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Abstract

Given a small number of base oblivious transfers (OTs), how does one generate a large
number of extended OTs as efficiently as possible? The answer has long been the seminal work
of IKNP (Ishai et al., Crypto 2003) and the family of protocols it inspired, which only use
Minicrypt assumptions. Recently, Boyle et al. (Crypto 2019) proposed the Silent-OT technique
that improves on IKNP, but at the cost of a much stronger, non-Minicrypt assumption: the
learning parity with noise (LPN) assumption. We present SoftSpokenOT, the first OT extension
to improve on IKNP’s communication cost in the Minicrypt model. While IKNP requires
security parameter λ bits of communication for each OT, SoftSpokenOT only needs λ/k bits,
for any k, at the expense of requiring 2k−1/k times the computation. For small values of
k, this tradeoff is favorable since IKNP-style protocols are network-bound. We implemented
SoftSpokenOT and found that our protocol gives almost a 5× speedup over IKNP in the LAN
setting.

Our technique is based on a novel silent protocol for vector oblivious linear evaluation
(VOLE) over polynomial-sized fields. We created a framework to build maliciously secure(
N
1

)
-OT extension from this VOLE, revisiting the existing work for each step. Along the way,

we found several flaws in the existing work, including a practical attack against the consistency
check of Patra et al. (NDSS 2017), while also making some improvements.

1 Introduction

Oblivious transfer (OT) is a basic building block of multi-party computation (MPC), and for many
realistic problems, MPC protocols may require millions of OTs. [Bea96] introduced the concept of
OT extension, where a small number of OTs called base OTs are processed to efficiently generate
a much larger number of extended OTs. [IKNP03] (hereafter, IKNP) was the first OT extension
protocol to make black-box use of its primitives, a significant improvement in efficiency. Because of
its speed, it is still widely used for semi-honest OT extension.

However, IKNP has a bottleneck: communication. It transfers λ bits for every extended random
OT. Recent works under the heading of Silent OT [BCGI18,BCG+19b,BCG+19a,YWL+20,CRR21]
have communication complexity that grows only logarithmically in the number of oblivious transfers.
Consequently, they are favored when communication is slow. On the other hand, IKNP has the
advantage for computational cost: of the Silent OT protocols, only Silver [CRR21] uses a comparable
amount of computation to IKNP. Additionally, while IKNP uses only Minicrypt [Imp95] assumptions
(i.e. the assumptions are all provable in the random oracle model), Silent OT is based on the learning
parity with noise (LPN) problem, which is not Minicrypt. Efficient instantiations depend on highly
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Figure 1: Sequence of ideal functionalities and protocols used for OT extension. Here q = pk is the
size of the small field VOLE, and L = Affine(FknCp ) is the set of allowed selective abort attacks against
the base OT receiver. Protocols below the arrows are consistency checks needed for maliciously
security.

structured versions of this problem, with the most efficient protocol, Silver, owing its efficiency to
a novel variant of LPN that was introduced solely for that work. Compared with a tried-and-true
block cipher like AES, these assumptions are too recent to have received as much cryptanalysis.

Improvements to IKNP also benefit a number of derived protocols. For maliciously secure OT
extension, the main approach [KOS15] (hereafter, KOS) is to combine IKNP with a consistency
check, although Silent OT can also achieve malicious security. [KK13] achieved

(
N
1

)
-OT extension

by noticing that part of IKNP can be viewed as encoding the OT choice bits with a repetition
code. They replaced it with a more sophisticated error correcting code. [OOS17] (hereafter, OOS)
and [PSS17] (hereafter, PSS) then devised more general consistency checking protocols to achieve
maliciously secure

(
N
1

)
-OT extension.

1.1 Our Results

Our technique, SoftSpokenOT, makes an asymptotic improvement over IKNP’s communication
cost. It is the first OT extension to do so in the Minicrypt model. For any parameter k ≥ 1,
SoftSpokenOT can implement

(
2
1

)
-OT maliciously secure extension using only λ/k bits, compared

to IKNP’s λ bits. This is a communication–computation tradeoff, as the sender in our protocol
must generate λ · 2k/k pseudorandom bits, while IKNP only needs to generate 2λ bits. In practice,
fast hardware implementations of AES make IKNP network bound, so when k is small (e.g. k = 5)
this extra computation will have no effect on the overall protocol latency. And for k = 2, no
extra computation is required, making it a pure improvement over IKNP. Asymptotically, setting
k = Θ(log(`)) generates ` OTs with sublinear communication Θ

(
λ·`

log(`)

)
, in polynomial time.

We present a sequence of protocols (Fig. 1), starting with base OTs, continuing through vector
oblivious linear evaluation (VOLE), and ending at OT extension. First, we present a novel silent
protocol for VOLE over polynomial-sized fields, which may be of independent interest. A VOLE
generates correlated randomness (~u,~v) and (∆, ~w) where ~w − ~v = ~u∆. Our next stepping stone is
an ideal functionality that we call subspace VOLE, which produces correlations satisfying W − V =
UGC diag( ~∆). Here, GC is the generator matrix for a linear code C. Note that ∆-OT (a.k.a. correlated
OT) is a special case of subspace VOLE, as is the correlation used by PaXoS [PRTY20]. Our ∆-OT
works over any field of polynomial size, so it can encode the inputs for arithmetic garbling [BMR16].
Finally, we hash the subspace VOLE using a correlation robust (CR) hash to build random

(
N
1

)
, a

correlation (x,mx) and (m0, . . . ,mN−1) where the my are all random. These may used directly, or
to encode lookup tables representing multiple small-secret

(
2
1

)
-OTs [KK13].

We generalize OOS to construct a consistency checking protocol that achieves maliciously secure
subspace VOLE, albeit with a selective abort attack. However, while proving our protocol secure, we
found flaws (Sect. 4.1) in the major existing works on consistency checks for OT extension. This is
minor for OOS — just a flaw in their proof — and a special case of our new proof shows that OOS
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is still secure. We found two attacks on KOS which show that it is not always as secure as claimed,
though it’s still secure enough in practice. We leave to future research the problem of finding a
sound proof of security for KOS. However, PSS’s flaw is more severe, as we found a practical attack
that can break their

(
256
1

)
-OT extension at λ = 128 security in time 234 with probability 2−8.

The final step, going from correlated randomness (i.e. subspace VOLE) to extended OTs, requires
a CR hash function. For malicious security, a mechanism is needed to stop the receiver from causing
a collision between CR hash inputs. [GKWY20] solve this with a tweakable CR (TCR) hash, using a
tweak to stop these collisions. TCR hashes are more expensive than plain CR hashes, so Endemic
OT [MR19] instead prevent the receiver from controlling the base OTs, proving that it is secure
to forgo tweaks in this case. However, their proof assumes stronger properties of the consistency
checking protocol than are provided by real consistency checks, allowing us to find an attack on their
OT extension (see Sect. 5). We follow [CT21] in using a universal hash to prevent collisions, only
using the tweak to improve the security of the TCR hash. We optimize their technique by sending
the universal hash in parallel with the consistency check — our new proof shows that the receiver
has few remaining choices once it learns the universal hash.

We implemented SoftSpokenOT for
(

2
1

)
-OT in the libOTe [Rin] library. When tested with a

1Gbps bandwidth limit, our protocol has almost a 5× speedup over IKNP with k = 5, resulting from
a 5× reduction in communication. The only case where SoftSpokenOT was suboptimal among the
tested configurations was in the WAN setting, where it took second place to Silver. However, the
assumptions needed by SoftSpokenOT are much more conservative than those used by Silver.

1.2 Technical Overview

SoftSpokenOT is a generalization of the classic oblivious transfer extension of IKNP, which at its core
is based on what can be viewed as a protocol for F2-VOLE. This VOLE protocol starts by using a
PRG to extend

(
2
1

)
-OT to message size `. The base OT sender, PS , gets random strings ~m0, ~m1 and

the receiver, PR, gets its choice bit b ∈ F2 and its chosen message ~mb. PS then computes ~u = ~m0⊕ ~m1

and ~v = ~m1 = 0 ~m0⊕ 1 ~m1, while PR computes ∆ = 1⊕ b, and w = ~mb = ∆~m0⊕ (1⊕∆)~m1.1 Then
~w ⊕ ~v = ∆~m0 ⊕∆~m1 = ∆~u, which is a VOLE correlation: PS gets a vector ~u ∈ F`2 and PR gets a
scalar ∆ ∈ F2, and they learn secret shares ~v, ~w of the product. While ~u was chosen by the protocol,
it possible to derandomize ~u to be any chosen vector. If PS wants to use ~u′ instead, it can send
ū = ~u⊕ ~u′ to PR, who updates its share to be ~w′ = ~w ⊕∆ū. This preserves the VOLE correlation,
~w′ ⊕ ~v = ∆~u⊕∆ū = ∆~u′, while hiding ~u′.

The next step of the IKNP protocol is to stack λ of these F2-VOLEs side by side, while sending
λ · ` bits to derandomize the ~u vectors to all be the same. That is, for the ith VOLE, they get a
correlation W·i ⊕ V·i = ∆i~u, where V·i means the ith column of a matrix V . In matrix notation, this
is an outer product: W ⊕ V = ~u ~∆, where ~∆ is the row vector of all the ∆i. Then looking at the
jth row gives Wj· ⊕ Vj· = uj ~∆, which make uj the choice bit of a ∆-OT. That is, PR has learned
~mj0 = Wj· and ~mj1 = Wj· ⊕ ~∆, while PS has its choice bit uj and ~muj = Vj· , the corresponding

message. Notice that this is a correlated OT, but now the OT sender is PR and the OT receiver is
PS — they have been reversed from what they were for the base OTs. Hashing the ~mjx then turns
them into uncorrelated OT messages.

SoftSpokenOT instead bases the OT extension on a F2k -VOLE, where ~u is restricted to taking
values in F2. We now only need λ/k of these VOLEs to get the λ bits per OT needed to make the
hash secure. Derandomizing ~u for each OT then only needs λ/k bits per OT, as for each VOLE the

1Note that this is backwards from the usual description of IKNP — it’s more usual to set ∆ to be the b, the index
of the message known to PR. A key insight in SoftSpokenOT is that the unknown base OT message is the most
important.
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elements of ~u are in F2, reducing a major bottleneck of IKNP. Instead of
(

2
1

)
-OT, our F2k -VOLE

is based on
(

2k

2k−1

)
-OT, which can be instantiated using a well known protocol [BGI17] based on a

punctured PRF; see Sect. 6 for details.
In
(

2k

2k−1

)
-OT a random function F : F2k → F`2 is known to PS , while PR has a random point ∆

and the restriction F ∗ of F to F2k \ {∆}. The earlier equations for the vectors ~u, ~v, and ~w were
chosen to be suggestive of their generalizations:

~u = F (0)⊕ F (1) =⇒ ~u =
⊕
x∈F

2k

F (x)

~v = 0F (0)⊕ 1F (1) =⇒ ~v =
⊕
x∈F

2k

xF (x)

~w = ∆F ∗(0)⊕ (1⊕∆)F ∗(1) =⇒ ~w =
⊕
x∈F

2k

(x⊕∆)F ∗(x).

Notice that the formula for ~w multiplies F ∗(∆) by 0, which is good because F (∆) is unknown to
PR. Therefore, ~w ⊕ ~v =

⊕
x ∆F (x) = ∆~u.

Reducing communication by a factor of k comes at the expense of increasing computation by a
factor of 2k/k. While there are now only λ/k VOLES, they each require both parties to evaluate F
at every point (except the one that PR does not know) in a finite field of size 2k.

2 Preliminaries

2.1 Notation

We start counting at zero, and the set [N ] is {0, 1, . . . , N − 1}. The finite field with p elements
is written as Fp, the vector space of dimension n as Fnp , and set of all m × n matrices as Fm×np .
The vectors themselves are written with an arrow, as ~x, while matrices are capital letters M . Row
vectors are written with a backwards arrow instead: ~x. The componentwise product of vectors is

~x� ~y = [x0y0 · · · xn−1yn−1]>. Diagonal matrices are notated diag(~x) =

x0

xn−1

, which
makes ~x� ~y = diag(~x)~y. The ith row of a matrix M is Mi·, while the jth column is M·j . The first
r rows of M are M[r]·, and the first c columns are M·[c].

There are two finite fields we will usually work with: the subfield Fp, and its extension field Fq,
where q = pk. Usually p will be prime, but that is not necessary. In a few places we will equivocate
between Fq, Fkp, and [q], using the obvious bijections between them.

Linear Codes. Let C be a [nC , kC , dC] linear code, that is, C is a kC-dimensional subspace of
FnCp with minimum distance dC = min ~y∈C\{0} ‖ ~y‖0, where ‖ ~y‖0 is the Hamming weight of ~y. For
a matrix A, we similarly let the Hamming weight ‖A‖0 be the number of nonzero columns of A.
Let GC ∈ FkC×nCp be the generator matrix of C. We follow the convention that the messages and
code words are row vectors, so a row vector ~x encodes to the codeword ~xGC ∈ C. The rows of the
generator matrix must form a basis of C, which can be completed into a basis TC of FnCp ; that is, the
first kC rows of TC are GC . Then TC has an inverse T−1

C , the last nC − kC columns of which form a
parity check matrix for C.

There are two specific codes that come up most frequently. There is the trivial code, Fnp , where
all vectors are code words and GFnp = TFnp = 1n. There is also the repetition code, Rep(Fnp ), which
consists of all vectors where all elements are the same. Its generator matrix is GRep(Fnp ) =

[
1 · · · 1

]
.
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Algorithms. We use pseudocode for our constructions. In many cases there will be two similar
algorithms side by side (e.g. sender and receiver, or real and ideal), and we use whitespace to align
matching lines. Sampling a value x uniformly at random in a set X is written as x $← X.

2.2 Universal Hashes

We make extensive use of universal hashes [CW79], essentially as a more efficient replacement for a
uniformly random matrix. We depend on the extra structure of the hash function being linear, so
we give definitions specialized to that case.

Definition 2.1. A family of matrices R ⊆ Fm×nq is a linear ε-almost universal family if, for all
nonzero ~x ∈ Fnq , PrR $←R

[
R~x = 0

]
≤ ε.

Definition 2.2. A family of matrices R ⊆ Fm×nq is linear ε-almost uniform family if, for all nonzero
~x ∈ Fnq and all ~y ∈ Fmq , PrR $←R

[
R~x = ~y

]
≤ ε.

For characteristic 2, this is equivalent to being ε-almost XOR-universal. Clearly, a family that is
ε-almost uniform is also ε-almost universal. In Appx. F.1, we prove two composition properties of
universal hashes.

Proposition 2.3. Let R and R′ be ε and ε′-almost universal families, respectively. Then R′R for
R ∈ R, R′ ∈ R′ is a (ε+ ε′)-universal family.

Proposition 2.4. Let R and R′ be ε-almost uniform families. Then [R R′] for R ∈ R, R′ ∈ R′ is a
ε-uniform family.

2.3 Ideal Functionalities

The protocols in this paper are analyzed in the Simplified UC model of [CCL15], so whenever an ideal
functionality takes inputs or outputs, the adversary is implicitly notified and allowed to delay or block
delivery of the message. The functionalities deal with three entities: the sender PS , the receiver PR,
and the adversary A. Instead of the usual event-driven style (essentially a state machine driven by
the messages), we use a blocking call syntax for our ideal functionalities, where it stops and waits to
receive a message. While we will not need to receive multiple messages at once, it would be consistent
to use multiple parallel threads of execution, with syntax like recv. x from PS

∥∥ recv. y from PR .
We omit the “operation labels” identifying the messages, instead relying on the variable names and
message order to show which send corresponds to each receive. We assume the protocol messages
themselves are delivered over an authenticated channel.

