. The StrongKey system has two com-
ponents: a Linux server that runs the FIDO(R) Certified
StrongKey FIDO Server, and the client application, which
in our case is the sample Android application. We installed
the application on the device without modifications, and used
it to register and authenticate against StrongKey’s demo server.

10

Trusted Server Android Keymaster TA in
TrustZone

BAUTH

Request attestation for BAUTH

certcert

Generate (Pub, Priv)

BAUTH = wrap(Pub, Priv)

Create attestation
certificate chain for blobVerify certificate,

associate the

public key with the user

Request key generation
(attacker downgrades to

v15 blob)

 After registration,

Attacker forges assertions by signing
C using Priv (recovered from the IV

reuse attack on BAUTH) and successfully
logs in (from Android or another device)

Registration Request

Authentication Request

Generate Challenge
Challenge

Request user consent then

Ask to sign challenge with B

Sign Challenge with Priv in
secure hardware

AA
Verify assertion A,

if successful

the user is signed-in

FIDO2

Registration

FIDO2

Assertion

Assertion

Bypass

Authentication Request

A

Challenge

Figure 6: FIDO2 WebAuthn: the “hacker” icons indicate the interception points used in our attack 2

When the user registers to a website the Android StrongKey
application requests to generate a key through the Keymaster
HAL. Using the downgrade attack (recall Section 4.2 and
Appendix G), the call to the function nwd_generate_key is
intercepted by our debugger and the generated blob is forced
to be a v15 blob BAUT H . We then use the IV Reuse attack to
on this blob and recover its private key Priv. As in the Secure
Key Import, the attestation works seamlessly.

To validate our attack, we verified the recovered private
key Priv against the public key in the attestation certificate.
Using this private key an attacker is able to forge signatures
and bypass the Assertion stage. To complete our demo, we
created an alternative, modified version of the sample applica-
tion, which signs the website’s challenge using the recovered
private key KP instead of using Keystore—see Fig. 7:

1. Fig. 7a shows how we attach a debugger to the Keymas-
ter HAL process.

2. Fig. 7b shows the GDB output of the downgrade attack.

3. Fig. 7c shows that we are successfully registered against
the FIDO server—in the unmodified application.

4. Fig. 7d shows that the attacker successfully authenticates
using the alternative application.

5. Fig. 7e and Fig. 7f show an example of re-authentication
in the alternative application in order to approve a trans-
action.

Note that in our demo, we did not make changes to the
Android sample application by StrongKey: the interception is
done outside the application, and the alternative application
(for the assertion during login) required a minimal change
to use the recovered key. The registration and authentication
was done against StrongKey’s own demo server.

6 Discussion

6.1 Low-Level Cryptographic Issues

A fundamental issue in the Keymaster design is the choice of
a stream cipher, AES-GCM. The advantages of GCM, being
fast and parallelizable, seem less critical for blob encryption—
which is always coupled with slow I/O operations; whereas its
susceptability to keystream reuse is a cause for concern, as we
demonstrated. If the designers choose to retain AES-GCM as
a building block then using a nonce-misuse resistant AEAD
such as AES-GCM-SIV [39] should prevent IV reuse attacks.

The root cause of the IV reuse attack is that the API offered
by Keymaster TA allows the Normal World to set the value
of the IV. The Keymaster API should not allow the user to
set the IV and instead always generate a random 12 byte IV.
Modern encryption libraries such as Tink [35] and Google’s
Trusty Keymaster implementation [36] handle the IV inter-
nally without exposing it in the API, thus protecting the user
from known pitfalls.

11

(a) Attaching a GDB debugger to the Keymaster HAL process

(b) During registration, the GDB script performs the downgrade attack

(c) Registration
success

(d) Authentication
success

(e) Checkout
example

(f) Re-authentication
success

Figure 7: Screenshots from bypasing of the FIDO2 WebAuthn Sample Application by StrongKey Demo. (7c) shows the
successful registration of the legitimate application; (7d)-(7f) show the successful re-authentication of the alternative application.

The root cause of the downgrade attack is that the API
allows the user to choose the blob version. The user should
not be given a choice over any option that might affect the
security of the encrypted blobs, especially if the user might be
malicious. Moreover, the existence of latent code in a security-
critical application such as the Keymaster TA increases the
size of the attack surface on the application and should be
avoided. As we have shown, exposing such latent code to an
external API invites exploitation by attackers.

Furthermore, the persistence of our downgrade to v15 in
blobs should not have been allowed. As the process to “up-
grade” old encryption blobs is already supported, it should
also encrypt the new blobs with the latest (and hopefully
safest) encryption option. A properly designed “upgrade” can
mitigate many downgrade attacks.

On the positive side, using internal randomness as part of
the key derivation process in the Keymaster TA makes the

encryption process more robust and actually blocks our attack,
despite the fact that the API still allows the IV to be set. The
reason the latest Samsung devices were still vulnerable is our
ability to downgrade the blob version to a version that does
not randomize the key derivation.

6.2 Composability: The Gap in Attestation

In protocols such as FIDO2 WebAuthn and Secure Key Im-
port, a trusted remote server uses key attestation to verify that
a key was generated in secure hardware. As we’ve shown
for Samsung devices, and Busch et al. [16] have shown for
Huawei, the TEE implementation can be flawed, which allows
attackers to compromise the keys. The protocol step of key
attestation is supposed to mitigate such scenarios.

The problem is that the attestation, as defined in the Key-
master HAL, does not commit to the cryptographic method

12

used to secure the key. In fact it does not even commit to the
version number of the Keymaster TA. This gap means that
the remote server that receives the attestation cannot set a
policy such as “only accept attestations for keys secured with
non-vulnerable KDF versions”.

The attestation data that is accessible to the remote
server [37, 71] includes general information about the
key (KeyDescription), whether the key is protected
by a TEE or HSM (SecurityLevel), key properties
(AuthorizationList), and information about the device’s
status (RootOfTrust and VerifiedBootState) - e.g., if the
bootloader is locked. As recent attacks showed [14, 25], the
device can be remotely compromised without changing the
bootloader state.

The attestation certificate does contain a field called
osPatchLevel, which could possibly allow a server to iden-
tify vulnerable devices. However, as we’ve shown, Sam-
sung’s latest Keymaster simultaneously supports two KDF
methods: the insecure v15 and the secure v20-s10, and the
osPatchLevel field does not indicate which method was
used. Therefore, relying on the Keymaster TA’s software patch
level may still leave opportunities for misuse.

