
Syndrome Decoding in the Head:
Shorter Signatures from Zero-Knowledge Proofs?

Thibauld Feneuil1,2, Antoine Joux3, and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques

de Jussieu-Paris Rive Gauche, Ouragan, Paris, France
3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

{thibauld.feneuil,matthieu.rivain}@cryptoexperts.com
joux@cispa.de

Abstract. Zero-knowledge proofs of knowledge are useful tools to design signature schemes. The on-
going effort to build a quantum computer urges the cryptography community to develop new secure
cryptographic protocols based on quantum-hard cryptographic problems. One of the few directions is
code-based cryptography for which the strongest problem is the syndrome decoding (SD) for random
linear codes. This problem is known to be NP-hard and the cryptanalysis state of the art has been
stable for many years. A zero-knowledge protocol for this problem was pioneered by Stern in 1993.
Since its publication, many articles proposed optimizations, implementation, or variants.
In this paper, we introduce a new zero-knowledge proof for the syndrome decoding problem on random
linear codes. Instead of using permutations like most of the existing protocols, we rely on the MPC-in-
the-head paradigm in which we reduce the task of proving the low Hamming weight of the SD solution to
proving some relations between specific polynomials. Specifically, we propose a 5-round zero-knowledge
protocol that proves the knowledge of a vector x such that y = Hx and wt(x) ≤ w and which achieves
a soundness error closed to 1/N for an arbitrary N .
While turning this protocol into a signature scheme, we achieve a signature size of 11-12 KB for
128-bit security when relying on the hardness of the SD problem on binary fields. Using larger fields
(like F28), we can produce fast signatures of around 8 KB. This allows us to outperform Picnic3
and to be competitive with SPHINCS+, both post-quantum signature candidates in the ongoing NIST
standardization effort. Moreover, our scheme outperforms all the existing code-based signature schemes
for the common “signature size + public key size” metric.

1 Introduction

Zero-knowledge proofs are an important tool for many cryptographic protocols and applications. Such proofs
enable a prover to prove a statement by interacting with a verifier without revealing anything more than
the statement itself. Zero-knowledge proofs find application in many contexts. Thanks to the Fiat-Shamir
transform [FS87], we can convert such proofs into signature schemes. In this article, we aim to build an
efficient code-based signature scheme using this methodology. To do so, we will focus on the generic decoding

problem, a.k.a. the (computational) syndrome decoding (SD) problem: given a matrix H ∈ F(m−k)×m
q and a

vector y ∈ Fm−kq , recover a small-weight vector x ∈ Fmq such that Hx = y. For random linear codes –i.e. for
a random matrix H– this problem is known to be NP-hard and widely believed to be robust for practical
sets of parameters.

In a pioneering work from three decades ago, Stern proposed a zero-knowledge protocol to prove the
knowledge of a syndrome decoding solution [Ste94]. This protocol achieves a soundness error of 2/3 which
means that a malicious prover can fool the verifier with a 2/3 probability. Although an arbitrary security
of (2/3)τ can be achieved by repeating the protocol τ times, the induced communication cost for standard
security levels (e.g. 128 bits) becomes significant, which is partly due to this high soundness error. Since
the work of Stern, a few papers have proposed optimizations and implementations of this protocol (see for

? ©2022 IACR. This is the full version of the article published by Springer-Verlag available at https://doi.org/

10.1007/978-3-031-15979-4_19 (Crypto 2022).

https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19

instance [Vér96,GG07,AGS11,ACBH13]) but the communication cost was still heavy for random linear codes
with standard security levels.

In 2007, Ishai, Kushilevitz, Ostrovsky and Sahai proposed a new technique to build zero-knowledge proofs
from secure multi-party computation (MPC) protocols, which is known as the MPC-in-the-Head (MPCitH)
paradigm [IKOS07]. While this construction was mainly considered of theoretical interest at first, it has been
increasingly applied to build practical schemes over the last years. In particular, the Picnic post-quantum
signature scheme [CDG+20], which is a third-round alternate candidate of the ongoing NIST standardization
effort, is based on the MPCitH principle. Recently, new zero-knowledge protocols for the SD problem have
been inspired by this principle [GPS22,FJR21,BGKM22]. In particular, these protocols achieve an arbitrary
soundness error 1/N instead of the 2/3 (or 1/2) of Stern protocol and variants. These protocols result in
smaller proof/signature sizes at the cost of computational overheads.

Our contribution. In this article, we build a new zero-knowledge protocol to prove the knowledge of a
syndrome decoding solution using the MPCitH paradigm. We further turn this protocol into an efficient
code-based signature scheme.

While proving that y = Hx is communication-free in this paradigm, the hard part consists in proving that
x is a small-weight vector. We propose here an efficient way to prove that wt(x) ≤ w through a multi-party
computation which is simulated by the prover (“in her head”). The key idea is to prove the equality x◦v = 0
where ◦ is the component-wise multiplication and where the coefficients of the vector v are the evaluations
of a polynomial Q of degree w. By definition, v has at most w zero coordinates, so the relation x ◦ v = 0
proves that x has at most w non-zero coordinates (i.e. wt(x) ≤ w). The roots of the polynomial Q encode
the non-zero positions of the vector x. In order to prove the relation x ◦ v = 0, we use techniques borrowed
from the Banquet signature scheme [BdK+21b] with further adaptations. To check that all xj · vj are equal
to zero, we arrange the input x into a polynomial S, provide a product polynomial F · P as part of the
witness, and check that (F · P)(·) indeed equals the product of S(·) and Q(·). This can be done efficiently
by only verifying a few products of these polynomials evaluated at some random points. However, instead of
revealing the multiplication operands like in [BdK+21b], we rely on the product checking protocol proposed
in [LN17,BN20] and its batch version recently introduced in [KZ21].

Let us note that the idea of encoding the non-zero positions in a polynomial to prove a Hamming
weight inequality was already used in [DLO+18]. However, the proposed zero-knowledge protocol relies on
a linearly homomorphic commitment scheme, and such schemes do not exist yet for post-quantum hardness
assumptions.

Thanks to the Fiat-Shamir transform [FS87], we convert our protocol into a signature scheme. Our
scheme outperforms all the existing code-based signatures for the “signature size + public key size” metric.
When relying on the hardness of the syndrome decoding problem over F256, our scheme is below 10 KB
for this metric, which makes it competitive with Picnic3 [KZ20b] and SPHINCS+ [BHK+19]. Compared
to other code-based signature schemes (such as Wave [DST19] and Durandal [ABG+19]), our scheme has
the significant advantage of relying on a non-structured NP-hard decoding problem which has been widely
studied over the last decades.

To provide more flexibility, we introduce a parameter d in the definition of the syndrome decoding
problem. The idea is, instead of having a constraint for the global weight of the secret vector x, to split x
into d chunks x := (x1 | . . . | xd) and to have a constraint on the weight of each chunk. By taking d = 1, this
d-split version is equivalent to the standard syndrome decoding problem. We provide a security reduction
from this variant to the standard problem which allows us to compensate the security loss by a slight increase
of the parameters. This so-called d-split syndrome decoding problem offers us more flexibility to find better
size-performance trade-offs for our signature scheme.

Paper organization. The paper is organized as follows: In Section 2, we introduce the necessary background
on the syndrome decoding problem, zero-knowledge proofs, and the MPC-in-the-Head paradigm. We present
our protocol in Section 3 and the signature scheme obtained through the Fiat-Shamir transform in Section 4.
To conclude, we provide implementation results and compare our construction with other signature schemes
from the state of the art in Section 5.

2

2 Preliminaries

Throughout the paper, F shall denote a finite field. For any vector x ∈ Fm, the Hamming weight of x,
denoted wt(x), is the number of non-zero coordinates of x. For two vectors x1 ∈ Fm1 and x2 ∈ Fm2 , we
denote (x1 |x2) ∈ Fm1+m2 their concatenation. We denote ◦ the component-wise multiplication between two
vectors. For any m ∈ N∗, the integer set {1, . . . ,m} is denoted [m]. For a probability distribution D, the
notation s ← D means that s is sampled from D. For a finite set S, the notation s ← S means that s is
uniformly sampled at random from S. When the set S is clear from the context, we sometimes denote s← $
for a uniform random sampling of s from S. For an algorithm A, out ← A(in) further means that out is
obtained by a call to A on input in (using uniform random coins whenever A is probabilistic). Along the
paper, probabilistic polynomial time is abbreviated PPT.

A function µ : N → R is said negligible if, for every positive polynomial p(·), there exists an integer
Np > 0 such that for every λ > Np, we have |µ(λ)| < 1/p(λ). When not made explicit, a negligible function
in λ is denoted negl(λ) while a polynomial function in λ is denoted poly(λ). We further use the notation
poly(λ1, λ2, ...) for a polynomial function in several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are (t, ε)-indistinguishable (where
t and ε are N→ R functions) if, for any algorithm A running in time at most t(λ), we have∣∣Pr[A(x) = 1 | x← Dλ]− Pr[A(x) = 1 | x← Eλ]

∣∣ ≤ ε(λ) .

The two distributions are said

– computationally indistinguishable if ε ∈ negl(λ) for every t ∈ poly(λ);
– statistically indistinguishable if ε ∈ negl(λ) for every (unbounded) t;
– perfectly indistinguishable if ε = 0 for every (unbounded) t.

2.1 Standard Cryptographic Notions

Definition 1 (Pseudorandom Generator (PRG)). Let G : {0, 1}∗ → {0, 1}∗ and let `(·) be a polynomial
such that for any input s ∈ {0, 1}λ we have G(s) ∈ {0, 1}`(λ). Then, G is a (t, ε)-secure pseudorandom
generator if the following two conditions hold:

– Expansion: `(λ) > λ;
– Pseudorandomness: the distributions

{G(s) | s← {0, 1}λ} and {r | r ← {0, 1}`(λ)}

are (t, ε)-indistinguishable.

In this paper we shall make use of a tree PRG which is a pseudorandom generator that expands a root
seed mseed into N subseeds in a structured way. The principle is to label the root of a binary tree of depth
dlog2Ne with mseed. Then, one inductively labels the children of each node with the output of a standard
PRG applied to the node’s label. The subseeds (seedi)i∈[N] are defined as the labels of the N leaves of the
tree. A tree PRG makes it possible to reveal all the subseeds but a small subset E ⊂ [N] by only revealing
|E| · log(N) labels of the tree (which is presumable much smaller than N − |E|). The principle is to reveal
the labels on the siblings of the paths from the root of the tree to leaves i 6∈ E (excluding the labels of those
paths themselves). Those labels allow the verifier to reconstruct (seedi)i∈E while still hiding (seedi)i6∈E .

Definition 2 (Collision-Resistant Hash Functions). A family of functions {Hashk : {0, 1}∗ → {0, 1}`(λ) ;
k ∈ {0, 1}κ(λ)}λ indexed by a security parameter λ is collision-resistant if there exists a negligible function ν
such that, for any PPT algorithm A, we have

Pr

[
x 6= x′

∩ Hashk(x) = Hashk(x′)
k ← {0, 1}κ(λ);
(x, x′)← A(k)

]
≤ ν(λ) .

3

We now formally introduce the notion of commitment scheme which is instrumental in many zero-
knowledge protocols.

Definition 3 (Commitment Scheme). A commitment scheme is a triplet of algorithms (KeyGen,Com,Verif)
such that

– KeyGen is a PPT algorithm that, on input 1λ, outputs some public parameters PP ∈ {0, 1}poly(λ) con-
taining a definition of the message space, the randomness space and the commitment space.

– Com is a deterministic polynomial-time algorithm that, on input the public parameters PP, a message x
and the randomness ρ, outputs a commitment c.

– Verif is a deterministic polynomial-time algorithm that, on input the public parameters PP, a message
x, a commitment c and the randomness ρ, outputs a bit b ∈ {0, 1}.

In this article, the public parameter input PP will be made implicit in the calls to Com and Verif.

Definition 4 (Correctness Property). A commitment scheme achieves correctness, if for any message
x and any randomness ρ:

Pr[Verif(x, c, ρ) = 1 | c← Com(x; ρ)] = 1 .

Definition 5 (Hiding Property). A commitment scheme is said computationally (resp. statistically, resp.
perfectly) hiding if, for any two messages x0 and x1, the following distributions

{c | c← Com(x0; ρ), ρ← $} and {c | c← Com(x1; ρ), ρ← $}

are computationally (resp. statistically, resp. perfectly) indistinguishable.

Definition 6 (Binding Property). A commitment scheme is binding if there exists a negligible function
ν such that, for every (PPT) algorithm A, we have

Pr

 x 6= x′

∩Verif(PP, x, c, ρ) = 1
∩Verif(PP, x′, c, ρ′) = 1

PP← KeyGen();
(x, x′, ρ, ρ′, c)← A(PP)

 ≤ ν(λ) ,

where the probability is taken over the randomness of A and KeyGen. If we restrict A to being PPT, then the
scheme is computationally binding. If the computation time of A is unbounded, then the scheme is statistically
binding.

2.2 Syndrome Decoding Problems

Definition 7 (Syndrome Decoding Problem). Let F be a finite field. Let m, k and w be positive integers
such that m > k and m > w. The syndrome decoding problem with parameters (F,m, k, w) is the following
problem:

Let H, x and y be such that:

1. H is uniformly sampled from F(m−k)×m,
2. x is uniformly sampled from {x ∈ Fm : wt(x) = w},
3. y is defined as y := Hx.

From (H, y), find x.

In the following, a pair (H, y) generated as in the above definition is called an instance of the syndrome
decoding problem for parameters (F,m, k, w). The syndrome decoding problem is known to be NP-hard. For
a weight parameter w lower than the Gilbert-Varshamov radius τGV(m, k), which is defined as:

w < τGV(m, k) ⇔
w−1∑
j=0

(
m

j

)
(q − 1)j < qm−k with q = |F| ,

4

we know that there exists a unique solution x such that y = Hx with overwhelming probability. Otherwise,
an instance has several solutions on average.

There exists two main families of algorithms to solve the syndrome decoding problem: the information
set decoding (ISD) algorithms and generalized birthday algorithms (GBA) [TS16,BBC+19]. To obtain a λ-bit
security, the parameters of the syndrome decoding problem are hence chosen in a way to ensure that both
kind of algorithms run in time greater than 2λ.