All of our functionalities are for different kinds of random input VOLE or OT, meaning that
the protocol pseudorandomly chooses the inputs of each party. Essentially, the functionalities just
generate correlated randomness. Using random VOLE or OT, the parties can still choose their inputs
using derandomization, if necessary.2 However, we cannot guarantee that a corrupted participant
does not exercise partial control over the outputs of the protocols. For this reason, we use the
endemic security notion of [MR19], where any corrupted participants get to choose their protocol
outputs, then the remaining honest parties receive random outputs, subject to the correlation. One
difference, however, is that in our ideal functionalities an honest OT receiver doesn’t get to choose
its choice bits. Instead, all protocol inputs are random for honest parties.3

2See [MR19] for details on derandomizing OT messages.
3This is similar to the pseudorandom correlation generators (PCGs) used in [BCG+19b] to build Silent OT. In

fact, the small field VOLE constructed in Sect. 3.1 can be viewed as a PCG.
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FN,`,L
OT-1

for i ∈ [`]:
if PS is corrupted:
recv. Fi ∈

(
{0, 1}λ

)[N ] from A

else:
Fi

$←
(
{0, 1}λ

)[N ]

if PR is corrupted:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈ {0, 1}λ from A

Fi(x
∗
i ) := F ∗i

else:
x∗i

$← [N ]

F ∗i := Fi(x
∗
i )

send {Fi}i∈[`] to PS
Send/Abort

(
{x∗i }i∈[`], {F ∗i }i∈[`],L

)

FN,`,L
OT-1

for i ∈ [`]:
if PS is corrupted:
recv. Fi ∈

(
{0, 1}λ

)[N ] from A

else:
Fi

$←
(
{0, 1}λ

)[N ]

if PR is corrupted:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈
(
{0, 1}λ

)[N ]\{x∗i } from A

Fi(x) := F ∗i (x), ∀x ∈ [N ] \ {x∗i }
else:
x∗i

$← [N ]

F ∗i (x) := Fi(x), ∀x ∈ [N ] \ {x∗i }
send {Fi}i∈[`] to PS
Send/Abort

(
{x∗i }i∈[`], {F ∗i }i∈[`],L

)
Figure 2: Ideal functionalities for a batch of ` endemic OTs, with

(
N
1

)
-OT on the left and

(
N
N−1

)
-OT

on the right. Differences are highlighted .

Fp,q,C,`,LVOLE

if PS is corrupted:
recv. U ∈ F`×kCp , V ∈ F`×nCq from A

else:
U $← F`×kCp , V $← F`×nCq

if PR is corrupted:
recv. ~∆ ∈ FnCq ,W ∈ F`×nCq from A

V := −UGC diag( ~∆) +W
else:

~∆ $← FnCq
W := UGC diag( ~∆) + V

send U, V to PS
Send/Abort( ~∆,W,L)

Figure 3: Ideal functionality for endemic sub-
space VOLE. C is a linear code.

Send/Abort(x ∈ X, y ∈ Y,L ⊆ 2X):
if PS is malicious:
recv. L ∈ L from PS
if x /∈ L:
send “check failed” to PR
abort

send x, y to PR

Figure 4: Output with leakage function. Sends
x, y to PR, after allowing PS to do a selective
abort attack on x.
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The ideal functionalities for length ` batches of
(
N
1

)
-OTs or

(
N
N−1

)
-OTs are presented in Fig. 2. In

each OT, the sender PS gets a random function F : [N ]→ {0, 1}λ, which is chosen by the adversary
if PS is corrupted. If N is exponentially large, F should be thought of as an oracle, which will only
be evaluated on a subset of [N ]. The receiver PR gets a choice element x∗ ∈ [N ], as well as F ∗,
which is either the one point F (x∗) for

(
N
1

)
-OT, or the restriction of F to every other point [N ] \ x∗

for
(
N
N−1

)
-OT. Again, if PR is corrupted then the adversary gets to choose these values.

In Fig. 3, we present subspace VOLE, a generalized notion of VOLE. Instead of a correlation
of vectors ~w − ~v = ~u∆, where ~u ∈ F`p and ~v ∈ F`q are given to PS , and ~w ∈ F`q and ∆ ∈ Fq to
PR [BCGI18], subspace VOLE produces a correlation of matrices W − V = UGC diag( ~∆), where
U gets multiplied by the generator matrix GC of a linear code C. Subspace VOLE is essentially
nC independent VOLE correlations placed side-by-side, except that the rows of U are required to
be code words of C. For p = q = 2, this matches the correlation generated internally by existing(
N
1

)
-OT extensions.

Selective Aborts. Our base
(
N
N−1

)
-OT OT and subspace VOLE protocols achieve malicious

security by using a consistency check to enforce honest behavior. However, the consistency checks
allow a selective abort attack where PS can confirm a guess of part of PR’s secret outputs. This is
modeled in the ideal functionality using the function Send/Abort (Fig. 4). Let x ∈ X be the value
subject to the selective abort attack, and y ∈ Y be the rest of PR’s output. When PS is malicious,
it can guess a subset L ⊆ X, and if it is correct (i.e. x ∈ L) then the protocol continues as normal.
But if the guess is wrong then PR is notified of the error, and the protocol aborts.

The subset L that PS guesses is restricted to being a member of L, for some set of allowed
guesses L ⊆ 2X . It is required to be closed under intersection, and contain the whole set X. For
VOLE, where X is a vector space, we also require that L − ~Loff ∈ L when L ∈ L and ~Loff ∈ X.
We use one main set of allowed guesses, Affine(Fnq ). It is the set of all affine subspaces of Fnq , i.e.
all subsets that are defined by zero or more constraints of the form a0x0 + · · · + an−1xn−1 = an,
for constants a0, . . . , an ∈ Fq. Since Fq can be viewed as the vector space Fkp, we have a superset
relationship Affine(Fnkp ) ⊇ Affine(Fnq ). There is also {X}, the trivial guess set, which only allows a
malicious PS to guess that x ∈ X. This guess is trivially true, and so leaks no information at all.

Pre-committed Inputs. Our malicious OT extension protocol uses a universal hash to stop
PR from causing collisions between two distinct extended OTs, which is sent in parallel with the
VOLE consistency check for efficiency. However, the universal hash must be chosen after PR (who
acts as the VOLE sender) picks its VOLE outputs U, V and its guess L. In Fig. 5, we modify the
VOLE functionality to notify the VOLE receiver once U, V, L are almost fixed — unfortunately, the
consistency check still allows U, V, L to vary somewhat. Specifically, U may have polynomially many
options (which can be computationally hard to find), L can get shifted by an offset ~Loff, and V can
depend on the part of ~∆ that is guessed.

To address these difficulties, we identify the possible input choices with witnesses wpre, and have
A output a witness checker, i.e. an implicitly defined set Wpre of valid witnesses. Then we require
U , V , and L to be fixed in terms of wpre, using functions Upre(wpre), Vpre(wpre, ~∆), and Lpre(wpre).
We require a polynomial upper bound M ≥ |Wpre| on the number of witnesses. Additionally,
so that the correctness check for Vpre does not leak any information, for all ~∆ we require that
~∆ + ~Loff ∈ Lpre(wpre) implies V = Vpre(wpre, ~∆).
These changes are behind “if PS is malicious” checks, so in the semi-honest case FVOLE is a

equivalent to FVOLE-pre. For malicious security, FVOLE-pre gives the adversary less power than FVOLE
because it forces some of the choices to be made early, so any protocol for FVOLE-pre is also a protocol
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Fp,q,C,`,L,MVOLE-pre

if PS is malicious:
recv. Wpre ⊆ {0, 1}∗ from A

recv. Upre : Wpre → F`×kCp from A

recv. Vpre : Wpre × FnCq → F`×nCq from A

recv. Lpre : Wpre → L from A

send “commit” to PR
run Fp,q,C,`,LVOLE
instead of Send/Abort:
if PS is malicious:
recv. wpre ∈ Wpre, ~Loff ∈ FnCq from A

if U 6= Upre(wpre) ∨ V 6= Vpre(wpre, ~∆) ∨ ~∆ + ~Loff /∈ Lpre(wpre)
send “check failed” to PR
abort

send ~∆,W to PR

Figure 5: Modification of Fig. 3 to get an ideal functionality for subspace VOLE with a pre-
commitment notification. We make two additional requirements on A. There must be a polynomial
upper boundM ≥ |Wpre| on the number of input choices PS has. And, for all ~∆, ~∆+ ~Loff ∈ Lpre(wpre)

must imply V = Vpre(wpre, ~∆), to ensure that checking Vpre does not make the selective abort any
more powerful.

for FVOLE.

2.4 Correlation Robust Hashes

The final step of OT extension is to hash the output from the subspace VOLE. This requires a
security assumption on the hash function H. We generalize the notion of a tweakable correlation
robust (TCR) hash function [GKWY20] to our setting. While this definition will most likely be used
with p = 2 for efficiency, there are extra theoretical difficulties associated with p > 2.

Definition 2.5. A function H ∈ FnCq × T → {0, 1}λ is a (p, q, C, T ,L)-TCR hash if the oracles
given in Fig. 6 are indistinguishable.4 Formally, for any PPT adversary A that does not call query
twice on the same input ( ~x, ~y, τ),

AdvTCR =
∣∣∣Pr
[
ATCR-realH,p,q,C,L() = 1

]
− Pr

[
ATCR-idealH,p,q,C,L() = 1

]∣∣∣ ≤ negl.

Our definition is quite similar to the TCR of [GKWY20] in the special case where C is the
repetition code. However, we explicitly include selective abort attacks in the TCR definition, while
they require that the hash be secure for any distribution for ~∆ with sufficient min-entropy. Their
definition has issues when instantiated from idealized primitives such as random oracles, because,
when the TCR is used for OT extension, the distribution for ~∆ would have to depend on these
primitives [CT21]. In the standard model, their definition is impossible to instantiate: H( ~∆, 0) must
be random by TCR security, yet restricting ~∆ so that the first bit of H( ~∆, 0) is zero only reduces

4Note that we do not consider multi-instance security. In fact, there is a generic attack: given N instances, the
attacker chooses an L that contains ~∆ with probability 1/N , then brute forces ~∆ for instances where ~∆ ∈ L. Thus, it
is N -times cheaper to brute force attack H for N instances than to target a single one.
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TCR-realH,p,q,C,L

~∆ $← FnCq
query( ~x ∈ FkCp \ {0}, ~y ∈ FnCq , τ ∈ T ):

return H( ~xGC � ~∆ + ~y, τ)

leak(L ∈ L):
abort if ~∆ /∈ L

(a) Real world.

TCR-idealH,p,q,C,L

~∆ $← FnCq
query( ~x ∈ FkCp \ {0}, ~y ∈ FnCq , τ ∈ T ):

z $← {0, 1}λ
return z

leak(L ∈ L):
abort if ~∆ /∈ L

(b) Ideal world.

Figure 6: Oracles for TCR definition. Calls to query must not be repeated on the same input.

the min-entropy by approximately one bit and allows an efficient distinguisher. [CT21] fix the former
issue with a definition TCR* that only applies to the ideal model, while ours allows the possibility
of standard model constructions.

We now give two hash constructions, which we prove secure in Appx. A. Correlation robust
hashes were inspired by random oracles (ROs), so it should be no surprise that a RO is a TCR hash.

Proposition 2.6. A random oracle RO : FnCq × {0, 1}t → {0, 1}λ is a (p, q, C, {0, 1}t,Affine(FknCp ))-
TCR hash, with distinguisher advantage at most τmax

(
q + 1

2q
′)q−dC . Here, τmax is the maximum

number of times query is called with the same τ , q is the number of RO queries made by the
distinguisher, and q′ is the number of calls to query.

The next construction comes from [GKW+20]. It is the classic x 7→ π(x)⊕ x permutation-based
hash function, but it uses an ideal cipher so that the tweak can be the key. Changing keys in a
block cipher requires recomputing the round keys, so there is a cost to changing the tweak with this
method. It needs a injection ι to encode its input; when p = 2, ι can be the identity map.

Proposition 2.7. Let Enc : {0, 1}t × {0, 1}λ → {0, 1}λ be an ideal cipher, and ι : FnCq → {0, 1}λ be
an injection. Then H( ~y, τ) = Enc(τ, ι( ~y))⊕ ι( ~y) is a (p, q, C, {0, 1}t,Affine(FknCp ))-TCR hash. The
distinguisher’s advantage is at most τmax

(
(2q + 1

2q
′)q−dC + 1

2q
′2−λ

)
, with q and q′ as in Thm. 2.6.

3 VOLE

3.1 For Small Fields

We already presented our F2k -VOLE in Sect. 1.2. This VOLE is generalized in Fig. 7 to work over
any small field Fq, specifically fields where q is only polynomially large, with ~u taking values in any
subfield Fp. It is based on a

(
q
q−1

)
-OT, and a pseudorandom generator PRG : {0, 1}λ → F`p. While

this is a VOLE protocol, we analyze it using our subspace VOLE definition by setting C to be the
length one, dimension one code, i.e. GC = [1]. This makes U , V , and W all become column vectors
and ~∆ become a scalar.

Theorem 3.1. The VOLE given in Fig. 7 in the Fq,1,L
OT-1

hybrid model securely realizes Fp,q,Fp,`,LVOLE , in
both the semihonest and malicious models.

Proof. The proof of correctness is simple enough. Notice that the x = ∆ term of the sum for ~w

9



PS PR

Fq,1,L
OT-1

for x ∈ Fq:
~rx := PRG(F (x))

~u :=
∑

x∈Fq ~rx
~v := −

∑
x∈Fq ~rx x

output ~u,~v

∆ := x∗

for x ∈ Fq \ {∆}:
~rx := PRG(F ∗(x))

~w :=
∑

x∈Fq\{∆}

~rx (∆− x)

output ∆, ~w

F x∗, F ∗

Figure 7: Protocol for small field VOLE. If Fq,1,L
OT-1

instead outputs “check failed” , it should be passed
straight through to PR.

would be multiplied by ∆−∆ = 0, so it makes no difference that it must be excluded because PR
does not know ~r∆. Therefore,

~w =
∑

x∈Fq\{∆}

~rx (∆− x) =
∑
x∈Fq

~rx (∆− x) =
∑
x∈Fq

~rx ∆−
∑
x∈Fq

~rx x = ~u∆ + ~v. (1)

Corrupt PS. After receiving F from A, the simulator will compute ~u,~v honestly and submit them
to Fp,q,Fp,`,LVOLE . If PS is malicious, it will also forward L ∈ L to the ideal functionality. In the real
world, Fq,1,L

OT-1
will generate a random x∗ = ∆ and send it to PR, who will compute ~w = ~u∆ + ~v by

Eq. (1). In the ideal world, Fp,q,Fp,`,LVOLE will pick ∆ randomly, receive ~u,~v from the simulator, and
compute ~w = ~u∆ + ~v. These are identical, implying that these two worlds are indistinguishable and
that this case is secure.

Corrupt PR. After receiving F ∗, x∗ from A, the simulator will compute ∆ = x∗ and ~w honestly,
and submit them to Fp,q,Fp,`,LVOLE . We do a hybrid proof, starting from the real world and going to the
ideal world.

1. In the real world, Fq,1,L
OT-1

sets F (x) = F ∗(x) for x 6= x∗, generates F (x∗) randomly, and sends
them to PS , who will compute ~rx = PRG(F (x)) and ~u,~v. By Eq. (1), ~v = ~w − ~u∆.

2. Because F (x∗) is only used to compute ~rx∗ , the security of PRG implies that ~rx∗ can be replaced
with a uniformly sampled value.

3. Instead of sampling ~rx∗ randomly, sample ~u uniformly at random and set ~rx∗ = ~u−
∑

x 6=x∗ ~rx.
This is an identical distribution.

4. We are now at the ideal world, where Fp,q,Fp,`,LVOLE will pick ~u randomly, receive ∆, ~w from the
simulator, and compute ~v = ~w − ~u∆.

If both parties are corrupt then security is trivial, as then the simulator can just forward messages
between the corrupted parties.

Efficient Computation. Let a be a generator of Fq over Fp. For computation, it’s convenient to
represent ~v as a sequence of Fp vectors: ~v = ~v0 +a~v1 + · · ·+ak−1~vk−1. Similarly, the index x becomes
x0 + ax1 + · · ·+ ak−1xk−1. Naïve computation of ~v using the sum then becomes ~vi =

∑
x xi~rx, but

this would require O(kq) vector additions and scalar multiplications over Fp.
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PS PR

Fp,q,F
nC
p ,`,{X}

VOLE[
U C

]
:= U ′T−1

C

output U, V
W := W ′ −

[
0 C
]
TC diag( ~∆)

output ~∆,W

U ′, V ~∆,W ′

C ∈ F`×(nC−kC)
p

Figure 8: Protocol for subspace VOLE.