The security of protocols such WebAuthn depends on its
composition with the implementation and cryptographic de-
sign of the Keymaster TA. The current approach of using
vendor specific black-box designs makes it impossible to ana-
lyze the security of the composition. As we have shown, this
provides ample room for vulnerabilities.

6.3 TrustZone-based Keystore Standard

The attacks we described in this paper highlight the critical
vulnerabilities that can arise from problems in the crypto-
graphic design of Trustzone-based Keystore. However, so far,
these cryptographic designs and protocols have not received
much attention in the academic literature. We believe that this
is mainly due to the fact that the current ecosystem is based on
blackbox designs, with an API that is inconsistent and frag-
mented between different vendors. Indeed, uncovering the
vulnerabilities presented in this paper required a significant
amount of time-consuming reverse-engineering effort.

We hope that our work will motivate further research on
Keystore security and lead to a uniform open standard for
the Keymaster HAL and TA. Such a standard can reduce the
current barriers preventing researchers from analyzing the
security of the cryptographic designs and protocols. Similar
to the standardization process of TLS 1.3 [54], a collaboration
between academia and industry will allow for formal analysis
of the security of the overall design. This should include a
fine-grain threat model that will motivate breakdown resilient
designs.

For example, if several key encryption options are available,
the attestation certificate should provide details on the encryp-
tion method that was used for the key. This will allow servers

to block requests using vulnerable encryption methods and
mitigate attacks similar to our downgrade attack. Moreover,
formal analysis that includes the full API and key encryption
schemes could detect issues like the IV reuse vulnerability
early in the standardization process.

7 Related Work

Despite their prevalence and importance, there have been very
few studies of the cryptographic design of TrustZone instan-
tiations and their composability with higher-level protocols.
One exception is the review of the Huawei TrustedCore TZOS
by Busch et al. [16]. They have shown that, in fact, it does
not provide any hardware protection at all, as it uses hard-
coded fixed keys. To the best of our knowledge, our work is the
first to target and break the cryptographic design of a mature
hardware protection instantiation of TrustZone.

There have been several works showing protected keys
extraction using side-channels attacks. Lapid and Wool [44]
showed that the Kinibi TZOS’s AES-GCM implementation
is vulnerable to cache timing side-channel attacks, allowing
Key Encryption Key (KEK) to be compromised. Keegan [55]
showed that the ECDSA implementation in the QSEE’s Key-
master TA was vulnerable to a cache timing side-channel
attack that can be exploited to leak a hardware-protected EC
key. In contrast, as we target the cryptographic design, we
were able to extract keys even when side-channels mitiga-
tions such as Samsung’s Strongbox security processor were
implemented.

There have been several previous works analyzing the us-
age of Keystore-protected keys in applications and higher-
level protocols. Sabt et al. [56] showed a forgery attack against
the software-only Keymaster provided by Google. In compar-
ison, our attacks work against hardware-backed Keymaster
on the latest Samsung devices. Cooijmans et al. [18], and
Breński et al. [15] showed that a privileged attacker could
simply use Keystore keys without user consent if the keys
are not authentication-bound. In contrast, our attack recov-
ers the full keying material, allowing an attacker to use even
authentication-bound keys in unauthorized ways (bypassing
authentication/Protected Confirmation/Cloning). Prünster et
al. [51] explored the usage of key attestation in the Android
Keystore for sensitive operations. Our attacks on FIDO2 We-
bAuthn and Google’s Secure Key Import bypass attestation
because the key is indeed generated in secure hardware (and
the attacker recovers it).

Software vulnerabilities in TrustZone-based TEEs were
studied by many: Pinto and Santo [50] surveyed research on
TrustZone and weaknesses of existing systems, Cerdeira et
al. [17] classified different software vulnerabilities in TEEs
and analyzed their architectural flaws, and Fleischer et al. [22]
evaluated the exploitability of memory corruptions in TEEs.
Alendal [1] exploited a stack-based buffer overflow to com-
promise the secure element of Samsung S20 Exynos devices.

13

Other attacks against Trustonic Kinibi and Qualcomm QSEE
include Sang et al. [52], Adamski, Guilbon and Peterlin [53],
Beniamini [11, 12], and Machiry et al. [45]. Our work shows
cryptographic design flaws that are not implementation flaws
and will therefore persist even if a memory-safe programming
language is used or if a separate hardware security model is
deployed.

When our research began, there were few resources avail-
able on the TEEGRIS TZOS. One exception is a blog by
Tarasikov [67] which provided useful insight for reverse-
engineering TEEGRIS. Later, Menarini et al. [47] published a
detailed blog on exploiting TEEGRIS. However, both are fo-
cused on software vulnerabilities and not on the cryptographic
design.

8 Conclusions

Vendors including Samsung and Qualcomm maintain secrecy
around their implementation and design of TZOSs and TAs.
As we have shown, there are dangerous pitfalls when dealing
with cryptographic systems. The design and implementation
details should be well audited and reviewed by independent
researchers and should not rely on the difficulty of reverse
engineering proprietary systems.

In this work, we examined the cryptographic design and
implementation of Android’s Hardware-Backed Keystore in
Samsung’s Galaxy S8, S9, S10, S20, and S21 flagship devices.
By an extensive reverse engineering effort, we were able to
analyze the Keymaster TA in multiple TZOSs (TEEGRIS,
Kinibi, and QSEE). To the best of our knowledge, we are the
first to explore the details of the Keymaster TA implementa-
tion in TEEGRIS.

Through our analysis we unveiled severe cryptographic de-
sign flaws. We identified an IV reuse attack on AES-GCM that
allows an attacker to extract hardware-protected key material,
and a downgrade attack that makes even the latest Samsung
devices vulnerable to the IV reuse attack. We demonstrated a
working key extraction attacks on the latest devices. We also
showed the implications of our attacks on two higher-level
cryptographic protocols between the TrustZone and a remote
server: we demonstrated a working FIDO2 WebAuthn login
bypass and a compromise of Google’s Secure Key Import.

Finally, we note that our attacks on the higher-level crypto-
graphic protocols work on new devices due to subtle attacks
arising from their composability with the lower-level key-
encryption. Furthermore, we argue that the design choice of
using the fragile AES-GCM stream cipher for authenticated
blob encryption deserves discussion. These issues further mo-
tivate the need for an open and standardized cryptographic
design.