Instead of working on the standard syndrome decoding problem, we will consider an alternative version
that we shall call the d-split syndrome decoding problem, where the secret x is split into d chunks of same
Hamming weights.

Definition 8 (d-Split Syndrome Decoding Problem). Let F be a finite field. Let m, k, w be positive
integers such that m > k, m > w, d | w and d | m. The d-split syndrome decoding problem with parameters
(F,m, k, w) is the following problem:

Let H, x and y be such that:

1. H is uniformly sampled from F(m−k)×m,
2. x is uniformly sampled from{

(x1 | . . . | xd) ∈ Fm : ∀i ∈ [d], xi ∈ Fm/d, wt(xi) =
w

d

}
,

3. y is defined as y := Hx.

From (H, y), find x.

By taking d = 1, we get the standard syndrome decoding problem. The following theorem gives a way to
estimate the difficulty to solve the d-split syndrome decoding problem.

Theorem 1. Let F be a finite field. Let m, k, w be positive integers such that m > k, m > w, d | w and
d | m. Let Ad be an algorithm which solves a random (F,m, k, w)-instance of the d-split syndrome decoding
problem in time t with success probability εd. Then there exists an algorithm A1 which solves a random
(F,m, k, w)-instance of the standard syndrome decoding problem in time t with probability ε1, where

ε1 ≥

(
m/d
w/d

)d(
m
w

) · εd .
Informally, an instance of the standard syndrome decoding problem is an instance of the d-split syndrome

decoding problem with probability
(
m/d
w/d

)d
/
(
m
w

)
. Moreover, a standard syndrome decoding instance can be

“randomized” and input to the d-split adversary as much as desired. A formal proof of the above theorem is
provided in Appendix A.

Let us note that the d-split syndrome decoding problem can be seen as a generalization of the regular
syndrome decoding problem introduced by [AFS03], for which the ratio w/d is equal to 1.

2.3 Interactive Protocols

A two-party protocol is a triplet Π = (Init,A,B) where Init is an initialization algorithm that, on input 1λ,
produces a pair (inA, inB), and where A and B are two stateful algorithms, called the parties. The parties
originally receive their inputs inA and inB then interacts by exchanging messages, and finally one of the
parties, say B, produces the output of the protocol. More formally, an execution of the protocol consists in
a sequence:

stateA ← A(inA)
stateB ← B(inB)

5

(MsgA[0], stateA)← A(stateA)
...

(MsgB[i], stateB)← B(stateB,MsgA[i− 1])
(MsgA[i], stateA)← A(stateA,MsgB[i])

...
out← B(stateB,MsgA[n])

The sequence of exchanged messages is called the transcript of the execution, which is denoted

View(〈A(inA),B(inB)〉) := (MsgA[0],MsgB[1], . . . ,MsgA[n]) .

An execution producing an output out is further denoted

〈A(inA),B(inB)〉 → out .

In our exposition, the state of the parties shall be made implicit. We shall then say that an algorithm has
rewindable black-box access to a party A if this algorithm can copy the state of A at any moment, relaunch
A from a previously copied state, and query A (with its current state) on input messages. A variable x is
said to be extractable from A if there exists a PPT algorithm E which, given a rewindable black-box access
to A, returns x after a polynomial number of queries to A.

Interactive proofs. We will focus on a special kind of two-party protocol called an interactive proof which
involves a prover P and a verifier V. In such a protocol, P tries to prove a statement to V. The first message
sent by P is called a commitment, denoted Com. From this commitment V produces a first challenge Ch1 to
which P answers with a response Rsp1, followed by a next challenge Ch2 from V, and so on. After receiving
the last response Rspn, V produces a binary output: either 1, meaning that she was convinced by P, or 0
otherwise. Such an m-round interactive proof with m = 2n+1 (1 commitment + n challenge-response pairs)
is illustrated on Protocol 1.

P V
inP inV

[...]
Com−−−−−−−−−−−−→
Ch1←−−−−−−−−−−−−
Rsp1−−−−−−−−−−−−→

...

Chn←−−−−−−−−−−−−
Rspn−−−−−−−−−−−−→

Return out ∈ {0, 1}

Protocol 1: Structure of a m-round interactive proof with m = 2n+ 1.

2.4 Zero-Knowledge Proofs of Knowledge

Informally, a proof of knowledge is an interactive proof in which P aims to convince V that she knows
something. Formally, a proof of knowledge is defined as follows:

6

Definition 9 (Proof of Knowledge). Let x be a statement of language L in NP, and W (x) the set of
witnesses for x such that the following relation holds:

R = {(x,w) : x ∈ L,w ∈W (x)} .

A proof of knowledge for relation R with soundness error ε is a two-party protocol between a prover P and
a verifier V with the following two properties:

– (Perfect) Completeness: If (x,w) ∈ R, then a prover P who knows a witness w for x succeeds in con-
vincing the verifier V of his knowledge. More formally:

Pr[〈P(x,w),V(x)〉 → 1] = 1,

i.e. given the interaction between the prover P and the verifier V, the probability that the verifier is
convinced is 1.

– Soundness: If there exists a PPT prover P̃ such that

ε̃ := Pr[〈P̃(x),V(x)〉 → 1] > ε,

then there exists an algorithm E (called an extractor) which, given rewindable black-box access to P̃,
outputs a witness w′ for x in time poly(λ, (ε̃− ε)−1) with probability at least 1/2.

Informally, a proof of knowledge has soundness error ε if a prover P̃ without knowledge of the witness
cannot convince the verifier with probability greater than ε assuming that the underlying problem (recovering
a witness for the input statement) is hard. Indeed, if a prover P̃ can succeed with a probability greater than ε,
then the existence of the extractor (algorithm E) implies that P̃ can be used to compute a witness w′ ∈W (x).

Remark 1. In the present article, we focus on proof of knowledge for a syndrome decoding instance defined
by a matrix H and a vector y. The problem parameters m, k and w will be considered to be defined by the
security parameter λ. In this context, the syndrome decoding instance (H, y) is the statement. A witness for
this statement is a small-weight vector x such that y = Hx.

We now recall the notion of honest-verifier zero-knowledge proof:

Definition 10 (Honest-Verifier Zero-Knowledge Proof). A proof of knowledge is {computationally,
statistically, perfectly} honest-verifier zero-knowledge (HVZK) if there exists a PPT algorithm S (called
simulator) whose output distribution is {computationally, statistically, perfectly} indistinguishable from the
distribution View(〈P(x,w),V(x)〉) obtained with an honest V.

Informally, the previous definition says a genuine execution of the protocol can be simulated without any
knowledge of the witness. In other words, the transcript of an execution between the prover and an honest
verifier does not reveal any information about the witness.

2.5 Sharings and Multi-Party Computation

In the scope of this article, all the sharings are additive. Specifically, an N -sharing of an element x ∈ Fm is
an N -tuple

JxK =
(
JxK1, . . . , JxKN

)
∈ (Fm)N such that x =

N∑
i=1

JxKi .

Each JxKi is called a share of x. For a polynomial P ∈ F[X] of degree at most d, we define its sharing JP K
as a N -tuple of (F[X])

N
such that P =

∑N
i=1JP Ki, where each JP Ki is of degree at most d. In particular, a

sharing of a degree-d polynomial can be seen as the sharing of the d-tuple of its coefficients.
In the context of multi-party computation (MPC), an N -sharing is usually distributed to N parties,

meaning that each party gets one of the N shares. From those shares, the parties can perform distributed
computation. Let assume that each party i ∈ [N] receives the shares JxKi, JyKi and JP Ki corresponding to
shared values x, y ∈ F and polynomial P ∈ F[X]. They can perform the following operations:

7

– Addition: the parties locally compute Jx+ yK by adding their respective shares:

∀i, Jx+ yKi := JxKi + JyKi .

This process is denoted Jx+ yK = JxK + JyK.
– Addition with a constant: for a given constant α, the parties locally compute Jx+ αK by doing:{

Jx+ αK1 := JxK1 + α
Jx+ αKi := JxKi for i 6= 1

This process is denoted Jx+ αK = JxK + α.

– Multiplication by a constant: for a given constant α, the parties locally compute Jα·xK by multiplying
their respective shares:

∀i, Jα · xKi := α · JxKi .

This process is denoted Jα · xK = α · JxK.
– Polynomial evaluation: for a given r, the parties can locally compute JP (r)K by:

∀i, JP (r)Ki := JP Ki(r) =

d∑
j=0

JPjKi · rj ,

where {JPjKi}j denotes the coefficients of JP Ki. This process is denoted JP (r)K = JP K(r).

2.6 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] offers a way to build zero-knowledge
proofs from secure multi-party computation (MPC) protocols. Let us assume we have an MPC protocol
in which N parties P1, . . . ,PN securely and correctly evaluate a function f on a secret input x with the
following properties:

– the secret x is encoded as a sharing JxK and each Pi takes a share JxKi as input;
– the function f outputs Accept or Reject;
– the views of t parties leak no information about the secret x.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of an x for which f(x) evaluates
to Accept. The prover proceeds as follows:

– she builds a random sharing JxK of x;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends commitments to each party’s view, i.e. party’s input share, secret random tape and sent and

received messages, to the verifier;
– she sends the output shares Jf(x)K of the parties, which should correspond to Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their views. After receiving them,
the verifier checks that they are consistent with an honest execution of the MPC protocol and with the
commitments. Since only t parties are opened, revealed views leak no information about the secret x, while
the random choice of the opened parties makes the cheating probability upper bounded by (N − t)/N , thus
ensuring the soundness of the zero-knowledge proof.

In this article, we shall only consider the case t = N − 1, i.e. when the verifier asks to open all the
parties except one. We shall further consider that the function f computed by the MPC protocol might be
non-deterministic. Specifically, if the protocol takes what we shall call a good witness x as input then the
protocol returns Accept with probability 1. Otherwise, the protocol shall reject most of the time but might

8

Output of f
Accept Reject

x is a good witness 1 0

x is not a good witness p 1− p

Table 1. Probability distribution of the output of the MPC protocol

still accept with some false positive probability p. To summarize, we consider a setting in which the output
of the protocol has a probability distribution of the form described in Table 1.

While moving to the MPCitH setting, the randomness for f is then provided by the verifier and the
“pre-randomness” view of each party (input share, random tape, initial message) must be committed before
receiving the randomness from the verifier. If the prover is honest (i.e. knows a “good witness” x), it will
always convince the verifier. On the other hand, a malicious prover might successfully cheat with probability
1/N (by corrupting the computation of one party) or make the MPC protocol produce a false positive with
probability p. Thus, the resulting zero-knowledge protocol has a soundness error of

1−
(

1− 1

N

)
(1− p) =

1

N
+ p− 1

N
· p .

2.7 Multi-Party Product Verification

A triple of sharings (JaK, JbK, JcK) of three elements a, b, c ∈ F is called a multiplication triple (or Beaver
triples [Bea92]) if the shared values satisfy a · b = c. The ability to check the correctness of a multiplication
triple is instrumental in many MPC (in the Head) protocols.

The authors of [LN17,BN20] propose an MPC protocol to verify the correctness of a multiplication triple
by “sacrificing” another one. Specifically, given a random triple (JaK, JbK, JcK), the protocol simultaneously
verifies the correctness of (JxK, JyK, JzK) and (JaK, JbK, JcK), i.e. verifies that c = a · b and z = x · y, without
revealing any information on (x, y, z) in the following way:

1. The parties get a random ε ∈ F (from the verifier in the MPCitH paradigm),
2. The parties locally set JαK = εJxK + JaK and JβK = JyK + JbK.
3. The parties broadcast JαK and JβK to obtain α and β.
4. The parties locally set JvK = εJzK− JcK + α · JbK + β · JaK− α · β.
5. The parties broadcast JvK to obtain v.
6. The parties output Accept if v = 0 and Reject otherwise.

Observe that if both triples are correct multiplication triples (i.e., z = xy and c = ab) then the parties
will always accept since

v = ε · z − c+ α · b+ β · a− α · β
= ε · x · y − a · b+ (ε · x+ a) · b+ (y + b) · a− (ε · x+ a) · (y + b) = 0

In contrast, if one or both triples are incorrect, then the parties will accept with probability at most 1/|F|
as shown in Lemma 1.

Lemma 1 ([BN20]). If (JaK, JbK, JcK) or (JxK, JyK, JzK) is an incorrect multiplication triple then the parties
output Accept in the sub-protocol above with probability 1

|F| .

The authors of [KZ21] propose a variant of the above protocol to batch the verification of the d mul-
tiplication triples (JxjK, JyjK, JzjK) by sacrificing a random dot-product tuple ((JajK, JbjK)j∈[d], JcK) verifying
c = 〈a, b〉.

1. The parties gets a random ε ∈ Fd (from the verifier in the MPCitH paradigm),

9

2. The parties locally set JαK = ε ◦ JxK + JaK and JβK = JyK + JbK.
3. The parties broadcast JαK and JβK to obtain α and β.
4. The parties locally set JvK = −JcK + 〈ε, JzK〉+ 〈α, JbK〉+ 〈β, JaK〉 − 〈α, β〉.
5. The parties broadcast JvK to obtain v.
6. The parties output Accept if v = 0 and Reject otherwise.

Lemma 2 ([KZ21]). If (JxjK, JyjK, JzjK)j∈[d] contains an incorrect multiplication triple or if ((JajK, JbjK)j∈[d], JcK)
form an incorrect dot product, then the parties output Accept in the sub-protocol above with probability at
most 1

|F| .

This variant requires less communication for c and v, compared to the case where we repeat d times the
original protocol. But depending on the context, repeating d times the original protocol might be preferred
to lower the false positive probability (i.e. 1/|F|d against 1/|F|).

3 A Zero-Knowledge Protocol for Syndrome Decoding

Let us consider an instance (H, y) of the (d-split) syndrome decoding problem, and let us denote x a solution
of this instance. We denote FSD the field on which the instance is defined.

