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Abstract. The round complexity of secure two-party computation is a long studied problem with
matching upper and lower bounds for the case of black-box simulators (i.e., the simulators that use the
adversary as a black-box). In this work, we focus on going beyond this black-box barrier via non-black-
box techniques. Specifically, based on standard cryptographic assumptions, we give a construction of a
3-round two-party computation protocol for computing inputless functionalities (such as coin-tossing)
that satisfies standard security against malicious senders and ε-security against malicious receivers.
Prior to our work such protocols were only known for the case of (weak) zero-knowledge.

1 Introduction

Secure computation [Yao86, GMW87] allows a set of mutually distrusting parties to compute a joint function
of their private inputs while providing protection against an arbitrary collusion of corrupted parties who
might try to learn additional information about the inputs of honest parties, or try to disrupt the correct
computation of the functionality. One of the key research directions in the area of secure computation is
to construct protocols that have minimal round complexity. For the special case of two-parties (which is
the focus of this work), we have matching upper and lower bounds when simulator is restricted to use
the adversary as a black-box. Specifically, Katz and Ostrovsky [KO04] showed that it is not possible to go
beyond four rounds (when one of the parties receive the output) and round-optimal constructions for general
two-party functionalities are known from any four-round Oblivious Transfer [IPS08, IKO+11] (which is the
minimal assumption).

Going beyond this black-box barrier is a fascinating problem with some recent exciting progress. Ananth
and Jain [AJ17] gave a construction of a three-round two-party computation protocol with security against
adversaries with a priori bounded non-uniform advice. Bitansky, Kalai, and Paneth [BKP18] gave a construc-
tion of a 3-round zero-knowledge protocol assuming the (non-standard) assumption of keyless multi-collision
resistant hash functions. In a more recent work, Bitansky, Khurana, and Paneth [BKP19] gave a construction
of a three-round weak zero-knowledge protocol (which is explained in the next subsection) under standard
cryptographic hardness assumptions.

Our Focus. In this work, we focus on developing new techniques that allow us to construct three-round
secure computation protocols for an interesting class of functionalities based on standard cryptographic
hardness assumptions.

1.1 Our Results

Our main result is a construction of a three-round secure two-party computation protocol for inputless func-
tionalities that satisfy standard security against malicious senders and ε-security against malicious receivers.
By ε-security, we mean that for every adversary that is corrupting the receiver and for any non-negligible
ε, there exists an ideal world simulator such that the adversary cannot distinguish whether it is interacting
with the honest sender or the ideal world simulator except with ε advantage. By inputless functionalities,
we mean those functions which do not take private inputs from the parties. Such functionalities could be
generically used for sampling from some pre-defined distribution such as coin-tossing, or sampling a common
reference string for cryptographic protocols etc. The main theorem we prove in this work is the following:



Theorem 1. Assuming the existence of a circuit-private Fully Homomorphic Encryption (FHE) scheme1,
hardness of LWE, and either the DLIN or the SXDH assumption, there is a construction of a three-round
secure two-party computation protocol for inputless functionalities that satisfy standard security against ma-
licious senders and ε-security against malicious receivers.

Key Tool. The key technical tool that allows us to prove the above theorem is a 3-message delayed-input
weak zero-knowledge protocol. Recall that in a weak zero-knowledge protocol [DNRS99], the zero-knowledge
simulator is allowed to depend on both the malicious verifier as well as the distinguisher. More specifically,
weak zero-knowledge property guarantees that for any malicious verifier V ∗, a distinguisher D and non-
negligible distinguishing parameter ε, there is a simulator that can produce a view of the malicious verifier
in such a way that D cannot distinguish this view from the real view except with advantage ε. We say that
a weak zero-knowledge protocol satisfies delayed-input property if the statement to be proven is only known
to the prover before it sends its final round message. Bitansky, Khurana, and Paneth [BKP19] constructed a
three-round weak zero-knowledge protocol but unfortunately, this protocol is not delayed-input. In this work,
we give a construction of a 3-message weak zero-knowledge protocol that satisfies delayed-input property
and we believe this might be of independent interest. Specifically,

Theorem 2. Assuming the existence of a circuit-private Fully Homomorphic Encryption (FHE) scheme,
hardness of LWE, and either the DLIN or the SXDH assumption, there is a construction of a 3-message
delayed-input, weak zero-knowledge protocol.

1.2 Related Work

Non-Black-Box Techniques. There has been a fascinating line of work, starting from the seminal work
of Barak [Bar01] that have led to the development of new non-black-box techniques to overcome the known
black-box barriers. Non-Black-Box techniques have been particularly fruitful in constructing concurrent
secure computation protocols in the plain model [PR03, Pas04, BS05, PR05, Goy13, CLP13, CLP15], con-
structing protocols with strict polynomial-time simulators [BL02], as well as constructing protocols that are
secure against resetting attacks [BGGL01, GS09, DGS09, GM11, BP12, BP13].

Achieving Weaker Security. There is an interesting line of work that have overcome the black-
box barrier by considering weaker security guarantees such as super-polynomial time simulation secu-
rity [BGJ+17, ABG+21]. The work of Badrinarayanan et al. [BGJ+18] has shown the black-box lower bound
of Katz-Ostrovsky [KO04] does not hold for a weaker notion of coin tossing which they term as list coin
tossing. Intuitively, list coin tossing provides a weaker security guarantee since the simulator is allowed to
query the ideal functionality multiple times and forces one of these outputs to the corrupted receiver.

1.3 Open Directions

Our work opens up several interesting research directions and we list a few of them below.

Going Beyond Inputless Functionalities. As we explain in the next section, our techniques seem to only
give secure 2PC protocols for computing inputless functionalities. Can we extend these techniques so as to
enable computation of general functions?

Extending the Black-Box Lower Bound to ε-Security. The work of Katz-Ostrovsky [KO04] ruled out
a construction of standard secure coin-tossing protocol in three rounds for the case of black-box simulators.

1 We note that such a FHE scheme can be constructed from any (circular-secure) Somewhat Homomorphic Encryp-
tion (see [DS16]) which can in turn be instantiated from circular-secure LWE assumption.
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It is straightforward to extend their negative result to the case of ε-security for the class of simulators that
are allowed to run in (expected) time which is poly(1/ε) but make a fixed polynomial number of oracle
queries to the adversary. Intuitively, making more queries doesn’t seem to help as an adversarial receiver is
generating only a single message in the protocol. However, formalizing this intuition seems tricky and is left
as an interesting open problem.

Extending to the case of Multiparty Functionalities. Another interesting open direction is to extend
our results for computing either general or even specific inputless multiparty functionalities (such as multi-
party coin-tossing). To go beyond the two-party setting, one has to deal with non-malleability issues which
seems to require new techniques.

2 Technical Overview

In this section, we give a brief overview of the main technical ideas used in our construction of three-round
protocol for computing inputless functionalities.

Starting Point. The starting point of our work is the following folklore recipe of constructing secure two-
party computation protocols. Take any two-message SFE protocol that is secure against malicious receivers
but only has semi-malicious security against senders. Now, attach a zero-knowledge proof to show that the
sender’s message is well-formed. This would hopefully lead to a secure two-party protocol that is secure
against malicious receivers as well as malicious senders. However, making this approach work in the three-
round setting is significantly hard and we face the following barriers.

– 3-Round Zero-Knowledge Protocol. As our focus in on constructing a three-round SFE protocol,
we need a three-round zero-knowledge protocol to show the correctness of the sender’s SFE message.
However, the task of constructing a 3-round zero-knowledge protocol based on standard cryptographic
assumptions is notoriously hard and has been open despite significant efforts. In a recent exciting work,
Bitansky, Khurana, and Paneth [BKP19] gave a construction of a 3-round weak zero-knowledge protocol
based on well-studied cryptographic assumptions.

– Delayed-Input Property. We could hope to directly plug-in the above weak zero-knowledge protocol
and obtain a construction of three-round SFE protocol that is ε-secure against malicious receivers.
However, for this approach to work, we need the weak zero-knowledge to be delayed-input. This is
because the statement that needs to proved is only known to the sender before sending its final round
message as it corresponds to the correctness of the sender SFE message. As we explain later, the weak
zero-knowledge protocol of Bitansky et al. does not satisfy this property and constructing a three-round
weak zero-knowledge protocol that is delayed-input encounters significant technical barriers.

– Extracting the Effective Input of the Malicious Receiver. Perhaps the most significant challenge
that we need to deal with is in extracting the effective input of the malicious receiver. Recall that in the
three-round setting, the receiver only sends a single message in the protocol and we need to somehow
extract the effective input used by the receiver. This doesn’t seem possible if we only use the receiver as
a black-box and hence, we need to develop non-black-box techniques for achieving the same.

2.1 Delayed-Input Weak Zero-Knowledge

Starting Point. The starting point of our construction is the recent work of Bitansky, Khurana, and
Paneth [BKP19] who gave a three-message weak zero-knowledge protocol based on standard polynomial
hardness assumptions (henceforth, denoted as the BKP protocol). Unfortunately, as we explain later, this
protocol does not satisfy delayed-input property. We then explain how to modify this construction so that
it satisfies this property.
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High-Level Overview of the BKP Protocol. The BKP protocol is built on the FLS paradigm [FLS90]
with a special homomorphic trapdoor. At a high-level, the code of the underlying malicious verifier V ∗ and
the distinguisher D is used to construct a trapdoor simulation circuit HS. This circuit is homomorphically
evaluated on the verifier’s message to compute the homomorphic trapdoor which is then used by the sim-
ulator to fake the honest prover’s message. This homomorphic trapdoor is carefully designed such that a
malicious prover cannot compute this efficiently but given the code of the malicious verifier V ∗ and the
distinguisher D, the weak zero-knowledge simulator is able to extract this in polynomial time. To explain
this idea more concretely, let us first consider a version of the BKP protocol that is secure against explainable
verifiers [BKP19]. Explainable verifers are a weaker class of malicious verifiers whose messages are in the
support of the honest verifier’s message distribution. [BKP19] gave a round-preserving compiler from weak
zero-knowledge against explainable verifiers to weak zero-knowledge against arbitrary malicious verifiers. As
we will see below, the BKP protocol against explaiable verifiers satisfies delayed-input property. However,
their compiler that upgrades the security does not preserve this property.

BKP Protocol against Explainable Verifiers. We give a sketch of the BKP protocol for proving state-
ments in the NP language L against explainable verifiers in Figure 1. The construction uses the following
building blocks:

– A non-interactive commitment scheme Com.
– A dense public-key encryption (Den.Gen,Den.Enc,Den.Dec). Recall that in a dense encryption scheme,

every string that has a same size as that of a valid public key has a corresponding secret key.
– A fully homomorphic encryption (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval).
– A compute-and-compare obfuscation O [GKW17, WZ17]. Recall that compute and compare program

CC[f, u,m] takes an input x and evaluates f(x) and checks if it is equal to u. If it is the case, it
outputs m and otherwise, outputs ⊥. The security of compute and compare obfuscation guarantees that

the distribution of C̃C = O(CC[f, u,m]) is computationally indistinguishable to the obfuscation of a
dummy circuit that always outputs ⊥ as long as u has sufficient min-entropy.

– A random self-reducible public-key encryption (RSR.Gen,RSR.Enc,RSR.Dec,RSR.D̃ec). The first three
algorithms have the same syntax as that of a standard public-key encryption scheme. The final algorithm

RSR.D̃ec takes as input a ciphertext ct, uses a distinguisher D that can distinguish between encryptions
of two different messages with non-negligible advantage ε and outputs the message encrypted inside
ct with overwhelming probability. Constructions of this primitive are known from any rerandomizable
encryption [GM82, ElG86, Pai99].

– A ZAP (ZAP.Prove,ZAP.Verify) for the language L = L1 ∨ L2 ∨ L3 where each Li consists of instances
of the form

z = (stmt, pk′, pk, com, ct, ct′, ct′1) (2.1)

such that (in the following, we use ⊥ to denote a special symbol in the message space of RSR.Enc):
• z ∈ L1 iff

∃(s1, s2) s.t. ct′1 = Den.Enc(pk′, s1; s2) ∧
ct = RSR.Enc(pk,⊥; s1)

• z ∈ L2 iff

∃(w, s4) s.t.
(stmt, w) ∈ RL ∧
ct′ = Den.Enc(pk′, w; s4) ∧

• z ∈ L3 iff

∃ρ s.t. com = Com(1λ, 0; ρ)
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– Round-1: In the first round, the prover P does the following:
1. It samples (pk′, sk′)← Den.Gen(1λ).
2. It sends pk′ as the first round message.

– Round-2: In the second round, the verifier does the following:
1. It samples (pk, sk)← RSR.Gen(1λ).
2. It samples u← {0, 1}λ and computes ct1 ← RSR.Enc(pk, u).
3. It samples (fpk, fsk)← FHE.Gen(1λ).
4. It samples ρ← {0, 1}λ and computes com = Com(1λ, 0; ρ). It then computes fct← FHE.Enc(fpk, ρ).

5. It computes C̃C← O(CC[FHE.Dec(fsk, ·), u, ρ]).
6. It samples the first round message r of the ZAP protocol uniformly.
7. It sends (pk, com, fpk, fct, C̃C, r) as the second round message.

– Round-3: In the final round, the prover does the following:
1. It computes ct′ := Den.Enc(pk′, w; s4) where s4 ← {0, 1}λ.
2. It computes π ← ZAP.Prove(r, z, (w, s4)).
3. It computes ct′1 ← Den.Enc(pk′, 0λ) and ct = RSR.Enc(pk,0) where 0 is a default input not equal to ⊥.
4. It sends (stmt, π, ct′, ct′1, ct) as the final round message.

– Verifier Checks:
1. It checks if ZAP.Verify(r, z, π) = 1.
2. It checks if RSR.Dec(sk, ct) ̸= ⊥.

If both the checks pass, it accepts.