This can be improved to O(q+ q
p + q

p2 + · · · ) = O(q) vector additions and no scalar multiplications.
For all x′ ∈ Fq where x′0 = 0, let ~r′x′ =

∑
x0∈Fp ~rx′+x0 , and notice that all ~v1, . . . , ~vk−1 (and ~u) depend

only on the ~r′x′ . Therefore, after computing all qp vectors ~r′x′ , the outputs ~v1, . . . , ~vk−1 can be found
by recursion on a smaller problem size. As a byproduct, computing the ~r′x′ produces sequences of
partial sums

∑
x0≤i ~rx′+x0 , and adding all of these together then gives

∑
x′
∑

x0
(p− x0)~rx′+x0 = ~v0.

PR can use the same algorithm to compute ~w by just reordering the ~rx vectors at the start, because∑
x ~rx(∆− x) =

∑
x ~rx+∆(−x).

Concatenation. While this does not directly follow directly from the UC theorem, it should be
clear that running the protocol Fig. 7 on a batch of n OTs will produce a batch of n VOLEs. The
proof trivially generalizes. More precisely, it achieves Fp,q,F

n
p ,`,L

VOLE in the Fq,n,L
OT-1

hybrid model, where
Fnp is the trivial code with GFnp = 1n. This will be the basis for our subspace VOLE.

3.2 For Subspaces

For
(

2
1

)
-OT extension, the next step would be for PS to send a correction to make all columns of U

be identical, so that each column would use the same set of choice bits. Efficient
(
N
1

)
-OT extension

protocols like [KK13] instead must correct the rows of U to lie in an arbitrary linear code C, rather
than the repetition code. We implement subspace VOLE to handle these more general correlations.

Our protocol for subspace VOLE is presented in Fig. 8. It starts out with a VOLE correlation
W ′ − V = U ′ diag(∆). Then, PS divides U ′ into parts, the message U ∈ F`×kCp and the correction
syndrome C ∈ F`×nC−kCp , sending the correction to PR. PR then corrects W to maintain the VOLE
correlation property after PS removes C. Unfortunately, PS can just lie when it sends C to PR, so
the protocol only achieves semi-honest security. Since the leakage set L only matters for malicious
security, we simplify by assuming that L is trivial (i.e. {X}).

Theorem 3.2. The protocol in Fig. 8 is a semi-honest realization of Fp,q,C,`,{X}VOLE in the Fp,q,F
n
p ,`,{X}

VOLE
hybrid model.

Proof. First, the protocol outputs correctly satisfy the VOLE correlation:

W = W ′ −
[
0 C
]
TC diag( ~∆)

= V + U ′ diag( ~∆)−
[
0 C
]
TC diag( ~∆)

= V +
([
U C

]
TC −

[
0 C
]
TC
)

diag( ~∆)

= V + UGC diag( ~∆).
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PS PR

output U[h]·, V[h]·
output “commit”
R $← R

∼
U := RU
∼
V := RV

abort if
∼
V 6= RW −

∼
UGC diag( ~∆):

output ~∆,W[h]·

R ∈ R

∼
U ∈ Fm×kCq ,

∼
V ∈ Fm×kCq

Figure 9: Consistency checking protocol, which should be used with Fig. 8. R must be a ε-universal
hash family, where all R ∈ R is Fhp -hiding. The “abort if" means that “check failed” is output if
the check fails. If instead of giving ~∆,W ′ to PR, the base VOLE outputs “check failed”, PR should
continue to play along with the protocol and only output “check failed” when it completes.

For security, notice that any U, V, ~∆,W output by the protocol and any C that the adversary
eavesdrops on (because the communication is over an authenticated, but not private, channel)
corresponds to a unique U ′, V, ~∆,W ′ from the underlying VOLE. Specifically, U ′ =

[
U C

]
TC and

W ′ = W +
[
0 C
]
TC diag( ~∆). This implies the adversary does not learn anything new by corrupting

either party, as they could already predict what that party knows. They only gain the power to
program that the base VOLE’s outputs for that party, but the simulator gains the corresponding
power to program that party’s protocol outputs to match. In more detail, S should receive from
A the programed base VOLE outputs for the corrupted parties, simulate doing exactly what they
would do in the protocol (while sampling a fake C $← F`×(nC−kC)

p if PS is honest), and program the
protocol outputs to be the result.

In the ideal world, S generates a uniformly random consistent adversary view U, V, ~∆,W (together
with U ′ or W ′ if PS or PR was corrupted). In the real world, the underlying VOLE functionality
picks U ′, V, ~∆,W ′ uniformly at random subject to the constraints of the VOLE correlation and any
outputs programmed by the adversary, and then the adversary gets to see the protocol run. There is
a bijection between consistent adversary views and outputs of the underlying VOLE U ′, V, ~∆,W ′,
and this bijection implies that these two views are identically distributed.

4 Malicious Security

Our small field VOLE construction in Sect. 3.1 was easily proved maliciously secure. It does not
involve any communication, and so there are no opportunities for any of the parties to lie. However,
Sect. 3.2 requires PS to reveal part of U , allowing a malicious PS to lie. Following KOS and OOS,
we solve this by introducing a consistency check (Fig. 9) that is run immediately afterwards, to
provide a guarantee that if PS lies then the protocol will either abort or work properly. Then the
last few rows of U , V , and W are thrown away so that the values revealed in the consistency check
do not leak anything. This still allows the possibility of selective abort attacks, however.

KOS, OOS, and PSS all compute their consistency checks by multiplying each row of U with a
random value — an element of an extension field for KOS or just a vector for OOS and PSS. V and
W are also multiplied by random values, in a consistent way. We generalize this idea to work for a
large class of linear universal hashes. Any linear ε-almost universal hash family R ⊆ Fm×`q will work,
as long as the following condition is met by every R ∈ R, to guarantee that throwing away the last
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few rows of U is sufficient to keep the others hidden.

Definition 4.1. A matrix R ∈ Fm×`q is Fhp -hiding if the first h inputs to R will stay hidden when
the remaining inputs are secret and uniformly random. More precisely, if ~x $← F`p then R~x must be
independently random from ~x[h]

Note that if R is Fhp -hiding then that it is Fhq -hiding, so if R is able to keep U ∈ F`×kCp hidden
then it will keep V ∈ F`×nCq hidden as well.

Many useful universal hashes with elements in Fp satisfy this definition, including hashes based
on polynomial evaluation or cyclic redundancy checks. That is, the last m columns of R will span the
others, so R will be Fhp -hiding for h = `−m. However, this only works if the universal hash is over Fp,
rather than Fq, as otherwise there won’t be enough entropy in the last m columns to completely hide
the other inputs. On the other hand, using a hash over Fq gives better compression. For a universal
hash over Fp, the best possible ε is about p−m, while for Fq it is q−m = p−km. We believe that the
best approach is to compose two universal hashes, first applying a F`−m′p -hiding hash R ∈ R ⊆ Fm′×`p ,
then further reducing the output down to m entries with a second hash R′ ∈ R′ ⊆ Fm×m′q where
m′ ≥ km. The composed hash will be F`−m′p -hiding, and will still be universal by Thm. 2.3.

Remark 4.2. PS outputs U[h]·, V[h]· in the first round, just after sending C and much before the
protocol has actually completed. In applications where U will be derandomized immediately (e.g.
chosen point OT extension), it is convenient to derandomize U at the same time as sending C. The
protocol returning early is what allows this within the UC framework.

Remark 4.3. After sending C, PS will not have many useful options to choose from, so the protocol
notifies PR with “commit” (as in Fp,q,C,h,L,MVOLE-pre ) to indicate that PS’s inputs (mostly) fixed. In Sect. 5,
this notification is used to send a second universal hash at the same time as R.

4.1 Flaws in Existing Consistency Checks

Given the similarity of Fig. 9 to the KOS, PSS, and OOS consistency checks, it seems natural to
adapt their proofs to the subspace VOLE consistency checking protocol. However, it turns out that
all three are flawed. We first present the flaw in OOS, because it is most similar to our protocol.

4.1.1 Flaw in OOS’s Proof.

To get the OOS consistency check, take the protocol in Fig. 9 and set p = q = 2 and R =
[
X 1m

]
,

where X $← Fm×`−m2 is uniformly random. There are a couple of differences, but these do not
affect the consistency check proper. Our sender is their receiver and vice versa, because they are
implementing OT extension and we are doing subspace VOLE. And, they send a correction C for
the whole of U ′ at once, instead of just the syndrome, because their OT choice bits are chosen rather
than random. To avoid the confusion of introducing a separate set of notations for essentially the
same protocol, we ignore these differences and discuss their proof using our notation and protocol.
See Appx. B for a discussion using OOS’s original language.

Let [U C̄] = U ′T−1
C ⊕

[
0 C
]
, so C̄ is the error in the correction syndrome C sent by the malicious

PS . Similarly, let Ū = RU ⊕
∼
U and V̄ = RV ⊕

∼
V be the errors in the consistency check messages

sent by PS . The consistency check then becomes V̄ = [Ū RC̄]TC diag( ~∆) (see the proof of Thm. 4.5
for details). OOS define a set E ⊆ [nC ] of column indices i where

(
[Ū RC̄]TC

)
·i is nonzero. These

are the indices i where ∆i will have to be guessed by PS in order to pass the consistency check.
They then attempt to prove that the indices in E will be the only ones that PS lied about. That is,
their simulator tries to correct U to get PS ’s real output U?, so that if Z = [U? C]TC ⊕ U ′ then the
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indices of all the nonzero columns of Z are in E. This would let S update V accordingly, getting
V ? = V ⊕ Z diag( ~∆), which it could find because PS must guess ∆i for i ∈ E.

The flaw is in their proof that S can (with high probability, assuming that the check passes)
extract U?. Their technique is to look at Y = [U C̄]TC = U ′ ⊕

[
0 C
]
TC , whose rows would be in C if

PS were honest, and remove the columns in E to get a punctured matrix Y−E . Then they decode
the rows of Y−E using the punctured code C−E to get U?, since Y ⊕ Z = U?GC and Z−E should
be 0. For this to work, they need the rows of Y−E to be in C−E . They try to prove this using the
following lemma.

Lemma 4.4 (OOS, Lem. 1). Let D be a linear code and B ∈ F`×nD2 be a matrix, where not all rows
of B are in D. If X $← Fm×`−m2 and R =

[
X 1m

]
, then the probability that all rows of RB are in D

is at most 2−m.

They apply this lemma with D = C−E and B = Y−E . Note that RY = [Ū RC̄]TC ⊕
∼
UGC , so

RY−E =
∼
UGC−E has all rows in C−E . They conclude that with all but negligible probability, all rows

of Y−E are in C−E . However, the lemma cannot be used in this way. The lemma requires that D and
B be fixed in advance, before X is sampled, yet C−E and Y−E both depend on E. Recall that E is
the set of nonzero columns of [Ū RC̄]TC , which depends on both R directly, and on the consistency
check message

∼
U sent by PS after it learns X.

While this shows that OOS’s proof is wrong, we have not found any attacks that contradict their
theorem statement. Additionally, a special case of our new proof (Thm. 4.5) shows that the OOS
protocol is still secure, with statistical security only one bit less than was claimed.

4.1.2 Attack For PSS’s Protocol.

The PSS consistency checking protocol is similar to OOS’s, though they only consider Walsh–
Hadamard codes, and they generate R $← Fm×`2 using a coin flipping protocol. In Lemma IV.5, they
have a similar proof issue to OOS, using Corollary IV.2 on dependent values when the corollary
assumes they are independent. However, we focus on a more significant problem, which we summarize
here, using our own notation. See Appx. C for a more detailed discussion, using their notation.

The most important difference from OOS is that PSS attempt to compress the consistency
check by summing the columns of

∼
V to get ∼v =

∼
V [1 · · · 1]>. The consistency check is then that

∼v must equal
(
RW ⊕

∼
UGC diag( ~∆)

)
[1 · · · 1]> = RW [1 · · · 1]> ⊕

∼
UGC ~∆. Let C̄, Ū , and v̄ be

defined analogously to our discussion of OOS. Then the consistency check is v̄ = [Ū RC̄]TC ~∆. This
means that a malicious receiver only needs to guess XORs of multiple bits from ~∆, rather than the
individual bits themselves.

We used this to create an attack against PSS. Have PS lie about the bits in U ′ in length N
intervals, where in the first OT it lies about the first N bits of U ′0·, and in the next OT the second N
bits of U ′1·, and so on. Here, N is a parameter defining the tradeoff between computational cost and
attack success rate. Then [Ū RC̄]TC will have rows spanned by these N bit intervals, so [Ū RC̄]TC ~∆
only depends on dnCN e different values:

⊕N−1
j=0 ∆Ni+j for i ∈

[
dnCN e

]
. Therefore, the consistency check

passes with probability 2−dnC/Ne, even though we have lied about all nC bits. Later, having gotten
away with these lies, the hashes output by the OT extension can be brute forced to solve for each
N -bit chunk of ~∆ individually. This breaks the OT extension in time dnCN e2

N−1. At the λ = 128
security level, nC = 256, so by setting N = 32 we get an attack with success probability 2−8 that
uses only 234 hash evaluations.
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4.1.3 Flaw in KOS’s Proof.

Like with OOS, in this section we will discuss KOS by analogy with our consistency checking protocol
Fig. 9. See Appx. D for a more detailed account, using KOS’s notation for their protocol.

To get KOS’s protocol from ours, start by fixing p = q = 2 and C = Rep(Fλ2). Let R = Fλ×`2 ,
which means that R is F`−λ−σ2 -hiding with probability at least 1− 2−σ. They use a coin flipping
protocol to make sure that PR cannot pick a R that is is not hiding. Let α a primitive element of
F2λ , meaning that {1, α, . . . , αλ−1} is a basis for F2λ over F2. The first half of the consistency check,
∼
U , works as normal, except that it gets encoded into a field element u =

⊕
i

∼
U i·α

i = ~α>
∼
U , where

~α = [1, α, . . . , αλ−1]>. The other half,
∼
V , is compressed from λ2 bits down to λ bits by turning it

into a single field element v =
⊕

ij

∼
V ijα

i+j = ~α>
∼
V ~α. Similarly, let w = ~α>RW~α and δ = ~∆~α. Then

the consistency check becomes

v = ~α>RW~α⊕ ~α>
∼
UGC diag( ~∆)~α

= w ⊕ uGC diag( ~∆)~α = w ⊕ u[1 · · · 1] diag( ~∆)~α = w ⊕ uδ.

Because C is a repetition code, U ′ is supposed to be derandomized so that all columns are
identical to U . Let Y = U ′ ⊕

[
0 C

]
TC be the derandomization of U ′. Then columns i and j are

called consistent if they imply the same values of U , i.e. if Y·i = Y·j . Also let S∆ be the set of
possible ∆ that cause the consistency check to succeed. KOS’s proof of security for malicious PS
depends entirely on their Lemma 1, which states several properties of their consistency check. Most
importantly, it implies that for any u, v sent by PS , with probability 1− 2−λ there exists k ∈ N such
that |S∆| = 2k and k is at most the size of the largest group of consistent columns.

KOS gave no proof for Lemma 1, instead citing the full version of their paper, which has not been
made public. However, the authors of KOS were kind enough to give an unpublished draft [KOS21].
Unfortunately, their proof has a similar flaw to OOS’s, because they assume that R is sampled after
S∆ is known.

Unlike OOS, we found a counterexample to show that KOS’s Lemma 1 is false, which we call a
collision attack. Let the malicious PS choose C uniformly at random (so Y will also be uniformly
random) but still provide an honest v during the consistency check. Because of the correction PR
applies, W will be

W = V ⊕ (U ′ ⊕
[
0 C
]
TC) diag( ~∆) = V ⊕ Y diag( ~∆)

Let ~y = ~α>RY . The consistency check is then

v = ~α>RV ~α⊕ ~α>RY diag( ~∆)~α⊕ uGC diag( ~∆)~α

0 = ( ~y ⊕ u[1 · · · 1]) diag( ~∆)~α.

If u is set to be some element yi of ~y, the consistency check at least won’t depend on ∆i. Since
Y is uniformly random, ~y will be as well, so the probability of a collision among the yi is roughly
λ22−λ−1. If there is a collision yi = yj and PR sets u = yi, then |S∆| = 2k = 4. This contradicts
KOS’s Lemma 1 because k should be at most 1 as no two columns are consistent.