Without loss of generality, we assume that H is in the standard form, i.e. that H = (H ′|Im−k) for some

H ′ ∈ F(m−k)×k
SD . Thus the solution x can be written as (xA|xB) such that we have the linear relation

y = H ′xA + xB . (1)

This implies that one simply needs to send xA (k · log |FSD| bits) to reveal the solution of the instance (H, y).
In the following sections, we first build an MPC protocol that takes a sharing of JxAK, builds the corre-

sponding JxK thanks to Equation (1), and checks that JxK corresponds to a vector with a Hamming weight of
at most w/d on each chunk. Since JxK would verify y = Hx by construction, this MPC protocol verifies that
JxAK corresponds to a solution of the syndrome decoding instance (H, y). Then, in Section 3.3, we transform
it into a zero-knowledge protocol which proves the knowledge of a solution of the syndrome decoding instance
(H, y) thanks to the MPC-in-the-Head paradigm (described in Section 2.6).

3.1 Standard Case (d = 1)

We first focus on the case where (H, y) is an instance of the standard syndrome decoding problem (i.e. we
have d = 1). We will then show how to extend the protocol to the general case of any d. We consider a field
extension Fpoly ⊇ FSD such that |Fpoly| ≥ m (we recall that m is the length of the secret x, i.e. x ∈ FmSD).
We denote φ : FSD → Fpoly the canonical inclusion of FSD into Fpoly. Let us take a bijection γ between
{1, . . . , |Fpoly|} and Fpoly. Then, to ease the notation, we denote γi for γ(i).

The protocol must check that y = Hx and wt(x) ≤ w. As explained in the introduction of the section,
the input for the MPC protocol will be JxAK, then it will build the sharing JxK using the linear relation (1).
Then we directly have that y = Hx. It remains to check that wt(x) ≤ w.

To prove that wt(x) ≤ w, the prover build the three following polynomials:

– The polynomial S ∈ Fpoly[X] satisfying

∀i ∈ [m], S(γi) = φ(xi) ,

as well as degS ≤ m− 1. This S is unique and can be computed by interpolation.

– The polynomial Q ∈ Fpoly[X] defined as

Q(X) :=
∏
i∈E

(X − γi)

for some E ⊂ [m] such that |E| = w and {i ∈ [m] : xi 6= 0} ⊂ E, implying degQ = w.

10

– The polynomial P ∈ Fpoly[X] defined as

P := (Q · S)/F with F (X) :=

m∏
i=1

(X − γi) .

We stress some useful properties of these polynomials:

– The polynomial Q is a monic polynomial of degree w. Moreover, for every i ∈ [m], we have

xi 6= 0 ⇒ i ∈ E ⇒ Q(γi) = 0 .

– The polynomial F divides Q · S. Indeed, for every i ∈ [m], we have

(Q · S)(γi) = 0

since S(γi) 6= 0 ⇒ xi 6= 0 ⇒ Q(γi) = 0. The polynomial P is hence well defined.

– The polynomial P has degree degP ≤ w − 1.

If the prover convinces the verifier that there exists two polynomials P (with degP ≤ w−1) and Q (with
degQ = w) such that Q · S − P · F = 0 where S and F are built as described above, then the verifier can
deduce the following:

∀i ∈ [m], (Q · S)(γi) = P (γi) · F (γi) = 0

⇒ ∀i ∈ [m], Q(γi) = 0 or S(γi) = φ(xi) = 0

Since Q has at most w roots, the verifier concludes that φ(xi) 6= 0 in at most w positions. Thus wt(x) ≤ w.
We now explain how to prove this statement in the MPCitH paradigm. For this purpose, we describe an

MPC protocol, which on input x, P and Q outputs Accept if the above condition is verified and Reject
otherwise, except with a small false positive probability. The parties’ inputs are defined as the shares of JxAK,
JQK and JP K. Let us recall that a sharing of a polynomial is naturally defined as a sharing of its coefficients
(see Section 2.5). However, for the sharing of Q, we share all of its coefficients except the leading one. Indeed
since Q is monic, its leading coefficient is publicly known and is equal to 1. Moreover, it enables to convince
the verifier that Q is of degree exactly w, which is important since otherwise, a malicious prover could take
Q as the zero polynomial.

From its inputs, the MPC protocol first builds the polynomial S from xA. Then, to verify Q ·S = P ·F , it
evaluates the two sides of the relation on t random points r1, ..., rt (sampled by the verifier in the MPCitH
setting). If the relation is not verified, the probability to observe Q(rj)·S(rj) = P (rj)·F (rj) for all j ∈ [t] will
be low, which stems from the Schwartz-Zippel Lemma (see Appendix C). The larger the set from which the
evaluation points rj are sampled, the smaller the false positive probability p. For this reason, we take these
evaluation points in a field extension Fpoints of Fpoly. Such a field extension allows us to have more points
and so to detect more efficiently when Q · S 6= P · F . In practice, given an evaluation point rj , the parties
of the MPC protocol verify the relations Q(rj) · S(rj) = (P · F)(rj) by sacrificing multiplication triples as
described in Section 2.7. To proceed, the prover must previously build t multiplication triples (JajK, JbjK, JcjK)
for random elements aj , bj , cj ∈ Fpoints satisfying aj · bj = cj for j ∈ [t] and include them to the parties’
inputs (each party getting its corresponding share from JajK, JbjK and JcjK).

The MPC protocol runs as follows:

1. The parties sample t random points r1, . . . , rt of Fpoints.

2. The parties locally compute JxK from JxAK using Equation (1).

3. The parties locally compute JS(rj)K, JQ(rj)K and J(F ·P)(rj)K for all j ∈ [t]. Let us remark that JS(rj)K
can be computed from JxK by the parties without any interaction thanks to the linearity of Lagrange
interpolation formula:

JS(rj)K =
∑
i∈[m]

JxiK
∏

`∈[m], 6̀=i

rj − γ`
γi − γ`

.

On the other hand J(F · P)(rj)K is computed as F (rj) · JP (rj)K since F is publicly known.

11

4. For every j ∈ [t], the parties run an MPC verification of the multiplication triple
(
JS(rj)K, JQ(rj)K, J(F ·

P)(rj)K
)

by sacrificing the triple (JajK, JbjK, JcjK):
– The parties sample a random εj ∈ Fpoints.
– The parties locally set

JαjK = εj · JQ(rj)K + JajK and JβjK = JS(rj)K + JbjK.

– The parties broadcast JαjK and JβjK to obtain αj and βj .
– The parties locally set

JvjK = εj · J(F · P)(rj)K− JcjK + αj · JbjK + βj · JajK− αj · βj .

– The parties broadcast JvjK to obtain vj .

5. The parties output Accept if v = 0 and Reject otherwise.

Note that we do not need to specify how the random values rj ’s and εj ’s are sampled by the parties since
they will be provided as challenges from the verifier while turning to the zero-knowledge setting.

The above MPC protocol computes a non-deterministic function f which takes x, Q and P (and t
multiplication triples) as input and which outputs Accept or Reject. The randomness of this function
comes from the random evaluations points r1, . . . , rt and from the random challenges ε1, . . . , εt used by
the product checking protocol. Whenever x indeed satisfies wt(x) ≤ w and the polynomials P and Q are
genuinely computed as described above, the protocol outputs Accept with probability one. Whenever the
protocol input is not of this form, the protocol shall output Reject except with a small false positive
probability p. In other words, the output of the above protocol follows the distribution depicted in Table 1
where a good witness here means an x of weight at most w and polynomials P and Q which are correctly
built.

Let us make explicit the false positive probability p. We shall denote ∆ := |Fpoints|. Whenever the protocol
input is not a good witness, i.e. wt(x) > w, P or Q are not correctly built, we have Q · S 6= F · P . In the
above protocol, both sides of the relation are evaluated in t random points. The probability to have the
equality for i evaluation points among the t points is at most

max`≤m+w−1

{(
`
i

)(
∆−`
t−i
)}(

∆
t

)
since Q · S − F · P is a polynomial of degree at most m+ w − 1. This holds from a simple extension of the
Schwartz-Zippel Lemma that we provide in Appendix C. When this event occurs, the probability to obtain
Accept as output is (

1

∆

)t−i
,

which corresponds to the probability to get the t− i false positives in the verification of multiplication triples
(for the t− i remaining evaluation points rj for which Q(rj) · S(rj) 6= F (rj) · P (rj)). Thus, the global false
positive probability p satisfies

p ≤
t∑
i=0

max`≤m+w−1

{(
`
i

)(
∆−`
t−i
)}(

∆
t

) (
1

∆

)t−i
. (2)

3.2 General case (any d)

Let us now assume that (H, y) is an instance of a d-split syndrome decoding problem for some d ≥ 1. We can
easily adapt our protocol in that case. Instead of having a unique polynomial Q of degree w, we will have
d polynomials Q1, . . . , Qd of degree exactly w/d to prove the weight bound wt(xj) ≤ w/d for each chunk

12

xj of the SD solution. We then have d polynomials Sj (of degree m/d− 1) and d polynomials Pj (of degree

w/d− 1) satisfying the d relations Qj · Sj = F · Pj with F :=
∏m/d
j=1 (X − γj). To prove those d relations we

evaluate each of them on t random points r1, . . . , rt. We stress that the same t random points can be used
for each chunk, i.e. for every j ∈ [d].

A malicious prover might try to cheat on a single relation (i.e. on a single chunk of the SD solution), in
such a way that there exists j0 ∈ [d] with{

Qj0 · Sj0 6= F · Pj0 ,
∀j 6= j0, Qj · Sj = F · Pj .

So for a given point r, we use the dot-product checking of [KZ21] (described in Section 2.7) to check all the
equalities Qj(r) · Sj(r)=F (r) · Pj(r) at once. This saves communication without impacting the soundness
error compared to independent checks of the d relations.

Whenever the input x, {Pj}, {Qj} is not a good witness (i.e. whenever one xj has a weight greater than
w/d or one polynomial Pj or Qj is not correctly built), at least one of the relations Qj · Sj = F · Pj is not
verified. Since Qj · Sj − F · Pj is a polynomial of degree at most (m + w)/d − 1, the global false positive
probability for the d-split variant becomes

p ≤
t∑
i=0

max`≤(m+w)/d−1

{(
`
i

)(
∆−`
t−i
)}(

∆
t

) (
1

∆

)t−i
(3)

with ∆ := |Fpoints|. (This upper bound is equivalent to (2) where the max degree m+ w − 1 is replaced by
(m+ w)/d− 1).

The constraint on the size of Fpoly now becomes

|Fpoly| ≥
m

d

since we only need w/d points for the interpolation of the polynomials S1, . . . Sd. Thus using the d-split
version allows us to use smaller fields for Fpoly and Fpoints.

Let us note that in practice the new communication is not smaller than before, but rather equivalent
or higher, since we need to use bigger syndrome decoding instances to compensate the security loss of the
d-split version. The main benefit to introduce the d-split version is to work on polynomials of smaller degree
and/or on specific fields which provides better performance trade-offs (see Section 4.5).

3.3 Description of the Protocol

We now give the formal description of our zero-knowledge protocol (general case) in Protocol 2. For the
sake of clarity in the protocol description, we denote Q the tuple of polynomials (Q1, . . . , Qd). Same for
the polynomials P and S. The additions, substractions and polynomial evaluations of these tuples are
component-wise defined. For example, for a point r ∈ Fpoints, Q(r) means (Q1(r), . . . , Qd(r)). We also use
this bold notation for aj , bj , αj , βj and εj which shall represent vectors of Fdpoints. Let us recall that ◦
denotes the component-wise multiplication. In the scope of this protocol, the polynomial F is defined as

F (X) :=
∏m/d
i=1 (X − γi) with Fpoly = {γ1, γ2, . . .}.

3.4 Security Proofs

The following theorems state the completeness, zero-knowledge and soundness of Protocol 2. The proofs of
Theorems 3 and 4 are provided in appendices E and F.

Theorem 2 (Completeness). Protocol 2 is perfectly complete, i.e. a prover P who knows a solution x to
the syndrome decoding instance (H, y) and who follows the steps of the protocol always succeeds in convincing
the verifier V.

13

Inputs: Both parties have H = (H′|Im−k) ∈ F(m−k)×m
SD and y ∈ Fm−kSD , the prover also holds x := (x1 | x2 | . . . | xd) ∈ FmSD such that

y = Hx and wt(xj) ≤ w/d for j ∈ [d].

Round 1: The prover computes the proof witness: for all chunk j ∈ [d],

1. Choose a set Ej ⊂ [md] s.t. |Ej | = w
d and {` : (xj)` 6= 0} ⊂ Ej .

2. Compute Qj(X) =
∏
`∈Ej

(X − γ`) ∈ Fpoly[X].

3. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. degSj ≤ m
d − 1 and ∀` ∈ [md], Sj(γ`) = (xj)`.

4. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Then, the prover prepares the inputs for the multi-party computation as follows:

1. Sample a root seed: seed
$←− {0, 1}λ.

2. Compute parties’ seeds and commitment randomness (seedi, ρi)i∈[N] with TreePRG(seed).

3. For each party i ∈ {1, . . . , N},
– JajKi, JbjKi ← PRG(seedi), for each j ∈ [t]

– If i 6= N ,

• {JcjKi}j∈[t], JxAKi, JQKi, JP Ki ← PRG(seedi)

• statei = seedi
– Else,

• JxAKN = xA −
∑
` 6=N JxAK`

• JQKN = Q−
∑
` 6=N JQK`.

• JP KN = P −
∑
` 6=N JP K`.

• JcjKN = 〈aj , bj〉 −
∑
` 6=N JcjK`, for each j ∈ [t]

• aux = (JxAKN , JQKN , JP KN , {JcjKN}j∈[t])
• stateN = seedN || aux

– Commit the party’s state: comi = Com(statei; ρi).

The prover builds h = Hash(com1, . . . , comN) and sends it to the verifier.

Round 2: The verifier uniformly samples, for each j ∈ [t], an evaluation point rj ← Fpoints and a vector εj ← Fdpoints, and sends them

to the prover.

Round 3: The prover simulates the MPC protocol:

1. The parties locally set JxBK = y −H′JxAK.
2. The parties locally compute JSK by interpolation using JxK := (JxAK | JxBK).
3. Then for all j ∈ [t],

– The parties locally compute JS(rj)K, JQ(rj)K and JP (rj)K.
– They locally set JαjK = εj ◦ JQ(rj)K + JajK.
– They locally set JβjK = JS(rj)K + JbjK.
– The parties open JαjK and JβjK to get αj and βj .