Figure 1: BKP protocol against Explainable Verifiers

Intuition Behind the Weak Zero-Knowledge Property. The soundness of this protocol is argued using
standard techniques. We now give the main intuition behind the weak zero-knowledge property. At a high-
level, the weak zero-knowledge simulator uses the explainable verifier V ′ and the distinguisher D to construct
a distinguisher D′ that can distinguish between RSR.Enc of two messages, namely, 0 and ⊥ with advantage

µ. If µ ≥ ε/2 (where ε is the distinguishing parameter for WZK), then the simulator can use RSR.D̃ec and

D′ to decrypt ct and obtain u. It can then use FHE.Enc(fpk, u) in conjunction with C̃C to obtain ρ. It can
then use ρ as the trapdoor witness and generate the proof π and complete the interaction with the verifier.
On the other hand, if µ < ε/2, then it follows that the explainable verifier V ′ cannot distinguish between
the cases when ct is an encryption of ⊥ and when it is an encryption of 0 except with advantage ε/2. Thus,
the simulator can now switch ct to encrypt ⊥ and use (s1, s2) as the trapdoor witness to compute the proof
π and complete the interaction with the verifier. The main novelty in this argument is in the design of the
distinguisher D′. Specifically, this distinguisher is not constructed in the clear but is evaluated under the
hood of the FHE scheme. To give a bit more details, the simulator constructs a homomorphic simulation
circuit HS that takes ρ as input and generates the proof π using the witness ρ. It generates the view of the
verifier V ′ and runs the distinguisher D on it. Now, if the combination of V ′ and D can distinguish between
the cases when ct is an encryption of 0 and an encryption of ⊥ with advantage more than ε/2, HS uses

RSR.D̃ec to compute u and output it. We now homomorphically evaluate HS (using the FHE evaluation) on

fct (which is an encryption of ρ) to obtain a FHE encryption of u. We feed this as input to C̃C to obtain ρ
in the clear. This is used as the trapdoor witness to complete the interaction with the verifier.

Upgrading security from Explainable to Malicious. The protocol given in Figure 1 can be easily
verified to satisfy the delayed-input property. However, the key challenge is to preserve this property while
upgrading the security against explainable verifiers to security against standard malicious verifiers. Indeed,
the transformation described in [BKP19] fails to preserve this property. In their transformation, the first
round message is augmented with a dense commitment to the witness. The verifier then shows via a ZAP
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that either the second round message is generated honestly or the first round commitment is a commitment
to a non-witness. This modification is sufficient to show weak zero-knowledge against malicious verifiers but
in the course, we have lost the delayed-input property. Thus, we need a new transformation that preserves
this property.

Why a Natural Attempt Fails? A natural attempt to upgrade security is for the prover to additionally
send a random image y of a one-way permutation f in the first round and in the second round, the verifier
sends an additional commitment com′ and proves via a ZAP that either the second round message is generated
correctly or com′ contains the pre-image of y. The one-wayness of f intuitively guarantees that the verifier
is forced to generate a valid second round message (which follows from the soundness of ZAP) and thus, we
can rely on weak zero-knowledge against explainable verifiers. However, the main issue with this approach is
that we get stuck when we try to formalize a reduction that uses a cheating verifier to break the one-wayness
of f . Specifically, there does not seem to be a way which allows us to efficiently extract the pre-image of
y from the commitment generated by the verifier. One way to get around this issue by relying complexity
leveraging [Pas03].In this work, we devise a new technique to overcome this problem by only relying on
standard polynomial hardness assumptions.

Our Solution. The key insight behind our solution is that the homomorphic trapdoor simulation paradigm
in [BKP19] can be used to efficiently extract “information” from a verifier. Indeed, as described earlier, we
used this paradigm to extract the trapdoor ρ from an explainable verifier. We now use this paradigm to
extract the pre-image of f efficiently.

To give a bit more details, we modify the above protocol as follows. The verifier now samples another set

of messages2 (pk2, com2, fpk2, fct2, C̃C2) and proves via a ZAP that either

1. (pk1, com1, fpk1, fct1, C̃C1) is correctly sampled, or

2. (pk2, com2, fpk2, fct2) is correctly sampled and C̃C2 := O(CC[FHE.Dec(fsk2, ·), u2, x]) where f(x) = y.

It follows from the soundness of ZAP that either (pk1, com1, fpk1, fct1, C̃C1) is correctly sampled or

(pk2, com2, fpk2, fct2, C̃C2) is sampled as above. In the former case, we are back to the realm of explainable
verifiers and in the later case, we can hope to break the one-wayness of f . Specifically, if we manage to get

hold of FHE.Enc(fpk2, u2), then we can feed it as input to C̃C2 and obtain x which is a valid pre-image of
y. This allows us to obtain a reduction that breaks the one-wayness of f . We now show that we can obtain
this information using the homomorphic trapdoor paradigm.

Towards this purpose, we modify the ZAP language L (see Equation 2.1) to include another trapdoor
branch L4 which accepts ρ2 as a witness that attests com2 is a commitment to 0 (analogous to trapdoor
branch L3 defined earlier). We also modify ct to be a “double-encryption” of the message 0 under public

keys pk1 and pk2. In the case where only (pk2, com2, fpk2, fct2, C̃C2) is correctly generated, we construct an
homormorphic simulation trapdoor HS2 (analogous to HS described earlier) and run it on fct2. This outputs

an FHE encryption of u2 and we use this to extract x from C̃C2. This allows us to contradict the one-wayness
of f . However, recall that HS2 (resp., HS1) is guaranteed to output x (resp., ρ1) if the verifer/distinguisher
pair is able to distinguish ct being an encryption of 0 from an encryption of ⊥ with non-negligible advantage.

Thus, to conclude the argument, we show that if we are unable to extract ρ1 from C̃C1 and x from C̃C2,
then the malicious verifier V ∗ and the distinguisher D is unable to distinguish between RSR encryptions of
0 and ⊥ except with probability O(ε) (this argument in formalized in Lemma 11). In this case, we use the
trapdoor witness (s1, s2) (for the trapdoor branch L1) to compute the proof π. This allows us to prove the
weak zero-knowledge of the protocol that additionally satisfies delayed-input property.

A Subtle Non-Malleability Issue in Proving Soundness. While attempting to prove the soundness
of the above described protocol, we encounter a subtle non-malleability issue. A natural strategy to prove
the soundness is to fix the first round message from the prover non-uniformly and extract the one-way

2 We use subscript 1 to denote the original second round message of the verifier in Figure 1.
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permutation pre-image of y. In a sequence of hybrids, we switch (pk2, com2, fpk2, fct2, C̃C2) to the correct
distribution (as described in Point-2 above) and then use the witness indistinguishability property of the

ZAP protocol to use this witness instead of the witness for correct generation of (pk1, com1, fpk1, fct1, C̃C1).
Once we have done this, we can use the soundness of the protocol against explainable verifiers to complete
the argument. However, this strategy encounters the following roadblock. Specifically, when we switch com2

from a commitment of 1 to a commitment of 0, we inadvertently “activate” the trapdoor branch L4. Thus,
when we make this switch, the cheating prover could start using the witness for the trapdoor branch L4 and
there is no way for us to detect this. Hence, we cannot reduce the soundness of the overall protocol to the
soundness of the protocol against explainable verifiers.

To overcome this non-malleability issue, we add an additional ciphertext ct′2 in the third round message
sent by the prover and modify the trapdoor branch L4 to show that this ciphertext ct′2 is a valid encryption
of ρ2 under pk′ and ρ2 attests that com2 is a commitment to 0. With this modification, we can use the (non-
uniformly fixed) secret key sk′ of the public key pk′ to decrypt ct′2 and check if ρ2 is a valid randomness for a
commitment to 0. From the perfect binding property of the commitment, such a ρ2 cannot exist when com2

is a commitment to 1. From the hiding property of the commitment, it follows that when we switch com2

from a commitment to 1 to a commitment to 0, the prover cannot generate ct′2 that encrypts a valid opening
to 0. This allows us to prove the soundness of the protocol. However, as explained below, this introduces
new issues in proving the weak zero-knowledge property which we explain next.

Proving the Weak Zero-Knowledge. Recall that HS2 was the homomorphic trapdoor simulation circuit
that we designed to extract the pre-image x of y. This circuit used the trapdoor witness ρ2 (which is given
as a FHE encryption fct2 under fpk2) to generate the proof π. However, with the above modification that
helped in proving the soundness, we additionally need to generate an encryption of ρ2 under pk′. A natural
way to obtain this (under the hood of the FHE) is to run FHE.Eval on fct2 for computing the functionality
Den.Enc(pk′, ·; s) (where s is uniformly chosen). This gives an FHE.Enc of ct′2 under fpk2 and we can use this
to homomorphically evaluate HS2. However, in the real protocol execution, ct′2 is generated as an encryption
of some default value (say, the all zeroes string) whereas in the modified execution, it is generated as an
encryption of ρ2. Intuitively, these two executions should be computationally indistinguishable from the
semantic security of Den.Enc. However, proving this involves many subtleties.

Firstly, we need the FHE scheme to be circuit-private so that information about the randomness s
used in generating ct′2 is not leaked. Secondly, to reduce the indistinguishability to the semantic security
of Den.Enc, we need the value ρ2 in the clear (this is needed for the interaction with the challenger for
Den.Enc). However, ρ2 is only available as an FHE encryption under fpk2 and unless we break open the FHE
encryption by running in super-polynomial time, we cannot hope to obtain ρ2 in the clear. This seems to
require sub-exponential hardness assumptions which we want to avoid.

To overcome this conundrum, we make use of the leakage lemma [GW11, JP14, CCL18]. The leakage-
lemma states that any “short” inefficiently computable leakage from some distribution X could be efficiently
simulated as long as we can tolerate a non-negligible loss in the distinguishing advantage. To use the leakage
lemma, we encrypt ρ2 bit-by-bit and leak one bit of ρ as the inefficient leakage. The leakage lemma guarantees
that this inefficient one bit leakage can be efficiently simulated albeit with a small (but non-negligible) loss
in the distinguishing advantage. Using this lemma and the security of Den.Enc, we can switch ct′2 from
encryption of all zeroes string to an encryption of ρ2 one bit at a time. This argument is formalized in
Claim 4.4. Once we have made this switch, we can use ρ2 as the trapdoor witness to design HS2. This allows
us to complete the proof of the weak zero-knowledge property.

The complete description of the delayed-input weak zero-knowledge protocol along with its analysis
appears in Section 4.

2.2 Three-Round Two-Party Computation

Coming back to our initial recipe, we could try to directly plug-in the delayed-input weak zero-knowledge
protocol with a two-message SFE scheme that is secure against malicious receivers and hope to get a protocol
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that is ε-secure against malicious receivers. However, this is not as straightforward as it seems and we
encounter significant barriers to make this work.

Main Challenge. The main challenge we face here is how to extract the effective input used by the
adversarial receiver. Only after we have extracted this input, we could query the ideal functionality on this
input and “force” the output obtained from the ideal functionality to the corrupted receiver. Wait! Isn’t our
SFE protocol already secure against malicious receivers? Unfortunately, these two message SFE protocols in
the plain model [NP01, AIR01, Kal05, HK12, BD18, DGI+19] only allow super-polynomial time extraction
of the adversarial receiver input and we cannot hope to use these extractors if we want a polynomial time
simulator. Since the receiver only sends a single message in the protocol, black-box techniques to extract the
receiver’s input seem insufficient and hence, we need to develop new non-black-box techniques for the same.

Our Solution. The main idea behind our solution is to make use of the homomorphic trapdoor paradigm
to extract the effective receiver’s input. Recall that we used this paradigm to extract the pre-image of the
one-way permutation, and perhaps, we could use this to extract the effective receiver input in an analogous
way. However, one key difference between these two settings is that in the case of two-party computation
protocol, the malicious receiver expects to obtain the output of the computed functionality if it sends a
valid second round message. This must be contrasted with the zero-knowledge setting where the malicious
verifier only gets an accepting transcript. This creates the following circularity issue. In order to extract
the effective receiver input, we need to homomorphically evaluate the homomorphic trapdoor simulation
circuit HS. However, this circuit needs to generate a third-round message which delivers the output of the
functionality to the malicious receiver. This in particular, means that we must have somehow extracted
the effective input of the receiver before this and hence, the circularity. To break this circularity, we only
consider securely computing inputless functionalities. Specifically, inside the homomorphic simulation circuit,
we could generate a final round SFE protocol using an independently chosen random input on behalf of the
sender and this is identically distributed to the real execution. Hence, the homomorphic trapdoor simulation
succeeds in extracting the effective receiver input which we could use to force an output provided by the
ideal functionality.

Problem with Weak Extraction. A subtle point to note here is that this trapdoor simulation paradigm
only guarantees “weak-extraction,” meaning that only if the adversary is able to distinguish between the two
RSR encryptions with non-negligible advantage, we can extract the message. Thus, to be compatible with
this “weak-extraction” guarantee, we encrypt the second round SFE message under the RSR encryption.
Specifically, if the adversary is unable to distinguish, we switch this RSR encryption to an encryption of some
junk value. In that case, the adversary does not obtain the output of the SFE functionality. On the other
hand, if the adversary is able to distinguish, then the “weak-extraction” allows us to extract the effective
receiver input using the homomorphic trapdoor simulation paradigm.

The full description of the construction of the three-round two-party secure computation protocol appears
in Section 5.

Organization. In Section 4, we give our construction of delayed-input weak zero-knowledge protocol. In
Section 5, we give our construction of three-round secure two-party computation protocol for inputless
functionalities.

3 Preliminaries

Let λ denote the cryptographic security parameter. A function µ(·) : N → R+ is said to be negligible if for
any polynomial poly(·) there exists λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . A function that is not

negligible is called a non-negligible function. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function. For any i ∈ [n], let xi denote the symbol at the
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i-th co-ordinate of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates
indexed by T . We use supp(X) to denote the support of a random variable X.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the content of
the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite set S, we denote x← S
as the process of sampling x uniformly from the set S. We will use PPT to denote Probabilistic Polynomial
Time algorithm. Unless it is clear from context, we assume w.l.o.g. that the length of the randomness for all
cryptographic algorithms is λ.

We say that two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are computationally indistinguishable if
for every non-uniform PPT distinguisher D, we have |Pr[D(1λ, Xλ) = 1]| − Pr[D(1λ, Yλ) = 1]| ≤ negl(λ).

3.1 Trapdoor Generation Protocol

We consider a three-round trapdoor generation protocol (TD1,TD2,TD3,TDVerify) from the work of
[BGJ+18] (based on a digital signature scheme) that satisfies the following properties:

– Given any first round message td1 from the malicious sender, there is a trapdoor x such that
TDVerify(x, td1) = 1.

– Soundness. Any malicious adversary corrupting the receiver and interacting with an honest sender
cannot output x such that TDVerify(x, td1) = 1 except with negligible probability.

– Extraction. There exists an (expected) PPT extractor Ext that interacts with any malicious sender and
outputs x such that TDVerify(x, td1) = 1 with overwhelming probability.

3.2 Dense Public-Key Encryption

We recall the definition of dense public-key encryption.