Acknowledgement

The authors would like to thank Federico Menarini and
Alexander Tarasikov for their interesting insights.

This work was supported by the Robert Bosch Founda-
tion; Len Blavatnik and the Blavatnik Family foundation and
Blavatnik ICRC at Tel-Aviv University; The second and third
authors are members of CPIIS.

References

[1] Gunnar Alendal. Chip chop - smashing the mobile
phone secure chip for fun and digital forensics. BlackHat
USA, 2021. URL: https://www.blackhat.com/us-
21/briefings/schedule/#chip-chop---smashing-the-
mobile-phone-secure-chip-for-fun-and-digital-
forensics-23566.

[2] ARM. ARM trusted firmware design. URL: https:
//chromium.googlesource.com/external/github.
com/ARM-software/arm-trusted-firmware/+/v0.4-
rc1/docs/firmware-design.md.

[3] ARM. ARM TrustZone. URL: https://developer.arm.
com/ip-products/security-ip/trustzone.

[4] ARM. Privilege and exception levels. URL:
https://developer.arm.com/documentation/102412/
0100/Privilege-and-Exception-levels.

[5] ARM. SMC calling convention (SMCCC). URL: https://
developer.arm.com/documentation/den0028/latest.

[6] ARM. Trusted Firmware-A. URL: https://github.com/
ARM-software/arm-trusted-firmware.

[7] ARM. The TrustZone hardware architecture. URL:
https://developer.arm.com/documentation/100935/
0100/The-TrustZone-hardware-architecture-.

[8] ARM. ARM security technology: Building a secure system us-
ing TrustZone technology, 2009. URL: https://developer.
arm.com/documentation/PRD29-GENC-009492/c.

[9] Brandon Azad. An iOS hacker tries Android, 2020. from
Project Zero. URL: https://googleprojectzero.
blogspot.com/2020/12/an-ios-hacker-tries-
android.html.

[10] James Barclay, Robbie Small, and Taylor Mccaslin. Humans
only: Duo mobile and android protected confirmation. Duo
blog, 2018. URL: https://duo.com/blog/humans-only-
duo-mobile-and-android-protected-confirmation.

[11] Gal Beniamini. Extracting Qualcomm’s KeyMaster keys -
breaking Android full disk encryption, 2016. Accessed: 2019-
11-01. URL: https://bits-please.blogspot.com/2016/
06/extracting-qualcomms-keymaster-keys.html.

[12] Gal Beniamini. QSEE privilege escalation vulnerability
and exploit (CVE-2015-6639), 2016. Accessed: 2019-11-
01. URL: http://bits-please.blogspot.com/2016/05/
qsee-privilege-escalation-vulnerability.html.

[13] Bigfoot Biomedical, 2018. URL: https://www.
bigfootbiomedical.com/about/press-room/press-
releases/google-io-2018.

14

https://www.blackhat.com/us-21/briefings/schedule/#chip-chop---smashing-the-mobile-phone-secure-chip-for-fun-and-digital-forensics-23566
https://www.blackhat.com/us-21/briefings/schedule/#chip-chop---smashing-the-mobile-phone-secure-chip-for-fun-and-digital-forensics-23566
https://www.blackhat.com/us-21/briefings/schedule/#chip-chop---smashing-the-mobile-phone-secure-chip-for-fun-and-digital-forensics-23566
https://www.blackhat.com/us-21/briefings/schedule/#chip-chop---smashing-the-mobile-phone-secure-chip-for-fun-and-digital-forensics-23566
https://chromium.googlesource.com/external/github.com/ARM-software/arm-trusted-firmware/+/v0.4-rc1/docs/firmware-design.md
https://chromium.googlesource.com/external/github.com/ARM-software/arm-trusted-firmware/+/v0.4-rc1/docs/firmware-design.md
https://chromium.googlesource.com/external/github.com/ARM-software/arm-trusted-firmware/+/v0.4-rc1/docs/firmware-design.md
https://chromium.googlesource.com/external/github.com/ARM-software/arm-trusted-firmware/+/v0.4-rc1/docs/firmware-design.md
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/documentation/102412/0100/Privilege-and-Exception-levels
https://developer.arm.com/documentation/102412/0100/Privilege-and-Exception-levels
https://developer.arm.com/documentation/den0028/latest
https://developer.arm.com/documentation/den0028/latest
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://duo.com/blog/humans-only-duo-mobile-and-android-protected-confirmation
https://duo.com/blog/humans-only-duo-mobile-and-android-protected-confirmation
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://www.bigfootbiomedical.com/about/press-room/press-releases/google-io-2018
https://www.bigfootbiomedical.com/about/press-room/press-releases/google-io-2018
https://www.bigfootbiomedical.com/about/press-room/press-releases/google-io-2018

[14] Mark Brand. In-the-wild series: Android exploits, 2021.
from Project Zero. URL: https://googleprojectzero.
blogspot.com/2021/01/in-wild-series-android-
exploits.html.

[15] Kamil Breński, Krzysztof Pranczk, and Mateusz Fruba. How
secure is your Android keystore authentication? F-Secure Labs,
2019. URL: https://labs.f-secure.com/blog/how-
secure-is-your-android-keystore-authentication/.

[16] Marcel Busch, Johannes Westphal, and Tilo Mueller. Un-
earthing the TrustedCore: A critical review on Huawei’s trusted
execution environment. In 14th USENIX Workshop on Offen-
sive Technologies (WOOT’20), 2020.

[17] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto.
Sok: Understanding the prevailing security vulnerabilities in
trustzone-assisted TEE systems. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1416–1432. IEEE, 2020.

[18] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. Analysis of
secure key storage solutions on Android. In Proceedings of the
4th ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices, pages 11–20, 2014.

[19] Janis Danisevskis. Android protected confirmation: Tak-
ing transaction security to the next level, 2018. URL:
https://android-developers.googleblog.com/2018/
10/android-protected-confirmation.html.

[20] Dirty cow, 2016. Accessed: 2019-11-01. URL: https://
dirtycow.ninja/.

[21] ENKI. Galaxy’s meltdown - exploiting SVE-
2020-18610, 2020. Accessed: 2021-02-01. URL:
https://github.com/vngkv123/articles/blob/main/
Galaxy’sMeltdown-ExploitingSVE-2020-18610.md.