In Appx. D.2 we present (using KOS’s notation) a stronger attack against special parameters of
KOS. Assuming that a certain MinRank problem always has a solution (and heuristically it should
have 2λ/5 solutions on average), the attack succeeds in recovering ∆ with probability 2−

3
5
λ using

O(2λ/5) random oracle queries. While this is still not a practical attack, according to KOS’s proof of
their Theorem 1 an attack with this few random oracle queries should only succeed with probability
O(2−

4
5
λ).
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Sp,q,C,`sub-VOLE-mal-R

recv. ~∆ ∈ FnCq ,W ′ ∈ F`×nCq from A

send ~∆,W ′ to PR
C $← F`×(nC−kC)

p

send C to PR
W := W ′ −

[
0 C
]
TC diag( ~∆)

send ~∆,W[h]· to F
p,q,C,h,L,M
VOLE-pre

recv. R ∈ R from PR
U$

$← F`×kCq
∼
U := RU$
∼
V := RW −

∼
UGC diag( ~∆)

send
∼
U,

∼
V to PR

Precom(C̄, R,R−1):
Wpre := {Ū ∈ Fm×kCq | t ≥ ‖ [Ū RC̄]TC‖0}
U?pre(Ū) := U −R−1Ū

V ?
pre(Ū ,

~∆) := V +R−1[Ū RC̄]TC diag( ~∆)

L′0 := L′ − ~∆0 for some ~∆0 ∈ L′
Lpre(Ū) := L′0 ∩ { ~∆ | 0 = [Ū RC̄]TC diag( ~∆)}
return Wpre, U

?
pre, V

?
pre, Lpre

Sp,q,C,`sub-VOLE-mal-S

recv. U ′ ∈ F`×nCp , V ∈ F`×nCq from A

send U ′, V to PS
recv. L′ ∈ L from PS :
recv. C ∈ F`×(nC−kC)

p from PS
[U C̄] := U ′T−1

C −
[
0 C
]

R $← R
abort if rank(RC̄) < rank(C̄)
find R−1 ∈ F`×mq s.t. R−1RC̄ = C̄

Wpre, U
?
pre, V

?
pre, Lpre := Precom(C̄, R,R−1)

send Wpre, U
?
pre, V

?
pre, Lpre to Fp,q,C,h,L,MVOLE-pre

send R to PS

recv.
∼
U ∈ Fm×kCq ,

∼
V ∈ Fm×nCq from PS

Ū := RU −
∼
U ; U? := U?pre(Ū)

V̄ := RV −
∼
V ; V ? := V −R−1V̄

send U?[h]·, V
?

[h]· to F
p,q,C,h,L,M
VOLE-pre

find ~Loff ∈ −L′ s.t. V̄ = [Ū RC̄]TC diag( ~Loff)
abort if none exist
send Ū , ~Loff to Fp,q,C,h,L,MVOLE-pre

Figure 10: Simulators for malicious security of Fig. 8 combined with Fig. 9, for a single corrupt
party. Sp,q,C,`sub-VOLE-mal-R is for corrupt PR, while Sp,q,C,`sub-VOLE-mal-S is for corrupt PS .

4.2 Our New Proof

The biggest hurdle in the proof is the case where PS is malicious, i.e. proving that the consistency
check works. If PS lies when it sends C, then it will have to guess some entries of ∆, but which
entries depends on what

∼
U it decides to send. As with OOS’s flawed proof, PS does not have to

make up its mind until after seeing R, and generally speaking universal hashes are only strong when
used on data that was chosen independently of the hash. We need to find some property that only
depends on C and R so that we can show that it holds (with high probability) based on C being
independent of R, then use it to prove security.

The property we found was that R should preserve all the lies in C. More precisely, if C̄ is the
difference between the honest C and the one PS sent, then RC̄ and C̄ should have the same row
space.5 The idea is that, if R were the identity, the consistency check would clearly ensure that
whatever incorrect value C that PS provides, it can still guess matrices U, V that make the VOLE
correlation hold. Although R is not the identity matrix, the check still ensures that the VOLE
correlation holds for

∼
U,

∼
V . The lie preserving property of R then shows that they contain enough

information to correct the whole of U and V so that they do satisfy the VOLE correlation.

Theorem 4.5. The subspace VOLE protocol in Fig. 8 combined with the consistency checking
protocol in Fig. 9 is a maliciously secure implementation of Fp,q,C,h,L,MVOLE-pre if L ⊇ Affine(FnCq ), assuming
that R ⊆ Fm×`q is a ε-almost universal family where all R are Fhp-hiding. The distinguisher has

5This fails if there are too many lies; however the VOLE would likely abort anyway.
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advantage at most εq
q−1 + q−t−1, where t = dC

1+

√
1+

dC
nC
− 1

n2
C

≥ dC
2 and M = nC(dC − t).

Note: when instantiated as in OOS, ε = 2−m and q = 2, so our proof shows that OOS has only 1
bit less statistical security than was claimed. The q−t−1 term only matters for the pre-commitment
property, which OOS does not consider.

Proof. There are four cases, depending on which parties are corrupted. If both parties are corrupted
then the real protocol can be simulated trivially, by ignoring the ideal functionality and just passing
messages between the corrupted parties. If both players are honest, the situation is very similar
to the semi-honest protocol (Thm. 3.2). The only difference is the additional two rounds, which
can be simulated by picking a random R ∈ R, as well as sampling fake PS values U$

$← F`×kCp and
V$

$← F`×nCp and simulating the third round as
∼
U = RU$,

∼
V = RV$. Since both parties are honest,

U and V are uniformly random, and so Thm. 4.1 guarantees that these fakes are indistinguishable
from the real consistency check.

The situation is similar when only PR is corrupted (simulator in Fig. 10, top left). Following the
same principle as for the semi-honest protocol, S starts by performing the computations that an
honest PR would, while randomly sampling a fake syndrome C to send. To simulate the consistency
check, after receiving R, the simulator fakes

∼
U like in the honest–honest case, then solves for

∼
V as

the only possibility that will pass the consistency check. The real protocol and the simulation are
indistinguishable because the honesty of PS implies that the consistency check will always pass, so
the formula for

∼
V must always hold, and PR cannot tell that

∼
U was generated from the fake U$

because R is Fhp -hiding.
The most interesting case is when PS is corrupt. We present a hybrid proof, starting with the

real world, where the real protocol gets executed using the underlying ideal functionality Fp,q,F
nC
p ,`,L

VOLE ,
and work towards the ideal world, where the simulator (Fig. 10, right) liaises between the corrupted
sender and the desired ideal functionality Fp,q,C,h,L,MVOLE-pre .

1. Compute what PS ’s honest output would be, and the difference between the honest syndrome
and the one PS provided: [U C̄] = U ′T−1

C −
[
0 C
]
. Add a check after PS sends

∼
U and

∼
V , where

if rank(RC̄) < rank(C̄), “check failed” is sent to PR and the protocol aborts. The environment’s
advantage for this step is the probability that this abort triggers and the protocol would not
have aborted anyway. We bound this probability using the following lemma.

Lemma 4.6. Let R ⊆ Fm×nq be a linear ε-almost universal family, and let A be any matrix in
Fn×lq . Then, ER $←R

[
qrank(A)−rank(RA) − 1

]
≤ ε(qrank(A) − 1).

Proof. By the rank–nullity theorem, R defines an isomorphism Fnq / ker(R) ∼= colspace(R).
Its restriction to colspace(A) gives an isomorphism colspace(A) / ker(R) ∼= colspace(RA).
Therefore,

rank(RA) = dim
(
colspace(RA)

)
= dim(colspace(A))− dim(colspace(A) ∩ ker(R))

= rank(A)− dim(colspace(A) ∩ ker(R)).

We then want to bound the expected value of X = qdim(colspace(A)∩ker(R)) − 1 = |colspace(A) ∩
ker(R) \ {0}|. That is, X is the number of nonzero v ∈ colspace(A) such that Rv = 0. By
Thm. 2.1, for any particular v 6= 0 the probability that Rv = 0 is at most ε. SinceX is the sum of
|colspace(A)\{0}| = qrank(A)−1 indicator random variables, we get E[X] ≤ ε(qrank(A)−1).
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For the real protocol to not abort,
∼
V = RW −

∼
UGC diag( ~∆) must hold. Because PR is

uncorrupted, ~∆ is sampled uniformly in FnCq and W ′ is computed as U ′ diag( ~∆)+V . Therefore,

W = W ′ −
[
0 C
]
TC diag( ~∆) = (U ′ −

[
0 C
]
TC) diag( ~∆) + V

= [U C̄]TC diag( ~∆) + V.

Let Ū = RU −
∼
U and V̄ = RV −

∼
V be the differences between the honest consistency

check messages and the ones sent by PS . Then the consistency check is equivalent to −V̄ =
[Ū RC̄]TC diag( ~∆). Next, we need to bound

P = Pr
[
abort ∧ check passes

]
= Pr

[
rank(RC̄) < rank(C̄) ∧ −V̄ = [Ū RC̄]TC diag( ~∆)

]
.

Triggering this condition requires guessing [Ū RC̄]TC diag( ~∆), i.e. guessing ∆i for every nonzero
column

(
[Ū RC̄]TC

)
·i. Let N = ‖ [Ū RC̄]TC‖0 be the number of these nonzero columns. A

lower bound for N is rank([Ū RC̄]TC), because every zero column does not contribute to the
rank. TC is invertible, so multiplying by it does not change the rank. Adding extra columns only
increases rank, so rank([Ū RC̄]) ≥ rank(RC̄). Up until the consistency check, the behavior
of PR has been independent of ~∆, and N is also independent of ~∆, so Pr

[
check | N

]
≤ q−N .

Let r = rank(C̄)− rank(RC̄), so N ≥ rank(C̄)− r. Then P ≤ E
[
q− rank(C̄)+r

1r≥1

]
, since the

added abort occurs exactly when r ≥ 1, and expectation of conditional probability is marginal
probability.

Now, apply Thm. 4.6 to C̄ to get E[qr − 1] ≤ ε(qrank(C̄) − 1). If r ≥ 1 then qr

qr−1 ≤
q
q−1 .

Multiply both sides by qr − 1 to get

qr1r≥1 ≤
q

q − 1
(qr − 1).

P ≤ E
[
q− rank(C̄)+r

1r≥1

]
≤ ε q

q − 1

(qrank(C̄) − 1)

qrank(C̄)
≤ ε q

q − 1

2. After checking that rank(RC̄) = rank(C̄), find R−1 ∈ F`×mq such that R−1RC̄ = C̄. To do this,
find the reduced row echelon forms F = ARC̄ and F ′ = BC̄ of RC̄ and C̄, where A ∈ Fm×mq

and B ∈ F`×`p are invertible matrices. Because they have the same rank, RC̄ and C̄ must have
the same row space. The uniqueness of reduced row echelon forms implies that all nonzero
rows of F and F ′ will be identical, so

F ′ =

[
F
0

]
and C̄ = B−1F ′ = B−1

[
1m
0

]
F = B−1

[
1m
0

]
ARC̄,

which gives a formula for R−1.

Correct PS ’s VOLE correlation as U? = U −R−1Ū and V ? = V −R−1V̄ . Then, assuming
that the consistency check passes,

W = [U C̄]TC diag( ~∆) + V

=
[
(U? +R−1Ū) C̄

]
TC diag( ~∆) + V ? +R−1V̄

= U?GC diag( ~∆) + V ? +R−1
([
Ū RC̄

]
TC diag( ~∆) + V̄

)
= U?GC diag( ~∆) + V ?.
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3. LetWpre = Fm×kCq , then run Precom(C̄, R,R−1) to get the pre-commitment functions U?pre, V ?
pre, Lpre

as in the simulator, as well as ~∆0 ∈ L′ and L′0 = L′ − ~∆0. Also, find some ~Loff ∈ −L′ where
V̄ = [Ū RC̄]TC diag( ~Loff). Replace the underlying guess ~∆ ∈ L′ and the consistency check
−V̄ = [Ū RC̄]TC diag( ~∆) with ~∆ + ~Loff ∈ Lpre(Ū). When such an ~Loff exists, we need to show
that this is equivalent to the consistency check. L′0 is the linear subspace obtained by shifting L′

to go through the origin, so ~∆+ ~Loff ∈ L′0 if and only if ~∆ ∈ L′ because ~∆+ ~Loff is the difference
of two elements of the affine subspace L′. When ~∆+ ~Loff ∈ L′0, we have that ~∆+ ~Loff ∈ Lpre(Ū)

is equivalent to 0 = [Ū RC̄]TC diag( ~∆ + ~Loff), which equals [Ū RC̄]TC diag( ~∆) + V̄ . The
latter being zero is the consistency check.

We must also show that if the consistency check would pass, then a solution ~Loff must
exist. Assume that there exists some ~∆1 ∈ L′ that would pass the consistency check, i.e.
−V̄ = [Ū RC̄]TC diag( ~∆1). Then − ~∆1 ∈ −L′ is a valid solution for ~Loff.

4. Factor out the sampling of ∆, the computation of W[h]· = U?[h]· diag( ~∆) + V ?
[h]·, and the

selective abort attack ~∆ + ~Loff ∈ Lpre(Ū) into the ideal functionality Fp,q,C,h,L,MVOLE-pre . The ideal
functionality also includes an abort if U? 6= U?pre(Ū) or V ? 6= V ?

pre(Ū , ~∆), and we must show
that neither will occur. The former cannot occur because that is exactly how U? is calculated.
For the latter, when the consistency check passes we have

V ?
pre(Ū ,

~∆) = V +R−1[Ū RC̄]TC diag( ~∆) = V −R−1V̄ = V ?.

5. We are now almost at the ideal world. We just need to change Wpre to be {Ū ∈ Fm×kCq |
t ≥ ‖ [Ū RC̄]TC‖0}, as in the simulator, and show that |Wpre| ≤ M . Changing Wpre is only
detectable if Ū /∈ Wpre and the consistency check still passes. Then the adversary must guess
‖ [Ū RC̄]TC‖0 ≥ t+ 1 entries of ~∆, which has negligible probability q−t−1. We just need to
choose t to be as large as possible while keeping M small.

Finding a Ū such that [Ū RC̄]TC = ŪGC+[0 RC̄]TC has few nonzero columns is equivalent
to a bounded distance decoding problem over Fqm . That is, interpreting each column as an
element of Fqm , ŪGC must be a code word close to −[0 RC̄]TC in Hamming weight. The
simplest choice would be to set t to be the decoding radius bdC−1

2 c of C, guaranteeing that
there is at most a single element of Wpre. To get a tighter bound, we use the Cassuto–Bruck
list decoding bound [CB04], which implies M ≤ nC(dC − t) when t = dC

1+

√
1+

dC
nC
− 1

n2
C

.

Optimizations. There are a couple ways that the communication complexity of Fig. 9 can be
improved. First, if the universal hash R contains a lot of entropy, a seed s ∈ {0, 1}λ may be sent
instead, so R = PRG(s). The only place the randomness of R was used was to upper bound the
probability that rank(RC̄) < rank(C̄). C̄ cannot depend on s, so if using a PRG changed this
probability more than negligibly then there would be an attack against the PRG.

A second optimization is to hash
∼
V with a local random oracle Hash before sending it, because

all that’s needed is an equality check. The simulator (in the malicious PS case) could then extract
∼
V from its hash, then continue as usual. Interestingly, for concrete security it would be fine even if
Hash were just an arbitrary collision resistant hash. Looking at just C̄ and

∼
U , the simulator can see

which entries of ~∆ are being guessed, though not what the guesses are. By looping through a random
subset of 2σ possible guesses (and for the usual setting of σ = 40 this is quite feasible), S can find
the preimage of Hash(

∼
V ) often enough to only give the distinguisher an additional advantage of 2−σ.
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PR PS

for i ∈ [`]:
~x∗i := Ui·

output { ~x∗i }i∈[`] Fp,q,C,`,LVOLE
R $← R

for i ∈ [`]:
~ri := R~i

F ∗i := H(Vi· + ~r>i , t(i, ~x∗i ))
output {F ∗i }i∈[`]

for i ∈ [`]:
~ri := R~i

~yi( ~x) := Wi· + ~r>i − ~xGC � ~∆
Fi( ~x) := H( ~y( ~x), t(i, ~x))

output {Fi}i∈[`]

“commit”

R

U, V

~∆,W

Figure 11:
(
pkC
1

)
-OT extension protocol. Note that the parties for the base VOLE are swapped,

with PS (instead of PR) getting ~∆. If PS receives “check failed” from the VOLE then the protocol is
aborted immediately. For semi-honest security, the “commit” and R steps are skipped, and ~ri := 0.