Definition 1. A public-key encryption scheme (Den.Gen,Den.Enc,Den.Dec) is a dense public-key encryption
scheme for message space {0, 1}p(λ) (for some polynomial p) if:

– Correctness: For any λ and message m ∈ {0, 1}p(λ), we have:

Pr[Den.Dec(sk, ct) = m] = 1

where (pk, sk)← Den.Gen(1λ), ct← Den.Enc(pk,m).
– Security: For any two messages m0,m1 ∈ {0, 1}p(λ), we have:

{pk,Den.Enc(pk,m0)}λ ≈c {pk,Den.Enc(pk,m1)}λ

where (pk, sk)← Den.Gen(1λ).
– Dense Public Keys: For any λ and any string pk′ ∈ {0, 1}|pk| where (pk, sk) ← Den.Gen(1λ), there

exists sk′ such that (pk′, sk′) ∈ Den.Gen(1λ).

Instantiations. Dense public-key encryption schemes can be instantiated based on the DDH/SXDH as-
sumption [ElG86], DLIN assumption [BBS04], or the LWE assumption based on the dual Regev sys-
tem [Reg05, GPV08].

3.3 Fully-Homomorphic Encryption

In this subsection, we recall the notion of fully homomorphic encryption scheme with statistical circuit
privacy. Here, we consider a definition where there is a Setup algorithm that outputs a common random
string r and the FHE.Gen takes as input this r and samples a public-key, secret-key pair. This is done to
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ensure that a public-key, secret-key pair chosen using bad randomness does not affect the correctness of the
decryption.3

Syntax. A fully homomorphic encryption (FHE) consists of the following algorithms
(Setup,FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval,Sanitize). The Setup algorithm outputs a uniformly cho-
sen random string r and FHE.Gen takes in r and outputs (pk, sk) pair. FHE.Enc and FHE.Dec have the same
syntax as that of any public key encryption scheme. The algorithm FHE.Eval takes as input public key pk
and a description of a circuit C : {0, 1}n → {0, 1}m and a ciphertext fct encrypting an n-bit message and
outputs a new ciphertext fct′. Sanitize takes in the public key and a FHE ciphertext fct and outputs another
ciphertext fct′.

Definition 2. A tuple of PPT algorithms (Setup,FHE.Gen,FHE.Enc,FHE.Dec,
FHE.Eval,Sanitize) is said to be a fully homomorphic secret-key encryption scheme with statistical circuit
privacy if:

– Correctness. With probability 1 − 2−λ over the choice of r output by Setup(1λ), for any x ∈ {0, 1}n,
for any circuit C : {0, 1}n → {0, 1}m, for any (pk, sk) ∈ FHE.Gen(r), fct ∈ FHE.Enc(sk, x),

FHE.Dec(sk,FHE.Eval(pk, C, fct)) = C(x)

– Security. For any two messages x0, x1 ∈ {0, 1}n and for any r in the support of Setup(1λ), we have:

{(pk,FHE.Enc(pk, x0)) : (pk, sk)← FHE.Gen(r)}λ ≈c

{(pk,FHE.Enc(pk, x1)) : (pk, sk)← FHE.Gen(r)}λ

– Compactness. There exists a fixed polynomial poly(·) such that for any r ∈ Setup(1λ), for any circuit
C : {0, 1}n → {0, 1}m, x ∈ {0, 1}n, any (pk, sk) ∈ FHE.Gen(r), and fct ∈ FHE.Enc(sk, x), we have:

|FHE.Eval(pk, C, fct)| ≤ poly(λ,m)

– Correctness of Sanitize. With probability 1− 2−λ over the choice of r output by Setup(1λ) and for any
(pk, sk)← FHE.Gen(r) and for all fct in the support of ciphertext space, we have:

FHE.Dec(sk,Sanitize(pk, fct)) = FHE.Dec(sk, fct)

– Circuit Privacy. With probability 1 − 2−λ over the choice of r output by Setup(1λ), we have for any
t ∈ {0, 1}∗ and (pk, sk) ∈ FHE.Gen(r; t) and for all (fct, fct′) in the support of ciphertext space such that
FHE.Dec(sk, fct) = FHE.Dec(sk, fct′):

{r, t,Sanitize(pk, fct)} ≈s {r, t,Sanitize(pk, fct′)}

Instantiation. An FHE scheme satisfying Definition 2 is constructed in [DS16] based on the (circular-
secure) Somewhat Homomorphic Encryption (SHE) which in turn can be instantiated based on (circular-
secure) Learning with Errors [Reg05] assumption. We note that for our applications, it is sufficient if the
FHE scheme satisfies computational circuit privacy instead of statistical one.

3 Specifically, if there is a FHE construction such that for 1/2λ fraction of the random coins of FHE.Gen, there is a
decryption error. Suppose for a uniformly chosen r output by the Setup algorithm, if we set the random coins of
FHE.Gen to be r⊕PRG(t) where |t| = λ/2. Then, with probability 1−2−λ/2 over the choice of r, for any maliciously
chosen t, there is no deceryption error.
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3.4 Random Self-Reducible Public-Key Encryption

We now recall the notion of random self-reducible public-key encryption [BM82]. This subsection is mostly
taken verbatim from [BKP19].

Syntax. An random self-reducible public-key encryption (in short, an RSR encryption) consists of a tuple of

PPT algorithms (RSR.Gen,RSR.Enc,RSR.Dec,RSR.D̃ec). The first three algorithms have the standard syntax

for a public-key encryption scheme. The final algorithm RSR.D̃ec
D
(ct, pk, 11/ε) which we given as inputs a

ciphertext ct, a public key pk and a (distinguishing) parameter 11/ε, and oracle access to a distinguisher D
outputs a plaintext message m.

Definition 3. A public-key encryption scheme (RSR.Gen,RSR.Enc,RSR.Dec,RSR.D̃ec) for message space
{0, 1}p(λ) (for some polynomial p) is random self-reducible if:

– Correctness: For any λ and message m ∈ {0, 1}p(λ), we have:

Pr[RSR.Dec(sk, ct) = m] = 1

where (pk, sk)← RSR.Gen(1λ), ct← RSR.Enc(pk,m).
– Security: For any two messages m0,m1 ∈ {0, 1}p(λ), we have:

{pk,RSR.Enc(pk,m0)}λ ≈c {pk,RSR.Enc(pk,m1)}λ

where (pk, sk)← RSR.Gen(1λ).
– Random Self-Reducibility: For any public key pk ∈ RSR.Gen(1λ), it holds that for any (probabilistic)

distinguisher D, any two messages m0,m1 ∈ {0, 1}p(λ) and non-negligible ε,
if

|Pr[D(RSR.Enc(pk,m0)) = 1]− Pr[D(RSR.Enc(pk,m1)) = 1]| ≥ ε

then, for any m ∈ {0, 1}p(λ) and ct ∈ RSR.Enc(pk,m),

Pr[RSR.D̃ec
D
(ct, pk, 11/ε) = m] ≥ 1− 2λ

where the probability is over the random coins of RSR.D̃ec and D.

Remark 1. In [BKP19], RSR encryption is defined only for the case where the messages are bits. It is
straightforward to extend this definition to arbitrary length messages by encrypting bit by bit.

Instantiation. Random self-reducible encryption can be constructed from the DDH/SXDH assump-
tion [ElG86], or based on the DLIN assumption [BBS04]. Bitansky et al. [BKP19] gave a construction
of a relaxed notion of RSR encryption from LWE with sub-exponential modulus-to-noise ratio. We note that
this relaxed notion is also sufficient for our purposes.

3.5 Compute and Compare Obfuscation

We give the definition of compute and compare obfuscation. This subsection is mostly taken verbatim from
[BKP19].

Definition 4 (Compute and Compare Programs). Let f : {0, 1}n → {0, 1}λ be a circuit, and let
u ∈ {0, 1}λ and m ∈ {0, 1}p(λ) (for some polynomial p) be two strings. Then, CC[f, u,m](x) outputs m if
f(x) = u, and outputs ⊥ otherwise.

We now define compute and compare (CC) obfuscators. In what follows O is a PPT algorithm that takes

as input a CC circuit CC[f, u,m] and outputs a new circuit C̃C. (We assume that the CC circuit CC[f, u,m]
is given in some canonical description from which f , u, and m can be read.)
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Definition 5. A PPT algorithm O is a compute and compare obfuscator if:

– Perfect Correctness: For any f : {0, 1}n → {0, 1}λ, u ∈ {0, 1}λ, m ∈ {0, 1}p(λ),

Pr[∀x ∈ {0, 1}n, C̃C(x) = CC[f, u,m](x)] = 1

where C̃C← O(CC[f, u,m]).
– Simulation: There exists a PPT simulator Sim such that for any fλ : {0, 1}n → {0, 1}λ and any

mλ ∈ {0, 1}p(λ):

{C̃C : u← {0, 1}λ, C̃C← O(CC[fλ, u,mλ])}λ ≈c {Sim(1λ, 1|fλ|, 1|mλ|)}λ

Instantiation. Compute-and-Compare obfuscation can be constructed based on the Learning with Errors
assumption [GKW17, WZ17, GKVW20].

3.6 ZAPs

ZAPs [DN00] are two-message public-coin witness indistinguishable proofs. It consists of two PPT algorithms
(ZAP.Prove,ZAP.Verify). ZAP.Prove takes as input a string r ∈ {0, 1}p(λ) (for some polynomial p), an instance
x of an NP language L and witness w attesting that x ∈ L and outputs a proof π. ZAP.Verify takes r, x, and
π as inputs and outputs 1/0.

Definition 6. (ZAP.Prove,ZAP.Verify) is said to be a ZAP proof system for an NP language L (with witness
relation RL) if it satisfies:

– Correctness. For any x ∈ L, any w such that (x,w) ∈ RL, any string r ∈ {0, 1}p(λ),

Pr[ZAP.Verify(r, x,ZAP.Prove(r, x, w)) = 1] = 1

– Soundness. For any cheating (unbounded) prover P ∗ there exists a negligible function µ,

Pr[ZAP.Verify(r, x, π) = 1 ∧ x ̸∈ L|r ← {0, 1}p(λ), (x, π)← P ∗(r)] ≤ µ(λ)

– Witness Indistinguishability. For any x ∈ L and witnesses w0, w1 such that RL(x,w0) = RL(x,w1) =
1 and for any r ∈ {0, 1}p(λ), we have:

{ZAP.Prove(r, x, w0)}λ ≈c {ZAP.Prove(r, x, w1)}λ

Instantiation. ZAPs can be based on factoring [DN00] or on DLIN/SXDH [GOS12]. It can also be con-
structed assuming quasi-polynomial hardness of LWE assumption [BFJ+20, GJJM20].

3.7 Leakage Lemma

We now recall the leakage lemma from [GW11, JP14, CCL18].

Theorem 3 ([GW11, JP14, CCL18]). Let n, ℓ ∈ N, ε > 0 and D be a family of distinguisher circuits
from {0, 1}n × {0, 1}ℓ → {0, 1} of size s = s(n). Then, for every distribution (X,Z) over {0, 1}n × {0, 1}ℓ ,
there exists a simulator h : {0, 1}n → {0, 1}ℓ such that:

– h has size bounded by s′ = O(s2ℓε−2).
– (X,Z)and (X,h(X)) are ε-indistinguishable by D.That is for every D ∈ D,

|Pr[D(X,Z) = 1]− Pr[D(X,h(X)) = 1]| ≤ ε
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3.8 Secure Function Evaluation

A secure function evaluation is a two-message protocol between a sender and a receiver. The receiver on input
x ∈ {0, 1}n runs SFE1 on 1λ and x to obtain sfe1 and a secret state st. The sender on input a description of
a circuit C : {0, 1}n → {0, 1}m runs SFE2 on sfe1 and C to obtain sfe2. The receiver runs out on sfe2 and the
secret state st to obtain a string y ∈ {0, 1}m.

Definition 7. A tuple (SFE1,SFE2, out) is a secure function evaluation protocol if it satisfies:

– Correctness. For any x ∈ {0, 1}n and C : {0, 1}n → {0, 1}m, we have:

Pr[out(sfe2, st) = C(x)] = 1

where (sfe1, st)← SFE1(1
λ, x) and sfe2 ← SFE2(sfe1, C).

– Receiver Message Indistinguishability. For any two inputs x0, x1 ∈ {0, 1}n, we have:

{SFE1(1
λ, x0)}λ ≈c {SFE1(1

λ, x1)}λ

– Sender Security. There exists a simulator SimSFE such that for any x ∈ {0, 1}n, r ∈ {0, 1}λ and
C : {0, 1}n → {0, 1}m, we have:

{SFE2(SFE1(1
λ, x; r), C)}λ ≈c {SimSFE(1

λ, x, r, C(x))}λ

Instantiation. A two-message SFE satisfying the above definition can be constructed from any two-message
semi-malicious secure oblivious transfer using the Yao’s protocol [Yao86]. Two-message oblivious transfer can
be constructed from a variety of assumptions such as DDH/SXDH [NP01], DLIN [LVW20] or LWE [BD18].

4 Delayed-Input Weak Zero-Knowledge

In this section, we give a construction of a delayed-input weak zero-knowledge protocol that runs in three
rounds. This is used in the next section to construct a 3-round ε-secure 2PC for inputless functionalities.

4.1 Definition

Syntax. We describe the syntax of a three-round weak zero-knowledge protocol with delayed input property.

– wZK.P1(1
λ) : It is a PPT algorithm run by the prover that takes as input the security parameter in

unary and outputs wzk1.
– wZK.V1(wzk1) : It is a PPT algorithm run by the verifier that takes the first round message wzk1

generated by the prover and outputs wzk2 and secret verifier state stV .
– wZK.P2(wzk1,wzk2, (x,w)) : It is a PPT algorithm run by the prover that takes the first two messages

in the protocol (wzk1,wzk2), an instance x ∈ L and a witness w ∈ RL(x) and outputs wzk3.
– wZK.V2(wzk1,wzk2,wzk3, x, stV ) : It is a deterministic algorithm run by the verifier that takes the tran-

script of the protocol (wzk1,wzk2,wzk3), the instance x and the secret verifier state stV and outputs
1/0.