– The parties locally set

JvjK = −JcjK + 〈εj , F (rj) · JP (rj)K〉+ 〈αj , JbjK〉+ 〈βj , JajK〉 − 〈αj ,βj〉 .

The prover builds h′ = Hash(Jα1K, Jβ1K, Jv1K, . . . , JαtK, JβtK, JvtK) and sends it to the verifier.

Round 4: The verifier uniformly samples i∗ ← [N] and sends it to the prover.

Round 5: The prover sends (statei, ρi)i6=i∗ , comi∗ , {JαjKi∗}j∈[t] and {JβjKi∗}j∈[t].

Verification: The verifier accepts iff all the following checks succeed:

1. For each i 6= i∗, she computes all the commitments to the parties’ states: comi = Com(statei; ρi). Then she checks that h
?
=

Hash(com1, . . . , comN).

2. Using {statei}i6=i∗ , she simulates all the parties except for i∗. From the recomputed shares, she checks that h′
?
=

Hash(Jα1K, Jβ1K, Jv1K, . . . , JαtK, JβtK, JvtK) where JvjKi∗ := −
∑
i6=i∗JvjKi.

Protocol 2: Zero-knowledge proof for syndrome decoding.

Proof. For any sampling of the random coins of P and V, if the computation described in Protocol 2 is
genuinely performed then all the checks of V pass. �

Theorem 3 (Honest-Verifier Zero-Knowledge). Let the PRG used in Protocol 2 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. There exists an efficient simulator S which, given
random challenge i∗ outputs a transcript which is (t, εPRG + εCom)-indistinguishable from a real transcript
of Protocol 2.

14

Theorem 4 (Soundness). Suppose that there is an efficient prover P̃ that, on input (H, y), convinces the
honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε

where the soundness error ε is equal to

p+
1

N
− p · 1

N

with p defined in Equation (3). Then, there exists an efficient probabilistic extraction algorithm E that, given
rewindable black-box access to P̃, produces with either a witness x := (x1 | . . . |xd) such that y = Hx and
∀j,wt(xj) ≤ w/d, or a commitment collision, by making an average number of calls to P̃ which is upper
bounded by

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
.

By adapting the parameters t and ∆, we can produce a protocol with soundness error arbitrarily close
to 1/N .

3.5 Performance

In the following analysis, we exclude the challenges from the communication cost since they are of very
moderate impact (and do not count whenever making the protocol non-interactive). The communication
then consists into

– Com := h,
– Res1 := h′ and
– Res2 :=

(
(statei, ρi)i 6=i∗ , comi∗ , {JαjKi∗}j∈[t], {JβjKi∗}j∈[t]

)
.

For i 6= N , statei simply consists in a seed of λ bits. For i = N , statei contains

– a seed of λ bits,
– the share JxAKN of a plaintext,
– the shares JQKN and JP KN which are 2 · d polynomials of degree w/d− 1,
– and the shares {JcjKN}j∈[t] of t points of Fpoints.

Let us recall that seeds are sampled using a tree PRG (as defined in Section 2.1) Instead of sending the N−1
seeds and commitment randomness of (statei, ρi)i 6=i∗ , we can instead send the sibling path from (statei∗ , ρi∗)
to the tree root, it costs at most λ · log2(N) bits (we need to reveal log2(N) nodes of the tree). Moreover
comi∗ is a commitment of 2λ bits, and {JαjKi∗}j∈[t], {JβjKi∗}j∈[t] are elements of Fpoints. The communication
cost (in bits) of the protocol is then

Size = 4λ+ k · log2 |FSD|︸ ︷︷ ︸
JxAKN

+ (2 · w) · log2 |Fpoly|︸ ︷︷ ︸
JQKN ,JP KN

+ (2 · d+ 1) · t · log2 |Fpoints|︸ ︷︷ ︸
{JαjKi∗ ,JβjKi∗ ,JcjKN}j∈[t]

+λ · log2(N)︸ ︷︷ ︸
(seedi)i6=i∗

+ 2λ︸︷︷︸
comi∗

As usual, to achieve a targeted soundness error 2−λ, we can perform τ parallel repetitions of the protocol
such that ετ ≤ 2−λ. And instead of sending τ values for h and h′, we can merge them together to send a
single h and a single h′. The communication cost (in bits) of the protocol with τ repetitions is

Size = 4λ+ τ ·
(
k · log2 |FSD|+ (2 · w) · log2 |Fpoly|+ (2 · d+ 1) · t · log2 |Fpoints|+ λ · log2(N) + 2λ

)
and the obtained soundness error is (

p+
1

n
− p · 1

n

)τ
.

15

3.6 Comparison

We compare our new protocol with existing zero-knowledge protocols for syndrome decoding (or equivalently
for message decoding). We compare these protocols on two SD instances of 128-bit security:

– Instance 1 [FJR21]: Syndrome Decoding on F2 with parameters

(m, k,w) = (1280, 640, 132);

– Instance 2 [CVE11]: Syndrome Decoding on F28 with parameters

(m, k,w) = (208, 104, 78).

The comparison for a soundness error of 2−128 is given in the Table 2. For our protocol, we provide two
instantiations for each syndrome decoding instance to give the reader an idea of the obtained performance
while changing the number of parties. The first instantiation called “short” corresponds to an instantiation
which provides small communication cost. The second one called “fast” corresponds to an instantiation with
faster computation but higher communication cost. The used parameters (N, τ, |Fpoly|, |Fpoints|, t) for our
scheme are

– Instance 1:

Short: (256, 16, 211, 222, 2) ⇒ ετ = 2−128.0

Fast: (32, 26, 211, 222, 1) ⇒ ετ = 2−129.6

– Instance 2:

Short: (256, 16, 28, 224, 2) ⇒ ετ = 2−128.0

Fast: (32, 26, 28, 224, 1) ⇒ ετ = 2−130.0

Name Protocol Year Instance 1 Instance 2 Proved statement

[Ste94] 1993 37.4 KB 46.1 KB y = Hx, wt(x) = w
[Vér96] 1997 31.7 KB 38.7 KB message decoding

[CVE11] 2010 - 37.4 KB y = Hx, wt(x) = w

[AGS11] 2011 24.8 KB - y = Hx, wt(x) = w

[GPS22] (short) 2021 - 15.2 KB y = Hx, wt(x) = w
[GPS22] (fast) 2021 - 19.9 KB y = Hx, wt(x) = w

[FJR21] (short) 2021 12.9 KB 15.6 KB y = Hx, wt(x) = w
[FJR21] (fast) 2021 20.0 KB 24.7 KB y = Hx, wt(x) = w

Our scheme (short) 2022 9.7 KB 6.9 KB y = Hx, wt(x) ≤ w
Our scheme (fast) 2022 14.4 KB 9.7 KB y = Hx, wt(x) ≤ w

Table 2. Comparison of our protocol with state-of-the-art zero-knowledge protocols for syndrome decoding. The
formulae for the communication costs of the different protocols and the used parameters are detailed in Appendix B.

We can remark that all the previous protocols prove an equality for the Hamming weight by relying on
isometries (i.e. permutations if FSD = F2). On our side, we only prove the inequality wt(w) ≤ w. We stress
that both versions (equality or inequality) can be merely equivalent for some SD parameters. Indeed, if w
is chosen sufficiently below the Gilbert-Varshamov bound and if we know there exists an SD solution x of
Hamming weight w, then proving the knowledge of a solution x′ with wt(x′) ≤ w amounts to proving the
knowledge of x with overwhelming probability.

16

4 The Signature Scheme

A signature scheme is a triplet of PPT algorithms (KeyGen,Sign,Verif). On input 1λ for security level λ,
KeyGen outputs a pair (pk, sk) where pk ∈ {0, 1}poly(λ) is a public key and sk ∈ {0, 1}poly(λ) is a private
key (a.k.a. secret key). On input a secret key sk and a message m ∈ {0, 1}∗, Sign produces a signature
s ∈ {0, 1}poly(λ). Verif is a deterministic algorithm which, on input a public key pk, a signature s and
a message m, outputs 1 if s is a valid signature for m under pk (meaning that it is a possible output
s← Sign(sk,m) for the corresponding sk) and it outputs 0 otherwise. The standard security property for a
signature scheme is the existential unforgeability against chosen message attacks: an adversary A given pk
and a oracle access to Sign(sk, ·) should not be able to produce a pair (s,m) satisfying Verif(pk, s,m) = 1
(for a message m which was not queried to the signing oracle).

In this section, we show how to turn our 5-round HVZK protocol into a signature scheme using the
Fiat-Shamir transform [FS87,AABN02]. After explaining the transformation, we give the description of the
signature scheme and then provide a security proof in the random oracle model (ROM).

4.1 Transformation into a Non-Interactive Scheme

To transform our protocol into a non-interactive scheme, we apply the multi-round variant of the Fiat-Shamir
transform [FS87] (see e.g. [EDV+12,CHR+16]). Concretely, we compute the challenge Ch1 and Ch2 as

h1 = Hash1(m, salt, h)
Ch1 ← PRG(h1)

and
h2 = Hash2(m, salt, h, h′)
Ch2 ← PRG(h2)

where m is the input message, where Hash1 and Hash2 are some hash functions (that shall be modeled as
random oracles) and where h and h′ are the Round 1 and Round 3 hash commitments merged for the τ
repetitions. We introduce a value salt called salt which is sampled from {0, 1}2λ at the beginning of the
signing process. This value is then used for each commitment to the parties’ states. Without it, the security
of the signature would be at most 2λ/2 because of the seed collisions between several signatures. Moreover,
since the signature security relies on the random oracle model, we can safely replace the commitment scheme
Com of the Protocol 2 by a single hash function Hash0.

The security of the obtained scheme is lower than the soundness error of Protocol 2. Indeed, in [KZ20a],
Kales and Zaverucha describe a forgery attack against signature schemes obtained by applying the Fiat-
Shamir transform to 5-round protocols. Adapting this attack to our context yields a forgery cost of

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+Nτ2

}
(4)

with p defined in Equation (3). This is substantially lower than the target forgery cost of 1/ε, for ε being the
soundness error of Protocol 2 (see Theorem 4). We therefore need to adapt the parameters to fill this gap.

4.2 Description of the Signature Scheme

In our signature scheme, the key generation algorithm randomly samples a syndrome decoding instance
(H, y) of the syndrome decoding problem with solution x (i.e. y = Hx) with security parameter λ. In order
to make the key pair compact, the matrix H is pseudorandomly generated from a λ-bit seed. Specifically, a
call to the KeyGen algorithm outputs a pair (pk, sk) :=

(
(seedH , y),mseed

)
generated as follows:

1. mseed← {0, 1}λ
2. (seedH , x)← PRG(mseed) where x is sampled in {x ∈ Fm2 | wt(x) = w}

17

3. H ← PRG(seedH)
4. y = Hx; pk = (seedH , y); sk = mseed

For the sake of simplicity, we omit the re-generation of H and x from the seeds in the algorithms below
and assume pk = (H, y) and sk = (H, y, x).

Given a secret key sk = (H, y, x) and a message m ∈ {0, 1}∗, the algorithm Sign proceeds as described in
Figure 1. And given a public key pk = (H, y), a signature σ and a message m ∈ {0, 1}∗, the algorithm Verif
proceeds as described in Figure 2. For the sake of clarity, as for the protocol description in Section 3.3, we
use the bold notation to represent a tuple of d polynomials or of d points.

4.3 Signature Properties

We now state the security of our signature scheme in the following theorem. The proof is provided in
Appendix G.

Theorem 5. Suppose the PRG used is (t, εPRG)-secure and any adversary running in time t has at most an
advantage εSD against the underlying d-split syndrome decoding problem. Model Hash0, Hash1 and Hash2 as
random oracles where Hash0, Hash1 and Hash2 have 2λ-bit output length. Then chosen-message adversary
against the signature scheme depicted in Figure 1, running in time t, making qs signing queries, and making
q0, q1, q2 queries, respectively, to the random oracles, succeeds in outputting a valid forgery with probability

Pr[Forge] ≤ (q0 + τNqs)
2

2 · 22λ
+
qs(qs + q0 + q1 + q2)

22λ
+ qs · τ · εPRG + εSD + q2 · ετ ,

where ε = p+ 1
N − p ·

1
N and p defined in Equation (3).

4.4 Parameters

In what follows, we propose three parameter sets which achieve a security level of 128 bits for the signature:

– the first one shall rely on the hardness to solve the SD problem on F2;
– the second one shall also rely on the hardness to solve the SD problem on F2, but we shall use a d-split

version to get polynomials over a chosen field, concretely F256;
– the last one shall rely on the hardness to solve the SD problem on F256.

Choice of the SD parameters. Let us first describe how we estimate the security level of a syndrome decoding
instance for a random linear code over F2. The best practical attack for our parameters is the algorithm of
May, Meurer and Thomae [MMT11]. As argued in [FJR21], we can lower bound the cost of this attack by
only considering the cost of its topmost recursion step:(

m
w

)(
k+`
p

)(
m−k−`
w−p

) · (L+
L2

2`−p

)
with L :=

(
k+`
p/2

)
2p

.

As usual in ISD algorithm we need to optimize for the parameters ` (a number of rows) and p (a partial
Hamming weight). Since we only account for the cost of the topmost level in the algorithm, this yields a
slightly conservative estimate for the security level. We use this estimate to choose the parameters of our
scheme.

Given these considerations, we suggest the following concrete parameters:

– Variant 1: standard binary syndrome decoding problem. We propose the parameters

(q,m, k, w, d) = (2, 1280, 640, 132, 1)

which achieve a security level of 128 bits according to the above formula.

18

Inputs: A secret key sk = (H, y, x) and a message m ∈ {0, 1}∗.

Sample a random salt salt← {0, 1}2λ.

Phase 1.0: Building of the proof witness. For all chunk j ∈ [d],

1. Compute Qj(X) =
∏
`∈Ej

(X − γ`) ∈ Fpoly[X] where Ej = {` : (xj)` 6= 0}.
2. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. degSj ≤ m

d − 1 and ∀` ∈ [md], Sj(γ`) = (xj)`.

3. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Phase 1.1: Preparation of the MPC-in-the-Head inputs. For each iteration e ∈ [τ],

1. Sample a root seed: seed[e]
$←− {0, 1}λ.

2. Compute parties’ seeds seed
[e]
1 , . . . , seed

[e]
N with TreePRG(salt, seed).

3. For each party i ∈ {1, . . . , N},
– Ja[e]

j Ki, Jb
[e]
j Ki ← PRG(salt, seed

[e]
i), for each j ∈ [t]

– If i 6= N ,

• {Jc[e]j Ki}j∈[t], Jx
[e]
A Ki, JQ[e]Ki, JP [e]Ki ← PRG(salt, seed

[e]
i)

• state
[e]
i = seed

[e]
i

– Else,

• Jx[e]
A KN = xA −

∑
j 6=N Jx[e]

A Kj
• JQ[e]KN = Q−

∑
` 6=N JQ[e]K`.

• JP [e]KN = P −
∑
` 6=N JP [e]K`.

• Jc[e]j KN = 〈a[e]
j , b

[e]
j 〉 −

∑
` 6=N Jc[e]j K`, for each j ∈ [t]

• aux[e] = (Jx[e]
A KN , JQ[e]KN , JP [e]KN , {Jc[e]j KN}j∈[t])

• state
[e]
N = seed

[e]
N || aux

[e]

– Compute com
[e]
i = Hash0(salt, e, i, state

[e]
i).

Phase 2: First challenge (randomness for the MPC protocol).

1. Compute h1 = Hash1(m, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N−1, com

[τ]
N).

2. Extend hash {r[e]j , ε
[e]
j }e∈[τ],j∈[t] ← PRG(h1) where r

[e]
j ∈ Fpoints and εj

[e] ∈ Fdpoints.

Phase 3: Simulation of the MPC protocol. For each iteration e ∈ [τ],

1. The parties locally set Jx[e]
B K = y −H′Jx[e]

A K.
2. Then for all j ∈ [t],

– The parties locally compute JS[e]K by interpolation using Jx[e]K := (Jx[e]
A K | Jx[e]

B K).
– They locally compute JS[e](r

[e]
j)K, JQ[e](r

[e]
j)K and JP [e](r

[e]
j)K.

– They locally set Jα[e]
j K = ε

[e]
j ◦ JQ[e](r

[e]
j)K + Ja[e]

j K.

– They locally set Jβ[e]
j K = JS[e](r

[e]
j)K + Jb[e]j K.

– The parties open Jα[e]
j K and Jβ[e]

j K to get α
[e]
j and β

[e]
j .

– The parties locally set

Jv[e]j K = −Jc[e]j K + 〈ε[e]j , F (r
[e]
j) · JP [e]

(r
[e]
j)K〉+ 〈α[e]

j , Jb[e]j K〉+ 〈β[e]
j , Ja[e]

j K〉 − 〈α[e]
j ,β

[e]
j 〉 .

Phase 4: Second challenge (parties to be opened).

1. Compute h2 = Hash2(m, salt, h1, {Jα[e]
j K, Jβ[e]

j K, Jv[e]j K}j∈[t],e∈[τ]).
2. Expand hash {i∗[e]}e∈[τ] ← PRG(h2) where i∗[e] ∈ [N].

Phase 5: Building of the signature. Output the signature σ built as

salt | h1 | h2 |
(

(state
[e]
i)

i6=i∗[e] | com
[e]

i∗[e]
| {Jα[e]

j K
i∗[e]}j∈[t] | {Jβ

[e]
j K

i∗[e]}j∈[t]
)
e∈[τ]

.

Fig. 1. Code-based signature scheme - Signing algorithm.

– Variant 2: d-split binary syndrome syndrome decoding problem, where d is taken to have m/d ≤ 256 so
that Fpoly = F256. We propose the parameters

(q,m, k, w, d) = (2, 1536, 888, 120, 6)

which achieve a security of 129 bits. Indeed, the standard SD problem with the same parameters (but
d = 1) has a security of 145 bits and we know, thanks to the Theorem 8, that there is a security loss of

19

Inputs: A public key pk = (H, y), a signature σ and a message m ∈ {0, 1}∗.

1. Parse the signature σ as

salt | h1 | h2 |
(

(state
[e]
i)

i6=i∗[e] | com
[e]

i∗[e]
| {Jα[e]

jKi∗[e]}j∈[t] | {Jβ
[e]
jKi∗[e]}j∈[t]

)
e∈[τ]

.

2. Extend hash {r[e]j , ε
[e]
j }e∈[τ],j∈[t] ← PRG(h1) where r

[e]
j ∈ Fpoints and εj

[e] ∈ Fdpoints.

3. Extend hash {i∗[e]}e∈[τ] ← PRG(h2) where i∗[e] ∈ [N].

4. For each iteration e ∈ [τ],

– For each i 6= i∗[e], computes com
[e]
i = Hash0(salt, e, i, state

[e]
i).

– Using {state[e]i }i6=i∗[e] , simulate all the parties except for i∗[e] as in the Phase 3 of the signing algorithm and get

Jα1K, . . . , JαtK, Jβ1K, . . . , JβtK, JvK for all parties except for i∗[e].

– Compute Jv[e]j K
i∗[e] := −

∑
i6=i∗[e]Jv

[e]
j Ki for all j ∈ [t].

5. Compute h′1 = Hash1(m, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N−1, com

[τ]
N).

6. Compute h′2 = Hash2(m, {Jα[e]
j K, Jβ[e]

j K, Jv[e]j K}j∈[t],e∈[τ]).

7. Output Accept iff h′1
?
= h1 and h′2

?
= h2.

Fig. 2. Code-based signature scheme - Verification algorithm.

at most 16 bits while switching to d = 6. Let us stress that this choice is conservative since the current
state of the art does not contain attacks filling the gap of this reduction. Our aim here was to build a
practical signature scheme with conservative security, but searching for more aggressive parameters for
the d-split syndrome decoding problem would be an interesting direction for future research.

– Variant 3: syndrome decoding instance defined over F256. The cryptanalysis of the syndrome decoding
problem on a field which is larger than F2 has been less studied. Previous articles [CVE11,GPS22] propose
parameters sets for syndrome decoding instances over F28 where the code length m is between 200 and
210. In our case, we choose m = 256 in such a way that the polynomial degree is equal to the field
size. Besides being more conservative, this choice has the advantage of easing the use of a Fast Fourier
Transform. We propose the following parameters4 for this variant:

(q,m, k, w, d) = (256, 256, 128, 80, 1) .

Choice of the MPC parameters. For each variant, we suggest in Table 3 a parameter set for the MPC
protocol.

Scheme
SD Parameters MPC Parameters

q m k w d |Fpoly| |Fpoints| t p

Variant 1 2 1280 640 132 1 211 222 6 ≈ 2−69

Variant 2 2 1536 888 120 6 28 224 5 ≈ 2−79

Variant 3 28 256 128 80 1 28 224 5 ≈ 2−78

Table 3. SD and MPC parameters.

To have a short signature, we take the smallest possible field Fpoly since a signature transcript includes
polynomials on that field. As explained in Section 3, Fpoly must be a field extension of FSD which verifies
the relation |Fpoly| ≥ m/d. Then, it remains to choose |Fpoints| and t. These parameters are chosen to make
the false positive probability p is negligible compared to 1/N such that the optimal forgery strategy of an

4 More cryptanalysis of the SD problem over F256 would be welcome to get more confidence in the choice of the
parameters. Such research is out of the scope of present article.

20

attacker is to take τ1 = 1 in the Equation (4). As a result, we just need to increase the number of iterations
τ by one compared to the interactive protocol.

4.5 Implementation and Performances

For each repetition in the computation of each party, d polynomial interpolations are involved. Indeed, from
JxK, the parties must compute

JS`K(X) =

m/d∑
i=1

Jxm
d `+i

K ·
m/d∏

j=1,j 6=i

X − wj
wi − wj

for all ` ∈ [d]. Then, the parties must evaluate JS`K in t random evaluation points sampled by the verifier, for
all ` ∈ [d]. The natural way to implement that is to compute the coefficients of all the polynomials {JS`K}`
from JxK, then to evaluate these polynomials t times. However this implies that the signer must realize τ ·N ·d
interpolations. Instead, the signer can compute the vector u(r) defined as

u(r) =

 m/d∏
j=1,j 6=i

r − wj
wi − wj


1≤i≤md

for each evaluation point r, and then use these vectors in the computation of all the parties as

JS`(r)K = 〈Jx`K, u(r)〉

where Jx`K is the `th chunk of JxK. By proceeding this way, the number of (transposed) interpolations done
by the signer is of τ · t.

To reduce the computational cost of the interpolations, we can make use of a Fast Fourier Transform
(FFT). We are working on field extensions of F2, so we can use the Additive FFT independently introduced
by Wang-Zhu in 1988 [WZ88] and by Cantor in 1989 [Can89], which was further improved in [vzGG03,GM10].

Although such additive FFT exists for any extension of F2, the algorithms are simpler for a field of size 2(2i)

for some i, which is why we define Fpoly as F256. On such a field F, we indeed have an efficient additive FFT
using 1

2 |F| log2 |F| multiplications to evaluate a polynomial (of degree lower than |F|) in |F| points.
We implemented the signature scheme in C. In our implementation, the pseudo-randomness is generated

using AES in counter mode and the hash function is instantiated with SHAKE. We benchmarked our scheme
on a 3.8 GHz Intel Core i7 CPU with support of AVX2 and AES instructions. All the reported timings were
measured on this CPU while disabling Intel Turbo Boost.

Remark 2. Another motivation for using Fpoly = F256 is that some Intel processors have dedicated instruc-
tions for F256 arithmetic. We therefore expect substantial speed-ups for the instances of our signature scheme
using Fpoly = F256 on these processors. Optimizing and benchmarking such implementations is left for future
research.

We instantiate two trade-offs per variant: the first one lowering communication cost to produce short
signatures, and the second one lowering computational cost to get a fast signature computation. We obtain
the parameters and sizes described in Table 4. We provide the measured computational performances of our
signature implementation in Table 5.

Future investigations. We tried to optimize the implementation using some algorithmetic tricks, but we did
not yet investigate the possible software optimizations like vectorization or bitslicing. Although the variants
1 and 2 are more conservative because they rely on the hardness of the binary syndrome decoding problem,
variant 3 is more promising in terms of signature size and computation time. While we have investigated
parameter sets where FSD is a field extension of F2, more cryptanalysis for the SD problem on those fields
as well as on non-binary fields would be welcome. An interesting idea would be to instantiate our scheme
with a prime field FSD for which the Number-Theoretic Transform (NTT) is defined. If FSD is large enough,
we could then take the same field for Fpoly than FSD and we would have fast polynomial interpolations and
simpler multiplication operations.

21

λ Scheme Aim
Parameters |pk| |sk| Signature
N τ |sgn| (max) |sgn| (avg, std)

128
Variant 1

Fast 32 27 96 16 16 422 16 006, 446
128 Short 256 17 96 16 11 193 11 160, 127

128
Variant 2

Fast 32 27 97 16 17 866 17 406, 494
128 Short 256 17 97 16 12 102 12 066, 141

128
Variant 3

Fast 32 27 144 16 12 115 11 835, 302
128 Short 256 17 144 16 8 481 8 459, 86

Table 4. Parameters (N, τ) with the achieved communication costs (in bytes).

λ Variant Aim Keygen Sign Verify

128
Variant 1

Fast
n/a†

128 Short

128
Variant 2

Fast
0.03 ms

114 162 cycles
13.4 ms

52 463 114 cycles
12.7 ms

50 306 845 cycles

128 Short
0.03 ms

113 852 cycles
64.2 ms

251 099 099 cycles
60.7 ms

243 055 474 cycles

128
Variant 3

Fast
0.01 ms

49 181 cycles
6.4 ms

25 253 580 cycles
5.9 ms

23 816 143 cycles

128 Short
0.01 ms

49 057 cycles
29.5 ms

114 226 505 cycles
27.1 ms

108 541 768 cycles

Table 5. Benchmarks of our signature implementation. Timings are averaged over 10 000 measurements. The CPU
clock cycles have been measured using SUPERCOP (https://bench.cr.yp.to/supercop.html).
†We only have a proof of concept implementation with irrelevant timings.

5 Comparison

In this section, we compare our scheme to different code-based and post-quantum signature schemes from
the literature.

5.1 Comparison with Other Code-Based Signature Schemes

In the state of the art, there exist two approaches to build signatures. On one hand, there is the hash-and-
sign paradigm which relies on the existence of a (code-based) trapdoor permutation. Wave [DST19] is a
code-based signature scheme in this paradigm. Such schemes are often more vulnerable to structural attacks.
On the other hand, further signature schemes are constructed by applying the Fiat-Shamir transform to
(zero-knowledge) identification schemes, which can rely on weaker assumptions (and typically the SD for
random linear codes). Historically such schemes, like the famous Stern protocol, give rise to large signatures
because of the high soundness error of the underlying identification scheme (2/3 or 1/2). To avoid this issue,
a solution consists in relying on different code-based problems. For instance, LESS is a recent scheme which
security relies on the hardness of the Linear Code Equivalence problem [BMPS20,BBPS21]. Another direction
is to find a way to adapt the Schnorr-Lyubashevsky approach to code-based cryptography. Durandal is a
recent scheme following this approach [ABG+19]. More recently, some works [GPS22,FJR21,BGKM22] have
obtained better soundness by relying on the MPC-in-the-Head principle. The proposed schemes achieve small
signature sizes at the cost of slower computation. Depending on the setting, they can produce signatures
with different trade-offs between the signature size and the computational cost. The current work follows
this approach while achieving better trade-offs than any of these previous works.

22

https://bench.cr.yp.to/supercop.html

Scheme Name Year |sgn| |pk| tsgn tverif Assumption

Wave 2019 2.07 K 3.2 M 300 -
SD over F3 (large weight)

(U,U + V)-codes indisting.