[22] Fabian Fleischer, Marcel Busch, and Phillip Kuhrt. Memory
corruption attacks within Android TEEs: A case study based on
OP-TEE. In Proceedings of the 15th International Conference
on Availability, Reliability and Security, pages 1–9, 2020.

[23] GlobalPlatform. TEE client API specification, 2010. Accessed:
2019-11-01. URL: https://globalplatform.org/wp-
content/uploads/2010/07/TEE_Client_API_
Specification-V1.0.pdf.

[24] GlobalPlatform. TEE internal core API specification, 2016.
Accessed: 2019-11-01. URL: https://globalplatform.
org/wp-content/uploads/2016/11/GPD_TEE_Internal_
Core_API_Specification_v1.2_PublicRelease.pdf.

[25] Guang Gong. An exploit chain to remotely root mod-
ern android devices. BlackHat USA, 2020. URL:
https://i.blackhat.com/USA-20/Thursday/us-20-
Gong-TiYunZong-An-Exploit-Chain-To-Remotely-
Root-Modern-Android-Devices.pdf.

[26] Google. Android keystore system. URL: https:
//developer.android.com/training/articles/
keystore.

[27] Google. Android keystore system - import encrypted
keys more securely. URL: https://developer.
android.com/training/articles/keystore#
ImportingEncryptedKeys.

[28] Google. Androidkeymaster4device.cpp. URL:
https://android.googlesource.com/platform/
system/keymaster/+/refs/heads/master/ng/
AndroidKeymaster4Device.cpp.

[29] Google. Boringssl. URL: https://boringssl.
googlesource.com/boringssl/.

[30] Google. Gatekeeper. URL: https://source.android.com/
security/authentication/gatekeeper.

[31] Google. Hardware-backed keystore. URL: https://source.
android.com/security/keystore.

[32] Google. Hidl. URL: https://source.android.com/
devices/architecture/hidl.

[33] Google. Ikeymasterdevice.hal. URL: https:
//android.googlesource.com/platform/hardware/
interfaces/+/master/keymaster/4.0/.

[34] Google. Keymaster functions. URL: https://source.
android.com/security/keystore/implementer-ref.

[35] Google. Tink cryptographic library. URL: https://
developers.google.com/tink.

[36] Google. generate_nonce. URL: https://android.
googlesource.com/platform/system/keymaster/+/
master/key_blob_utils/auth_encrypted_key_blob.
cpp#40.

[37] Google. Verifying hardware-backed key pairs with key attesta-
tion. URL: https://developer.android.com/training/
articles/security-key-attestation.

[38] Trusted Computing Group. Trusted platform module (tpm)
summary, 2007. URL: https://trustedcomputinggroup.
org/wp-content/uploads/Trusted-Platform-Module-
Summary_04292008.pdf.

[39] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-
SIV: Specification and analysis. IACR Cryptol. ePrint Arch.,
2017:168, 2017.

[40] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye,
Koushik Sen, and Michael Grace. PARTEMU: Enabling dy-
namic analysis of real-world TrustZone software using emu-
lation. In 29th USENIX Security Symposium (USENIX Secu-
rity’20), pages 789–806, 2020.

[41] Roee Hay and Avi Dayan. Android keystore stack
buffer overflow. CVE-2014-3100, 2014. URL:
https://securityintelligence.com/android-
keystore-stack-buffer-overflow-to-keep-things-
simple-buffers-are-always-larger-than-needed/.

[42] Antoine Joux. Authentication failures in NIST version of
GCM. NIST Comment, page 3, 2006.

[43] Mateusz Jurczyk. Samsung android multiple interac-
tionless rces and other remote access issues in qmage
image codec built into skia, 2020. from Project
Zero. URL: https://bugs.chromium.org/p/project-
zero/issues/detail?id=2002.

[44] Ben Lapid and Avishai Wool. Navigating the Samsung Trust-
Zone and cache-attacks on the keymaster trustlet. In European
Symposium on Research in Computer Security, pages 175–196.
Springer, 2018.

15

https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-android-exploits.html
https://labs.f-secure.com/blog/how-secure-is-your-android-keystore-authentication/
https://labs.f-secure.com/blog/how-secure-is-your-android-keystore-authentication/
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://dirtycow.ninja/
https://dirtycow.ninja/
https://github.com/vngkv123/articles/blob/main/Galaxy's Meltdown - Exploiting SVE-2020-18610.md
https://github.com/vngkv123/articles/blob/main/Galaxy's Meltdown - Exploiting SVE-2020-18610.md
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2016/11/GPD_TEE_Internal_Core_API_Specification_v1.2_PublicRelease.pdf
https://globalplatform.org/wp-content/uploads/2016/11/GPD_TEE_Internal_Core_API_Specification_v1.2_PublicRelease.pdf
https://globalplatform.org/wp-content/uploads/2016/11/GPD_TEE_Internal_Core_API_Specification_v1.2_PublicRelease.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Gong-TiYunZong-An-Exploit-Chain-To-Remotely-Root-Modern-Android-Devices.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Gong-TiYunZong-An-Exploit-Chain-To-Remotely-Root-Modern-Android-Devices.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Gong-TiYunZong-An-Exploit-Chain-To-Remotely-Root-Modern-Android-Devices.pdf
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore#ImportingEncryptedKeys
https://developer.android.com/training/articles/keystore#ImportingEncryptedKeys
https://developer.android.com/training/articles/keystore#ImportingEncryptedKeys
https://android.googlesource.com/platform/system/keymaster/+/refs/heads/master/ng/AndroidKeymaster4Device.cpp
https://android.googlesource.com/platform/system/keymaster/+/refs/heads/master/ng/AndroidKeymaster4Device.cpp
https://android.googlesource.com/platform/system/keymaster/+/refs/heads/master/ng/AndroidKeymaster4Device.cpp
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://source.android.com/devices/architecture/hidl
https://source.android.com/devices/architecture/hidl
https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/4.0/
https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/4.0/
https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/4.0/
https://source.android.com/security/keystore/implementer-ref
https://source.android.com/security/keystore/implementer-ref
https://developers.google.com/tink
https://developers.google.com/tink
https://android.googlesource.com/platform/system/keymaster/+/master/key_blob_utils/auth_encrypted_key_blob.cpp#40
https://android.googlesource.com/platform/system/keymaster/+/master/key_blob_utils/auth_encrypted_key_blob.cpp#40
https://android.googlesource.com/platform/system/keymaster/+/master/key_blob_utils/auth_encrypted_key_blob.cpp#40
https://android.googlesource.com/platform/system/keymaster/+/master/key_blob_utils/auth_encrypted_key_blob.cpp#40
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://securityintelligence.com/android-keystore-stack-buffer-overflow-to-keep-things-simple-buffers-are-always-larger-than-needed/
https://securityintelligence.com/android-keystore-stack-buffer-overflow-to-keep-things-simple-buffers-are-always-larger-than-needed/
https://securityintelligence.com/android-keystore-stack-buffer-overflow-to-keep-things-simple-buffers-are-always-larger-than-needed/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2002
https://bugs.chromium.org/p/project-zero/issues/detail?id=2002