Definition 8. A three-round interactive argument (wZK.P1,wZK.P2,wZK.V1,wZK.V2) is a delayed-input,
weak zero-knowledge protocol for an NP language L (with the witness set RL(·)) if it satisfies:

– Completeness. For any x ∈ L and w ∈ RL(x), we have:

Pr[wZK.V2(wzk1,wzk2,wzk3, x, stV ) = 1] = 1

where wzk1 ← wZK.P1(1
λ), (wzk2, stV )← wZK.V1(wzk1), wzk3 ← wZK.P2(wzk1,wzk2, (x,w)).
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– Adaptive Computational Soundness. For any non-uniform (stateful) PPT prover P ∗, there exists
a negligible function µ(·) such that:

Pr
[
wZK.V2(wzk1,wzk2,wzk3, x, stV ) = 1 ∧ x ̸∈ L

∣∣wzk1 ← P ∗(1λ),

(wzk2, stV )← wZK.V1(wzk1), (wzk3, x)← P ∗(wzk2)
]
≤ µ(λ)

– Weak Zero-Knowledge. For any non-uniform (stateful) PPT malicious verifier V ∗, distinguisher D,
there exists a (stateful) PPT simulator Simwzk such that for any non-negligible error parameter ε and for
any instance generator InstGen,

|Pr[REAL(1λ, V ∗, D, InstGen) = 1]−
Pr[IDEAL(1λ, V ∗, D, Simwzk, 1

1/ε, InstGen) = 1] ≤ ε

where REAL and IDEAL experiments are described in Figure 2.

REAL(1λ, V ∗, D, InstGen)

– wzk1 ← wZK.P1(1
λ).

– wzk2 ← V ∗(wzk1)
– (x,w)← InstGen(wzk1) where w ∈ RL(x).
– wzk3 ← wZK.P2(wzk1,wzk2, (x,w))
– Output D(wzk1, (x,w),wzk2,wzk3).

IDEAL(1λ, V ∗, D,Simwzk, 1
1/ε, InstGen)

– wzk1 ← Simwzk(1
λ, 11/ε).

– wzk2 ← V ∗(wzk1)
– (x,w)← InstGen(wzk1) where w ∈ RL(x).
– wzk3 ← Simwzk(wzk1,wzk2, x, 1

1/ε)
– Output D(wzk1, (x,w),wzk2,wzk3).

Figure 2: Descriptions of REAL and IDEAL.

4.2 Building Blocks

Let L ∈ NP be a language with the NP witness relation VL. The construction uses the following building
blocks. The formal definitions can be found in Appendix 3.

– A dense public-key encryption scheme (Den.Gen,Den.Enc,Den.Dec). We assume without loss of generality
that the encryption is done bit-by-bit.

– A fully-homomorphic encryption scheme (Setup,FHE.Gen,FHE.Enc,FHE.Dec,
FHE.Eval,Sanitize) that is statistically circuit-private. We assume without loss of generality that the
encryption is done by bit-by-bit.

– A one-way permutation f : {0, 1}λ → {0, 1}λ.4
– A compute and compare obfuscation O.
– A random self-reducible public-key encryption (RSR.Gen,RSR.Enc,RSR.Dec,RSR.D̃ec).
– A non-interactive commitment scheme Com.
– A ZAP proof system (ZAP.Prove,ZAP.Verify) for the NP language L = L1∨L2 where L1 and L2 consists

of instances of the form

z = (y, y′, r, C̃C1, C̃C2, ct1, pk1, fpk1, ct2, pk2, fpk2, fct1, fct2, com) (4.1)

such that:

4 We note that the requirement of one-way permutation can be replaced with the DLOG assumption. For the purpose
of simplicity of exposition, we go with a one-way permutation.
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• z ∈ L1 iff

∃(ρ, u1, r1, r2, r3, r4, r5) s.t.

(pk1, sk1)← RSR.Gen(1λ; r1) ∧
ct1 = RSR.Enc(pk1, u1; r2) ∧
(fpk1, fsk1) = FHE.Gen(r; r3) ∧
fct1 := FHE.Enc(pk1, ρ; r4) ∧
com = com(1λ, 0; ρ) ∧
C̃C1 = O(CC[FHE.Dec(fsk1, ·), u1, ρ]; r5)

• z ∈ L2 iff

∃(x, x′, u2, r1, r2, r3, r4, r5) s.t.

y = f(x) ∧
y = f(x′) ∧
(pk2, sk2) = RSR.Gen(1λ; r1) ∧
ct2 = RSR.Enc(pk2, u2; r2) ∧
(fpk2, fsk2) = FHE.Gen(r; r3) ∧
fct2 = FHE.Enc(fpk2, x

′; r4) ∧
C̃C2 = O(CC[FHE.Dec(fsk2, ·), u2, x]; r5)

– A ZAP proof (ZAP.Prove,ZAP.Verify) for the NP language L = L1 ∨L2 ∨L3 ∨L4 where L1, L2, L3, and
L4 consists of instances of the form

z = (stmt, pk′, y′, com, ct′, ct′1, ct
′
2, ct) (4.2)

such that:
• z ∈ L1 iff

∃(x′, s1) s.t.
y′ = f(x′) ∧
ct′1 = Den.Enc(pk′, x′; s1) ∧

• z ∈ L2 iff

∃(s1, s2, s3) s.t. ct′2 = Den.Enc(pk′, (s1, s2); s3) ∧
ct = RSR.Enc(pk2,RSR.Enc(pk1,⊥; s1); s2)

• z ∈ L3 iff

∃(w, s4) s.t.
VL(stmt, w) = 1 ∧
ct′ = Den.Enc(pk′, w; s4) ∧

• z ∈ L4 iff

∃ρ s.t. com = Com(1λ, 0; ρ)

4.3 Construction

We give the formal description of the protocol in Figure 3.

4.4 Proof of Security

We now show that the above construction satisfies Definition 8. Completeness is easy to observe.

15



– wZK.P1(1
λ) : The prover does the following:

1. It samples (pk′, sk′)← Den.Gen(1λ).
2. It samples a uniform random string s← {0, 1}p(λ).
3. It samples x← {0, 1}λ and sets y = f(x).
4. It samples r ← Setup(1λ).
5. It sends wzk1 = (pk′, r, s, y) to the verifier.

– wZK.V1(wzk1) : The verifier does the following:
1. It samples (pk1, sk1) := RSR.Gen(1λ; r1) where r1 ← {0, 1}λ.
2. It samples u1 ← {0, 1}λ and computes ct1 := RSR.Enc(pk1, u1; r2) where r2 ← {0, 1}λ.
3. It samples (fpk1, fsk1) := FHE.Gen(r; r3) where r3 ← {0, 1}λ.
4. It samples ρ← {0, 1}λ and computes com = Com(1λ, 0; ρ). It then computes fct1 = FHE.Enc(fpk1, ρ; r4)

where r4 ← {0, 1}λ.
5. It computes C̃C1 := O(CC[FHE.Dec(fsk1, ·), u1, ρ]; r5) where r5 ← {0, 1}λ.
6. It samples (pk2, sk2)← RSR.Enc(1λ) and computes ct2 ← RSR.Enc(pk2, 0

λ).
7. It samples (fpk2, fsk2)← FHE.Gen(r). It sets fct2 ← FHE.Enc(fpk2, 0

λ).
8. It samples x′ ← {0, 1}λ and computes y′ = f(x′).

9. It computes C̃C2 ← Sim(1λ, 1|FHE.Dec(fsk2,·)|, 1λ).
10. It computes π ← ZAP.Prove(s, z, (ρ, u1, {ri}i∈[5])) (where z is described in Equation 4.1).

11. It samples a uniform random string s← {0, 1}p(λ).
12. It sends wzk2 = (pk1, ct1, fpk1, pk2, ct2, fpk2, y

′, com, fct1, fct2, C̃C1, C̃C2,
s, π) to the prover and sets stV = (sk1, sk2, s).

– wZK.P2(wzk1,wzk2, (stmt, w)) : The prover does the following:
1. It checks if ZAP.Verify(s, z, π) = 1 and aborts otherwise.
2. It computes ct := RSR.Enc(pk2,RSR.Enc(pk1,0; s1); s2) where s1, s2 ← {0, 1}λ and 0 is some default

input not equal to ⊥.
3. It computes ct′ ← Den.Enc(pk′, w; s4) where s4 ← {0, 1}λ.
4. It generates ct′1 ← Den.Enc(pk′, 0λ) and ct′2 ← Den.Enc(pk′, 02λ).
5. It computes π ← ZAP.Prove(s, z, (w, s4)) (where z is described in Equation 4.2).
6. It sends wzk3 = (π, stmt, ct′1, ct

′
2, ct, ct

′) to the verifier.
– wZK.V2(wzk1,wzk2,wzk3, x, stV ): The verifier does the following checks:

1. It checks if ZAP.Verify(s, z, π) = 1.
2. It checks if RSR.Dec(sk1,RSR.Dec(sk2, ct)) ̸= ⊥.

If both checks pass, it accepts.

Figure 3: Delayed Input Weak Zero-Knowledge

Proof of Adaptive Computational Soundness Assume for the sake of contradiction that there exists
a prover P ∗ that breaks the adaptive computational soundness property of the protocol with non-negligible
probability µ(λ).

We non-uniformly fix the first round message from the prover P ∗. Let sk′ be the corresponding secret
key such that (pk′, sk′) ∈ Den.Gen(1λ). Note that by the property of dense encryption scheme such a secret
key must exist. Let x ∈ {0, 1}λ be such that y = f(x). Let E be the event such that:

1. ZAP.Verify(s, z, π) = 1.
2. w = Den.Dec(sk′, ct′) and (stmt, w) ̸∈ RL.
3. (s1, s2) = Den.Dec(sk′, ct′2) and ct ̸= RSR.Enc(pk2,RSR.Enc(pk1,⊥; s1); s2).

We define a sequence of hybrids and let pi be the probability that E happens in Hybi.

– Hyb0 : This corresponds to the execution of the protocol with the prover P ∗. In Lemma 1, we prove that
p0 ≥ µ(λ).
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– Hyb1 : In this hybrid, we modify the event E to additionally include the condition that

f(Den.Dec(sk′, ct′1)) ̸= y′. In Lemma 2, we rely on the one-wayness of f to argue that p1 ≥ p0 − negl(λ).
– Hyb2 : In this hybrid, we generate fct2 as FHE.Enc(fpk2, x

′). In Lemma 3, we rely on the security of the
FHE scheme to to show that p2 ≥ p1 − negl(λ).

– Hyb3 : In this hybrid, we compute C̃C2 as O(CC[FHE.Dec(fsk2, ·), u2, x]) where u2 ← {0, 1}λ. In
Lemma 4, we rely on the security of the compute and compare obfuscation to show that p3 ≥ p2−negl(λ).

– Hyb4 : In this hybrid, we compute ct2 as RSR.Enc(pk2, u2). In Lemma 5, we rely on the security of the
RSR encryption to show that p4 ≥ p3 − negl(λ).

– Hyb5 : In this hybrid, we make the following changes:

1. We compute (pk2, sk2) = RSR.Gen(1λ; r1) where r1 ← {0, 1}λ.
2. We compute ct2 = RSR.Enc(pk2, u2; r2) where r2, u2 ← {0, 1}λ.
3. We sample (fpk2, fsk2) = FHE.Gen(1λ; r3)
4. We compute fct2 = FHE.Enc(fpk2, x

′; r4)

5. We compute C̃C2 = O(CC[FHE.Dec(fsk2, ·), u2, x]; r5)
6. We generate π ← ZAP.Prove(r, z, (x, x′, u2, r1, r2, r3, r4, r5)).
In Lemma 6, we rely on the witness indistinguishability of (ZAP.Prove,ZAP.Verify) to show that p5 ≥
p4 − negl(λ).

– Hyb6 : In this hybrid, we generate ct1 as RSR.Enc(pk1, 0
λ) instead of RSR.Enc(pk1, u1). Via a similar

argument to Lemma 5, we rely on the security of the RSR encryption to show that p6 ≥ p5 − negl(λ).

– Hyb7 : In this hybrid, we generate C̃C1 ← Sim(1λ, 1|FHE.Dec(fsk1,·)|, 1λ). Via a similar argument to
Lemma 4, we rely on the security of the compute and compare obfuscation to show that p7 ≥ p6−negl(λ).

– Hyb8 : In this hybrid, we generate fct1 as FHE.Enc(fpk1, 0
λ). Via a similar argument to Lemma 3, we

rely on the security of FHE encryption to show that p8 ≥ p7 − negl(λ).
– Hyb9 : In this hybrid, we generate com as Com(1λ, 1). From the hiding property of Com, it follows that

p9 ≥ p8 − negl(λ).
By the above arguments, it now follows that p9 ≥ µ − negl(λ) > 3µ/4. In Lemma 7, we rely on the
soundness of (ZAP.Prove,ZAP.Verify) to show that p9 ≤ µ/2 and this is a contradiction.

Lemma 1. p0 ≥ µ(λ).

Proof. Let F be the event that P ∗ during its interaction with the honest verifier outputs
(wzk1,wzk2,wzk3, stmt) such that stmt ̸∈ L and honest verifier accepts the transcript (wzk1,wzk2,wzk3).
By assumption, the probability that this event F happens is at least µ(λ). We now show that whenever F
happens then E also happens.

Recall that acceptance criterion of the honest verifier involves the following checks:

1. Check if ZAP.Verify(s, z, π) = 1.
2. Check if RSR.Dec(sk1,RSR.Dec(sk2, ct)) ̸= ⊥.

Therefore, if event F happens then ZAP.Verify(s, z, π) = 1. Further, suppose there exists
(s1, s2) = Den.Dec(sk′, ct′2) and ct = RSR.Enc(pk2,RSR.Enc(pk1,⊥; s1); s2) then the second check
RSR.Dec(sk1,RSR.Dec(sk2, ct)) ̸= ⊥ will fail (from the perfect correctness of the RSR.Dec). Thus, when-
ever F happens, it follows that (s1, s2) = Den.Dec(sk′, ct′2) and ct ̸= RSR.Enc(pk2,RSR.Enc(pk1,⊥; s1); s2).
Finally, since stmt ̸∈ L, it holds that w = Den.Dec(sk′, ct′) is such that (stmt, w) ̸∈ RL (this holds for any
string w and in particular, holds for w = Den.Dec(sk′, ct′)). Therefore, whenever F happens, event E also
happens and therefore, p0 ≥ µ(λ).

Lemma 2. Assuming the one-wayness property of f , we have p1 ≥ p0 − negl(λ).

Proof. Assume for the sake of contradiction that there exists a non-negligible function ε(·) such that p1 ≤
p0−ε(λ). Note that the only difference between Hyb1 and Hyb0 is that in Hyb1, we modify the criterion for E to
additionally check if f(Den.Dec(sk′.ct′1)) ̸= y′. Since p1 ≤ p0−ε(λ), it now follows that f(Den.Dec(sk′.ct′1)) =
y′ happens with probability at least ε(λ). We show that this contradicts the one-wayness of f .
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We interact with the one-wayness challenger and obtain the challenge y′. We use this to generate the
second round message wzk2 on behalf of the honest verifier. At the end of the interaction with P ∗, we check
if f(Den.Dec(sk′.ct′1)) = y′ and output x′ as the pre-image of y′ to the challenger.