5 OT Extension

Now that we have constructed subspace VOLE, it is time to go back to our original goal: OT
extension. Like previous OT extensions, we hash our correlated randomness in order to get random
OTs. For malicious security, our protocol (Fig. 11) follows [CT21] in using a universal hash to avoid
collisions between extended OTs, avoiding the need for a TCR hash. However, a TCR hash allows
for better concrete security (at they expense of performance) by reducing τmax; we allow an arbitrary
function t(i, ~x) to control how many different hashes use the same tweak. Unlike [CT21], our analysis
allows R to be sent in parallel with the VOLE protocol, saving a round of communication.

For generality, we allow any finite field, but we expect that p = 2 will be most efficient in almost
all cases. We equivocate between the choices Ui· in FkCp from the VOLE, and the choices x∗i in

[
pkC
]

expected for OT. This can be thought of as writing x∗i in base p.

Theorem 5.1. The protocol in Fig. 11 achieves Fp
kC ,`,{X}

OT-1
with malicious security in the Fp,q,C,`,L,MVOLE-pre

hybrid model, assuming that H : FnCq × T → {0, 1}λ is a (p, q, C, T ,L)-TCR hash, and R ⊆
FnC×dlogq(`)e
q is an ε-almost uniform family. The distinguisher advantage is at most εM`(tmax −

1)/2 + AdvTCR, where tmax is the maximum number of distict OTs that can have the same tweak
under t. For the TCR itself, τmax will be the maximum number of evaluations Fi( ~x) where t(i, ~x)
outputs a given tweak. For semi-honest security, R is unused; instead set ε = q−nC and M = 1.

Proof. See Appx. F.2.

The Importance of Universal Hashing. For malicious security, it is critical that tweaking or
some other mechanism is used to stop collisions in the input to H. This was noted by [GKWY20,
MR19], who show that when a malicious receiver can control its own randomness V (as we assume),
they can force all H evaluations to be equal between two different extended OTs, causing two
different OTs to have the same messages. However, this depends on controlling the seeds used for
the underlying IKNP OT extension. Endemic OT use this loophole, giving a protocol where PS
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PS PR

output U

Fp,p,Rep(Fn′p ),`,L
VOLE

R $← R

output V R output ~∆R,WR

“commit”

R

U, V

~∆,W

Figure 12: Non-leaky maliciously secure subspace VOLE for the repetition code. If PR receives
“check failed” from the VOLE then the protocol is aborted immediately.

chooses its seeds, and claim to show that it is secure to omit the tweak in this case [MR19, Sect.
5.3]. In Appx. E, we give an attack against their protocol, using only the partial control over V
that comes from the correction C. When the security parameter is λ = 128, it should have success
probability a constant times 2−24 on a batch of 107

(
2
1

)
-OTs.

5.1 ∆-OT

A common variant of OT extension is ∆-OT (a.k.a. correlated OT), where all OT messages follow
the pattern m0,m1 = m0 ⊕∆. It is useful for authenticated secret sharing and garbled circuits.
More generally, over a larger field, it works as mx = m0 + x∆, and is useful for encoding the inputs
to arithmetic garbling [BMR16].

∆-OT works easily as a special case of subspace VOLE where q = p and C = Rep(Fnp ),6

except which party is called the sender and which the receiver is swapped, like with OT extension.
However, in the malicious setting our subspace VOLE allows a selective abort attack, and while
for some applications (such as garbling) it may be allowed to leak a few bits for ∆, in others it
may not. [BLN+15] solve this problem by multiplying the ∆-OT messages by a uniformly random
rectangular matrix, throwing away some of the OT message. With high probability, any correlation
among the bits of ∆ is also lost, resulting in a non-leaky ∆-OT. In Fig. 12, we generalize this idea
to use a universal hash, which can be more computationally efficient than a random matrix.

Theorem 5.2. The protocol in Fig. 12 achieves Fp,p,Rep(Fnp ),`,{X}
VOLE with malicious security in the

Fp,p,Rep(Fn′p ),`,Affine(Fn′p ),M

VOLE-pre hybrid model, assuming that R ⊆ Fn′×np is a ε-almost uniform family and
n′ ≥ n. The advantage is bounded by εM(pn − 1).

Proof. See Appx. F.3.

Note that if R has the optimal ε = p−n
′ , such as when it is a uniformly random matrix, the

environment’s advantage is upper bounded by Mpn−n
′ . Therefore, n′ should be set to n+ logp(2)σ

for security.

6 Base OTs

Our small field VOLE (Fig. 7) is based on
(
q
q−1

)
-OT, yet actual base OTs are generally

(
2
1

)
-OT. We

follow [BGI17] in using a punctured PRF to make a
(

2k

2k−1

)
-OT from k

(
2
1

)
-OTs. Our protocol (see

6Note that subspace VOLE with q = pk and C = Rep(Fnp ) can easily be turned into VOLE for q = p and
C = Rep(Fknp ), by interpreting Fq as a vector space over Fp.
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PS PR

Fp,k,L
OT-1

G, t := BuildPPRF(F )

output G output EvalPPRF(x∗, F ∗, t)

{Fi}i∈[k] {x∗i , F ∗i }i∈[k]{
tix ∈ {0, 1}λ

}
1≤i<k,x∈[p]

BuildPPRF(F ):
for x ∈ [p]:
s1
x := F0(x)

for i := 1 to k − 1:
for y ∈

[
pi
]
, x ∈ [p]:

si+1
py+x := PRGx(siy)

for x ∈ [p]:
tix := Fi(x)⊕

⊕
y∈[pi]

si+1
py+x

return (y 7→ sky), t

EvalPPRF(x∗, F ∗, t):
for x ∈ [p] \ {x∗0}:
s∗ 1
x := F ∗0 (x)

y∗1 := x∗0
for i := 1 to k − 1:
for y ∈

[
pi
]
\ {y∗i }, x ∈ [p]:

s∗ i+1
py+x := PRGx(s∗ iy )

for x ∈ [p] \ {x∗i }:
s∗ i+1
py∗i +x := tix ⊕ F ∗i (x)⊕

⊕
y∈[pi]\{y∗i }

s∗ i+1
py+x

y∗i+1 := py∗i + x∗i
return y∗, (y 7→ s∗ k−1

y )

Figure 13: Protocol for
(
q
q−1

)
-OT based on

(
p
p−1

)
-OT, using a punctured PRF.

Fig. 13) is based on the optimized version in [BCG+19a], which we generalize to make
( pk

pk−1

)
-OT

from
(
p
p−1

)
-OT.

It depends on a PRG : {0, 1}λ →
(
{0, 1}λ

)p. The xth block of λ bits from this PRG is written
as PRGx(s). The PRG is used to create a GGM tree [GGM86]. Starting at the root of the tree,

PR gets p − 1 of the p children from Fp,k,Affine(Fkp)

OT-1
, and at every level down the tree the protocol

maintains the property that PR knows all but one of the nodes at that level. Each level i of the tree
is numbered from 0 to pi − 1, with the yth node in the layer containing the value siy. This means
that the children of node siy are si+1

py+x = PRGx(siy), for x ∈ [p]. PS computes the whole GGM tree in
BuildPPRF, finds the totals

⊕
y s

i+1
py+x for each y, and uses the base OTs to send all but one of these

totals to PR. Let y∗i be the index of the node on the active path, the nodes that PR cannot learn, in
layer i. Then PR will know every siy, except for siy∗i , so it can compute

⊕
y 6=y∗i

si+1
py+x and take the

differences from the totals sent by PS to find si+1
y for all y 6= y∗. It will then get pk − 1 of the pk

leaf nodes sky .

Theorem 6.1. Figure 13 constructs Fq,1,{X}
OT-1

out of Fp,k,{X}
OT-1

, and is secure in the semi-honest model.

Proof. See Appx. F.4.

While the protocol only does a single
(
q
q−1

)
-OT from a batch of k

(
p
p−1

)
-OTs, it should be clear

that a batch of n
(
q
q−1

)
-OT can be constructed from a batch of nk

(
p
p−1

)
-OTs. For p = 2, the base(

p
p−1

)
-OTs are just

(
2
1

)
-OTs. For p > 2, they can be constructed from chosen message

(
p
1

)
-OT, by

sending just the messages PR is supposed to see.
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PS PR

∼s,
∼
t := ProvePPRF(G)

output PRG′1 ◦G
abort if ∼s 6= VerifyPPRF(y∗, G∗,

∼
t)

output y∗,PRG′1 ◦G∗

∼s,
∼
t ∈ {0, 1}2λ

ProvePPRF(G):
for y ∈ [q]:
∼sy := PRG′0(G(y))

∼
t :=

⊕
y∈[q]

∼sy

∼s := Hash(∼s0 ‖ · · · ‖ ∼sq−1)

return ∼s,
∼
t

VerifyPPRF(y∗, G∗,
∼
t):

for y ∈ [q] \ {y∗}:
∼s∗y := PRG′0(G∗(y))

∼s∗y∗ :=
∼
t ⊕

⊕
y∈[q]\{y∗}

∼s∗y

∼s := Hash(∼s∗0 ‖ · · · ‖
∼s∗q−1)

return ∼s

Figure 14: Consistency checking for
(
q
q−1

)
-OT. This makes Fig. 13 maliciously secure.

6.1 Consistency Checking

With Fig. 14, we also use the technique of [BCG+19a] for malicious security. We prove a slightly
stronger result for their consistency check by showing that the selective abort attack allowed by the
check is always in Affine(Fkp). In fact, PS can only check guesses for the x∗i s individually, not all of them
together. As in [BCG+19a], the protocol needs a second PRG, PRG′ : {0, 1}λ → {0, 1}2λ × {0, 1}λ,
which must be collision resistant in its first output PRG′0. The consistency check works by giving PR
the total of all ∼sky = PRG′0(sky), which it will know all but one of already, so that it can reconstruct
them all. PS also sends a collision resistent hash of all ∼sky , so that PR can verify that every ∼sky it
received was correct.

Additionally, to prove that the selective abort attack is always in Affine(Fkp), we also have
to assume that PRG is collision resistent for its whole output, so there are no s 6= s′ such that
PRGx(s) = PRGx(s′) for all x ∈ [p]. This is plausable for reasonable choices of PRG, and is provable
in the ideal cipher model. In Appx. F.5 we use these assumptions to prove the following.

Proposition 6.2. The selective abort attack allowed in Fig. 14 will always be in L = Affine(Fkp).

Theorem 6.3. Figure 14 (composed with Fig. 13) is a maliciously secure Fq,1,Affine(Fkp)

OT-1 in the

Fp,k,Affine(Fkp)

OT-1 hybrid model.

7 Implementation

We implemented our
(

2
1

)
-OT semi-honest and malicious protocols7 in the libOTe library [Rin], so

that we could assess efficiency and parameter choices. We focus only on the case of binary fields
(p = 2), as for this problem there is no benefit to using a larger p. First, we discuss the choices we
made in instantiation.

For semi-honest security, our protocol depends on only a PRG and a TCR hash. We instantiate
the CR hash using Thm. 2.7 with AES, modeled as an ideal cipher. To keep τmax low, we set

7Source code is at https://github.com/ldr709/softspoken-implementation.
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t(i, ~x) = bi/1024c, changing the tweak every 1024 OTs. We also used the hash as a PRG, evaluating
it as H(s, t(0)), H(s ⊕ 1, t(1)), . . . for a seed s. This allows the same AES round keys to be used
across the many different PRG seeds used by OT extension, while AES-CTR would need to store
many sets of round keys — too many to fit in L1 cashe.

Malicious security additionally requires a universal hash for Fig. 9. As recommended in Sect. 4,
we construct the universal hash in two stages. First, take each block of 64 bits from ~x and interpret
it as an element of F264 . These blocks become the coefficients of a polynomial over F264 , which is
evaluated at a random point to get R~x. We choose the constant term to always be zero, which
makes this a uniform family (not just universal), allowing the use of Thm. 2.4 to sum multiple
hashes together. Limiting each hash to 220 blocks (each 64-bits long) before switching to the next
(generated from a PRG seed) makes this a 2−44-almost uniform family. The second stage R′ of the
universal hash further compresses the output in F64

2k
down to only Fd40/ke

2k
. We made the simple

choice of a uniformly random matrix in Fd40/ke×64

2k
, which achieves the optimal ε = 2−kd

40
k
e for a

uniform family of this size.
Fig. 11 needs a uniform hash, and we use multiplication over F2128 , multiplying each tweak by a

128-bit hash key to get a 128-bit value. Guessing the hash would require guessing this hash key, so
it is a 2−128-almost uniform family.

The punctured PRF (Fig. 14) requires collision resistant primitives PRG, PRG′, and Hash. For
PRG, we assume that it is hard to find s 6= s′ such that H(s, 0) = H(s′, 0) and H(s, 1) = H(s′, 1),
which is true in the ideal cipher model. For PRG′, which requires collision resistance for its first
output on its own, we use Blake2 [ANWW13]. We also use Blake2 for Hash.

7.1 Performance Comparison

In Tables 1 and 2, we present benchmarks of our implementation in both the semi-honest and
malicious settings, for a variety of communication settings and parameter choices. We also compare
to existing OT extensions. All results were measured on an Intel i7-7500U laptop CPU, with the
sender and receiver each running on a single thread. The software was compiled with GCC 11.1 with
-O3 and link-time optimizations enabled, and executed on Linux. In the localhost setting, there is
no artificial limit on the communication between these threads, though the kernel has overhead in
transferring the data, which is why our k = 2 is faster than k = 1 even in this case. We simulated
communicating over a LAN by applying a latency of 1 ms and a 1 Gbps bandwidth limit. For the
WAN setting, this becomes 40 ms and 100 Mbps. Base OTs were generated using the EKE-based
OT of [MRR21].8 The choice bits of SoftSpokenOT were derandomized immediately, as were the
choice bits for Ferret, to provide the most direct comparison with IKNP and KOS. The choice bits
for the Silent OTs were not derandomized, slightly biasing the comparison in their favor.

Although for k = 1 our protocol is the same as IKNP in the semi-honest setting, our imple-
mentation is significantly faster. This mainly comes from a new implementation of 128× 128 bit
transposition, based on using AVX2 to implement Eklundh’s algorithm [TE76]. This gave a 6×
speedup for bit transposition, which is a significant factor of IKNP’s overall runtime.

In our benchmark, Silver did not perform as well as IKNP in the localhost setting, while [CRR21]
found that Silver was nearly 60% faster than IKNP. We attribute this difference to using a lower
quality computer, which has less memory bandwidth than the machine used for their benchmark.
This is important for Silver’s transposed encoding, a memory intensive operation. Compared to
Silent OT, we achieve better concrete performance in the localhost and LAN settings, but the

8Silent OT needs more than λ base OTs, and so as an optimization it generates them using KOS, which needs only
λ base OTs.
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Semi-honest Security Malicious Security

Protocol
Communication Time (ms) Time (ms)

KB bits/OT localhost LAN WAN localhost LAN WAN
IKNP [IKNP03] / KOS [KOS15] 160010 128 391 1725 15525 443 1802 15662
SoftSpoken (k = 1) 160009 128 243 1590 15420 298 1637 15648
SoftSpoken (k = 2) 80009 64 210 815 7730 255 893 7985
SoftSpoken (k = 3) 53759 43 223 568 5208 322 677 5419
SoftSpoken (k = 4) 40008 32 261 433 3995 311 530 4114
SoftSpoken (k = 5) 32510 26 337 348 3271 454 465 3447
SoftSpoken (k = 6) 27509 22 471 488 2811 588 613 2985
SoftSpoken (k = 7) 23760 19 777 843 2380 899 966 2554
SoftSpoken (k = 8) 20008 16 1259 1314 1916 1293 1322 2130
SoftSpoken (k = 9) 18759 15 2302 2338 2439 2460 2457 2590
SoftSpoken (k = 10) 16259 13 3984 3983 4097 4126 4132 4223
Ferret [YWL+20] 2976 2.38 2156 2160 2825 2240 2242 3108
Silent (Quasi-cyclic) [BCG+19a] 127 0.10 7735 7736 8049
Silent (Silver, weight 5) [CRR21] 127 0.10 613 613 746

Table 1: Time and communication required to generate 107 OTs, averaged over 50 runs. The
best entry in each column is bolded, and the second best is underlined. Communication costs for
maliciously secure versions are within 10 KB of the semi-honest ones. The setup costs are included.