[45] Aravind Machiry, Eric Gustafson, Chad Spensky, Christo-
pher Salls, Nick Stephens, Ruoyu Wang, Antonio Bianchi,
Yung Ryn Choe, Christopher Kruegel, and Giovanni Vigna.
BOOMERANG: Exploiting the semantic gap in trusted execu-
tion environments. In NDSS, 2017.

[46] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and
Nick Kralevich. The Android platform security model. ACM
Transactions on Privacy and Security (TOPS), 24(3):1–35,
2021.

[47] Federico Menarini. Samsung investigation part 1:
TEEs, TrustZone and TEEGRIS, 2021. Accessed: 2021-
02-23. URL: https://www.riscure.com/blog/samsung-
investigation-part1.

[48] Gyorgy Miru. [bugtales] a nerve-racking bug colli-
sion in samsung’s npu driver, 2021. from TASZK.
URL: https://labs.taszk.io/articles/post/bug_
collision_in_samsungs_npu_driver/.

[49] NSA. Ghidra software reverse engineering framework.
URL: https://github.com/NationalSecurityAgency/
ghidra.

[50] Sandro Pinto and Nuno Santos. Demystifying ARM TrustZone:
A comprehensive survey. ACM Computing Surveys (CSUR),
51(6):1–36, 2019.

[51] Bernd Prünster, Gerald Palfinger, and Christian Kollmann.
Fides: Unleashing the full potential of remote attestation. In
ICETE (2), pages 314–321, 2019.

[52] Quarkslab. Reverse engineering Samsung s6
sboot - part i, 2017. Accessed: 2019-11-01. URL:
https://blog.quarkslab.com/reverse-engineering-
samsung-s6-sboot-part-i.html.

[53] Quarkslab. A deep dive into Samsung’s trust-
zone (part 1), 2019. Accessed: 2019-12-11. URL:
https://blog.quarkslab.com/a-deep-dive-into-
samsungs-trustzone-part-1.html.

[54] E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, IETF, August 2018. URL: http:
//tools.ietf.org/rfc/rfc8446.txt.

[55] Keegan Ryan. Hardware-backed heist: extracting ECDSA
keys from Qualcomm’s TrustZone. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, pages 181–194, 2019.

[56] Mohamed Sabt and Jacques Traoré. Breaking into the keystore:
A practical forgery attack against Android keystore. In Eu-
ropean Symposium on Research in Computer Security, pages
531–548. Springer, 2016.

[57] Samsung. KNOX white paper: Root of trust. URL:
https://docs.samsungknox.com/admin/whitepaper/
kpe/hardware-backed-root-of-trust.htm.

[58] Samsung. Real-time kernel protection (RKP). URL:
https://www.samsungknox.com/en/blog/real-time-
kernel-protection-rkp.

[59] Samsung. Samsung open source. URL: https://
opensource.samsung.com/uploadList.

[60] Samsung. Samsung SCrypto cryptographic module, version
2.0. FIPS 140-2 Non-Proprietary Security Policy v1.3, 2017.
URL: https://csrc.nist.gov/CSRC/media/projects/
cryptographic-module-validation-program/
documents/security-policies/140sp3027.pdf.

[61] Samsung Mobile Security. Personal communications, 2021.

[62] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Keybuster:
a keymaster client for samsung devices. URL: https://
github.com/shakevsky/keybuster.

[63] SoloKeys. The first open-source fido2 security key. URL:
https://solokeys.com/.

[64] Gossamer Security Solutions. Samsung Electronics Co., Ltd.
Samsung Galaxy devices on Android 10 – spring security
target, 2020. URL: https://www.niap-ccevs.org/MMO/
Product/st_VID11042-st.pdf.

[65] StrongKey. Strongkey FIDO server (skfs), community edition.
URL: https://github.com/StrongKey/fido2.

[66] Alexander Tarasikov. Exynos9820 TEEGRIS
TZAR unpack script, 2019. Accessed: 2019-11-03.
URL: https://gist.github.com/astarasikov/
f47cb7f46b5193872f376fa0ea842e4b.

[67] Alexander Tarasikov. Reverse-engineering Samsung S10
TEEGRIS TrustZone OS, 2019. Accessed: 2019-11-03.
URL: https://allsoftwaresucks.blogspot.com/2019/
05/reverse-engineering-samsung-exynos-9820.html.

[68] Robert Triggs. Widevine digital rights management ex-
plained. Android Authority, 2019. URL: https://www.
androidauthority.com/widevine-explained-821935/.

[69] W3C. Web authentication: An API for accessing public key
credentials level 2. W3C Recommendation, 2021. URL:
https://www.w3.org/TR/webauthn-2/.

[70] Wikipedia. List of best-selling mobile phones. URL:
https://en.wikipedia.org/wiki/List_of_best-
selling_mobile_phones.

[71] Shawn Willden. Keystore key attestation. Google blog,
2017. URL: https://android-developers.googleblog.
com/2017/09/keystore-key-attestation.html.

[72] John Wu. Magisk: The magic mask for Android. URL: https:
//github.com/topjohnwu/Magisk.

[73] Lilian Young, Shawn Willden, and Frank Salim. New
keystore features keep your slice of Android pie
a little safer. Google security blog, 2018. URL:
https://security.googleblog.com/2018/12/new-
keystore-features-keep-your-slice.html.

[74] Yubico. Yubikey: Built for high security. URL: https://www.
yubico.com/.