Note that since f(Den.Dec(sk′.ct′1)) = y′ happens with probability at least ε(λ), the above reduction
breaks the one-wayness property of f with probability ε(λ). This is a contradiction.

Lemma 3. Assuming the security of the FHE scheme, we have p2 ≥ p1 − negl(λ).

Proof. Assume for the sake of contradiction that there exists a non-negligible function ε(·) such that p2 ≤
p1 − ε(λ). We now show that this contradicts the security of the FHE encryption scheme.

We interact with the FHE challenger and provide x′ and 0λ as the two challenge messages and r as
the output of Setup. We obtain fct2, fpk2 from the challenger. We use it to generate wzk2 and complete the
interaction with the prover P ∗. At the end of this interaction, we check if event E happens or not. If E
happens, we output 1 and otherwise, output 0.

We note that if fct2 was generated as an encryption of x′ then the view of P ∗ in the above interaction
is identically distributed to Hyb2. Otherwise, it is identically distributed to Hyb1. The probability that the
above reduction outputs 1 in Hyb1 is p1 and the probability that it outputs 1 in Hyb2 is at most p1 − ε(λ).
Thus, the above reduction breaks the security of the FHE encryption scheme with ε(λ) advantage and this
is a contradiction.

Lemma 4. Assuming the security of the compute and compare obfuscation O, we have p3 ≥ p2 − negl(λ).

Proof. Assume for the sake of contradiction that there is a non-negligible function ε(·) such that p3 ≤
p2 − ε(λ). We show that this breaks the security of the compute and compare obfuscation.

We interact with the compute and compare obfuscator challenger and provide FHE.Dec(fsk2, ·), x to it.

The challenger provides C̃C2. We use it to generate wzk2 on behalf of the honest verifier V ∗. At the end of
the interaction with prover P ∗, we check if event E happens. If it happens, we output 1 and otherwise, we
output 0.

We note that if C̃C2 is generated as Sim(1λ, 1|FHE.Dec(fsk2,·)|, 1|x|) then view of P ∗ in the above interaction

is identical to Hyb2. On the other hand, if C̃C2 was generated as O(CC[FHE.Dec(fsk2, ·), u2, x]) for uniformly
chosen u2, then the view of P ∗ is identically distributed to Hyb3. The probability that the above reduction
outputs 1 in Hyb2 is p2 whereas the probability that it outputs 1 in Hyb2 is at most p2 − ε(λ). Thus, the
above reduction breaks the security of the compute and compare obfuscation with advantage ε(λ) and this
is a contradiction.

Lemma 5. Assuming the security of the RSR encryption scheme, we have p4 ≥ p3 − negl(λ).

Proof. Assume for the sake of contradiction that there exists a non-negligible function ε(λ) such that p4 ≤
p3 − ε(λ). We now show that this contradicts the security of the RSR encryption scheme.

We interact with the RSR encryption challenger and provide uniformly chosen u2 and 0λ as the two chal-

lenge messages. We obtain pk2, ct2 from the challenger. We generate C̃C2 as O(CC[FHE.Dec(fsk2, ·), u2, x])
and generate wzk2. At the end of the interaction with prover P ∗, we check if event E happens. If it happens,
we output 1 and otherwise, we output 0.

We note that if ct2 was generated as encryption of 0λ then the view of P ∗ in the above interaction is
identical to Hyb3. Otherwise, it is identical to Hyb4. The probability that the above reduction outputs 1 in
Hyb3 is p3 and the probability that it outputs 1 in Hyb4 is at most p3−ε(λ). Thus, the above reduction breaks
the security of the RSR encryption scheme with non-negligible advantage ε(λ) and this is a contradiction.

Lemma 6. Assuming the witness indistinguishability of (ZAP.Prove,ZAP.Verify), we have p5 ≥ p4−negl(λ).

Proof. Assume for the sake of contradiction that there exists a non-negligible function ε(λ) such that
p5 ≤ p4 − ε(λ). We now show that this contradicts the witness indistinguishability property of
(ZAP.Prove,ZAP.Verify).
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We compute (pk2, sk2) = RSR.Gen(1λ; r1) where r1 ← {0, 1}λ. We then compute ct2 =
RSR.Enc(pk2, u2; r2) where r2, u2 ← {0, 1}λ. We sample (fpk2, fsk2) = FHE.Gen(1λ; r3). We compute

fct2 = FHE.Enc(fpk2, x
′; r4). We compute C̃C2 = O(CC[FHE.Dec(fsk2, ·), u2, x]; r5) We interact with the

external challenger for the witness indistinguishability and provide s (present in wzk1), the instance z and
the two witnesses as w1 which is a witness for z ∈ L1 and w2 which is a witness for z ∈ L2. We obtain π
from the challenger and use it to generate wzk2. At the end of the interaction with prover P ∗, we check if
event E happens. If it happens, we output 1 and otherwise, we output 0.

We note that if π was generated using the witness w1, then the view of P ∗ in the above interaction is
identically distributed to Hyb4. Otherwise, it is identically distributed to Hyb5. Thus, the probability that
the above reduction outputs 1 in Hyb4 is p4 and the probability that it outputs 1 in Hyb5 is at most p4−ε(λ).
Thus, the above reduction breaks the witness indistinguishability property of (ZAP.Prove,ZAP.Verify) with
advantage ε(λ) (which is non-negligible) and this is a contradiction.

Lemma 7. Assuming the soundness of (ZAP.Prove,ZAP.Verify), we have p9 ≤ µ(λ)/2.

Proof. Assume for the sake of contradiction that p9 ≥ µ(λ)/2. We show that this contradicts the soundness
of (ZAP.Prove,ZAP.Verify).

Note that if E happens in Hyb9 then the following conditions hold:

1. ZAP.Verify(s, z, π) = 1.
2. w = Den.Dec(sk′, ct′) and (stmt, w) ̸∈ RL.
3. (s1, s2) = Den.Dec(sk′, ct′2) and ct ̸= RSR.Enc(pk2,RSR.Enc(pk1,⊥; s1); s2).
4. f(Den.Dec(sk′.ct′1)) ̸= y′.
5. com = Com(1λ, 1)

It now follows from the perfect correctness of Den.Dec and perfect binding of Com that z ̸∈ L1∨L2∨L3∨L4.
Hence, if ZAP.Verify(r, z, π) = 1, then the above prover breaks the soundness of (ZAP.Prove,ZAP.Verify) with
non-negligible probability µ(λ)/2 and this is a contradiction.

Weak Zero-Knowledge Let V ∗ be a malicious verifer, let D be a distinguisher, and let InstGen be an
instance generator. Let ε be the distinguishing parameter.

Description of Simulator. We give the formal description of Simwzk.

– Simwzk sets wzk1 to be (pk′, r, s, y) which are sampled identically to wZK.P1(1
λ).

– Simwzk obtains wzk2 and parses it as (pk1, ct1, fpk1, pk2, ct2, fpk2, y
′, com, fct1, fct2, C̃C1, C̃C2, s, π).

– Step-1: Simwzk does the following:
1. It constructs a homomorphic simulation circuit HS2[s1] which is described in Figure 4.
2. Simwzk parses fct2 as (fct2,1, . . . , fct2,λ).
3. For each k ∈ [λ], it computes fct2,k = Sanitize(fpk2,FHE.Eval(Den.Enc(pk

′, ·; s1,k), fct2,k)).
4. It then computes Sanitize(fpk2,FHE.Eval(fpk2,HS2[s1], (fct2,1, . . . , fct2,λ))) = fct′.

5. It finally computes C̃C2(fct
′) = x. If f(x) = y, then it aborts.

– Step-2:
1. It constructs a homomorphic simulation circuit HS1 described in Figure 5.

2. It computes FHE.Eval(fpk1,HS1, fct1) = fct′. It runs C̃C1(fct
′) = ρ. It then checks if com =

Com(1λ, 0; ρ). If yes, it does the following:
(a) It generates π as ZAP.Prove(s, z, ρ).
(b) It generates ct′ as Den.Enc(pk′,0).
(c) It generates the rest of the messages as in the protocol and sends wzk3.

– Step-3:
1. If f(x) ̸= y and if com ̸= Com(1λ, 0; ρ) then it does the following:

(a) It generates ct as RSR.Enc(pk2,RSR.Enc(pk1,⊥; s1); s2) where s1, s2 ← {0, 1}λ.
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(b) It generates ct′2 as Den.Enc(pk′, (s1, s2); s3) where s3 ← {0, 1}λ.
(c) It computes π ← ZAP.Prove(r, z, (s1, s2, s3)).
(d) It generates ct′ ← Den.Enc(pk′,0).
(e) It generates the rest of the components in wzk3 as before and sends it.

Proof of Indistinguishability. In the following, let pi be the probability that D outputs 1 when it is given
the distribution generated in Hybi as input.

– REAL : This corresponds to the view of the malicious verifier V ∗ during its interaction with the honest
prover. That is, the output of Hyb0 is identically distributed to REAL(1λ, V ∗, D, q, InstGen).

– Hyb0 : We receive wzk2 = (pk1, ct1, fpk1, pk2, ct2, fpk2, y
′, com, fct1, fct2,

C̃C1, C̃C2, s, π) from V ∗. We construct a homomorphic simulation circuit HS2[s1](·) described in Fig-
ure 4.
We parse fct2 as (fct2,1, . . . , fct2,λ).
• For each k ∈ [λ], we compute fct2,k = Sanitize(fpk2,FHE.Eval(Den.Enc(pk

′, ·; s1,k), fct2,k)).
• We compute Sanitize(fpk2,FHE.Eval(fpk2,HS2[s1], (fct2,1, . . . , fct2,λ))) = fct′.

• We compute C̃C2(fct
′) = x.

If f(x) = y, then we abort. In Lemma 8, we show that |p0−pREAL| ≤ negl(λ) using the one-wayness of f .
– Hyb2 : We receive wzk2 = (pk1, ct1, fpk1, pk2, ct2, fpk2, y

′, com, fct1, fct2,

C̃C1, C̃C2, s, π) from V ∗. We construct a homomorphic simulation circuit HS1(·) described in Figure 5.

We compute FHE.Eval(fpk1,HS1, fct1) = fct′. We run C̃C1(fct
′) = ρ. We check if com = Com(1λ, 0; ρ). If

yes, we make the following changes:
1. Hyb1,1 : We generate π as ZAP.Prove(s, z, ρ). In Lemma 9, we show that using the witness indistin-

guishability of (ZAP.Prove,ZAP.Verify) that |p1 − p1,1| ≤ negl(λ).
2. Hyb1,2 : We generate ct′ as Den.Enc(pk′,0). In Lemma 10, we showing that using the security of

Den.Enc that |p1,2 − p1,1| ≤ negl(λ).
– Hyb3 : If f(x) ̸= y and if com ̸= Com(1λ, 0; ρ) then we make the following changes:

1. Hyb2,1 : We switch ct generated as part of wzk3 to RSR.Enc(pk2,RSR.Enc(pk1,⊥; s1); s2) where

s1, s2 ← {0, 1}λ. In Lemma 11, we show that |p2,1 − p2| ≤ 4ε/5 + negl(λ)
2. Hyb2,2 : We generate ct′2 in wzk3,i as Den.Enc(pk′, (s1, s2); s3) where s3 ← {0, 1}λ. Via an identical

argument to Lemma 10, we can use the security of Den.Enc to show that |p2,2 − p2,1| ≤ negl(λ).
3. Hyb2,3 : We generate π ← ZAP.Prove(s, z, (s1, s2, s3)) (where π is part of wzk3,i). Via an identical

argument to Lemma 9, we can rely on the witness indistinguishability of (ZAP.Prove,ZAP.Verify) to
prove that |p2,2 − p2,3| ≤ negl(λ).

4. Hyb2,4 : We generate ct′ ← Den.Enc(pk′,0) where 0 is a default input. Again via an identical argument

to Lemma 10, we can rely on the security of Den.Enc to show that |p2,3 − p2,4| ≤ negl(λ).
This proves that |pREAL−p3| ≤ 4ε/5+negl(λ). We note that Hyb4 is identically distributed to the output
of IDEAL using simulator Sim. Thus,

|Pr[REAL(1λ, V ∗, D, InstGen) = 1]−
Pr[IDEAL(1λ, V ∗, D, Simwzk, 1

1/ε, InstGen) = 1]| ≤ ε

Lemma 8. Assuming the one-wayness of f , we have |pREAL − p0| ≤ negl(λ).

Proof. Assume for the sake of contradiction that there exists a non-negligible function τ(·) such that |pREAL−
p0| ≥ τ(λ). We show that this contradicts the one-wayness of f .

Note that the only difference between Hyb0 and Hyb11 is that if the conditions described in Hyb1 happens
then we abort. Thus, if |pREAL − p0| ≥ τ(λ), then the conditions described in Hyb1 happens with probability
at least τ(λ). We now argue that this breaks the one-wayness of f .
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– Hardcoded: s1 and the first and second round messages (wzk1,wzk2).
– Input: ct′1.

1. It recovers the message x′ from ct′1 using pk′ as the public key and s1 as the randomness.
2. It constructs a distinguisher D2 that takes pk2 and ct as input where ct is either an encryption under

the public key pk2 of RSR.Enc(pk1,0) or RSR.Enc(pk1,⊥). The distinguisher D2 generates π using x′, s1
as the witness. It generates ct′ as Den.Enc(pk′,0). It generates the rest of the messages in wzk3 as in
the protocol. D2 provides wzk3 to V ∗. It finally runs the distinguisher D on the view of V ∗ and outputs
whatever it outputs.

3. It then runs RSR.D̃ec
D2

(pk2, ct2, 1
5/ε) to obtain u2 and outputs u2.

Figure 4: Description of HS2

– Hardcoded: Transcript in the first two rounds of the protocol.
– Input: ρ.

1. It constructs a distinguisher D1 takes as input (pk1, ct
′′) and ct′′ is an RSR encryption under pk1 of

either 0 or ⊥. It generates ct = RSR.Enc(pk2, ct
′′). It generates π using the witness ρ. It generates ct′ as

Den.Enc(pk′,0). It generates the rest of the messages in wzk3 as described in the protocol and gives this
to V ∗. It runs D on the view of V ∗ and outputs whatever D outputs.

2. It then computes u1 = RSR.D̃ec
D1

(pk1, ct1, 1
5/ε) and outputs it.