Durandal - I 2018 3.97 K 14.9 K 4 5 Rank SD over F2m

Durandal - II 2018 4.90 K 18.2 K 5 6 Rank SD over F2m

LESS-FM - I 2020 15.2 K 9.77 K - - Linear Code Equivalence
LESS-FM - II 2020 5.25 K 206 K - - Perm. Code Equivalence
LESS-FM - III 2020 10.39 K 11.57 K - - Perm. Code Equivalence

[GPS22]-256 2021 24.0 K 0.11 K - - SD over F256

[GPS22]-1024 2021 19.8 K 0.12 K - - SD over F1024

[FJR21] (fast) 2021 22.6 K 0.09 K 13 12 SD over F2

[FJR21] (short) 2021 16.0 K 0.09 K 62 57 SD over F2

[BGKM22] - Sig1 2022 23.7 K 0.1 K - - SD over F2

[BGKM22] - Sig2 2022 20.6 K 0.2 K - - (QC)SD over F2

Our scheme - Var1f 2022 15.6 K 0.09 K - - SD over F2

Our scheme - Var1s 2022 10.9 K 0.09 K - - SD over F2

Our scheme - Var2f 2022 17.0 K 0.09 K 13 13 SD over F2

Our scheme - Var2s 2022 11.8 K 0.09 K 64 61 SD over F2

Our scheme - Var3f 2022 11.5 K 0.14 K 6 6 SD over F256

Our scheme - Var3s 2022 8.26 K 0.14 K 30 27 SD over F256

Table 6. Comparison of our scheme with signatures from the literature (128-bit security). The sizes are in bytes and
the timings are in milliseconds. Reported timings are from the original publications: Wave has been benchmarked on
a 3.5 Ghz Intel Xeon E3-1240 v5, Durandal on a 2.8 Ghz Intel Core i5-7440HQ, while [FJR21] and our scheme on a
3.8 GHz Intel Core i7.

Table 6 compares the performances of our scheme with the current code-based signature state of the art,
for the 128-bit security level.5 We observe that our scheme outperforms all the existing code-based signatures
for the |sgn|+ |pk| metric. Depending on the parameters, it can even produce signatures such that |sgn|+ |pk|
is below the symbolic cap of 10 KB. Regardless of the key size, Wave still achieves the shortest signatures.
In terms of security, our scheme has the advantage of relying on the hardness of one of the oldest problems
of the code-based cryptography, namely the syndrome decoding for random linear codes in Hamming weight
metric.

5.2 Comparison with other Post-Quantum Signature Schemes

Finally, we compare in Table 7 our construction with other signature schemes aiming at post-quantum
security. First of all, let us note that the lattice-based signature schemes (such as Dilithium [BDK+21a]
and Falcon [FHK+20]) are currently the most efficient post-quantum signature schemes. They achieve small
signature size and efficient running time. However, the goal of our construction is to propose a signature
scheme based on an alternative problem for the sake of diversity of security assumptions. All the others
schemes have very short public keys and secret keys (less than 150 bytes for 128-bit security), which is
hence not a point for comparison. Depending on the chosen parameters, our scheme can be competitive
with Picnic3 [KZ20b] and the recently proposed “Picnic4” [KZ21] which also rely on the MPC-in-the-Head
paradigm. Like Picnic4, it can produce signatures with a size of around 8 KB. However, our scheme is arguably
more conservative in terms of security since Picnic is based on the hardness of inverting LowMC [ARS+15],
a cipher with unconventional design choices, while our scheme is based on the hardness of the syndrome
decoding problem on linear codes, which has a long cryptanalysis history and is believed to be very robust.
Banquet [BdK+21b] is a signature scheme for which the security is based on the hardness of inverting AES

5 We did not include “Sig 3” from [BGKM22] since it is similar to [FJR21] with slight differences (message decoding
setting) which do not improve the scheme.

23

(instead of LowMC), which can also be argued to be a conservative choice. Our scheme over F2 is competitive
with Banquet: slightly shorter and slightly slower (but the timing could be optimized). On the other hand, our
scheme on F256 clearly outperforms Banquet. Our scheme can also be competitive with SPHINCS+ [BHK+19]
depending on the exact criteria. For similar signature sizes, our signature computation is significantly faster
while our signature verification is significantly slower than those of SPHINCS+.

Scheme Name |sgn| |pk| tsgn tverif

Dilithium2 2.4 K 1.3 K 0.065 0.024
Falcon-512 0.65 K 0.88 K 0.168 0.036

SPHINCS+-128f 16.7 K 0.03 K 14 1.7
SPHINCS+-128s 7.7 K 0.03 K 239 0.7

Picnic3 12.3 K 0.03 K 5.2 4.0
Picnic4 7.8 K 0.03 K ≈ 20 ≈ 20

Banquet (fast) 19.3 K 0.03 K 6 5
Banquet (short) 13.0 K 0.03 K 44 40

Our scheme - Var1f 15.6 K 0.09 K - -
Our scheme - Var1s 10.9 K 0.09 K - -

Our scheme - Var2f 17.0 K 0.09 K 13 13
Our scheme - Var2s 11.8 K 0.09 K 64 61

Our scheme - Var3f 11.5 K 0.14 K 6 6
Our scheme - Var3s 8.3 K 0.14 K 30 27

Table 7. Comparison of our scheme with signatures from the literature. The sizes are in bytes and the timings are
in milliseconds. Reported timings for Falcon have been benchmarked on a 2.3 Ghz Intel Core i5-8259U in [FHK+20],
and timings for Dilithium and our scheme have been benchmarked on a 3.8 Ghz Intel Core i7. The benchmarks
of the other schemes have been realized on a Intel Xeon W-2133 CPU at 3.60GHz, the values for SPHINCS+ and
Banquet have been extracted from [BdK+21b] while the values for Picnic3 have been extracted from its original
publication [KZ20b].

Acknowledgements. This work has been supported by the European Union’s H2020 Programme under
grant agreement number ERC-669891.

References

AABN02. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification to sig-
natures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In
Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer, Heidel-
berg, April / May 2002.

ABG+19. Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. Durandal: A rank
metric based signature scheme. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 728–758. Springer, Heidelberg, May 2019.

ACBH13. Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, Rachid El Bansarkhani, and Gerhard Hoffmann.
Code-Based Identification and Signature Schemes in Software. In Alfredo Cuzzocrea, Christian Kittl,
Dimitris E. Simos, Edgar R. Weippl, and Lida Xu, editors, Security Engineering and Intelligence Infor-
matics - CD-ARES 2013 Workshops: MoCrySEn and SeCIHD, Regensburg, Germany, September 2-6,
2013. Proceedings, volume 8128 of Lecture Notes in Computer Science, pages 122–136. Springer, 2013.

AFS03. Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A fast provably secure cryptographic hash function.
Cryptology ePrint Archive, Report 2003/230, 2003. https://eprint.iacr.org/2003/230.

24

https://eprint.iacr.org/2003/230

AGS11. Carlos Aguilar, Philippe Gaborit, and Julien Schrek. A new zero-knowledge code based identification
scheme with reduced communication. In 2011 IEEE Information Theory Workshop, pages 648–652, 2011.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

BBC+19. Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini. A Finite
Regime Analysis of Information Set Decoding Algorithms. Algorithms, 12(10):209, 2019.

BBPS21. Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. LESS-FM: Fine-
tuning signatures from the code equivalence problem. In Jung Hee Cheon and Jean-Pierre Tillich, editors,
Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021, pages 23–43. Springer,
Heidelberg, 2021.

BDK+21a. Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. Crypstals-dilithium – algorithm specifications and supporting docu-
mentation. Version 3.1 – 8 February 2021, 2021. https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf.
BdK+21b. Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg

Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, Heidelberg, August 1992.

BGKM22. Löıc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Victor Mateu. Code-based Signatures from New
Proofs of Knowledge for the Syndrome Decoding Problem, 2022.

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and Peter
Schwabe. The SPHINCS+ signature framework. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2129–2146. ACM Press, November 2019.

BMPS20. Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini. LESS is more: Code-based
signatures without syndromes. In Abderrahmane Nitaj and Amr M. Youssef, editors, AFRICACRYPT
20, volume 12174 of LNCS, pages 45–65. Springer, Heidelberg, July 2020.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and
their application to lattice-based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 495–526. Springer, Heidelberg,
May 2020.

Can89. David G. Cantor. On arithmetical algorithms over finite fields. Journal of Combinatorial Theory, Series
A, 50:285–300, 1989.

CDG+20. Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz, Vladimir Kolesnikov, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, Xiao Wang, and Greg Zaverucha.
The Picnic Signature Scheme – Design Document. Version 2.2 – 14 April 2020, 2020. https:

//raw.githubusercontent.com/microsoft/Picnic/master/spec/design-v2.2.pdf.
CHR+16. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. From 5-

pass MQ-based identification to MQ-based signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 135–165. Springer, Heidelberg, December
2016.

CVE11. Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui. A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In Alex Biryukov, Guang Gong, and Douglas R.
Stinson, editors, SAC 2010, volume 6544 of LNCS, pages 171–186. Springer, Heidelberg, August 2011.

DLO+18. Ivan Damg̊ard, Ji Luo, Sabine Oechsner, Peter Scholl, and Mark Simkin. Compact zero-knowledge proofs
of small Hamming weight. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume
10770 of LNCS, pages 530–560. Springer, Heidelberg, March 2018.

DST19. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new family of trapdoor one-
way preimage sampleable functions based on codes. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 21–51. Springer, Heidelberg, December 2019.

EDV+12. Sidi Mohamed El Yousfi Alaoui, Özgür Dagdelen, Pascal Véron, David Galindo, and Pierre-Louis Cayrel.
Extended security arguments for signature schemes. In Aikaterini Mitrokotsa and Serge Vaudenay, editors,
AFRICACRYPT 12, volume 7374 of LNCS, pages 19–34. Springer, Heidelberg, July 2012.

FHK+20. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas
Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-
based compact signatures over NTRU. Version 1.2 – 1 October 2020, 2020. https://falcon-sign.info/
falcon.pdf.

25

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://raw.githubusercontent.com/microsoft/Picnic/master/spec/design-v2.2.pdf
https://raw.githubusercontent.com/microsoft/Picnic/master/spec/design-v2.2.pdf
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf

FJR21. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared permutation for syndrome decoding: New
zero-knowledge protocol and code-based signature. Cryptology ePrint Archive, Report 2021/1576, 2021.
https://eprint.iacr.org/2021/1576.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

GG07. Philippe Gaborit and Marc Girault. Lightweight code-based identification and signature. In IEEE
International Symposium on Information Theory, ISIT 2007, Nice, France, June 24-29, 2007, pages 191–
195. IEEE, 2007.

GM10. Shuhong Gao and Todd Mateer. Additive Fast Fourier Transforms Over Finite Fields. IEEE Transactions
on Information Theory, 56(12):6265–6272, 2010.

GPS22. Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practical code-based signature scheme
from zero-knowledge proofs with trusted setup. Cryptography, 6(1), 2022.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007.

KZ20a. Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass
identification schemes. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20, volume
12579 of LNCS, pages 3–22. Springer, Heidelberg, December 2020.

KZ20b. Daniel Kales and Greg Zaverucha. Improving the performance of the Picnic signature scheme. IACR
TCHES, 2020(4):154–188, 2020. https://tches.iacr.org/index.php/TCHES/article/view/8680.

KZ21. Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum
Signatures. Preliminary Draft, October 29, 2021, 2021. https://groups.google.com/a/list.nist.gov/
g/pqc-forum/c/vLyUa_NFUsY/m/gNSnuhmxBQAJ.

LN17. Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic circuits with
malicious adversaries and an honest-majority. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 259–276. ACM Press, October / November 2017.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in Õ(20.054n). In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124.
Springer, Heidelberg, December 2011.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000.

Ste94. Jacques Stern. A new identification scheme based on syndrome decoding. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 13–21. Springer, Heidelberg, August 1994.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-linear error
weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th International Workshop, PQCrypto
2016, pages 144–161. Springer, Heidelberg, 2016.

Vér96. Pascal Véron. Improved identification schemes based on error-correcting codes. Appl. Algebra Eng.
Commun. Comput., 8(1):57–69, 1996.

vzGG03. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2003.
WZ88. Y. Wang and X. Zhu. A fast algorithm for the Fourier transform over finite fields and its VLSI imple-

mentation. IEEE Journal on Selected Areas in Communications, 6(3):572–577, 1988.

26

https://eprint.iacr.org/2021/1576
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/vLyUa_NFUsY/m/gNSnuhmxBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/vLyUa_NFUsY/m/gNSnuhmxBQAJ

– Supplementary Material –

A Proof of Theorem 1

Proof. To prove the theorem, we build below an algorithm A1 to solve the traditional SD problem of pa-
rameters (m, k,w) using an algorithm Ad which solves the d-split SD problem with the same parameters.

Algorithm A1 (on input an SD instance (H, y)):

1. Sample a permutation σ of {1, . . . ,m}.
2. Permute the columns of H using σ to get Ĥ.

3. Run Ad on input (Ĥ, y) to get x̂.
4. If x̂ = ⊥, return ⊥.
5. Permute the coordinates of x̂ using σ−1 to get x.
6. Return x.

The probability to transform an SD instance into a d-split SD instance in Step 2 is
(
m/d
w/d

)d
/
(
m
w

)
. Thus we

have

ε1 := Pr[A1(H, y) 6= ⊥]

≥ Pr[A1(H, y) 6= ⊥ ∩ (Ĥ, y) is a d-split SD]

=

(
m/d
w/d

)d(
m
w

) · Pr[A1(H, y) 6= ⊥ | (Ĥ, y) is a d-split SD]

=

(
m/d
w/d

)d(
m
w

) · Pr[Ad(Ĥ, y) 6= ⊥ | (Ĥ, y) is a d-split SD]

=

(
m/d
w/d

)d(
m
w

) · εd
B Communication Costs of ZK PoK for Syndrome Decoding

In this section, we exhibit formulas for the communication cost of state-of-the-art zero-knowledge proof-of-
knowledge of a syndrome decoding instance:

– the Stern’s protocol [Ste94],
– the Véron’s protocol [Vér96],
– the [CVE11]’s protocol,
– the [AGS11]’s protocol,
– the [GPS22]’s protocol,
– and the [FJR21]’s protocol.