A ARM TrustZone Overview

ARM provides a reference implementation of secure world
software called ARM Trusted Firmware [6] (ATF), and the
Secure World is usually implemented by a specific vendor
(e.g., Qualcomm, Trustonic, Samsung) based on ATF. ATF is

16

https://www.riscure.com/blog/samsung-investigation-part1
https://www.riscure.com/blog/samsung-investigation-part1
https://labs.taszk.io/articles/post/bug_collision_in_samsungs_npu_driver/
https://labs.taszk.io/articles/post/bug_collision_in_samsungs_npu_driver/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://blog.quarkslab.com/reverse-engineering-samsung-s6-sboot-part-i.html
https://blog.quarkslab.com/reverse-engineering-samsung-s6-sboot-part-i.html
https://blog.quarkslab.com/a-deep-dive-into-samsungs-trustzone-part-1.html
https://blog.quarkslab.com/a-deep-dive-into-samsungs-trustzone-part-1.html
http://tools.ietf.org/rfc/rfc8446.txt
http://tools.ietf.org/rfc/rfc8446.txt
https://docs.samsungknox.com/admin/whitepaper/kpe/hardware-backed-root-of-trust.htm
https://docs.samsungknox.com/admin/whitepaper/kpe/hardware-backed-root-of-trust.htm
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://opensource.samsung.com/uploadList
https://opensource.samsung.com/uploadList
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3027.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3027.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3027.pdf
https://github.com/shakevsky/keybuster
https://github.com/shakevsky/keybuster
https://solokeys.com/
https://www.niap-ccevs.org/MMO/Product/st_VID11042-st.pdf
https://www.niap-ccevs.org/MMO/Product/st_VID11042-st.pdf
https://github.com/StrongKey/fido2
https://gist.github.com/astarasikov/f47cb7f46b5193872f376fa0ea842e4b
https://gist.github.com/astarasikov/f47cb7f46b5193872f376fa0ea842e4b
https://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
https://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
https://www.androidauthority.com/widevine-explained-821935/
https://www.androidauthority.com/widevine-explained-821935/
https://www.w3.org/TR/webauthn-2/
https://en.wikipedia.org/wiki/List_of_best-selling_mobile_phones
https://en.wikipedia.org/wiki/List_of_best-selling_mobile_phones
https://android-developers.googleblog.com/2017/09/keystore-key-attestation.html
https://android-developers.googleblog.com/2017/09/keystore-key-attestation.html
https://github.com/topjohnwu/Magisk
https://github.com/topjohnwu/Magisk
https://security.googleblog.com/2018/12/new-keystore-features-keep-your-slice.html
https://security.googleblog.com/2018/12/new-keystore-features-keep-your-slice.html
https://www.yubico.com/
https://www.yubico.com/

responsible for performing Secure Boot, loading the differ-
ent bootloaders and launching the REE and TEE [2]. It also
contains a reference implementation for a Secure Monitor.

To achieve the isolation of the TEE and the REE, TrustZone
uses the NS (Non-Secure) bit which is set to 0 if the processor
is in Secure state and set to 1 if the processor is in Non-Secure
state. The secure state can be switched by executing the SMC
opcode (in exception level higher than EL0, e.g., EL1).

The Secure state applies to hardware peripherals and mem-
ory, by using the TZASC register (allows to restrict memory
to Secure World only) and the TrustZone Protection Con-
troller (TZPC). Menarini et al. [47] shows an example of how
the Trusted User Interface (TUI) uses the TZPC to modify
the display and touch controllers as secure and the TZASC
configures secure memory for the display. Thus, a user can
enter a pin for a payment which will be safe from any Nor-
mal World attacker (even if the attacker executes code in the
Android OS kernel) and will not be leaked.

The Normal World can only access Non-secure memory,
but the Secure World can access Non-Secure memory. The
ARM documentation [7] states that Secure and Non-secure
cache entries can coexist, and that the Normal World can only
get a cache hit on Non-secure cache lines.

The ARMv8-A processor supports 4 exception levels [4]:

1. EL0 - usermode (application in Android, TA in TZOS)
2. EL1 - kernelmode (Android kernel, TZOS kernel)
3. EL2 - hypervisor (used by Samsung to implement

RKP [58], which protects the integrity of the Android
kernel)

4. EL3 - Secure Monitor

Fig. 1 shows the components in each exception level in the
TrustZone architecture.

When the processor is in Secure mode, we can denote S-
ELx, e.g., S-EL0 is the secure EL0. Most of our research
focuses on S-EL0 (where the Keymaster TA executes), S-EL1
(where the TZOS kernel handles ioctls that the Keymaster TA
calls) and EL3 (where the Secure Monitor executes a function
handler for a given SMC).

The Secure Monitor provides the interface between the
two worlds and performs switching when the SMC (Secure
Monitor Call) opcode is executed. Per the ARM SMC Calling
Convention [5], “The SMC instruction is used to generate
a synchronous exception that is handled by Secure Monitor
code running in EL3. The arguments are passed in registers
and then used to select which Secure function to execute.
These calls may then be passed on to a Trusted OS in S-EL1.”.
Note that the Secure World also uses SMC for some oper-
ations, such as power management or privileged operations
that can only be done in the Secure Monitor (EL3).

B The Control Flow in the Keymaster TA

Upon receiving control from an API call (from our client or
from the Keymaster HAL), the Keymaster TA has the follow-
ing flow in TA_InvokeCommandEntryPoint:

1. Validates the parameter types for the input and output
buffers and makes sure that the memory references that
are sent from the Normal World belong to the REE.

2. Parses the input buffer as an ASN.1 structure indata
and validates it.

3. Calls the appropriate command handler based on
indata->cmd.

4. Fills the output buffer with ASN.1 structure outdata.

There are more than 21 command handlers in the Keymas-
ter TA, including the following, that implement the similarly
named API calls as in Section 3.2:

• swd_generate_key
• swd_import_key
• swd_import_wrapped_key
• swd_get_key_characteristics
• swd_export_key
• swd_attest_key
• swd_begin/swd_update/swd_finish

Blob-creating commands accept key parameters that are
delivered in the indata structure. The parameters control how
the key is generated and are also placed inside the blob. They
are subsequently used during the cryptographic operations
that take the blob as input. Key parameters include:

• Cipher information including:

– Algorithm (RSA/EC/AES/DES/HMAC)
– Key size (e.g., 768/1024/2048/3072/4096 for RSA

or 128/192/256 for AES)
– Mode of operation (e.g., ECB/CBC/CTR/GCM)
– Padding (e.g., none/RSA-OAEP/RSA-PSS)
– Digest (e.g., none/md5/sha1/sha256)

• The parameters can also include optional access control
restrictions on the created blob, including:

– Purpose (e.g., limit to encryption/signing only, or
only encryption and decryption).