Figure 5: Description of HS1

We receive the one-wayness challenge y and use it to generate wzk1. We then interact with V ∗ ex-
actly like in Hyb0. Once we receive wzk2. We construct HS2 as described in Hyb1. We compute fct2,k =
Sanitize(fpk2,FHE.Eval(Den.Enc(pk

′, ·; s1,k), fct2,k)) for each k ∈ [λ] (where s1 is uniformly chosen). We then

run Sanitize(fpk2,FHE.Eval(fpk2,HS2[s1], (fct2,1, . . . , fct2,λ)) to obtain fct′. We compute C̃C2(fct
′) to obtain

x. If f(x) = y, then we output x as the pre-image of y.
Note that the probability that we find a valid pre-image is at least τ(λ) and this is a non-negligible

function. This contradicts the one-wayness of f .

Lemma 9. Assuming the witness indistinguishability of (ZAP.Prove,ZAP.Verify), we have |p1 − p1,1| ≤
negl(λ).

Proof. Assume for the sake of contradiction that there exists a non-negligible function τ(·) such that |p1 −
p1,1| ≥ τ(λ). We now argue that this contradicts the witness indistinguishability of (ZAP.Prove,ZAP.Verify).

Note that the only difference between Hyb1 and Hyb1,1 is that in Hyb1, π is computed using the witness
(w, s4) whereas in Hyb1,1, it is computed using the witness ρ. We interact with the ZAP challenger and
provide s, the instance z and w0 = (w, s4) and w1 = ρ as the two challenge witnesses. We obtain π from the
challenger and use this to generate wzk3.

We observe that if π was generated using the witness w0 then the view of V ∗ in the above interaction
is identical to Hyb1. Otherwise, it is identically distributed to Hyb1,1. Thus, if |p1 − p1,1| ≥ τ(λ), we break
the witness indistinguishability of (ZAP.Prove,ZAP.Verify) with non-negligible advantage τ(λ) and this is a
contradiction.

Lemma 10. Assuming the security of Den.Enc, we have |p1,2 − p1,1| ≤ negl(λ).

Proof. Assume for the sake of contradiction that there exists a non-negligible function τ(·) such that |p1,2−
p1,1| ≥ τ(λ). We now argue that this contradicts the security of Den.Enc.
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Note that the only difference between Hyb1,2 and Hyb1,1 is that in Hyb1,2, ct′ is generated as

Den.Enc(pk′,0) whereas in Hyb1,1, it is generated as Den.Enc(pk′, w). We interact with the security chal-

lenger and provide w,0 as the two challenge message. We obtain pk′ and ct′ from the challenger use this to
generate the view of V ∗.

We observe that if ct′ was generated as an encryption of w then the view of V ∗ in the above interaction
is identical to Hyb1,1. Otherwise, it is identically distributed to Hyb1,2. Thus, if |p1,2− p1,1| ≥ τ(λ), we break
the security of Den.Enc with non-negligible advantage τ(λ) and this is a contradiction.

Lemma 11. Assuming the witness indistinguishability of (ZAP.Prove,ZAP.Verify) and security of Den.Enc,
we have |p2,1 − p2| ≤ 4ε/5 + negl(λ).

Proof. In order to prove this, we show that if

|Pr[D o/p 1 when ct← RSR.Enc(pk2,RSR.Enc(pk1,0))]−
Pr[D o/p 1 when ct← RSR.Enc(pk2,RSR.Enc(pk1,⊥))]| ≥ 3ε/5

where ct is the ciphertext generated as part of wzk3 (which is in turn generated as in the honest prover
description) then either f(x) = y or com = Com(1λ, 0; ρ) except with probability ε/5 + negl(λ). Thus, with
probability at least 1− (ε/5+negl(λ)) if f(x) ̸= y and com ̸= Com(1λ, 0; ρ), we have that the above equation
does not hold. This shows that |p2,1 − p2| ≤ 4ε/5 + negl(λ).

To prove the above statement, we first observe from the soundness of ZAP system (ZAP.Prove,ZAP.Verify)
that z ∈ L1 or z ∈ L2 except with negligible probability (which we term as the bad event). Conditioning on
this bad event not happening, we consider the two cases:

– Case-1: z ∈ L1: In this case, we show that ρ that is extracted in Hyb2 is such that com = Com(1λ, 0; ρ)
except with negligible probability. To see this, we consider a sequence of hybrids:
• Hyb′1 : In this hybrid, we consider a modified homomorphic simulation circuit HS′1 that is same

as HS1 except that the corresponding distinguisher D′
1 generates ct′, π in wzk3 using the witness

(w, s4). We run FHE.Eval(fpk1,HS
′
1, fct1) to obtain fct′. We then run C̃C(fct′) to compute ρ and if

com = Com(1λ, 0; ρ) then we output win. We now argue that the probability of not outputting win
in Hyb′1 is negligible. By assumption, D is able to distinguish ct ← RSR.Enc(pk2,RSR.Enc(pk1,0))
and ct ← RSR.Enc(pk2,RSR.Enc(pk1,⊥)) with advantage more than ε/5. This means that D′

1 also
distinguishes between RSR.Enc(pk1,0) and RSR.Enc(pk1,⊥) with the same advantage. Thus, from

the property of RSR.D̃ec that the output of HS1 on input ρ is u1 with overwhelming probability.

Since z ∈ L1, it follows from the perfect correctness of O that the output of C̃C(fct′) is ρ such that
com = Com(1λ, 0; ρ).

• Hyb′2 : In this hybrid, we let D′
1 to use ρ as the witness instead (w, s4). Via an identical argument to

Lemma 9, we can show that Hyb′2 ≈c Hyb
′
3.

• Hyb′3 : In this hybrid, we let D′
1 to generate ct′ as Den.Enc(pk′,0; s4) (where s4 is uniformly chosen).

Via an identical argument to Lemma 10, we can show that Hyb′2 ≈c Hyb
′
3. Note that Hyb′3 is identically

distributed to HS1 used by simulator.

– Case-2: z ∈ L2: In this case, we show that f(x) = y except with probability ε/5 + negl(λ). To see this,
we consider a sequence of hybrids:
• Hyb′1 : We consider a modified homomorphic simulation circuit HS′2[0]. HS

′
2 is same as HS2 except

that the corresponding distinguisher D′
2 uses the witness w, s4 to generate ct′ as well as the proof π

in wzk3. We consider the following computation
∗ For each k ∈ [λ], compute fct2,k = Sanitize(fpk2,FHE.Eval(Den.Enc(pk

′, ·; s1,k),FHE.Enc(fpk2, 0))).
∗ Compute Sanitize(fpk2,FHE.Eval(fpk2,HS

′
2[0], (fct2,1, . . . , fct2,λ))) = fct′.

∗ Compute C̃C2(fct
′) = x.

If f(x) = y, we output the special symbol win. We show that with overwhelming probability that
we output win in Hyb′1. By assumption, D is able to distinguish ct← RSR.Enc(pk2,RSR.Enc(pk1,0))
and ct ← RSR.Enc(pk2,RSR.Enc(pk1,⊥)) with advantage more than ε/5. This means that D′

2 (in
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the above construction) also distinguishes between these two ciphertexts with the same advantage.

Thus, from the property of RSR.D̃ec that the output of HS′2 on input ciphertexts encrypting 0 is u2

with overwhelming probability. Since z ∈ L2, it follows from the perfect correctness of O that the

output of C̃C(fct′) is x such that f(x) = y.
• Hyb′1,j : For each j ∈ [λ+ 1], in Hyb′1,j we make the following changes:

∗ For each k ≥ j, we compute fct2,k = Sanitize(FHE.Eval(Den.Enc(pk′, ·; s1,k),FHE.Enc(fpk2, 0))).
For each k < j, we compute fct2,k = Sanitize(FHE.Eval(Den.Enc(pk′, ·; s1,k), fct2,k).

In Claim 4.4, we show that Hyb′1,j ≈ε/5λ+negl(λ) Hyb
′
1,j+1.

• Hyb′2 : In this hybrid, we compute fct′ as Sanitize(fpk2,FHE.Eval(fpk2,HS
′
2[s1], (fct2,1, . . . , fct2,λ))).

Since the output of HS′2[s1] is identical to the output of HS′2[0], it follows from the statistical circuit
privacy that Hyb′1,λ+1 ≈s Hyb

′
2.

• Hyb′3 : In this hybrid, we modify HS′2 so that the corresponding distinguisher uses x′, s1 =
(s1,1, . . . , s1,λ) as the witness to generate π in wzk3. From the witness indistinguishability of
(ZAP.Prove,ZAP.Verify), we have Hyb′2 ≈c Hyb

′
3.

• Hyb′4 : In this hybrid, we modify HS′2 to generate ct′ as Den.Enc(pk′,0; s4) (where s4 is uniformly
chosen). Via an identical argument to Lemma 10, we can show that Hyb′3 ≈c Hyb′4. Observe that
Hyb′4 is identical to the setting where we use HS2[s1] instead.

Claim. Assuming the security of Den.Enc, we have Hyb′1,j ≈ε/5λ+negl(λ) Hyb
′
1,j+1 for each j ∈ [0, λ].

Proof. We show this via a sequence of sub-hybrids.

– Hyb′1,j,1 : In this hybrid, we generate fctj as Sanitize(fpk2,FHE.Enc(fpk2,Den.Enc(pk
′, 0; s1,j)))). It follows

from the statistical circuit privacy property of Sanitize that the probability we output win in Hyb′1,j is

statistically close to its probability in Hyb′1,j,1.

– Hyb′1,j,2 : In this hybrid, once we receive wzk2,i from V ∗, we inefficiently compute two bits: the first bit

indicates whether z ∈ L2 and the second bit gives x′
j . We now use the leakage lemma (see Theorem 3)

to construct a simulator h of size poly(λ)22 · (ε/10λ)−2 to simulate this leakage such that the difference
between the probability that we output win in Hyb′1,j,2 and Hyb′1,j,1 is ε/10λ.

– Hyb′1,j,3 : In this hybrid, if z ∈ L2, we compute fctj as

Sanitize(fpk2,FHE.Enc(fpk2,Den.Enc(pk
′, x′

j ; s1,j)))). The difference between the probabilities that
we output win in this hybrid and the previous hybrid is at most negl(λ) and this follows from the
security of Den.Enc.

– Hyb′1,j,4 and Hyb′1,j,5: In these two hybrids, we reverse the changes made in Hyb′1,j,2 and Hyb′1,j,1. We

note that Hyb′1,j,5 is identically distributed to Hyb′1,j+1.

5 Three-Round ε-secure Protocol for Inputless Functionalities

In this section, we give our construction of a three-round 2PC protocol that achieves ε-security for computing
inputless functionalities. In Section 5.1, we give the formal definition. In Section 5.2 we describe the building
blocks and in Section 5.3 we describe our construction.

5.1 Definition

We start with the definition of a three-round secure two-party computation protocol for computing an
inputless functionality g that has standard security against malicious senders and ε-security against malicious
receivers.

Definition 9. A three-round protocol Π = (Π1, Π2, Π3) between a sender and a receiver is said to compute
an inputless functionality g with security against malicious receivers and ε-security against malicious senders,
if:
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– Security against Malicious Senders. We require the existence of an (expected) PPT simulator SimS

such that for any adversary A corrupting the sender, the view of the adversary A and the output of
the honest receiver in the real execution of the protocol is computationally indistinguishable to the ideal
experiment with the simulator SimS that has oracle access to the functionality g and the adversary A
and can instruct this functionality to either deliver the output to the receiver or ⊥.

– ε-Security against Malicious Receivers. For any (stateful) adversary A = (A1,A2) corrupting the
receiver, there exists a (stateful) simulator SimR such that for any non-negligible error parameter ε, we
have:

|Pr[REAL(1λ,A, 11/ε) = 1]− Pr[IDEAL(1λ,A,SimR, 1
1/ε) = 1] ≤ ε

where REAL and IDEAL experiments are described in Figure 6.

REAL(1λ,A, 11/ε)

– π1 ← Π1(1
λ).

– π2 ← A1(π1).
– π3 ← Π3(π1, π2)
– Output A2(π1, π2, π3).

IDEAL(1λ,A, SimR, 1
1/ε)

– π1 ← SimR(1
λ, 11/ε).

– π2 ← A(π1).
– π3 ← Simg

R(π1, π2, 1
1/ε)

– Output A2(π1, π2, π3).

Figure 6: Descriptions of REAL and IDEAL for 2PC.

5.2 Building Blocks

Let g be the inputless functionality. For simplicity, we denote g as a two-party functionality that takes
randomness x1 and x2 and uses x1⊕x2 to sample from the underlying distribution. The construction makes
use of the following building blocks.

– A dense public-key encryption scheme (Den.Gen,Den.Enc,Den.Dec). We assume without loss of generality
that the encryption is done bit-by-bit.

– A symmetric key Encryption (SKEnc,SKDec).

– A fully-homomorphic encryption scheme (Setup,FHE.Gen,FHE.Enc,FHE.Dec,
FHE.Eval,Sanitize) that is statistically circuit-private. We assume without loss of generality that the
encryption is done bit-by-bit.

– A one-way permutation f : {0, 1}λ → {0, 1}λ.
– A three-round trapdoor generation protocol (TD1,TD2,TD3,TDVerify).

– A non-interactive commitment Com.

– A three-round extractable commitment (ExtCom1,ExtCom2,ExtCom3)

– A compute and compare obfuscation O.
– A random self-reducible public-key encryption (RSR.Gen,RSR.Enc,RSR.Dec,RSR.D̃ec).

– A secure function evaluation (SFE1,SFE2, out) for computing the function g.

– A ZAP proof (ZAP.Prove,ZAP.Verify) for the NP language L = L1 ∨ L2 where L1 and L2 consists of
instances

z = (y, y′, r, C̃C1, C̃C2, sfe1, ct1, fpk1, pk1, ct2, pk2, fpk2, fct1, fct2, com) (5.1)

such that:
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• z ∈ L1 iff

∃(x2, u1, ρ, r1, r2, r3, r4, r5, r6) s.t.

sfe1 = SFE(x2; r1) ∧
(pk1, sk1) = RSR.Gen(1λ; r2) ∧
ct1 = RSR.Enc(pk1, u1; r3) ∧
(fpk1, fsk1) = FHE.Gen(r; r4) ∧
com = Com(1λ, 0; ρ) ∧
fct1 = FHE.Enc(fpk1, ρ; r5) ∧
C̃C1 = O(CC[FHE.Dec(fsk1, ·), u1, (m, r1, ρ)]; r6)

• z ∈ L2 iff

∃(x, u2, x
′, r1, r2, r3, r4, r5) s.t.