Semi-honest Security

Protocol
Time (ms)

Comm. localhost LAN WAN
KB PR PS PR PS PR PS

IKNP [IKNP03] 4.2 27 19 32 21 94 54
SoftSpoken (k in 1–10) 8.3–9.8 27–29 28–30 32–44 33–45 86–101 127–142
Silent (Quasi-cyclic) [BCG+19a] 53.4 31 33 32 34 102 146
Silent (Silver, weight 5) [CRR21] 53.4 28 30 33 35 102 147
Ferret [YWL+20] 1166.8 65 65 70 65 552 342

Malicious Security
KOS [KOS15] 4.2 28 28 33 32 105 145
SoftSpoken (k in 1–10) 9.3–16.8 27–33 28–34 32–38 32–38 100–109 141–151
Ferret [YWL+20] 1175.3 73 73 75 73 608 553

Table 2: One-time setup costs for OT protocols in Table 1. SoftSpokenOT protocols have nearly
identical setup costs, and so only a range is given.

extremely low communication of Silent OT puts Silver in first place for the WAN setting. We claim
another a benefit to our protocol over Silver, since SoftSpokenOT only needs fairly conservative
assumptions about well-studied objects like block ciphers, while Silver depends on hardness of LPN
for a novel family of codes that has yet to receive much cryptanalysis. More conservative versions of
Silent OT, based on either quasi-cyclic codes [BCG+19a] or local linear codes [YWL+20], are slower
than SoftSpokenOT across the tested settings.

For malicious security, we use a more efficient universal hash function compared to KOS9, who
require the additional generation of 128 bits from a PRG for every OT as part of the consistency
check. We have not benchmarked maliciously secure implementations of Silent OT and Silver, but
they likely have very similar performance to the semi-honest case.

9The implementation of KOS in libOTe has the CR hashing flaw discussed in Sect. 5.
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A Correlation Robust Hash Constructions

Proposition 2.6. A random oracle RO : FnCq × {0, 1}t → {0, 1}λ is a (p, q, C, {0, 1}t,Affine(FknCp ))-
TCR hash, with distinguisher advantage at most τmax

(
q + 1

2q
′)q−dC . Here, τmax is the maximum

number of times query is called with the same τ , q is the number of RO queries made by the
distinguisher, and q′ is the number of calls to query.

Proof. We argue indistinguishability, going from the ideal oracle to the real oracle. But first, we
must define two bad events, and bound the probability of their occurrence in the ideal world. For
both events, we actually use a slightly modified ideal world where the abort in leak is delayed to
the end. This makes no difference, as it will always give the same output (i.e. “abort”) in the end.
These bad events are:

1. Adversary runs queries RO(τ, ~u) and query( ~x, ~y, τ) such that ~u = ~xGC � ~∆ + ~y.

2. Adversary runs queries query( ~x, ~y, τ) and query( ~x′, ~y′, τ) such that ~xGC � ~∆ + ~y = ~x′GC �
~∆ + ~y′. Equivalently, ~y − ~y′ = ( ~x′ − ~x)GC � ~∆.

For both events, an equation of the form ~y = ~c � ~∆ must hold, for some non-zero code word
~c ∈ C. Since ‖ ~c‖0 ≥ dC , any such equation has probability at most q−dC . There are at most qτmax

suitable query pairs for the first bad event, and q′τmax/2 suitable pairs for the second. Therefore,
the union bound shows the probability of either event occurring is at most τmax

(
q + 1

2q
′)q−dC .

In query we can replace the sampling of z ← {0, 1}λ with its value in the real oracle, RO( ~xGC �
~∆ + ~y, τ). Assuming that the bad events never happens, no RO query in query will have the same

inputs as any other RO query, from either the adversary (Event 1) or another call to query (Event
2). Therefore this change is indistinguishable. We are now at the real world.

Proposition 2.7. Let Enc : {0, 1}t × {0, 1}λ → {0, 1}λ be an ideal cipher, and ι : FnCq → {0, 1}λ be
an injection. Then H( ~y, τ) = Enc(τ, ι( ~y))⊕ ι( ~y) is a (p, q, C, {0, 1}t,Affine(FknCp ))-TCR hash. The
distinguisher’s advantage is at most τmax

(
(2q + 1

2q
′)q−dC + 1

2q
′2−λ

)
, with q and q′ as in Thm. 2.6.

Proof. We start by defining four bad events, and prove an upper bound on the probability of their
occurrence when the distinguisher is given access to the oracle TCR-idealH,p,q,C,L. As with the
RO-based TCR, we modify the ideal world slightly so as to ignore the aborts when bounding the bad
events. The first two bad event are essentially the same as for the RO-based TCR hash, while the
others come from Enc having an inverse. Note that if the adversary queries Enc, it is also counted as
a Enc−1 query for the purposes of the bad events — all that matters for these events is the relation
between Enc inputs and outputs.

1. Adversary queries Enc(τ, u) and query( ~x, ~y, τ) such that u = ι( ~xGC � ~∆ + ~y). Equivalently,
ι−1(u) exists and equals ~xGC � ~∆ + ~y.

2. Adversary queries query( ~x, ~y, τ) and query( ~x′, ~y′, τ) such that ι( ~xGC � ~∆ + ~y) = ι( ~x′GC �
~∆ + ~y′). Equivalently, ~y − ~y′ = ( ~x′ − ~x)GC � ~∆.

3. Adversary queries Enc−1(τ, v) and z = query( ~x, ~y, τ) such that v ⊕ z = ι( ~xGC � ~∆ + ~y).
Equivalently, ι−1(v ⊕ z) exists and equals ~xGC � ~∆ + ~y.

4. Adversary queries z = query( ~x, ~y, τ) and z′ = query( ~x′, ~y′, τ) such that z ⊕ z′ = ι( ~xGC �
~∆ + ~y)⊕ ι( ~x′GC � ~∆ + ~y′).

Events 1–3 all require ~c� ~∆ to take a specific value, for some nonzero codeword ~c ∈ C. Each has
probability at most q−dC , for any pair of queries. Event 4 instead requires that z⊕z′ take a particular
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value, when either z or z′ will be a freshly random λ-bit string. Therefore, it has probability at most
2−λ, for any pair of queries. There are at most qτmax suitable query pairs for Events 1 and 3, and at
most q′τmax/2 suitable pairs for Events 2 and 4. Therefore, a union bound shows that probability of
any bad event occurring is it most τmax

(
(2q + 1

2q
′)q−dC + 1

2q
′2−λ

)
.

Next, we argue indistinguishability. Replacing the ideal oracle with the real oracle replaces the
random value z ← {0, 1}λ with z = Enc(τ, u) ⊕ u, where u = ι( ~xGC � ~∆ + ~y). The Enc call will
always return fresh randomness, which will never be revealed again, because it cannot overlap with
any Enc call (Event 1) or other call to query (Event 2). Past Enc calls also rule out using those
same value again, so z ⊕ u cannot be the output of another Enc call, nor can it equal z′ ⊕ u′ for
another call to query. But these are exactly what is ruled out by Event 3 and Event 4, respectively.
Therefore, once the bad events have been excluded, the real and ideal worlds oracles identically.

B OOS Details

This section is written in using the notation of OOS. Please review that paper to familiarize yourself
with the notation.

In their proof for security against a malicious receiver, OOS define a set E ⊆ [nC ] of indices
of the sender’s secret b. Passing the consistency check requires that the receiver guess some bits
of b; E is the set of these bits. E depends on the corrections uj sent by the receiver, and it also
depends on the consistency check choice bits, which would be computed by an honest receiver as
w(`) =

∑
i∈[m] wix

(`)
i + wm+`. For example, assume that OOS is used for

(
2
1

)
-OT by setting C to be

the repetition code, and that the receiver lies in its correction for a single one of the extended OTs
by providing the first half of the correction as if its choice bit was zero, and the second half as if it
were one. During the consistency check it could compute the w(`) as if its choice bit were 0, or as
if the choice bit were 1. In the former case, E would be the index range

[
nC
2 + 1, nC

]
, while in the

latter it would be
[
1, nC2

]
.

The flaw in OOS’s proof is in the proof of Proposition 2, which states that the simulator can
extract the receiver’s choice bits wi from the consistency check, such that the encoded choice bits
C(wi) agree with correction the receiver sent, except at the indices in E. The proposition is quoted
below.

Proposition 2. If the check passes then with probability at least 1− 2−s − 2−dC , S
can extract values wi ∈ FkC2 , ei ∈ FnC2 , for i ∈ [m], such that

1. ci = C(wi) + ei

2. ei[j] = 0 for all j /∈ E

Its proof is based on the following lemma.

Lemma 1. Let C be a linear code of length nC , m′ = m+s be an integer and ci ∈ FnC2 ,
for i ∈ [m′], such that there exists at least one j ∈ [m] with cj /∈ C. Then, if x(`)

i
$← F2,

we have that:
Pr
(
∀` ∈ [s],

∑
i∈[m]

ci · x(`)
i + cm+` ∈ C

)
≤ 2−s.

Proof. . . .

This seems reasonable enough. The span of the ci is not contained in C, so a collection of random
vectors in the span are unlikely to all be in C. Notice that this assumes that C and the ci are known
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before the x(`)
i are sampled, which matches the lemma statement. Now let’s see how this lemma is

used:

. . . For a vector c ∈ FnC2 , define c−E to be the vector obtained by removing
the positions j ∈ E. Let C−E be the punctured code consisting of the codewords
{c−E : c ∈ C}.

By definition of E, we must have c(`)
−E = 0, and because c(`)

∗ = c(`) +C(w(`)
∗ ), we also

have (c
(`)
∗ )−E ∈ C−E , for every ` ∈ [s]. Therefore, by applying Lemma 1 with the code

C−E and vectors (c1)−E , . . . , (cm′)−E , it holds that for every i ∈ [m], (ci)−E ∈ C−E ,
except with probability ≤ 2−s. . . .

Note that the code given to Lemma 1 is not the code C that is fixed in advance, it is the
punctured code C−E , which depends on E. Additionally, the punctured vectors (c1)−E , . . . , (cm′)−E
also depend on E. Here is the problem: E depends on the consistency check choice bits w(`) that
the receiver sent, after receiving the challenge bits x(`)

i
$← F2. That is, E can depend on x(`)

i
$← F2,

so Lemma 1 cannot be applied here.

C PSS Details

At a high level, PSS’s consistency check seems the same as OOS’s specialized to Walsh–Hadamard
codes CκWH, which have length κ and minimum distance κ/2. Random bits w(l)

i are sampled for l ∈ [µ]
and i ∈ [m+ µ]. They choose linear combinations of the OT correlations for a consistency check:

a(l) =

m+µ⊕
i=1

w
(l)
i ai b(l) =

m+µ⊕
i=1

w
(l)
i bi e(l) =

m+µ⊕
i=1

w
(l)
i ei,

where a(l) is computed by the sender, while b(l) and e(l) are computed by the receiver. If the
consistency check were a(l) = b(l) ⊕ (s � e(l)) for all l, with the e(l) required to be code words in
CκWH, then it would work the same as OOS. However, PSS attempt to save communication by only
checking the XOR of all bits in each a(l). That is, the PSS consistency check is

κ⊕
j=1

a
(l)
j =

κ⊕
j=1

b
(l)
j ⊕

κ⊕
j=1

sje
(l)
j ,

so that b(l) =
⊕κ

j=1 b
(l)
j can be sent instead of b(l). Unfortunately, a malicious receiver can take

advantage by making guesses on XORs of several bits from s, rather than having to guess each bit
individually.

Have the receiver pick ei to have an interval of 1 bits, and the rest be zeros. That is, when
i ≤ d κN e, set e

j
i = 1 if N(i−1) < j ≤ Ni, and 0 otherwise, where the interval width N is a parameter

of the attack. The remainder, where i > d κN e, are all set to be zero. For the consistency check, send
all zeros for e(l), and send the honest value for b(l). The sender’s values ai equal bi ⊕ (s� ei), so the
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consistency check becomes

κ⊕
j=1

m+µ⊕
i=1

w
(l)
i a

j
i =

κ⊕
j=1

m+µ⊕
i=1

w
(l)
i b

j
i

0 =
κ⊕
j=1

m+µ⊕
i=1

w
(l)
i s

jeji

0 =

dκ/Ne⊕
i=1

w
(l)
i

Ni⊕
j=N(i−1)+1

sj .

Therefore, the consistency check passes if the XORs of intervals
⊕Ni

j=N(i−1)+1 s
j are all zero. There

are d κN e of these intervals, so this has probability 2−dκ/Ne.
If the check passes, we can now break the OT extension with only d κN e2

N−1 hash evaluations.
That is, if the sender sends the all zeros message for each of its first d κN e OT results, the receiver
can solve for s and learn every other OT message. The receiver can do this by using the hash to
check guesses of ai. Since ai = bi ⊕ (s � ei) depends on only N bits of s, and the XOR of these
bits is known to be zero, there are only 2N−1 possibilities to check. Repeating this for all i ≤ d κN e
recovers s.

Proof Flaws. How was this attack missed by PSS’s proof? There are two major issues in the
proof that the attack exploits. First, PSS’s Lemma IV.4 proof implicitly assumes that there will not
be a linear dependency between different bits of the consistency check, and our attack causes such a
linear dependency by forcing the consistency check to only depend on s through

⊕Ni
j=N(i−1)+1 s

j .
Second, while proving that their first and second hybrids are indistinguishable they say that the
sender’s mask for xi,j is H(i,bi ⊕ (s� (cri ⊕ cj))), when it is really H(i,ai ⊕ (s� cj)). These are
only equal when the receiver behaves honestly.

D KOS Details

The notation of KOS is used for this section, so please review that paper if you need to.
The most important part of KOS’s proof of security against a malicious receiver is the behavior

of their consistency check. They give that information in the following lemma.

Lemma 1. Let S∆ ⊆ Fλ2 be the set of all ∆ for which the correlation check passes,
given the view of the receiver. Except with probability 2−λ, there exists k ∈ N such
that

1. |S∆| = 2k

2. For every s ∈ {xi}i∈[λ], let Hs = {i ∈ [λ] | s = xi}. Then one of the following
holds:

• For all i ∈ Hs and any ∆(1),∆(2) ∈ S∆, ∆
(1)
i = ∆

(2)
i .

• k ≤ |Hs|, and |{∆Hs}∆∈S∆
| = 2k, where ∆Hs denotes the vector consisting

of the bits {∆i}i∈Hs . In other words, S∆ restricted to the bits corresponding
to Hs has entropy at least k.

Furthermore, there exists ŝ such that k ≤ |Hŝ|.
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Proof. See full version.

As of writing, no full version has been made public. However, the authors of KOS were kind
enough to provide an unpublished draft of the full version [KOS21]. It contains an attempted proof
of Lemma 1. They first observe that Lemma 1 is trivial if S∆ ≤ 2, then define ∆1,∆2,∆3 to be
three distinct elements of S∆. They let ∆′ = ∆1 + ∆2 and ∆′′ = ∆1 + ∆3, then derive the following
equation from the consistency check.

0 =
∑̀
j=1

χj · ((xj ∗∆′) ·∆′′ − (xj ∗∆′′) ·∆′)︸ ︷︷ ︸
x̃j

.

Since {χj}j∈[`] are independently random, the equality holds with probability 2−λ if
not all {x̃j}j∈[`] are 0 by the principle of deferred decisions. Hence, we assume that
x̃j = 0 for all j ∈ [`].

The logic is to delay the sampling of χj until this sum is calculated, at which point it’s clear that
the output will be uniformly random in F2λ unless every x̃j is zero. However, we cannot actually
delay the sampling of χj until then, because they are used earlier. Similarly to the problem with E
in OOS, S∆ depends on which consistency check message x the receiver sends. In an extreme case,
if the receiver behaves entirely honestly, then S∆ will be all of Fλ2 , but if after looking at the χj they
decide to send a different x instead, then they will have to guess all of ∆ and so |S∆| will be 1. As
differences between arbitrarily selected members of S∆, ∆′ and ∆′′ also depend on the χj , making it
impossible to delay the sampling.

D.1 Collision Attack.

Unlike OOS where we have not managed to find a counterexample to their stated Proposition 2, we
have managed to find some (impractical) attacks that break KOS’s Lemma 1. The simplest succeeds
with probability roughly λ22−λ−1, based on getting a collision in a set of λ vectors of length λ. It
works by generating x1, . . . ,x`′ as uniformly random elements of Fλ2 , instead of the monochrome
vectors that an honest receiver would generate.

Similarly to how an honest receiver would compute its consistency check message as x =
∑

j xj ·χj ,
for each column i let x̄i =

∑
j x

i
j ·χj . For an honest receiver every xi is the same, so every x̄i will be

exactly x. Similarly, instead of just computing t =
∑

j tj · χj and q =
∑

j qj · χj , find t̄i =
∑

j t
i
j · χj

and q̄i =
∑

j q
i
j · χj . Since qij = tij + xij ·∆i, we have q̄i = t̄i + x̄i ·∆i.

Let α be the generator of F2λ that is being used by the protocol to represent elements of Fλ2 as
field elements in F2λ . That is, a vector v becomes the field element v1 + α · v2 + · · · + αλ−1 · vλ.
Then t = t̄1 + α · t̄2 + · · ·+ αλ−1 · t̄λ, and similarly for q. Assume that the receiver gives the honest
value for t.10 Then the consistency check becomes

t = q + x ·∆ =
∑
i

q̄i · αi−1 + x ·∆ =
∑
i

t̄i · αi−1 +
∑
i

x̄i · αi−1 ·∆i + x ·∆

0 =
∑
i

x̄i · αi−1 ·∆i + x ·∆ =
∑
i

(x̄i + x) · αi−1 ·∆i.

Therefore, if the receiver sets x = x̄i for some i then they won’t have to guess ∆i. They will only
10There seems to be no advantage for the receiver to ever lie about t.
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have to guess all ∆i′ for which x 6= x̄i′ .
If there is a collision, so there are i 6= i′ such that x̄i = x̄i′ , setting x = x̄i forces |S∆| ≥ 4 and

so k ≥ 2. The x̄i will all be uniformly random elements of F2λ , so this happens with probability
roughly λ22−λ−1. For sufficiently large ` each |Hxi | will be 1, as the columns xi of the matrix whose
rows are xi will be unique. Therefore, this attack contradicts Lemma 1.

D.2 Subfield Attack.

At least for a special case, a slightly more practical attack seems to be possible. Assume that λ is
divisible by 20, and that the minimal polynomial of α (the element being used to represent F2λ) can
be written in the form P (α5) for some irreducible polynomial P .11 Then F2λ has a subfield F2λ/5

that is generated by α5. In a subfield attack, a malicious receiver arranges the consistency check so
that for any ∆ ∈ S∆ (i.e. any ∆ that allows the consistency check to pass) and for any s ∈ F2λ/5 , s∆
is also in S∆. This makes S∆ be a vector space over F2λ/5 . The receiver tries to make the dimension
of S∆ over F2λ/5 as high as possible, which seems to be 2 according to a heuristic analysis. This
gives an attack that passes the consistency check with probability 2−

3
5
λ, and can then recover ∆

using q = 5 · 2λ/5 queries to the random oracle, contradicting the stated bound at the end of the
proof of KOS’s Theorem 1, which would only allow a success probability of O(q2−λ) = O(2−

4
5
λ).

The importance of F2λ/5 being generated by α5 is that for any u ∈ F2λ/5 and y ∈ F2λ , we have
u ∗ v ∈ F2λ/5 . The proof is that for u to be in the subfield the only nonzero entries in it must be at
indices of the form 5i+ 1, so that they correspond to powers of α5. Then u ∗ v will be zero wherever
u is zero, and so will also be in the subfield.

To make use of this fact, let the malicious receiver pick the OT corrections to make xij be 1 when
5 | i − j and 0 otherwise. Also assume that the malicious receiver sends the honest value of t in
its consistency check. Let δj = (xj ∗∆) · α1−j =

∑(λ/5)−1
i=0 α5i ·∆5i+j ∈ F2λ/5 for 1 ≤ j ≤ 5, and

let ~δ = [δ1 · · · δ5]>. Also let ~α = [1 α · · · α4]>, so that ~α>~δ = ∆. Let χ′j = αj−1
∑

i χ5i+j . Write
x =

∑5
j=1 x

′
j · αj−1 and χ′j =

∑5
i=1 χ

′
ji · αi−1 = ~α>~χ′j for x′j , χ

′
ji ∈ F2λ/5 and ~χ′j = [χ′j1 · · · χ′j5]>.

The consistency check then becomes

0 = t+ q + x ·∆

=
∑
j

(tj + qj) · χj + x ·∆

=
∑
j

(xj ∗∆) · χj + x ·∆

=

5∑
j=1

∑
i

δj · αj−1 · χ5i+j +

5∑
j=1

x′j · αj−1 · ~α>~δ

=
5∑
j=1

δj · χ′j +
5∑
j=1

x′j ·
5∑

k=1

αj+k−2 · δk

= ~α>
(
X +

5∑
j=1

x′j ·Aj

)
~δ, (2)

11For any λ divisible by 20, a possible P may be found by picking a element of F2λ/5 that is not a perfect power of 5,
then setting P to be its minimal polynomial. Such an element must exist because

∣∣F∗
2λ/5

∣∣ = 2λ/5 − 1 = 16λ/20 − 1 ≡ 0
(mod 5).
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where X = [~χ′1 · · · ~χ′5] and the matrices Aj are:

A1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 A2 =


0 0 0 0 α5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 A3 =


0 0 0 α5 0
0 0 0 0 α5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



A4 =


0 0 α5 0 0
0 0 0 α5 0
0 0 0 0 α5

1 0 0 0 0
0 1 0 0 0

 A5 =


0 α5 0 0 0
0 0 α5 0 0
0 0 0 α5 0
0 0 0 0 α5

1 0 0 0 0


Notice that in Eq. (2) both the matrix in parenthesis and the ~δ on the right are in the subfield F2λ/5 .
Since α generates F2λ , which is a degree 5 extension of F2λ/5 , the only way for the equation to hold
is if (

X +
5∑
j=1

x′j ·Aj

)
~δ = 0.

~δ will be uniformly random because ∆ is, so to maximize the chance of the consistency check
succeeding the receiver should minimize the rank of X +

∑5
j=1 x

′
j ·Aj .12 The question is, how low

can it go?
We believe that for most possible X (which is uniformly random), the minimum rank will be

3. Unfortunately, we only have a heuristic justification for this. The number of rank ≤ 3 matrices

over F2λ/5 is at least 2
21
5
λ, because any matrix of the form

[
13

Y

]
Z has rank ≤ 3 for Y ∈ F2×3

2λ/5
and

Z ∈ F3×5
2λ/5

, and this representation is unique. Therefore, a uniformly random matrix will have rank

≤ 3 with probability at least 2
21
5
λ2−

25
5
λ = 2−

4
5
λ. When X and all the x′j are chosen uniformly at

random then X +
∑5

j=1 x
′
j ·Aj will be uniformly random. The solver gets to choose all of the x′j for

a total of 2λ possibilities, making the expected number of solutions be at least 2λ2−
4
5
λ = 2λ/5, so if

the rank ≤ 3 matrices are relatively evenly spread over all possible X then a solution is very likely
to exist.

Assuming that a rank 3 solution exists, the receiver should send the corresponding consistency
check message x. Then |S∆| = 2k for k = 2

5λ, yet every Hs has size 1
5λ because Hxj = {j, 5 +

j, · · · , λ− 5 + j}. This contradicts Lemma 1.
This also gives an attack on the real KOS protocol. The consistency check will succeed with

probability 2−
3
5
λ. If it does and if the receiver gets to see both of the sender’s output OT messages

for the first five OTs, then it can do a brute force attack to recover ∆. Each message was protected
using only 1

5λ bits of ∆ because the Hamming weight of each xj is 1
5λ. Using 2

1
5
λ queries to the

random oracle, these bits can be brute forced to learn a part of ∆. Doing this five times reveals all
of ∆, and then the receiver can read every OT message.

12See [FLP08] for an algorithm to solve the MinRank problem that runs in O(λ) time for constant size matrices. It
should be fast in practice for this small problem size.
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E Endemic OT Details

In this section, we describe our attack against the OT Extension Protocol With an Ideal Cipher
from Endemic OT [MR19, Sect. 5.3]. The flaw results from assuming a stronger guarantee from
consistency checking than protocols like KOS or OOS provide. When describing their protocol in
Figure 9, they state:

R proves in zero knowledge that

∀i ∈ [m], ∃w ∈ FkC2 | 0 = b� (ui + ti + t1,i + C(w))

Note: b ∈ FkC2 is distributed uniformly in the view of R.
For example, the proof of KOS for N = 2 or OOS otherwise.

This is much stronger that what consistency checking protocols provide. At best, they merely prove
that b� (ui + ti + t1,i + C(w)) was successfully guessed by R.

This opens an avenue for attack. Let R be corrupted, and behave honestly until T0, T1 are known.
Find the closest pair of rows ti, tj of T0 in hamming distance (with i < j), so D = ‖ti + tj‖0 is as
small as possible.13 Then set cj = ti ⊕ tj , and all other ck = 0. Later, for the consistency check, let
w = 0 for each OT. The receiver will then have to guess b� (ti ⊕ tj); have it guess ti ⊕ tj , which is
correct with probability 2−D. Then,

qj = cj · b⊕ tj = (ti ⊕ tj) · b⊕ tj = ti = ci · b⊕ ti = qi,

so extended OTs i and j will agree on all evaluations, breaking the security of the OT extension.
For each u and v, ‖tu + tv‖0 follows a binomial distribution with parameters n = nC and p = 1

2 .
Given D, our attack succeeds with probability 2−D. In the simplest case of m = 2, the success
probability is then E[2−D] = ((1 − p) + p2−1)n =

(
3
4

)n ≈ 2−0.415n, which is already considerably
higher than is claimed by Endemic OT. For greater m, we estimate D by finding some D0 such that
the event D ≤ D0 has constant probability. For any D0, the event D ≤ D0 is a union of the

(
m
2

)
events ‖tu + tv‖0 ≤ D0 for each pair u < v. While these events are not independent, we estimate
that Pr[D ≤ D0] will be constant if Pr

[
‖tu + tv‖0 ≤ D0

]
≥
(
m
2

)−1. We can then choose D0 with the
quantile function of the binomial distribution, and estimate that the success probability is around
2−D0 . We evaluated this for n = 128 and several choices of m:

m D0

106 27
107 24
108 21
109 18

F Extra Proofs

F.1 Universal Hash Proofs

Proposition 2.3. Let R and R′ be ε and ε′-almost universal families, respectively. Then R′R for
R ∈ R, R′ ∈ R′ is a (ε+ ε′)-universal family.

Proof. Let ~x ∈ Fnq be nonzero. Except with probability ε, R~x 6= 0. If it is nonzero, then with
probability at least 1− ε′, R′R~x 6= 0. Therefore R′R~x 6= 0 with probability at least (1− ε)(1− ε′) ≥
1− ε− ε′, so R′R is (ε+ ε′)-universal.

13This problem is important in the decoding of linear codes. See [MO15] for an efficient algorithm.
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Proposition 2.4. Let R ⊆ Fm×nq and R′ ⊆ Fm×n′q be ε-almost uniform families. Then [R R′] for
R ∈ R, R′ ∈ R′ is a ε-uniform family.

Proof. Let ~x =

[
~x0

~x1

]
be nonzero, for ~x0 ∈ Fnq , ~x1 ∈ Fn′q . Without loss of generality, assume that ~x0 is

nonzero. For [R R′]~x to equal ~y, we must have R~x0 = ~y +R′~x1. Because R is independent of ~y and
R′, this has probability at most ε by Thm. 2.2.

F.2 OT Extension Proof

Theorem 5.1. The protocol in Fig. 11 achieves Fp
kC ,`,{X}

OT-1 with malicious security in the Fp,q,C,`,L,MVOLE-pre
hybrid model, assuming that H : FnCq × T → {0, 1}λ is a (p, q, C, T ,L)-TCR hash, and R ⊆
FnC×dlogq(`)e
q is an ε-almost uniform family. The distinguisher advantage is at most εM`(tmax −

1)/2 + AdvTCR, where tmax is the maximum number of distict OTs that can have the same tweak
under t. For the TCR itself, τmax will be the maximum number of evaluations Fi( ~x) where t(i, ~x)
outputs a given tweak. For semi-honest security, R is unused; instead set ε = q−nC and M = 1.

Proof. First, we establish correctness, which will be used in most cases of the security proof. Since
the base VOLE gives a correlation W = UGC diag( ~∆) + V ,

Fi( ~x∗i ) = H(Wi· + ~r>i − ~xGC � ~∆, t(i, ~x)) = H(Vi· + ~r>i , t(i, ~x∗i )) = F ∗i .

Starting with the easiest case, if both parties are corrupted then the simulator can trivially program
the whole output, which will be consistent by correctness.

Corrupt PS. At the start of the protocol, the simulator sends “commit” to PS . For malicious
security, it receives R from PS , while for semi-honest security it generates it randomly and puts it
in the transcript instead. The simulator receives ~∆,W from A and forwards them to PS . It then
sets Fi( ~x) = H(Wi· + ~r>i − ~xGC � ~∆, t(i, ~x)) and sends it to Fp

kC ,`,{X}
OT-1

, for all i ∈ [`]. For malicious
security, it sends X to the ideal functionality as well. By correctness this works identically to the
real protocol.

Corrupt PR. This is the first case where the TCR’s security is used. For malicious security, S
first receives Wpre, Upre, Vpre, and Lpre from A, then samples R $← R and sends it to PR. In either
case, the simulator then receives U, V from A and forwards them to PR. For malicious security,
S then receives wpre ∈ Wpre, ~Loff ∈ FnCq from A, generates a uniformly random ~∆ $← FnCq , and
aborts the protocol if the consistency check in Fp,q,C,`,L,MVOLE-pre would fail. Finally, it sends x∗i = Ui· and
F ∗i = H(Vi· + ~r>i , t(i, ~x∗i )) to the ideal functionality, for i ∈ [`].

Next, we prove that the real world, where the real protocol is run in the Fp,q,C,`,LVOLE-pre-hybrid model,
is indistinguishable from the ideal world, where the simulator is given access to the ideal functionality
Fp

kC ,`,{X}
OT-1

. First, there is a bad event that we must show is unlikely. We must show that there are no
two distinct OT indices i < j satisfying Vi· + ~r>i = Vj· + ~r>j that have overlapping tweaks, meaning
that there exists ~xi and ~xj such that t(i, ~xi) = t(j, ~xj). We start with the malicious case. For any
such pair, Vi· − V >j· = R(~j −~i), so if V were independent of R then this would have probability at
most ε because R is a uniform hash family. Although V is allowed to depend on R, it must equal
Vpre(wpre, ~∆), and wpre can only be chosen from M options. There are at most `(tmax−1)/2 possible
pairs of indices i, j with overlapping tweaks, so by a union bound the probability of the bad event is
at most εM`(tmax − 1)/2.
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However, in the semi-honest case ~ri = 0 for all i. If V were uniformly random then we could
instead use that Vi· = Vj· with probability only q−nC . But V isn’t uniformly random because PR
(who is the sender for the VOLE) is corrupted — it’s chosen by the adversary. The trick is to prove
security in a slightly different hybrid model, where the VOLE is required to output a V such that
Vi· 6= Vj· when i 6= j have overlapping tweaks. Any semi-honest protocol that achieves FVOLE-pre
based on functionalities which do not explicitly depend on who is corrupt (such as a communication
channel) also achieves the modified functionality. That is, in semi-honest security, corruption does
not give the adversary and environment any new power other than to see more information, and the
honest–honest case (where V is guaranteed to be uniformly random) still gives enough information
to see whether V has distinct rows. Therefore, if when PS is corrupt the VOLE outputs a V with
repeated rows more often than random, then there is an attack against the honest–honest case of
the VOLE.

Next, we present the hybrids.

1. Start from the real world, then rewrite the usage ofH and ~∆ into oracle calls to TCR-realH,p,q,C,L.
That is, use leak(Lpre(wpre) − ~Loff) to implement the selective abort, instead of checking
~∆ + ~Loff ∈ L directly, and change Fi( ~x) to be computed as query( ~x∗i − ~x, Vi· + ~r>i , t(i, ~x))

where ~x∗i = Ui·. This is the same because

H(Wi· + ~r>i − ~xGC � ~∆, t(i, ~x)) = H((Ui· − ~x)GC � ~∆ + Vi· + ~r>i , t(i, ~x∗i )),

by the correctness of the VOLE. This is just refactoring the computation, and so results in no
observable difference for the environment.

2. Use TCR security to swap TCR-realH,p,q,C,L for TCR-idealH,p,q,C,L. This is allowed because the
calls to query are distinct, as otherwise the bad event would trigger.

3. Inline the oracles calls to TCR-idealH,p,q,C,L. Notice that ~∆ is only used for the selective abort
attack, as in the simulator. Call the process of sampling Fi and outputting it to PS the ideal
functionality, and call the rest of this hybrid the simulator. We are now at the ideal world.

Both Honest. This case has the simplest simulator. The simulator only needs to sample R $← R
and allow A to eavesdrop on it. We again use a hybrid proof, starting from the real world.

1. Let ~c ∈ C be a non-zero code word. Instead of sampling W $← F`×nCq , sample sk $← FkCp and
W ′ $← F`×nCq , and set Wi· = W ′i· + ~c� sk for all i ∈ [`].

2. We now need to show that the functions F ∗i = H(Wi· + ~c� sk + ~r>i − ~xGC � ~∆, t(i, ~x)) are
uniformly random. They can be written in terms of query from TCR-realH,p,q,C,L, using sk
instead of ~∆ as the TCR key. There will be no duplicate queries, for the same reason as in the
case of corrupt PR. By the security of the TCR, all queries will be uniformly random.

3. Forget about V,W, ~∆, which are now unused. We are now at the ideal world.

F.3 ∆-OT Extension Proof

Theorem 5.2. The protocol in Fig. 12 achieves Fp,p,Rep(Fnp ),`,{X}
VOLE with malicious security in the

Fp,p,Rep(Fn′p ),`,Affine(Fn′p ),M

VOLE-pre hybrid model, assuming that R ⊆ Fn′×np is a ε-almost uniform family and
n′ ≥ n. The advantage is bounded by εM(pn − 1).
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Proof. First, we need to show correctness, which is used for all cases of the proof.

WR = UGRep(Fn′p ) diag( ~∆)R+ V R = U ~∆R+ V R

The two cases where PR is corrupt are trivial, as the simulator can program the protocol output to
be ~∆R,WR, and U is unchanged. When PR is honest, we need to use the following lemma, which
shows that the entropy in ~∆ is enough to make ~∆R uniform.

Lemma F.1. Let R ⊆ Fn′×np be an ε-almost uniform family and let A ∈ Fm×n′p be full rank, where
m ≤ n′. Then

Pr
R $←R

[rank(AR) < n] ≤ εpn′−m(pn − 1).

Proof. Let X = |ker(AR) \ {0}| = |ker(AR)| − 1. The statement that rank(AR) < n is equivalent
to X ≥ 1. Any nonzero ~x ∈ Fnp has probability at most εpn′−m of being in ker(AR), because that
implies R~x ∈ ker(A), which has size |ker(A)| = pn

′−m by the rank–nullity theorem. Therefore
E[X] ≤ εpn′−m(pn − 1), and the lemma follows by Markov’s inequality.

If both parties are honest then all that’s needed is for R to be full rank, as then all it does is
throw away part of the VOLE output. This is true except with probability ε(pn − 1) by Thm. F.1
with A = 1n′ . The only interesting case is when only PS is corrupt. The simulator first receivesWpre,
Upre, Vpre, and Lpre from A, then samples R $← R and sends it to PS . The simulator receives U, V
from A and forwards them to PS , and then receives wpre ∈ Wpre, ~Loff ∈ Fn′p from A. The simulator
generates a uniformly random ~∆ $← Fn′p , and aborts the protocol if the guess in Fp,p,Rep(Fn′p ),`,L,M

VOLE-pre
would fail. Finally, it sends U, V R to the ideal functionality.

For security, we first define a bad event, and bound its probability. Let L = Lpre(wpre)− ~Loff, so
the protocol aborts if ~∆ /∈ L. Because L ∈ Affine(Fn′p ), there exists a vector ~∆0 ∈ Fn′p and a full rank
matrix A ∈ Fm×n′p such that L = ~∆0 + rowspace(A), where m = dim(L). Also, A is independent of
~Loff, because ~Loff only shifts L. The bad event is that ~∆ ∈ L and rank(AR) < n. The former has

probability at most pm−n′ , since ~∆ was sampled uniformly and |L| = pm. If A were independent of
R, the latter probability would be at most εpn′−m(pn − 1) by Thm. F.1. Though A sees R before
choosing L, we can still use a union bound. Lpre is chosen independently of R, and there are at most
M possibilities for Lpre(wpre), so the bad event has probability at most εM(pn − 1).

Next, the hybrid proof goes from the real world to the ideal world. The only information PS
learns about ~∆ is that ~∆ ∈ L, so it is equivalent to sample a second ∆′ ∈ L after the check, let
∆′′ = ∆′R, and subsequently use ∆′′ instead of ∆R. Since we are assuming the bat event does not
trigger, rank(AR) has full rank, so it’s also equivalent to sample ∆′′ $← Fnp . Split into the simulator
and the ideal functionality, with ∆′′ being sampled in the ideal functionality. We are now at the
ideal world.

F.4 Semi-honest PPRF Proof

Theorem 6.1. Figure 13 constructs Fq,1,{X}OT-1 out of Fp,k,{X}OT-1 , and is secure in the semi-honest model.

Proof. First, we show correctness, as it is useful for all cases of the proof. We prove by induction
that siy = s∗ iy for all y ∈

[
pi
]
\ {y∗i }. In the base case, F0(x) = s1

x = s∗ 1
x = F ∗0 (x) by correctness of

the first
(
p
p−1

)
-OT. For induction, PS and PR both compute si+1

py+x in exactly the same way for all
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Sp,q,Lsub-PPRF-S

for i ∈ [k]:
recv. Fi ∈

(
{0, 1}λ

)[N ] from A

G, t := BuildPPRF(F )
PS sends

{
tix
}

1≤i<k,x∈[p]
to PR

send G to Fq,1,L
OT-1

(a) Corrupt PS .

Sp,q,Lsub-PPRF-R

for i ∈ [k]:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈
(
{0, 1}λ

)[N ]\{x∗i } from A

for i := 1 to k − 1, x ∈ [p]:
tix

$← {0, 1}λ
y∗, G∗ := EvalPPRF(x∗, F ∗, t)
send

{
tix
}

1≤i<k,x∈[p]
to PR

send y∗, G∗ to Fq,1,L
OT-1

(b) Corrupt PR.

Figure 15: Simulators for semi-honest security of Fig. 13. In (a), PS sending t to PR means that the
adversary is allowed to eavesdrop on a fake message from PS to PR.

y 6= y∗i . Then for any x 6= x∗i ,

s∗ i+1
py∗i +x = tix ⊕ F ∗i (x)⊕

⊕
y∈[pi]\{y∗i }

s∗ i+1
py+x

= Fi(x)⊕
⊕
y∈[pi]

si+1
py+x ⊕ Fi(x)⊕

⊕
y∈[pi]\{y∗i }

si+1
py+x

= si+1
py∗i +x.

Therefore, si+1
y = s∗ i+1

y for all y 6= y∗i+1 = py∗i + x∗i .
When both parties are honest, the simulator can generate the tix uniformly at random and give

them to the adversary as a fake eavesdropped message. In the hybrid proof, starting from the real
world, first replace the random sampling of all Fi(x) with instead sampling tix

$← {0, 1}λ, then setting
Fi(x) = tix ⊕

⊕
y∈[pi]

si+1
py+x. These are the same distribution. Next, use correctness to replace s∗ iy

with siy everywhere, so that the Fi(x) are all unused and can be removed. Now the internal leaves
of the GGM tree are unused, which makes the sky be all the evaluations of a GGM PRF [GGM86].
Therefore, we can replace them all with uniform randomness. Finally, since the x∗i ∈ [p] are all
uniformly random, it is equivalent to sample y $←

[
pk
]
, then let x∗0, . . . , x∗i−1 be its expansion in base

p, in big endian order. We are now at the ideal world.
Next, assume that only PS is corrupt. The simulator for this case is illustrated in Fig. 15a. By

correctness, the output from PR will be G∗, the punctured version of the G computed by a simulator.
Also, y will be uniformly random for the same reason as in the honest–honest case. Therefore, the
real protocol will be indistinguishable from the simulation.

Finally, we have the case where PR is corrupt (simulator in Fig. 15b). Going from the real world
to the ideal world, we use the following hybrids.

1. In a sequence of hybrids, replace all the tix and siy∗i with uniformly random values. For i = 1,

s1
y∗1

= F0(x∗) is already sampled uniformly at random by the ideal functionality Fp,k,{X}
OT-1

. For
i > 1, first use that si−1

y∗i−1
is uniformly random to sample sipy∗i−1+x = PRGx(si−1

y∗i−1
) uniformly at

random for all x ∈ [p]. Then instead of sampling the sipy∗i−1+x at random, sample tix
$← {0, 1}λ,
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Sp,q,Lsub-PPRF-mal-S

for i ∈ [k]:
recv. Fi ∈

(
{0, 1}λ

)[N ] from A

recv. L′ ∈ L from PS :
recv.

{
tix ∈ {0, 1}λ

}
1≤i<k,x∈[p]

from PS

G(y) := 0,∀y ∈ [q]
L := ∅
for {x∗i }i∈[k] ∈ [p]k:
y∗, Gy∗ := EvalPPRF(x∗, F, t)

if ∼s = VerifyPPRF(y∗, Gy∗ ,
∼
t):

G(y) := Gy∗(y),∀y ∈ [q] \ {y∗}
L := L ∪ {y∗}

send PRG′1 ◦G to Fq,1,L
OT-1

send L ∩ L′ to Fq,1,L
OT-1

(a) Malicious PS .

Sp,q,Lsub-PPRF-mal-R

for i ∈ [k]:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈
(
{0, 1}λ

)[N ]\{x∗i } from A

for i := 1 to k − 1, x ∈ [p]:
tix

$← {0, 1}λ
∼
t $← {0, 1}2λ
y∗, G∗ := EvalPPRF(x∗, F ∗, t)
∼s := VerifyPPRF(y∗, G∗,

∼
t)

send t, ∼s,
∼
t to PR

send y∗,PRG′1 ◦G∗ to F
q,1,L
OT-1

(b) Malicious PR.

Figure 16: Simulators for malicious security of Fig. 14.

then compute sipy∗i−1+x as in EvalPPRF, for x 6= x∗i−1. Finally, ti−1
x∗ can be also be sampled

randomly, because the underlying ideal functionality samples Fi−1(x∗) $← {0, 1}λ. Continue
this sequence of hybrids until i = k to get the desired modifications.

2. Notice that G∗, the restriction of PS ’s output to x 6= x∗ is now computed in exactly the same
way as EvalPPRF, and that G(y∗) = sky∗ is uniformly random. Put the computation of the
former in the simulator and the latter in the desired ideal functionality Fq,1,{X}

OT-1
. Also notice

that the tix are all sampled uniformly at random and put them in the simulator. This is exactly
the same as the ideal world, where the simulator talks to the ideal functionality and generates
a fake transcript of the protocol.

F.5 Maliciously Secure PPRF Proofs

Proposition 6.2. The selective abort attack allowed in Fig. 14 will always be in L = Affine(Fkp).
More precisely, the L sent by Sp,q,Lsub-PPRF-mal-S (Fig. 16) will always be in Affine(Fkp).

Proof. This is trivial if L = {}, so assume that L is not empty. The simulator will then find
a preimage for ∼s = Hash(∼s0 ‖ · · · ‖ ∼sq−1). By collision resistance, every time the simulator calls
VerifyPPRF(y∗, G∗,

∼
t) for y ∈ L, it finds the same ∼sy. Next, assume that L contains at least two

elements z and z′, because any L containing only a single element is trivially in X. Then collision
resistance of PRG′0 implies that Gz(y) = Gz′(y) for all y /∈ {z, z′}. That is, every Gy∗(y) will agree
with G(y) on every y they can compute. Use this to prove the following lemma.

Lemma F.2. Let z, z′ ∈ L, let z1, . . . , zk and z′1, . . . , z
′
k be their active paths and w0, . . . , wk−1 and

w′0, . . . w
′
k−1 be their base OT choices. Let j be the first index where they differ, so that zi 6= z′i. Then

for any y∗ ∈ [q] with base OT choice bits x∗0, . . . , x
∗
k−1 and active path y∗1, . . . , y

∗
k, if x

∗
i = wi except

when i = j, we have y∗ ∈ L.
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Proof. The collision resistance of PRG implies that all s∗ iy computed by EvalPPRF(x∗, F, t) that
outputs either z or z′ will agree. They both miss the nodes of the GGM tree on their common
path z1, . . . , zj−1, but every other node in the tree can be computed by at least one of them. Let siy
be the seeds in the GGM tree that at least one of them may compute. This implies a correctness
property for the tix when i ≥ j − 1: any tix used by either z or z′ during evaluation of the PPRF
must take its correct value of Fi(x)⊕

⊕
y∈[pi]

si+1
py+x. Otherwise z (or z′) would reconstruct a different

si+1
pzi+x

during evaluation, which would not pass the consistency check.
Since the active path of y∗ agrees with z on its first j − 1 nodes, it will find the same seeds siy

for i < j and y 6= y∗i . Additionally, y
∗ agrees with z after its first j nodes, so it only uses correct tix

for i ≥ j. This only leaves the corrections tj−1
x for the node on layer j. Because z and z′ disagree on

layer j, so wj−1 6= w′j−1′ , every t
j−1
x must be correct for this layer. Therefore, the evaluation on y∗

will get exactly the same seeds siy for any y 6= y∗i , and so Gy∗ must agree with Gz and Gz′ . Finally,
∼
t must be correct for there to be two evaluations z and z′ that pass the consistency check, so the
evaluation for y∗ will correctly find all the ∼sy, and so y∗ ∈ L.

In each position i ∈ [k], either all y∗ ∈ L will have the same x∗i , or there will be at least two
different possible x∗i . Let L

′ ⊇ L be the set of all y∗ that match with the x∗i in the positions where
all of L are the same. This allows y∗ ∈ L′ to take any value at the positions where at least two x∗i
differ. These are affine constraints so L′ ∈ Affine(Fkp). We need to prove that L′ = L.

Let z ∈ L and y∗ ∈ L′, where z 6= y∗. Then the first place where they differ must be a position
that L′ does not constrain, so there must be some z′ ∈ L that disagrees at this position. By Thm. F.2,
there must be some z′′ ∈ L that is identical to z except at this position, where it agrees with y∗

instead. Repeating this process eventually finds an element of L that is exactly the same as y∗.
Therefore, L′ = L.

Theorem 6.3. Figure 14 (composed with Fig. 13) is a maliciously secure Fq,1,Affine(Fkp)

OT-1 in the

Fp,k,Affine(Fkp)

OT-1 hybrid model.

Proof. If both parties are honest then this is essentially the same as for the semi-honest case. The
consistency check messages ∼s,

∼
t can be simulated as a hash of uniformly random values, and a

uniformly random value in {0, 1}2λ. By the security of PRG′, the OT outputs PRG′1 ◦ G will be
indistinguishable from uniformly random, as will the values ∼sy.

Malicious PS. The simulator for this case is shown in Fig. 16a. The collision resistance of Hash
and PRG′0 implies that Gy∗(y) = G(y) for all y 6= y∗, when y∗ ∈ L. Therefore, when the desired
ideal functionality computes PR’s output, it will match what PR would output in the real protocol,
assuming that y∗ ∈ L. When y∗ /∈ L, PR never gets to see the output, so this is equivalent. Finally,
Thm. 6.2 implies that L ∈ Affine(Fkp), and the adversary must always provide a L′ ∈ Affine(Fkp),
so L ∩ L′ ∈ Affine(Fkp) because it is closed under intersection. Therefore, the real protocol is
indistinguishable from the simulated protocol using the desired ideal functionality.

Malicious PR. Because PR never sends any messages, malicious security is essentially the same
as semi-honest security for this case. The only difference from the semi-honest protocol is the
consistency check messages ∼s,

∼
t . By the security of PRG′, these will be indistinguishable from being

generated from uniformly random values ∼sy. Also, the OT outputs PRG′1 ◦G will be indistinguishable
from uniformly random. Therefore, the protocol is secure in this case.
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