– Maximum number of uses per boot / minimum
seconds between operations / expiration date.

– Require authentication (e.g., by password or bio-
metric prompt) or confirmation by the user.

The main focus of our research is how key blobs are de-
crypted/encrypted. The blob structure is as follows: The
key material is serialized into an ASN.1 structure called
km_key_blob that contains a version number, key mate-
rial and key parameters. The ASN.1 structure is then en-
crypted using AES-256-GCM with an Hardware Derived Key-
encryption-key (HDK). This encryption is called “wrapping”

17

SMC

ioctl
WRAPPED_WITH_REK

Option 2: "Long" key wrap

Option 1: "Short" key wrap

Normal World Secure Monitor EL3 Secure World EL1
TEEGRIS kernel

Secure World EL0
Keymaster TA

SMCKeymaster HAL

Handle ioctl

then SMCAES-GCM-256

in SoC
Wrapped key Wrapped key

tz_wrap/tz_unwrap

key_blob_asn1_size <= 4096

fill struct with salt, iv, aad,
plaintext/encrypted, auth_tag,
request (encyption/decryption)

KDF with REK

in SoC

Handle ioctl

then SMC

HDK

ioctl

KDF_WITH_REK tz_wrap/tz_unwrap

key_blob_asn1_size > 4096

fill struct with kdf_key, salt, hdk

Keymaster TA calls
aes256_gcm_{en,de}crypt with HDK as the

encryption key to get the wrapped key

Schedule TA

HDK

Figure 8: Key wrapping in Keymaster TA in TEEGRIS 2

and is the topic of much of our work. The “wrapped” key
blob is serialized again into another ASN.1 structure called
km_ekey_blob that contains information that is required for
decryption, such as the IV and AAD that was used to encrypt.
Fig. 8 shows the process of key wrapping/unwrapping in the
Keymaster TA which we describe in this section.

To ensure that key blobs are hardware-protected, the device
uses the following keys:

• Root Encryption Key (REK): a 256-bit AES key that is
available only in secure hardware and is device-unique.

• Hardware Derived Key (HDK): a 256-bit AES key that
is derived from the REK per blob encryption using the
Key Derivation Function (KDF) which we discussed in
Section 3.4.

At a high level, the AES operation uses the following fields:

• The IV, that is either generated or is located in
the parameters that are required for decryption
(KM_TAG_EKEY_BLOB_IV)

• The AAD that is computed in swd_get_aad
• The data to encrypt/decrypt
• The authentication tag for decryption

(KM_TAG_EKEY_BLOB_AUTH_TAG)
• A salt value that is computed in swd_get_salt and is

used by KDF to derive the HDK from the REK.

The salt value is computed in the swd_get_salt function
as the SHA256 digest of a concatenation of values based on
the encryption version ekey_blob->enc_ver. We refer to
values of enc_ver symbolically as either “v15”, “v20-s9” or
“v20-s10” based on the constant strings that are used by the

KDF and the device model we observed them on (technically
enc_ver is a byte value).

The decryption/encryption of ASN.1-serialized key
material occurs in the tz_unwrap/tz_wrap functions (resp.),
which call TEES_WrappedWithREK/TEES_DeriveKeyKDF
from libteesl.so, which in turn does a ioctl to the crypto
driver (dev://crypto). See Appendix C for details on how
TEEGRIS uses the hardware crypto engine to compute the
KDF with REK and AES-GCM operations.

C KDF and Key Wrapping in TEEGRIS

Figure 8 illustrates the two flows that use the salt, IV, AAD,
and authentication tag to perform the cryptographic wrap-
ping/unwrapping in TEEGRIS. If the length of the ASN.1-
serialized key is at most 4096 bytes, the Keymaster TA calls
the TEES_WrappedWithREK library function to derive the
HDK from the salt and then perform AES-GCM in the crypto
engine. Conversely, if the length is greater than 4096 bytes,
the Keymaster TA uses the TEES_DeriveKeyKDF library func-
tion to derive the HDK by calling the crypto driver, and then
uses a software implementation of AES-GCM-256 (using
the SCrypto library [60] that is based on BoringSSL [29]) to
perform the encryption.

In order to understand how the key blobs are encrypted,
we reversed engineered TEEGRIS, found the dev://crypto
driver and analysed its ioctl method. We focus on two
specific ioctl commands: CRYPT_FUNC_WRAPPED_WITH_REK
(that encrypts or decrypts key blobs) and CRYPT_FUNC_KDF
(that derives a HDK from the REK), that are called from
TEES_WrappedWithREK/TEES_DeriveKeyKDF in the Key-

18

master TA (resp.).
CRYPT_FUNC_WRAPPED_WITH_REK checks that the calling

task in TEEGRIS is the Keymaster TA by comparing the
current UID to the UID of the Keymaster (10 bytes of null,
then “KEYMST”) and rejects any other task. It then copies the
struct that the Keymaster TA sent to DMA memory, edits the
salt by appending the Keymaster TA’s own UID (16 bytes) and
executes an SMC instruction (passing the physical address of
the memory where the struct resides as the third argument). If
the SMC returns 0, the modified struct is copied back to the
Keymaster TA.
CRYPT_FUNC_KDF also calls the same SMC function but

with a different arguments (0 as the first argument instead
of 1). It computes the SHA-256 digest of the KDF key, the
task UID and group and the salt, then passes the address of
the struct that contains both the hash and the HDK (with its
length). The SMC fills the bytes of the HDK.

D TEE Client API

Client Applications in the Normal World can communicate
with TAs using World Shared Memory buffers and an API by
GlobalPlatform for TEEs [23].

In TEEGRIS, Samsung followed the GlobalPlatform TEE
specification [24] that defines a set of C APIs for the develop-
ment of TA running inside a TEE.

In most cases, a Client Application calls a client API func-
tion such as TEEC_OpenSession in the Normal World (EL0),
which triggers an SMC opcode in the Normal World kernel
(EL1) and execution switches to the Secure Monitor, who will
switch execution to the Secure World TZOS kernel (S-EL1)
that will schedule the TA and call the appropriate TA API
function such as TA_CreateEntryPoint, and will return the
response to the client. The common API functions are:

1. TA_CreateEntryPoint: Constructor

2. TA_OpenSessionEntryPoint: Called when a client
opens a session with TEEC_OpenSession

3. TA_InvokeCommandEntryPoint: Called when a client
calls TEEC_InvokeCommand.

4. TA_CloseSessionEntryPoint: Called when a client
closes a session with TEEC_CloseSession

5. TA_DestroyEntryPoint: Destructor

E Keymaster HAL

The Keymaster HAL is made up of several components:

• SKeymaster4Device: Samsung’s implementation of
AndroidKeymaster4Device [28] (a C++ class that im-
plements Keymaster functions by calling API from C
libraries). Implemented in libkeymaster4device.so

• Wrapper libraries that expose Keymaster API, such as
libkeymaster4.so

• android.hardware.keymaster@4.0-service: ex-
poses API to construct requests in the vendor-specific
format for the Keymaster TA. Most of our focus was on
libkeymaster_helper.so which the HAL uses.

The Keymaster HAL is registered as a service by the Key-
master HIDL [32]:

IKeymasterDevice* keymaster =
skeymaster::CreateSKeymasterDevice(
SecurityLevel::TRUSTED_ENVIRONMENT);
// ...
status_t status = keymaster ->registerAsService();
// ...
LOG(INFO) << ‘‘Keymaster HAL service is Ready.’’;

The CreateKeymasterDevice function creates an ob-
ject of SKeymaster4Device and calls the waitKeymaster_
method which opens a session to the Keymaster TA and
runs the configure command. Later, Android services such
as keystored will call specific Keymaster functions (e.g.,
generateKey) that the device object implements - most will
use library functions to construct the appropriate requests in
the vendor-specific format and use the GlobalPlatform client
API that libteecl.so implements to send it to the Keymas-
ter TA.

F Firmware analysis

The firmware of the device contains a binary called
sboot.bin that is Samsung’s implementation of Secure Boot
for Exynos models based on ATF.

Based on our reverse engineering using Ghidra [49] and on
previous work on SBOOT in Galaxy S6 devices with Kinibi
as the TZOS [52], as well as useful information about reverse
engineering SBOOT in Galaxy S10 devices [67], we extracted
BL2 (the second stage bootloader) and the TEEGRIS OS
binary from SBOOT. Both SBOOT and TEEGRIS are 64 bit
binaries in a proprietary format.

Images of TAs were found in vendor/tee and
system/tee, while root_task (a task in TEEGRIS that is
similar to init in Linux and is responsible to spawn TAs)
and important libraries were found in startup.tzar [66].
We mostly reversed 32 bit TAs (mainly the Keymaster TA)
and libraries which are ELF files with a special header and
footer, therefore by stripping the headers we were able to
reverse them easily - especially as most functions have debug
strings (usually with the name of the function and other useful
information). Important files include:

• 00000000-0000-0000-0000-4b45594d5354: the Key-
master TA (in vendor/tee)

• libteesl.so: TEE API for TAs

19

• libscrypto.so: Samsung SCrypto Cryptographic
Module [60], which seems to be a modification of Bor-
ingSSL [29]

• libtzsl.so: Includes wrappers to TEEGRIS syscalls

The main object of interest in our research was not TEE-
GRIS itself but the crypto driver (dev://crypto) that wraps
and unwraps hardware-protected keys.

G GDB script for downgrade attack

To demonstrate the downgrade at-
tack, we attached gdb_server to the
android.hardware.keymaster@4.0-service process,
then ran the following commands (to add the enc_ver key
parameter and force blobs to be generated as v15):

break before calling the keymaster
b *(nwd_generate_key + 100)

commands
printf "intercepted request to nwd_generate_key\n"

set $sizeof_param = (long)0x18
set $params = *(char **)$x21
set $num_params = *(long long *)($x21 + 8)
set $old_size = $num_params * $sizeof_param
set $new_size = $old_size + $sizeof_param

printf "copy old key parameters to new buffer\n"
set $new_params = (char *)malloc($new_size)
call (long)memset($new_params , 0, $new_size)
call (long)memcpy($new_params , $params , $old_size)

printf "add new parameter (KM_EKEY_BLOB_ENC_VER ,
15)\n"

set *(long long *)($new_params + $old_size) = 0
x30001390

set *(long long *)($new_params + $old_size + 8) =
0xf

printf "switch to new parameters - this forces the
generation of a v15 blob\n"

set *(long long *)($x21) = $new_params
set *(long long *)($x21 + 8) = $num_params + 1

continue
end

b *(nwd_generate_key + 148)

commands
printf "dump the key blob that the keymaster

returned\n"
set $len = *(char **)($x20 + 8)
set $start = *(char **)$x20
set $end = (char **)((long long)$start + $len)
printf "start %p, end %p, len %x\n", $start , $end ,

$len
dump binary memory result.bin $start $end
printf "dumped to result.bin\n"
continue
end

20

	Introduction
	Our Contribution
	Responsible Disclosure
	Structure of the Paper

	Background
	AES GCM
	ARM TrustZone
	Trusted Applications
	Android Hardware Backed Keystore
	Android Key Attestation
	The Attack Model

	Dissecting the Keymaster TA
	Survey of the Keymaster TA Family
	The Keymaster HAL
	Key Blob Encryption
	KDF Versions of Key Blobs

	Attacking the Keymaster TA
	IV Reuse Attack on v15 and v20-s9 Blobs
	The Downgrade Attack
	Persistence of v15 Blobs

	Implications of the Attacks
	Authentication and Confirmation Bypass
	Extracting Keys from Secure Key Import
	Bypassing FIDO2 WebAuthn

	Discussion
	Low-Level Cryptographic Issues
	Composability: The Gap in Attestation
	TrustZone-based Keystore Standard

	Related Work
	Conclusions
	ARM TrustZone Overview
	The Control Flow in the Keymaster TA
	KDF and Key Wrapping in TEEGRIS
	TEE Client API
	Keymaster HAL
	Firmware analysis
	GDB script for downgrade attack