TDVerify(td1, x) = 1 ∧
(pk2, sk2) = RSR.Gen(1λ; r1) ∧
ct2 = RSR.Enc(pk2, u2; r2) ∧
(fpk2, fsk2) = FHE.Gen(r; r3) ∧
y′ = f(x′) ∧
fct2 = FHE.Enc(fpk2, x

′; r4) ∧
C̃C2 = O(CC[FHE.Dec(fsk2, ·), u2, x]; r5)

– A ZAP proof (ZAP.Prove,ZAP.Verify) for the NP language L = L1 ∨L2 ∨L3 ∨L4 where L1, L2, L3, and
L4 consists of instances

z = (pk′, vk, y′, ct′, ct′1, ct
′
2, ct, sfe1) (5.2)

such that:

• z ∈ L1 iff

∃(x′, s′1) s.t.
y′ = f(x′) ∧
ct′1 = Den.Enc(pk′, x′; s′1) ∧

• z ∈ L2 iff

∃(s′1, s′2, s′3) s.t. ct′2 = Den.Enc(pk′, (s′1, s
′
2); s

′
3) ∧

ct = RSR.Enc(pk2,RSR.Enc(pk1,⊥; s′1); s′2)
• z ∈ L3 iff

∃(x1, s2, s3) s.t.
sfe2 = SFE2(sfe1, g(x1, ·); s3) ∧
ct′ = Den.Enc(pk′, (sfe2, x1); s2) ∧

• z ∈ L4 iff

∃ρ s.t. com = Com(1λ, 0; ρ)

– A three-round delayed input weak zero-knowledge protocol (wZK.P1,wZK.P2,wZK.V1,wZK.V2) for the
NP language L′ where L′ consists of instances of the form

z′ = (pk′, ct′, y, ct, sfe1,ECom1, ĉt) (5.3)

such that z′ ∈ L′ iff
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∃(sfe2, ssk, x1, ŝ, {si}i∈[6]) s.t.

(pk′, ·) = Den.Enc(1λ; s1) ∧
ECom1 = ExtCom(1λ, s1; s6) ∧
ct′ = Den.Enc(pk′, (sfe2, x1); s2) ∧
ĉt = SKEnc(ssk, sfe2; ŝ) ∧
sfe2 = SFE2(sfe1, g(x1, ·); s3) ∧
ct = RSR.Enc(pk2,RSR.Enc(pk1, ssk; s4); s5)

5.3 Construction

We describe the first three rounds of our protocol in Figure 7 and we describe the output computation below.

Output Computation. To compute the output, the receiver does the following:

1. It checks if ZAP.Verify(s, z, π) = 1 and wZK.V2(z
′, τ2, (wzk1,wzk2,wzk3)) = 1. If not, it outputs ⊥.

2. It checks if (ECom1,ECom2,ECom3) and (td1, td2, td3) are valid transcripts.
3. It computes ssk = RSR.Dec(sk1,RSR.Dec(sk2, ct)), computes sfe2 = SKDec(ssk, ĉt) and checks if sfe2 = ⊥.

If yes, it outputs ⊥.
4. Else, it computes σ = out(sfe2, (x2, r1)) and outputs σ.

5.4 Proof of Security

In this section, we show that the construction described in Figure 7 is a ε-secure protocol for computing the
inputless functionality g.

5.5 Sender is Corrupt

Let A be an adversary that corrupts the sender. We give the description of the simulator SimR below.

Description of SimR.

1. SimR interacts with the adversary A as per the honest protocol description using an uniformly chosen x2.
If the adversary aborts or fails to send an incorrect message, then SimR instructs the ideal functionality
g to output ⊥ to the honest receiver and outputs the view of A.

2. If SimR doesn’t abort at the end of the interaction, then SimR estimates the probability that A generates
a valid transcript. Specifically, it rewinds and sends independently sampled second round messages and
waits until it obtains 12λ valid transcripts. Let m be the number of trials needed until the A produces
12λ accepting transcripts. It sets ε̃ = 12λ/m. While estimating this quantity, SimR in parallel runs the
rewinding extractor on the extractable commitment as well the trapdoor extractor to obtain (s1, x).

3. It repeats the following for λ2/ε̃ times:
(a) It generates ct1 as RSR.Enc(pk1, 0

λ).

(b) It generates C̃C1 ← Sim(1λ, 1|FHE.Dec(fsk1,·)|, 1λ).
(c) It generates fct1 as FHE.Enc(fpk1, 0

λ) and com as Com(1λ, 1).
(d) It computes (pk2, sk2) = RSR.Gen(1λ; r1) where r1 ← {0, 1}λ.
(e) It then computes ct2 = RSR.Enc(pk2, u2; r2) where r2, u2 ← {0, 1}λ.
(f) It then samples (fpk2, fsk2) = FHE.Gen(1λ; r3)
(g) It computes fct2 = FHE.Enc(fpk2, x

′; r4)

(h) It computes C̃C2 = O(CC[FHE.Dec(fsk2, ·), u2, x]; r5)
(i) It then generates π ← ZAP.Prove(r, z, (x, u2, x

′, r1, r2, r3, r4, r5)).
(j) It generates the rest of the second round messages as in the protocol and sends it to A. It computes

(pk′, sk′)← Den.Gen(1λ; s1).
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– First Round: The sender does the following:
1. It samples (pk′, sk′)← Den.Gen(1λ; s1) (where s1 ← {0, 1}λ) and r ← Setup(1λ).
2. It computes ECom1 ← ExtCom(1λ, s1; s6) where s6 ← {0, 1}λ.
3. It samples a uniform random string s← {0, 1}∗.
4. It samples td1 ← TD1(1

λ).
5. It samples wzk1 ← wZK.P1(1

λ).
6. It sends (pk′,ECom1, td1, r, s, y,wzk1).

– Second Round: The receiver does the following:
1. It computes sfe1 := SFE(x2; r1) where x2, r1 ← {0, 1}λ.
2. It samples (pk1, sk1) := RSR.Gen(1λ; r2) where r2 ← {0, 1}λ.
3. It samples u1 ← {0, 1}λ and computes ct1 := RSR.Enc(pk1, u1; r3) where r3 ← {0, 1}λ.
4. It samples (fpk1, fpk2) := FHE.Gen(r; r4) where r4 ← {0, 1}λ.
5. It computes com = Com(1λ, 0; ρ) where ρ← {0, 1}λ.
6. It then computes fct1 = FHE.Enc(fpk1, (x2, r1, ρ); r5) where r5 ← {0, 1}λ.
7. It computes C̃C1 := O(CC[FHE.Dec(fsk1, ·), u1, (x2, r1, ρ)]; r6) where r6 ← {0, 1}λ.
8. It samples (pk2, sk2)← RSR.Enc(1λ) and computes ct2 ← RSR.Enc(pk2, 0

λ).
9. It samples x′ ← {0, 1}λ and computes y′ = f(x′).

10. It samples (fpk2, fsk2)← FHE.Gen(r) and generates fct2 ← FHE.Enc(fpk2, 0
λ).

11. It computes C̃C2 ← Sim(1λ, 1|FHE.Dec(fsk2,·)|, 1λ).
12. It computes π ← ZAP.Prove(s, z, (x2, u1, ρ, {ri}i∈[6])) (where z is described in Equation 5.1).
13. It samples a uniform random string s← {0, 1}∗ and computes (wzk2, τ2)← wZK.V1(1

λ,wzk1).
14. It samples ECom2 ← ExtCom(ECom1) and td2 ← TD2(td1).

15. It sends (pk1, ct1, fpk1, pk2, ct2, fpk2, y
′, sfe1, fct1, fct2, C̃C1, C̃C2, s,

wzk2, π,ECom2, td2).
– Third Round: The sender does the following:

1. It checks if ZAP.Verify(s, z, π) = 1 and aborts otherwise.
2. It computes sfe2 := SFE2(sfe1, g(x1, ·); s3) where x1, s3 ← {0, 1}λ.
3. It samples ssk← {0, 1}λ.
4. It computes ct′ ← Den.Enc(pk′, (sfe2, x1); s2) where s2 ← {0, 1}λ.
5. It computes ct := RSR.Enc(pk2,RSR.Enc(pk1, ssk; s4); s5) where s4, s5 ← {0, 1}λ.
6. It generates ĉt := SKEnc(ssk, sfe2; ŝ) where ŝ← {0, 1}λ.
7. It generates ct′1 ← Den.Enc(pk′, 0λ) and ct′2 ← Den.Enc(pk′, 02λ).
8. It computes π ← ZAP.Prove(s, z, ({x1, s2, s3})) (where z is described in Equation 5.2).
9. It computes wzk3 ← wZK.P2(wzk1,wzk2, (z

′, sfe2, x1, ŝ, {si}i∈[6])) (where z′ appears in Equation 5.3).
10. It generates ECom3 ← ExtCom3(ECom2, s1; s6) and td3 ← TD3(td1, td2)
11. It sends (π,wzk3, ct

′, ct′1, ct
′
2, ct, ĉt,ECom3, td3).

Figure 7: Three-Round Secure 2PC
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(k) On receiving the last round message from A, it checks if:
i. wZK.V2(z

′, τ2, (wzk1,wzk2,wzk3)) = 1.
ii. It computes (s4, s5) := Den.Dec(sk′, ct′2) and checks if ct ̸= RSR.Enc(pk2,RSR.Enc(pk1,⊥; s4); s5).
iii. It checks if ZAP.Verify(s, z, π) = 1.
If any of these checks fails, it repeats the iteration.

4. Finally, if it fails in each of these iterations or if in the accepting iteration we have f(Den.Dec(sk′, ct′1)) =
y′, then it outputs a special symbol abort.

5. Otherwise, it asks the ideal functionality to deliver the output to the honest receiver and outputs the
view of the corrupt sender.

The running time of the simulator can be shown to be expected polynomial time using standard techniques
(see for instance [GK96]).

We show that the real and the ideal experiments are indistinguishable via a hybrid argument.

– Hyb0 : This corresponds to the view of A and the output of the honest receiver in the coin tossing
protocol.

– Hyb1 : In this hybrid, in the output computation of the receiver, we make the following changes.
1. We check if wZK.V2(z

′, τ2, (wzk1,wzk2,wzk3)) = 1.
2. If it is the case, we check if z′ ∈ L′ or not. If z′ ̸∈ L′, then we abort.
In Lemma 12, we show from the adaptive computational soundness of
(wZK.P1,wZK.P2,wZK.V1,wZK.V2) that Hyb0 and Hyb1 are computationally indistinguishable.

– Hyb2 : In this hybrid, we make the following changes:
1. We non-uniformly fix the first round message of the receiver. We get as non-uniform advice s1 which

is the message inside ECom1. We also non-uniformly compute x such that TDVerify(td1, x) = 1.
2. On receiving the final round message, we check if we z′ ∈ L′. If it is the case, we set (pk′, sk′) ←

Den.Gen(1λ; s1).
3. We compute (s4, s5) := Den.Dec(sk′, ct′2).
4. We check if ct := RSR.Enc(pk2,RSR.Enc(pk1,⊥; s4); s5). If it is the case, we abort and output ⊥.
5. Instead of using sk1, sk2, ĉt to obtain sfe2, we compute (sfe2, x1) := Den.Dec(sk′, ct′).
In Lemma 13, we show that Hyb1 and Hyb2 are identically distributed.

– Hyb3 : In this hybrid, we reverse the changes made in Hyb1. That is, we do not abort if z′ ̸∈ L′. Via and
identical argument to Lemma 12, we can show that Hyb2 ≈c Hyb3.

– Hyb4 : In this hybrid, we instruct the receiver to output a special symbol abort if f(Den.Dec(sk′, ct′1)) =
y′. Via an identical argument to Lemma 2, we can rely on the one-wayness of f to argue that Hyb3 ≈c

Hyb4.
– Hyb5 : In this hybrid, we generate fct2 as FHE.Enc(fpk2, x

′). Via an identical argument to Lemma 3, we
can rely on the security of the FHE scheme to to show that Hyb4 ≈c Hyb5.

– Hyb6 : In this hybrid, we compute C̃C2 as O(CC[FHE.Dec(fsk2, ·), u2, x]) where u2 ← {0, 1}λ. Via an
identical argument to Lemma 4, we can rely on the security of the compute and compare obfuscation to
show that Hyb5 ≈c Hyb6.

– Hyb7 : In this hybrid, we compute ct2 as RSR.Enc(pk2, u2). Via an identical argument to Lemma 5, we
can rely on the security of the RSR encryption to show that Hyb6 ≈c Hyb7.

– Hyb8 : In this hybrid, we make the following changes:

1. We compute (pk2, sk2) = RSR.Gen(1λ; r1) where r1 ← {0, 1}λ.
2. We compute y′ = f(x′) where x′ ← {0, 1}λ.
3. We compute ct2 = RSR.Enc(pk2, u2; r2) where r2, u2 ← {0, 1}λ.
4. We sample (fpk2, fsk2) = FHE.Gen(1λ; r3)
5. We compute fct2 = FHE.Enc(fpk2, x

′; r4)

6. We compute C̃C2 = O(CC[FHE.Dec(fsk2, ·), u2, x]; r5)
7. We generate π ← ZAP.Prove(r, z, (x, u2, x

′, r1, r2, r3, r4, r5)).
Via an identical argument to Lemma 6, we can rely on the witness indistinguishability of
(ZAP.Prove,ZAP.Verify) to show that Hyb7 ≈c Hyb8.
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– Hyb9 : In this hybrid, we generate ct1 as RSR.Enc(pk1, 0
λ) instead of RSR.Enc(pk1, u1). Using a similar

argument to Lemma 5, we can rely on the security of the RSR encryption to show that Hyb8 ≈c Hyb9.

– Hyb10 : In this hybrid, we generate C̃C1 ← Sim(1λ, 1|FHE.Dec(fsk1,·)|, 1λ). Using a similar argument to
Lemma 4, we can rely on the security of the compute and compare obfuscation to show that Hyb9 ≈c

Hyb10.
– Hyb11 : In this hybrid, we generate fct1 as FHE.Enc(fpk1, 0

λ). Via a similar argument to Lemma 3, we
can rely on the security of FHE encryption to show that Hyb10 ≈c Hyb11.

– Hyb12 : In this hybrid, we generate com as Com(1λ, 1). From the hiding property of Com, it follows that
Hyb11 ≈c Hyb12.

– Hyb13 : In this hybrid, if ZAP.Verify(s, z, π) = 1, then

1. We compute (sfe2, x1) = Den.Dec(sk′, ct′3).
2. We compute σ := g(x1, x2) instead of using out.
In Lemma 14, we rely on the soundness of (ZAP.Prove,ZAP.Verify) to show that Hyb12 and Hyb13 are
statistically indistinguishable.