We consider the SD problem over Fq with parameters (m, k,w) and a target soundness error of 2−λ. To
achieve this soundness error, we need to execute these protocols many times. In what follows, we denote τ
the number of executions.

We describe below the mean communication cost of all the protocols. We exclude the challenges from all
these costs since they are of very moderate impact and do not count whenever making the protocol non-
iterative. Moreover, we do not take the implementation details into consideration, meaning that the size of

27

all the elements of the proofs correspond to their Shannon entropy. For example, the cost of a permutation
of {1, . . . ,m} would be about log2(m!) bits.

To ease the formulae for the communication costs, we define the following costs:

– sd is the cost to send a random seed (λ bits);
– dig is the cost to send a hash digest or a commitment output (2λ bits);
– ptx is the cost to send a code input message (k · log2 q bits);
– cod is the cost to send a codeword (m · log2 q bits);
– nse is the cost to send a noise vector (log2(

(
m
w

)
· (q − 1)w) bits);

– iso is the cost to send a isometry of Fmq (log2(m! · (q − 1)m) bits).

We note that the cost iso is only used whenever the isometry to be sent cannot be pseudorandomly
generated from a seed but must be computed with respect to other elements of the proof.

Stern’s protocol. The soundness error of this protocol is (2/3)τ and its optimized cost is

dig + τ · [dig + (2 · sd + 2 · cod + nse)/3].

Véron’s protocol. The soundness error of this protocol is (2/3)τ and its optimized cost is

dig + τ · [dig + (2 · sd + ptx + cod + nse)/3].

CVE10’s protocol. The soundness error of this protocol is
(

q
2(q−1)

)τ
and its cost is

dig + τ · [dig + cod + (sd + nse)/2].

AGS11’s protocol (q = 2). The soundness error of this protocol is
(
k+1
2k

)τ
and its cost is

2 · dig + τ · [dig + (sd + ptx + cod + nse)/2].

GPS21’s protocol. The soundness error of this protocol is

max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
· qk−M+τ

}
and its cost is

2 · dig + τ · log2

M

τ
· sd + τ · [iso + cod + log2(q) · dig].

In [GPS22], the authors give another formula for the communication cost for their signature scheme.
Since we are here comparing interactive protocols, we consider a 5-round variant of their scheme to have a
fairer comparison. In their article, they have additional costs because they consider only the 3-round variant
to build an efficient signature.

In Table 2, we take the following parameters for this protocol:

– Variant “Fast”: (M, τ) = (512, 23);
– Variant “Short”: (M, τ) = (2048, 17).

FJR21’s protocol. The soundness error of this protocol is

max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
·Nk−M+τ

}
and its cost is

2 · dig + τ · log2

M

τ
· sd + τ · [(cod + ptx + nse) + log2(N) · sd + dig].

In Table 2, we take the same parameters as in [FJR21]:

– Variant “Fast”: (N,M, τ) = (8, 187, 49);
– Variant “Short”: (N,M, τ) = (32, 389, 28).

28

C Schwartz-Zippel Lemma and Variants

Lemma 3 (Schwartz-Zippel, multi-point variant). Let R ∈ F[X] be of degree d > 0; for any S ⊂ F
and any t ≥ 1,

Prr1,...,rt←S[R(r1) = 0 ∩ . . . ∩R(rt) = 0 | {ri} are distinct] ≤
(
d
t

)(|S|
t

) .
Proof. There is

(|S|
t

)
possible different draws when we uniformly sample t distinct elements in S. But R can

have at most d roots, so the studied event occurs for at most
(
d
t

)
of these draws. �

Lemma 4 (Schwartz-Zippel, multi-point variant 2). Let R ∈ F[X] be of degree d > 0; for any S ⊂ F
and any t, ` ≥ 1,

Prr1,...,rt←S [#{i : R(ri) = 0} = ` | {ri} are distinct] ≤
maxi≤d

{(
i
`

)
·
(|S|−i
t−`
)}

(|S|
t

) .

If t · d ≤ ` · (|S| − 1), we have

Prr1,...,rt←S [#{i : R(ri) = 0} = ` | {ri} are distinct] ≤
(
d
`

)
·
(|S|−d
t−`

)(|S|
t

) .

Proof. There is
(|S|
t

)
possible different draws when we uniformly sample t distinct elements in S. But R can

have at most d roots. Let us denote i ≤ d the number of roots of R in S. The studied event occurs for(
i
`

)
·
(|S|−i
t−`
)

possible draws. We thus get

Prr1,...,rt←S [#{i : R(ri) = 0} = ` | {ri} are distinct] ≤
maxi≤d

{(
i
`

)
·
(|S|−i
t−`
)}

(|S|
t

) .

Now, let us assume that ` · (|S| − 1) ≥ t · d. For all i in {0, . . . , d− 1}, we have

(i+ 1) · t ≤ d · t ≤ ` · (|S| − 1) .

which is equivalent to
(i+ 1)(|S| − i− t+ `) ≥ (i+ 1− `)(|S| − i)

We deduce that, when i+ 1 > `,(
i+ 1

`

)
·
(
|S| − (i+ 1)

t− `

)
=

i+ 1

i+ 1− `
·
(
i

`

)
· |S| − i− (t− `)

|S| − i
·
(
|S| − i
t− `

)
≥
(
i

`

)(
|S| − i
t− `

)
.

Thus, (
d

`

)(
|S| − d
t− `

)
≥
(
d− 1

`

)(
|S| − (d− 1)

t− `

)
≥ . . . ≥

(
`

`

)(
|S| − `
t− `

)
and we have, for i < `, (

i

`

)
·
(
s− i
t− `

)
= 0 .

So,

max
i≤d

{(
i

`

)
·
(
|S| − i
t− `

)}
=

(
d

`

)(
|S| − d
t− `

)
.

�

29

D Splitting Lemma

In our proofs, we shall make use of the following lemma from [PS00]:

Lemma 5 (Splitting Lemma). Let X and Y be two finite sets, and let A ⊆ X × Y such that

Pr
[
(x, y) ∈ A | (x, y)← X × Y

]
≥ ε .

For any α ∈ [0, 1), let

B =
{

(x, y) ∈ X × Y
∣∣∣ Pr

[
(x, y′) ∈ A | y′ ← Y

]
≥ (1− α) · ε

}
.

We have:

1. Pr
[
(x, y) ∈ B | (x, y)← X × Y

]
≥ α · ε

2. Pr
[
(x, y) ∈ B | (x, y)← A

]
≥ α .

E Proof of Theorem 3 (HVZK of Protocol 2)

We give hereafter the proof of Theorem 3.

Proof. We first describe an internal HVZK simulator S which on input a pair of challenges (Ch1,Ch2) =
({rj , εj}j∈[t], i

∗), outputs the corresponding responses (Rsp1,Rsp2), as follows:

1. Sample a root seed in {0, 1}λ.

2. Generate the parties’ seeds {(seedi, ρi)}i with TreePRG(seed).

3. For each party i ∈ {1, . . . , N}\{i∗},
– JajKi, JbjKi ← PRG(seedi), for each j ∈ [t]

– If i 6= N ,

◦ {JcjKi}j∈[t], JxAKi, JQKi, JP Ki ← PRG(seedi)
◦ statei = seedi

– Else,

◦ JxAKN ← {0, 1}k
◦ JQKN ← (Fpolyw−1[X])d.

◦ JP KN ← (Fpolyw−1[X])d.
◦ JcjKN ← Fpoints, for each j ∈ [t]
◦ aux = (JxAKN , JQKN , JP KN , {JcjKN}j∈[t])
◦ stateN = seedN || aux

– Simulate the computation of the party i to get {JαjKi, JβjKi, JvjKi}j∈[t].

4. For party i∗, for each j ∈ [t],

– JαjKi∗ ← Fdpoints,

– JβjKi∗ ← Fdpoints,

– JvjKi∗ = −
∑
i 6=i∗JvjKi.

5. Output the responses

– Rsp1 = Hash(Jα1K, Jβ1K, Jv1K, . . . , JαtK, JβtK, JvtK),
– Rsp2 =

(
(statei, ρi)i 6=i∗ | comi∗ | {JαjKi∗}j∈[t] | {JβjKi∗}j∈[t]

)
.

30

We now show that the transcript produced by the above simulator is (t, εPRG)-instinguishable from a real
transcript of Protocol 2 with challenges {rj , εj}j∈[t] and i∗. To this aim, we describe a sequence of simulators.

Simulator 0 (real world). This simulator takes as input the challenges {rj , εj}j∈[t] and i∗, as well as the
witness xA, runs a genuine execution of Protocol 2 and output the corresponding responses. The latter are
hence identically distributed as a the responses in a real-world transcript (for the given challenges).

Simulator 1. Same as Simulator 0, but uses true randomness instead of seed-derived randomness for party
i∗. If i∗ = N , the values JxAKN , JQKN , JP KN and {JcjKN}j∈[t] are computed as described in the protocol
(only JajKN and JbjKN are generated from true randomness).

It is easy to see that the probability of distinguishing Simulator 1 and Simulator 0 in running time t is
no more than εPRG.

Simulator 2. Replace JxAKN , JQKN , JP KN , JP KN , {JcjKN}j in Simulator 1 by uniformly random elements
of the same type and compute JvjKi∗ as JvjKi∗ := −

∑
i 6=i∗JvjKi for all j ∈ [t]. We note that the obtained

simulator is independent of the witness xA and solely takes the challenges {rj , εj}j∈[t] and i∗ as input.

If i∗ = N , the change only impacts the shares {JαjKi∗}j , {JβjKi∗}j and {JvjKi∗}j in the simulated
responses. We observe that the distributions of those shares are identical in Simulator 2 as in Simulator 1.
Indeed, in both cases, the shares {JαjKi∗}j and {JβjKi∗}j are uniformly distributed and independent of the
rest and the shares {JvjKi∗}j are defined by JvjKi∗ = −

∑
i 6=i∗JvjKi.

If i∗ 6= N , the change only impacts aux = (JxAKN , JQKN , JP KN , {JcjKN}j) in the simulated response (and
the values derived from aux in the view of party N). We observe that the shares in aux are computed by
adding one value of randomness from each seed from party i 6= i∗, then adding one value of randomness
from party i∗ (which is uniformly random in Simulator 1). Therefore aux is already uniformly random in
Simulator 1 which implies that the output distributions of Simulator 1 and Simulator 2 are identical.

Simulator 3 (internal HVZK simulator). The only difference between Simulator 2 and the internal
HVZK simulator described above is that the latter directly draws {JαjKi∗}j and {JβjKi∗}j uniformly at
random. As explained above, this does not impact the output distribution.

To sum up, we have shown that the internal simulator S outputs responses (Rsp1,Rsp2) which are
(t, εPRG)-instinguishable from the responses in a real transcript of Protocol 2 (with same challenges). To get
a global HVZK simulator, we proceed as follows:

1. Sample

– Ch1 = {rj , εj}j∈[t] ← Fpoints × Fdpoints,

– Ch2 = i∗ ← [N].

uniformly at random (as an honest verifier).

2. Run the internal simulator S({rj , εj}j∈[t], i
∗) to get

– Rsp1 = Hash(Jα1K, Jβ1K, Jv1K, . . . , JαtK, JβtK, JvtK),
– Rsp2 =

(
(statei, ρi)i 6=i∗ | comi∗ | {JαjKi∗}j∈[t] | {JβjKi∗}j∈[t]

)
.

3. Compute the initial commitment Com as follows

– For each party i 6= i∗, compute the commitment comi = Com(statei; ρi);
– For the unopened party, sample a random commitment comi∗ ;

– Set Com = Hash(com1, . . . , comN).

4. Output the transcript T = (Com,Ch1,Rsp1,Ch2,Rsp2).

When applying the hiding property of the commitment scheme on comi∗ , we get that the global HVZK
simulator outputs a transcript which is (t, εPRG + εCom)-instinguishable from a real transcript of Protocol 2.

�

31

F Proof of Theorem 4 (Soundness of Protocol 2)

For the sake of simplicity, we assume that the commitment scheme is perfectly binding. (If the commitment
scheme was computationally binding we would have to deal with additional cases where the extractor would
produce a commitment collision.)

For any set of successful transcripts corresponding to the same commitment, with at least two different
Round 4 challenges (i∗),

– either the revealed shares of JxAK, JP K and JQK are not consistent, and then we find a hash collision (if
the committed values are not the same, then the commitments cannot be the same since the commitment
scheme is perfectly binding),

– or the openings are unique and hence the underlying witness (JxAK, JP K, JQK) is uniquely defined.

In the second case, this witness can be recovered from any two successful transcripts T1 and T2 corresponding
to the same commitment and for which i∗1 6= i∗2 . Let us call a witness (JxAK, JP K, JQK) a good witness whenever

S ◦Q = F · P

where F :=
∏m/d
j=0 (X − γj), Q :=

∑
iJQKi, P :=

∑
iJP Ki and S is built by interpolation from x with

x := (xA|y − H ′xA) and xA :=
∑
iJxAKi. Such a witness enables us to build a solution for the syndrome

decoding instance.
In what follows, we consider that the extractor only get transcripts with consistent shares since otherwise

the extractor would find a hash collision.
We shall further denote by Rh the randomness of P̃ which is used to generate the initial commitment

Com = h, and we denote rh a possible realization of Rh. Let us now describe the extractor procedure:

Extractor E :

1. Repeat +∞ times:

2. Run P̃ with honest V to get transcript T1

3. If T1 is not a successful transcript, go to the next iteration
4. Do N1 times:

5. Run P̃ with honest V and same rh as T1 to get transcript T2

6. If T2 is a successful transcript, i∗T1
6= i∗T2

and (T1, T2) reveals a good witness,
7. Return (T1, T2)

In what follows, we estimate the extraction complexity, i.e. how many time in average the extractor calls
P̃. Throughout the proof, we denote succP̃ the event that P̃ succeeds in convincing V. By hypothesis, we
have Pr[succP̃] = ε̃.