– Hyb14 : In this hybrid, we make the following changes:

1. We generate sfe1 as SFE1(1
λ, 0λ) instead of SFE1(1

λ, x2).
In Lemma 15, we rely on the receiver security of the SFE protocol to show that Hyb13 and Hyb14 are
computationally indistinguishable.

– Hyb15 : In this hybrid, we again make the same changes as in Hyb1 wherein we abort if z′ ̸∈ L′. Again,
via an identical argument to Lemma 12, we can rely on the adaptive computational soundness and show
that Hyb14 and Hyb15 are computationally indistinguishable.

– Hyb16 : In this hybrid, we consider a rewind thread where we generate the messages in the protocol as
in Hyb15. If we abort during this execution, we output the view of the adversary and instruct the ideal
functionality to output ⊥ to the honest receiver. If we have not aborted, we estimate the probability of
not aborting. Specifically, we fix the first round message and generate second round messages until we
get 12λ executions where the receiver has not aborted. Let m be the number of total number of trials
and we set ε̃ = 12λ/m. Now, we repeatedly try to obtain an accepting transcript (called as the main
thread) for λ2/ε̃ independent trials. If in each of the trail, we fail to obtain a valid transcript, we output
a special symbol abort. Otherwise, we output the view of the adversary in the first valid transcript and
instruct the ideal functionality to deliver the output of the ideal functionality to the honest receiver.
Via a standard argument (see for instance the one given in [GK96]), we can show that Hyb15 and Hyb16
are statistically close.

– Hyb17 : In this hybrid, if the transcript is accepting in the first rewind thread, then we run the rewinding
extractor for ExtCom as well as the trapdoor protocol to obtain s1, x. We use this to generate the messages
in the main thread. Since in the first rewind thread, we abort if z′ ̸∈ L′, it follows that the output of the
rewinding extractor for ExtCom is identical to the non-uniformly fixed s1. Again, from the property of
the rewinding extractor for the trapdoor generation protocol, it follows that x is a valid trapdoor.

– Hyb18 : In this hybrid, we reverse the changes made in Hyb15 and again via an identical argument as
before, it follows that Hyb17 and Hyb18 are computationally indistinguishable.

– Hyb19 : In this hybrid, we switch the messages generated in all the rewind threads as in the real execution
of the protocol. Via an identical argument that showed indistinguishability between Hyb0 and Hyb14, it
follows that Hyb18 is computationally indistinguishable to Hyb18. We note that Hyb19 is identical to the
output of the ideal experiment using the simulator.

Lemma 12. Assuming the adaptive computational soundness of (wZK.P1,wZK.P2,wZK.V1,wZK.V2), we
have Hyb0 ≈ Hyb1.

Proof. Assume for the sake of contradiction that Hyb0 and Hyb1 are computationally distinguishable with
non-negligible advantage µ(λ). We now show that this contradicts the adaptive computational soundness of
(wZK.P1,wZK.P2,wZK.V1,wZK.V2).

Notice that the only difference between Hyb0 and Hyb1 is that in Hyb1 if z′ ̸∈ L′ then we abort even
if wZK.V2 accepts. Thus, if Hyb0 and Hyb1 are computationally distinguishable with advantage µ(λ), then
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it follows that the event wZK.V2 accepts and z′ ̸∈ L′ happens with probability µ(λ). We show that this
contradicts the adaptive computational soundness.

We interact with the challenger for the adaptive computational soundness game and forward the messages
corresponding to the weak zero-knowledge protocol received from the adversarial signer to the external
challenger. After obtaining the final round message, we output z′ along with wzk3.

Note that the event z′ ̸∈ L′ and wZK.V2 accepts the proof happens with probability µ(λ) and this is non-
negligible. Thus, the above described prover breaks the adaptive computational soundness with advantage
µ(λ) and this is a contradiction.

Lemma 13. Hyb1 ≡ Hyb2.

Proof. Note that in Hyb1, we abort whenever z′ ̸∈ L′. Thus, whenever z′ ∈ L′, computing sfe2 as
SKDec(RSR.Dec(sk1,RSR.Dec(sk2, ct)), ĉt) and computing it as Den.Dec(sk′, ct′) are equivalent. Finally, it
follows from the perfect correctness of encryption that if there exists s3, s4 ∈ {0, 1}λ such that ct =
RSR.Enc(pk2,RSR.Enc(pk,⊥; s4); s5) then we abort in Hyb1 as well.

Lemma 14. Hyb12 ≈s Hyb13.

Proof. We first argue that in Hyb12, if ZAP.Verify(s, z, π) = 1 then the instance z ∈ L3 with overwhelming
probability. Suppose z ̸∈ L3 happens with non-negligible probability µ(λ). We show that this contradicts the
soundness of (ZAP.Prove,ZAP.Verify).

Note that in Hyb12, we have:

1. (s4, s5) = Den.Dec(sk′, ct′2) and ct ̸= RSR.Enc(pk2,RSR.Enc(pk1,⊥; s4); s5).
2. f(Den.Dec(sk′.ct′1)) ̸= y′.
3. com = Com(1λ, 1)

It now follows from the perfect correctness of Den.Dec and perfect binding of Com that z ̸∈ L1∨L2∨L4. Thus,
if z ̸∈ L3 and if if ZAP.Verify(r, z, π) = 1, then this contradicts the soundness of (ZAP.Prove,ZAP.Verify).

Note that if z ∈ L3, then sfe2 is correctly generated and x1 is such that sfe2 = SFE2(sfe1, g(x1, ·)). Thus,
from the perfect correctness of SFE, we have σ := g(x1, x2) in Hyb13 is equivalent to its computation in
Hyb12.

Lemma 15. Assuming the receiver security of the SFE protocol, we have Hyb13 ≈c Hyb14.

Proof. Note that the only difference between Hyb13 and Hyb14 is that in Hyb14 sfe1 is generated as
SFE1(1

λ, 0λ) whereas in Hyb13 it is generated as SFE1(1
λ, x2). Thus, it follows directly from the receiver

security of the SFE protocol that Hyb13 ≈c Hyb14.

5.6 Receiver is Corrupt

Let A = (A1,A2) be a malicious adversary that is corrupting the receiver. In the following, let pi be the
probability that the distinguisher outputs 1 in Hybi. Let ε(λ) be the distinguishing parameter. The description
of SimR is similar to the simulator for the weak zero-knowledge property and thus, we directly move to the
proof of indistinguishability. The final hybrid experiment corresponds to the output of the ideal experiment
using the simulator SimR (that is implicitly defined in the description of the hybrid.)

– REAL : This corresponds to the output of the adversarial receiver in the real execution of the protocol.
– Hyb0 : In this hybrid, we make the following changes:

1. We generate (wzk1,wzk2) using the simulator for weak zero-knowledge Simwzk with 1λ as the security
parameter, A1 as the adversarial verifier, A2 be the distinguisher and 110/ε as the distinguishing
parameter.

In Lemma 16, we show that |p0 − pREAL| ≤ ε/10 from the weak zero-knowledge property of
(wZK.P1,wZK.P2,wZK.V1,wZK.V2).
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– Hyb2 : In this hybrid, instead of generating ECom1,ECom3 as an extractable commitment to s1, we
generate it as an extractable commitment to a dummy message. It now directly follows from the hiding
of the extractable commitment that |p1 − p0| ≤ negl(λ).

– Hyb2 : In this hybrid, we receive the second round message from A and parse it as

(pk1, ct1, fpk1, pk2, ct2, fpk2, y
′, sfe1, fct1, fct2, C̃C1, C̃C2, s,wzk2, π, td2,ECom2). We construct a homo-

morphic simulation circuit HS2[s
′
1] as described in Figure 8.

We parse fct2 as (fct2,1, . . . , fct2,λ).
• For each k ∈ [λ], we compute fct2,k = Sanitize(fpk2,FHE.Eval(Den.Enc(pk

′, ·; s′1,k), fct2,k)).
• We compute Sanitize(fpk2,FHE.Eval(fpk2,HS2[s

′
1], (fct2,1, . . . , fct2,λ)) = fct′.

• We compute C̃C2(fct
′) = x.

If TDVerify(td1, x) = 1, then we abort. Via an identical argument to Lemma 8, we can show that
|p1 − p2| ≤ negl(λ) using the soundness of the trapdoor generation protocol.

– Hyb3 : In this hybrid, we make the following changes. We construct a homomorphic simulation circuit
HS1 described in Figure 9.

We compute FHE.Eval(fpk1,HS1, fct1) = fct′. We run C̃C1(fct
′) = (x2, r1, ρ). We check if com =

Com(1λ, 0; ρ) and if sfe1 ← SFE1(1
λ, x2; r1). If yes, we make the following changes:

1. Hyb2,1 : We generate π as ZAP.Prove(s, z, ρ). Via an identical argument given in Lemma 9, we can

show that using the witness indistinguishability of (ZAP.Prove,ZAP.Verify) that |p2−p2,1| ≤ negl(λ).
2. Hyb2,2 : We generate ct′ as Den.Enc(pk′,0). Via an identical argument to Lemma 10, we can show

that using the security of Den.Enc that |p2,2 − p2,1| ≤ negl(λ).
3. Hyb2,3 : We generate sfe2 as SimSFE(1

λ, x2, r1, g(x1, x2)). In Lemma 17, we rely on the sender security

of SFE to show that |p2,3−p2,2| ≤ negl(λ). Note that in this hybrid, g(x1, x2) is identically distributed
to the output of ideal functionality.

– Hyb4 : If
• TDVerify(x, td1) ̸= 1, and
• com ̸= Com(1λ, 0; ρ) or sfe1 ̸= SFE1(1

λ, x2; r1)
then we make the following changes:
1. Hyb3,1 : We switch ct generated as part of the final round message to

RSR.Enc(pk2,RSR.Enc(pk1,⊥; s′1); s′2) where s′1, s
′
2 ← {0, 1}λ. Via an identical argument to

Lemma 11, we show that |p3,1 − p3| ≤ 4ε/5 + negl(λ)
2. Hyb3,2 : We generate ct′2 in in the final round message as Den.Enc(pk′, (s′1, s

′
2); s

′
3) where s′3 ←

{0, 1}λ. Via an identical argument to Lemma 10, we can use the security of Den.Enc to show that
|pi−1,2,2 − pi−1,2,1| ≤ negl(λ).

3. Hyb3,3 : We generate π ← ZAP.Prove(s, z, (s′1, s
′
2, s

′
3)) (where π is part of bs2,i). Via an identical

argument to Lemma 9, we can rely on the witness indistinguishability of (ZAP.Prove,ZAP.Verify) to
prove that |p3,2 − p3,3| ≤ negl(λ).

4. Hyb3,4 : We generate ct′ ← Den.Enc(pk′,0) where 0 is a default input. Again via an identical argument

to Lemma 10, we can rely on the security of Den.Enc to show that |p3,3 − p3,4| ≤ negl(λ).
5. Hyb3,5 : In this hybrid, we generate ĉt as an encryption of some default message. It directly follows

from the security of the secret-key encryption that |p3,5 − p3,4| ≤ negl(λ).
Note that Hyb3,5 is identically distributed to the output of the ideal experiment with the simulator.
From the above argument, we infer that |pIDEAL − pREAL| ≤ ε/10 + 4ε/5 + negl(λ) ≤ ε.

Lemma 16. Assuming the weak zero-knowledge property of (wZK.P1,wZK.P2,wZK.V1,wZK.V2), we have
that |pREAL − p0| ≤ ε/10

Proof. We construct a malicious verifier V ∗ that receives the first round message from the external challenger.
It runs V ∗ = A1 on this message and obtains wzk2 which it forwards to the external challenger. It receives
the response wzk3 from the challenger and uses it to generate the final round message in the protocol. Now,
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– Hardcoded: s′1 and the transcript in the first two rounds and the third round message in the weak zero-
knowledge sub-protocol.

– Input: ct′1.
1. It recovers the message x′ from ct′1 using pk′ as the public key and s′1 as the randomness.
2. It constructs a distinguisher D2 that takes pk2 and ct as input where ct is either an encryption under the

public key pk2 of RSR.Enc(pk1,0) or RSR.Enc(pk1,⊥). The distinguisher D2 generates π using x′, s′1 as
the witness. It generates the rest of the messages (using independently sampled x′

1) in the third round
as before except that it uses the provided ct. D2 finally runs the A2 on the view of A and finally output
whatever A2 outputs.

3. It then runs RSR.D̃ec
D2

(pk2, ct2, 1
5/ε) to obtain u2 and outputs u2.

Figure 8: Description of HS2

– Hardcoded: Transcript of the first two rounds of the protocol and the third round message in the weak
zero-knowledge sub-protocol.

– Input: ρ.
1. It constructs a distinguisher D1 takes as input (pk1, ct

′′) and ct′′ is an RSR encryption under pk1 of
either sfe2 or ⊥. It generates ct = RSR.Enc(pk2, ct

′′). It generates π using the witness ρ. It generates the
rest of the messages (using independently sampled x′

1) as in the protocol description and gives this to
A. It finally runs the distinguisher A2 on the view of A and outputs whatever it outputs.

2. It then computes u1 = RSR.D̃ec
D1

(pk1, ct1, 1
5q/ε) and outputs it.

Figure 9: Description of HS1

run the distinguisher D = A2 on the view of the adversary A and output whatever it outputs. We consider
an InstGen that outputs the instance z′ along with the witness (sfe2, s1, s2, s4, s5).

Note that by the above definition pREAL corresponds to the probability that REAL(1λ, V ∗, D, q, InstGen) =
1 and p0 corresponds to the probability that IDEAL(1λ, V ∗, D, q, Simwzk, 1

10/ε, InstGen) = 1. Hence, |pREAL −
p0| ≤ ε/10 from the weak zero-knowledge property of (wZK.P1,wZK.P2,wZK.V1,wZK.V2).

Lemma 17. Assuming the sender security of SFE protocol, we have |p2,3 − p2,2| ≤ negl(λ).

Proof. Assume for the sake of contradiction that there is a non-negligible function µ(·) such that |p2,2−p2,3| ≥
µ(λ). We now show that this contradicts the sender security of the SFE protocol.

Note that the only difference in Hyb2,2 and in Hyb2,3 is in how sfe2 is generated. In Hyb2,2, it is generated

using the honest sender algorithm SFE2 whereas in Hyb2,3, it is generated as SimSFE(1
λ, x2, r1, g(x1, x2)).

Thus, if |p2,2−p2,3| ≥ µ(λ), then the sender security of SFE protocol does not hold and this is a contradiction.
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