Let us fix an arbitrary value α ∈ (0, 1) such that (1− α)ε̃ > ε, it exists since ε̃ > ε. Let rh be a possible
realization of Rh. We will say that rh is good if it is such that

Pr[succP̃ | Rh = rh] ≥ (1− α) · ε̃ . (5)

By the Splitting Lemma 5 (see Appendix D) we have

Pr[Rh good | succP̃] ≥ α . (6)

Let assume we sample a successful transcript T1 as in the Step 2 of the extractor E and let rh be the
underlying realization of Rh. Assume rh is good. By definition, we have

Pr[succP̃ | Rh = rh] ≥ (1− α) · ε̃ > ε >
1

N

32

implying that there must exist a successful transcript T2 with i∗2 6= i∗1. As explained above, this implies that
there exists a unique and well-defined witness (JxAK, JP K, JQK) corresponding to these transcripts (and to all
the transcripts with same rh).

We will show that if this witness is a bad witness (i.e. is not a good witness) then we have Pr[succP̃ |
Rh = rh] ≤ ε meaning that rh is not good. By contraposition, we get that if rh is good, then the witness
(JxAK, JP K, JQK) is a good witness. So let us assume that the witness (JxAK, JP K, JQK) in T1 is a bad witness.
This means that

S ◦Q 6= F · P

where Q :=
∑
iJQKi, P :=

∑
iJP Ki and S is built by interpolation from x with x := (xA|y − H ′xA) and

xA :=
∑
iJxAKi. So there exists j such that Sj ◦Qj 6= F · P j . Let us denote FP the event that a geniune

execution of the MPC protocol outputs a false positive, i.e. outputs a zero vector v. Let us also denote `
the degree of the polynomial D := Sj ◦Qj − P j · F and Zi the event that i among the t evaluations of the
polynomial D (by r1, . . . , rt) are zeros. We have

Pr[FP] =

t∑
i=0

Pr[Zi] · Pr[FP | Zi]

=

t∑
i=0

(
`
i

)
·
(
∆−`
t−i
)(

∆
t

) ·
(

1

∆

)t−i

The probability for Zi is given by the Schwart-Zippel Lemma (see Appendix C) and the probability for
“FP | Zi” corresponds to the probability that the product checking (see Section 2.7) fails t− i times, for the
t− i evaluation points {rj} for which D(rj) 6= 0. Since the degree of D is less than m′ +w′ (where m′ := m

d
and w′ := w

d), we get

Pr[FP] ≤
t∑
i=0

max`≤m′+w′−1

{(
`
i

)
·
(
∆−`
t−i
)}(

∆
t

) ·
(

1

∆

)t−i
︸ ︷︷ ︸

=:p

.

Let us upper bound the probability that the inner loop finds a successful transcript:

Pr[succP̃ | Rh = rh] = Pr[succP̃ ,FP | Rh = rh] + Pr[succP̃ ,¬FP | Rh = rh]

≤ p+ (1− p) · Pr[succP̃ | Rh = rh,¬FP]

Having a successful transcript means that the sharing JvK in the first response of the prover must encode
a zero vector. But the event ¬FP when we have a bad witness implies that a geniune execution outputs a
non-zero vector v. So to have a successful transcript, the prover must cheat for the simulation of at least one
party. If the prover cheats for several parties, there is no way it can produce a successful transcript, while
if the prover cheats for exactly one party (among the N parties), the probability to be successful is at most
1/N . Thus, Pr[succP̃ | Rh = rh,¬FP] ≤ 1/N and we have

Pr[succP̃ | Rh = rh] ≤ p+ (1− p) · 1

N
= ε,

meaning that rh is not good. By contraposition, we get that if rh is good, then (JxAK, JP K, JQK) is a good
witness.

33

Now, let us lower bound the probability that the ith iteration of the inner loop finds a successful transcript
T2 such that i∗T1

6= i∗T2
in the presence of a good Rh. We have

Pr[succT2

P̃ ∩ (i∗T1
6= i∗T2

) | Rh good]

= Pr[succT2

P̃ | Rh good]− Pr[succT2

P̃ ∩ (i∗T1
= i∗T2

) | Rh good]

≥ (1− α)ε̃− Pr[i∗T1
= i∗T2

| Rh good]

= (1− α)ε̃− Pr[i∗T1
= i∗T2

]

= (1− α)ε̃− 1/N

≥ (1− α)ε̃− ε

Let define p0 := (1− α) · ε̃− ε. By running P̃ with the same rh as for the good transcript N1 times, we
hence obtain a second non-colliding transcript T2 with probability at least 1/2 when

N1 ≈
ln(2)

ln
(

1
1−p0

) ≤ ln(2)

p0
. (7)

Let C denotes the number of calls to P̃ made by the extractor before finishing. While entering a new
iteration:

– the extractor makes one call to P̃ to obtain T1,

– if T1 is not successful, which occurs with probability (1− Pr[succP̃]),

◦ the extractor continues to the next iteration and makes an average of E[C] calls to P̃,

– if T1 is successful, which occurs with probability Pr[succP̃],

◦ if rh is good which occurs with probability α, the extractor makes at most N1 calls to P̃ in the inner
loop of E and output a pair (T1, T2) with probability 1/2,

◦ otherwise the extractor makes N1 calls to P̃ in the inner loop of E without stopping, with probability
at most (1− α

2).

The mean number of calls to P̃ hence satisfies the following inequality:

E[C] ≤ 1 + (1− Pr[succP̃]) · E[C]︸ ︷︷ ︸
T1 unsuccessful

+ Pr[succP̃] ·
(
N1 +

(
1− α

2

)
· E[C]︸ ︷︷ ︸

T1 successful

)

which gives

E[C] ≤ 1 + (1− ε̃) · E[C] + ε̃ ·
(
N1 +

(
1− α

2

)
· E[C]

)
≤ 1 + ε̃ ·N1 + E[C] ·

(
1− ε̃ · α

2

)
≤ 2

α · ε̃
· (1 + ε̃ ·N1)

≤ 2

α · ε̃
·
(

1 + ε̃ · ln(2)

(1− α) · ε̃− ε

)
To obtain an α-free formula, let us take α such that (1 − α) · ε̃ = 1

2 (ε̃ + ε). We have α = 1
2

(
1− ε

ε̃

)
and

the average number of calls to P̃ is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
which concludes the proof.

34

G Security Proof of the Signature Scheme

We give hereafter the proof of Theorem 5. This proof is highly inspired (and carbon copied where relevant)
from the proof of the Picnic signature scheme [CDG+20, Theorem 6.2].

Proof (Theorem 5). Let us consider a chosen-message EUF adversary A against the signature scheme. Let
qs denote the number of signing queries made by A; let q0, q1, q2, respectively, denote the number of queries
to Hash0, Hash1 and Hash2 made by A. To prove security we define a sequence of experiments involving A,
where the first corresponds to the experiment in which A interacts with the real signature scheme. We let
Pri[·] refer to the probability of an event in experiment i. We let t denote the running time of the entire
experiment, i.e., including both A’s running time and the time required to answer signing queries and to
verify A’s output.

Experiment 1. This corresponds to the interaction of A with the real signature scheme. In more detail:
first KeyGen is run to obtain (H, y, x), and A is given the public key (H, y). In addition, we assume the
random oracles Hash0, Hash1 and Hash2 are chosen uniformly from the appropriate spaces. A may make
signing queries, which will be answered as in the signature algorithm; A may also query any of the random
oracles. Finally, A outputs a message/signature pair; we let Forge denote the event that the message was
not previously queried by A to its signing oracle, and the signature is valid. Our goal is to upper-bound
Pr1[Forge].

Experiment 2. We abort the experiment if, during the course of the experiment, a collision in Hash0 is
found. The number of queries to any oracle throughout the experiment (by either the adversary or the signing
algorithm) is at most (q0 + τNqs). Thus,

|Pr1[Forge]− Pr2[Forge]| ≤ (q0 + τNqs)
2

2 · 22λ
.

Experiment 3. We abort the experiment if, during the course of the experiment, while answering to a
signature query, the sampled salt collides with the value salt in any previous query to Hash0, Hash1 or
Hash2. For each single signature query, the probability to abort is upper bounded by (qs + q0 + q1 + q2)/22λ.
Thus,

|Pr2[Forge]− Pr3[Forge]| ≤ qs · (qs + q0 + q1 + q2)

22λ
.

Experiment 4. The difference with the previous experiment is that, when signing a message m we begin

by choosing h1 and h2 uniformly and then we expand them as {r[e]
j , ε

[e]
j }e∈[τ],j∈[t] and {i∗[e]}e∈[τ]. Phases 1,

3 and 5 of the signing algorithm are computed as before, but in phases 2 and 4 we simply set the output of
Hash1 to h1 and the output of Hash2 to h2.

The outcome of this experiment compared to the previous one only changes if, in the course of answering
a signing query, the query to Hash1 or the query to Hash2 was ever made before (by either the adversary or
as part of answering some other signing query). But this cannot happen since in such a case Experiment 3
would abort. Thus,

Pr3[Forge] = Pr4[Forge] .

Experiment 5. The difference with the previous experiment is that, for each e ∈ [τ], we sample com
[e]

i∗[e]

uniformly at random (i.e., without making the corresponding query to Hash0).
The only difference between this experiment and the previous one occurs if, during the course of answering

a signing query, seed
[e]

i∗[e]
(for some e ∈ [τ]) was previously queried to Hash0. However, such collision cannot

occur within the same signing query (since the indices i and e are part of the input of Hash0) and if it

35

occurs from a previous query (signing query or Hash0 query) then the experiment aborts (according to the
difference introduced in Experiment 3). Therefore,

Pr5[Forge] = Pr4[Forge] .

Experiment 6. We again modify the experiment. Now, for e ∈ [τ] the signer uses the internal HVZK
simulator (see the proof E of Theorem 3) to generate the views of the parties in an execution of Phases 1 and
3. We denote Ssalt(·) a call to this simulator which append salt to the sampled seed in input to TreePRG. This

simulation results in {statei}i 6=i∗[e] and (Jα[e]
j K, Jβ[e]

j K, Jv[e]
j K)j∈[t]. Thus, signature queries are now answered

as depicted in Figure 3.

Phase 0.

1. Sample h1 uniformly from {0, 1}2λ.

2. Extend hash {r[e]j , ε
[e]
j }e∈[τ],j∈[t] ← PRG(h1) where r

[e]
j ∈ Fpoints and εj

[e] ∈ Fdpoints.

3. Sample h2 uniformly from {0, 1}2λ.

4. Expand hash {i∗[e]}e∈[τ] ← PRG(h2) where i∗[e] ∈ [N].

5. Sample a random salt salt← {0, 1}2λ.

Phases 1 and 3. For each iteration e ∈ [τ],

1. {statei}i6=i∗[e] , (Jα
[e]
j K, Jβ[e]

j K, Jv[e]j K)j∈[t] ← Ssalt({r
[e]
j , ε

[e]
j }j∈[t], i

∗[e])

2. Choose uniform com
[e]

i∗[e]
∈ {0, 1}2λ. For other i, set com

[e]
i = Hash0(salt, e, i, state

[e]
i).

Phases 2 and 4.

1. Set Hash1(m, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N−1, com

[τ]
N) equal to h1.

2. Set Hash2(m, salt, h1, {Jα[e]
j K, Jβ[e]

j K, Jv[e]j K}j∈[t],e∈[τ]) equal to h2.

Phase 5: Building of the signature. Output the signature σ built as

salt | h1 | h2 |
(

(state
[e]
i)

i6=i∗[e] | com
[e]

i∗[e]
| {Jα[e]

j K
i∗[e]}j∈[t] | {Jβ

[e]
j K

i∗[e]}j∈[t]
)
e∈[τ]

.

Fig. 3. Experiment 6: Answer to a signature query for a message m.

Observe that the secret x is no longer used for generating signatures. Recall that an adversary against
the internal HVZK simulator has distinguishing advantage εPRG (corresponding to execution time t), since
commitments are built outside of the simulator. It results that

|Pr6[Forge]− Pr5[Forge]| ≤ τ · qs · εPRG .

Experiment 7. At any point during the experiment, we say that the execution e∗ of a query

h2 = Hash2(m, salt, h1, {Jα[e]
j K, Jβ[e]

j K, Jv[e]
j K}j∈[t],e∈[τ])

defines a correct witness if the three following conditions are fulfilled:

(1) h1 was output by a previous query

h1 = Hash1(m, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N) ,

(2) each com
[e∗]
i in this Hash1-query was output by a previous query

com
[e∗]
i = Hash0(salt, e∗, i, state

[e∗]
i)

for every i ∈ [N], and

36

(3) the vector x derived from {state[e∗]
i }i∈[N], i.e.

x = (xA | xB) with xA :=
∑

i
JxAKi and xB := y −H ′xA ,

satisfies wt(x) ≤ w.

(Note that in all cases the commitments in the relevant prior Hash1-query, if it exists, must be unique since
the experiment is aborted if there is ever a collision in Hash0.)

In Experiment 7, for each query of the above form made by the adversary to Hash2 (where m was
not previously queried to the signing oracle), check if there exists an execution e∗ which defines a correct
witness. We let Solve be the event that this occurs for some query to Hash2. Note that if that event occurs,

the {state[e∗]
i } (which can be determined from the oracle queries of the adversary) allow the computation of

some vector x for which Hx = y and wt(x) ≤ w. Thus, Pr7[Solve] ≤ εSD.

We claim that
Pr7[Forge ∧ Solve] ≤ q2 · ετ .

where ε := p+ 1
N − p ·

1
N is the soundness error of one execution. To see this, assume Solve does not occur.

Then there is no execution of any Hash2 query which defines a correct witness. When considering an arbitrary
execution e ∈ [τ], the attacker can only possibly generate a forgery (using this Hash2-query) if

1. S(rj) ◦Q(rj) = P (rj) · F (rj) for all rj (this occurs with probability p as defined in Equation (3)),
2. or there exists an rj such that S(rj)◦Q(rj) 6= P (rj) ·F (rj) and the value i∗[e] is chosen to be the unique

party such that the views of the remaining parties are consistent.

Thus, the overall probability with which the attacker can generate a forgery using this Hash2-query is(
p+ (1− p) 1

N

)τ
.

The final bound is obtained by taking a union bound over all queries to Hash2.
�

37

	Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs

