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Abstract. In this work, we focus on collision attacks against instances
of SHA-3 hash family in both classical and quantum settings. Since the
5-round collision attacks on SHA3-256 and other variants proposed by
Guo et al. at JoC 2020, no other essential progress has been published.
With a thorough investigation, we identify that the challenges of extend-
ing such collision attacks on SHA-3 to more rounds lie in the inefficiency
of differential trail search. To overcome this obstacle, we develop a SAT-
based automatic search toolkit. The tool is used in multiple intermediate
steps of the collision attacks and exhibits surprisingly high efficiency in
differential trail search and other optimization problems encountered in
the process. As a result, we present the first 6-round classical collision
attack on SHAKE128 with time complexity 2'23-%, which also forms a quan-
tum collision attack with quantum time 2°7*°/y/3, and the first 6-round
quantum collision attack on SHA3-224 and SHA3-256 with quantum time
2°77 /\/5 and 2'°**° /3, where S represents the hardware resources of the
quantum computer. The fact that classical collision attacks do not apply
to 6-round SHA3-224 and SHA3-256 shows the higher coverage of quan-
tum collision attacks, which is consistent with that on SHA-2 observed
by Hosoyamada and Sasaki at CRYPTO 2021.
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1 Introduction

The KECCAK hash function [BDPVA13], designed by Bertoni et al. in 2008, was
standardized as the Secure Hash Algorithm-3 (SHA-3) [Dwol5] in 2015 by the
National Institute of Standards and Technology (NIST) of the U.S. The SHA-
3 family has four instances with fixed digest lengths, namely, SHA3-224, SHA3-
256, SHA3-384 and SHA3-512, and two eXtendable-Output Functions (XOFs)
SHAKE128 and SHAKE256. Being one of the most important cryptographic hash
functions, SHA-3 (KECCAK) has received intensive security analysis. The most



relevant security criteria for cryptographic hash functions include preimage re-
sistance and collision resistance. Preimage attacks of SHA-3 were investigated in
[NRM11,MPS13,GLS16,LSLW17,1.S19,Raj19,LHY21,HLY21]. The best-known
practical attacks reach 3 rounds of SHAKE128 and SHA3-224 [GLS16,LS19]!
while the best-known theoretical ones can reach 4 rounds of all its instances
[MPS13,Raj19, HLY21]. With marginal time complexity gains over bruteforce,
theoretical preimage attacks cover up to 7/8/9 rounds for KECCAK-224/256 /512,
respectively [CKMS14, Ber10, MPS13].

More relevant to this research are the collision attacks on SHA-3 (KECCAK)
with reduced number of rounds. In [DDS12,DDS14], Dinur et al. presented prac-
tical collision attacks on 4 rounds of KECCAK-224 and KECCAK-256. The ac-
tual collisions were found by combining a 3-round differential trail and a 1-
round connector (which connects the differential trail to valid initial values).
The same authors also presented practical collision attacks on 3-round KEcC-
CAK-384/KECCAK-512, and theoretical collision attacks on 5/4-round KECCAK-
256/KECCAK-384 using internal differentials [DDS13]. Following the framework
proposed by Dinur et al. in [DDS12], Qiao et al. introduced 2-round connectors
by prepending a fully linearized round to the 1-round connectors and obtained
actual collisions for 5-round SHAKE128 [QSLG17]. Further, these connectors were
improved in [SLG17,GLL*20] to consume fewer degrees of freedom by using par-
tial linearization. Consequently, 3-round connectors became possible and practi-
cal collision attacks on 5-round SHA3-224 and SHA3-256 were obtained.

Collision attack in quantum settings. In the previous works, collision at-
tacks of SHA-3 were studied only in classical settings. Recently, quantum collision
attacks are attracting more attention and showing unexpected efficiencies.

The generic security margin of collision attacks in quantum settings has been
investigated with the recent progress in post-quantum security of cryptographic
schemes and primitives. Several quantum collision algorithms [BHT98, CNPS17]
were introduced to provide security bounds for generic hash functions. However,
the quantum collision attack against concrete hash functions was not published
until 2020 [HS20]. In this work, Hosoyamada and Sasaki demonstrated that
differential trails of low probability that couldn’t be utilized in classical colli-
sion attacks were exploited to mount quantum collision attacks of more rounds.
Later, the authors extended their quantum collision search algorithms to other
hash functions and proposed the first quantum collision attacks on SHA-2 at
CRYPTO 2021 [HS21]. Additionally, results of quantum rebound attacks on AES
hashing modes [DSS*20] and quantum multi-collision distinguishers [BGLP] on
dedicated hash functions were also presented.

Challenges. There are two major challenges in mounting quantum collision
attacks on SHA-3. The first is to search for differential trails that are more
suitable for quantum collision attacks, i.e., trails that cover as many rounds as
possible with the bound on the probability relaxed to 2~ ™. As a consequence,

! The preimage attack on 3-round KECCAK-256 in [LHY21] has a time complexity 265
but no concrete preimage is given.



the search space expands drastically which calls for more advanced and efficient
searching techniques. The second challenge lies in connecting the differential trail
with the initial state. When differential trails with lower probability are used,
more conditions are imposed on the internal state which should be satisfied by the
connector. Thus, to avoid being the bottle neck of the whole attack, connectors
must be constructed in more efficient way than before.

SAT-based cryptanalysis. Great attention from the cryptography community
has been paid on automatic tools for linear and differential trail search. Normally,
mathematical problems such as Boolean Satisfiability Problem (SAT), Mixed In-
teger Linear Programming (MILP), Satisfiability Modulo Theories (SMT), and
other related methods are employed to construct such automatic tools. Since
the performance of automatic search is determined by the power of the cor-
responding mathematical solvers, the efficiency is not particularly satisfactory
when cryptographic ciphers with large state sizes are analyzed. Practically, most
of the previous related works focus on lightweight ciphers where the automatic
tools showed incredible strength.

The SAT problem decides whether a set of constraints could be satisfied by
giving valid assignments to variables. In the research line of SAT-based crypt-
analysis, Mouha and Preneel searched differential trails of ARX ciphers with
SAT method in [MP13]. Based on SAT, Sun et al. [SWW18] put forward an
automatic search method for ciphers with Sboxes to obtain differential trails of
more accurate as well as high probability. In [SWW21], Sun et al. proposed a
new encoding method to convert the Matsui’s bounding conditions into Boolean
formulas, which could reduce clauses and speed up the SAT solving phase. Be-
sides, Morawiecki and Srebrny presented preimage attack on 3-round KECCAK
hash functions by developing a SAT toolkit [MS13].

Our Contributions. Inspired by Hosoyamada and Sasaki’s findings from [HS20,
HS21] that collision attacks in quantum settings can take advantage of differen-
tial trails of low probability, we develop an automatic trail search toolkit based
on SAT and propose advanced collision attacks on SHA-3 in both classical and
quantum settings. The results of our work and the comparison with previous
works are listed in Table 1. Main contributions are summarized in the following.

1. The SAT-based automatic trail search toolkit To facilitate differential
trail search of the underlying permutation Keccak-f of SHA-3, an SAT-based
automatic search toolkit is developed. The toolkit is not only simple to im-
plement but also provides more flexibility and better efficiency in generat-
ing various differential trails compared to dedicated trail search strategies
in [DVA12, MDA17,LQT19]. It’s interesting to note that for cryptographic
primitives of large state size like Keccak-f, automatic tools such as the
MILP-based ones are unlikely to provide advantage in trail search. That’s
why specialized search techniques were proposed for SHA-3. Surprisingly, the
SAT-based automatic toolkit fills the vacancy and shows excellent perfor-
mance in trail search of the large-state Keccak-f.



Table 1: Summary of collision attacks against the SHA-3 family

Target ‘ Type Rounds | Time Complexity ‘ Reference
. . +
SHA3.994 Classical 5 P;r:aﬁtlcal [GLL™20]
Quantum 6 27770 /5 Sect. 4.4
. . +
SHA3-956 Classical 5 Pli?,(;clcal [GLL™20]
Quantum 6 210420 /\/5 Sect. 4.3
: 147
SHA3-384 Class%cal 4 2 ‘ [DDS13]
SHA3-512 Classical 3 Practical
Classical 5 Practical [GLL*20]
HAKE12 i 1285
S 8 Classical 6 b% . Sect. 4.2
Quantum 6 27 /5
SHAKE256 - - - -

2. Advanced collision attack algorithms for SHA-3 Augmented with the
SAT-based automatic tool, the collision attack methods used in [DDS12,
DDS14, QSLG17,SLG17, GLL'20] are improved in multiple ways. Collision
attacks proposed in those works primarily consist of two phases, i.e., a phase
of differential trail search that ensures collision on the digest bits, also re-
ferred to as the colliding trail search phase in our work, and a second phase
of constructing “connectors” that generates message pairs satisfying the con-
straints imposed by the padding rule and initial value of SHA-3 and the input
difference of the colliding trail at the same time. Both phases are consider-
ably improved utilizing our automatic tool.

— Colliding trail search algorithms that generate colliding trails of any
rounds, any digest length, and high probability are presented. In other
words, search space of colliding trails is covered efficiently which has
been impossible in previous works.

— Improved connector construction algorithms are proposed. Differential
trails of the connectors (which are called connecting differential trails in
the rest of the paper) can not only be directly generated but also produce
sufficient degrees of freedom which has been the bottleneck in extending
the collision attacks to more rounds.

3. The first 6-round collision attacks on SHA-3 With the novel automatic
tool and the improved algorithms, we finally extend the 5-round collision at-
tacks on SHA-3 instances to 6-round. In detail, 6-round classical collision
attacks on SHAKE128 with complexity 2'235, 6-round quantum collision at-
tacks on SHA3-224 and SHA3-256 with complexity 2°"™/v5 and 2'°**°/V/3 re-
spectively, are mounted. To the best of our knowledge, this is the first time
that quantum collision attacks are mounted on SHA-3 and one more round
is covered compared with previous results in classical setting.

Organization. The rest of the paper is organized as follows. In Section 2, an
overview of the SAT-aided collision attacks on SHA-3 instances is provided. In



Section 3, specifications of SHA-3 hash functions and implementations of the
SAT-based automatic search toolkit are presented. Section 4 exhibits the first 6-
round collision attacks on SHA-3 in both classical and quantum settings. Section 5
concludes the paper. Details of differential trails and message pairs are given in
the supplementary material.

2 Overview of SAT-based Collision Attacks against SHA-3

In this section, limitations of previous collision attacks are discussed. Subse-
quently, the SAT-based automatic trail search toolkit that can be conveniently
applied to all kinds of cryptanalytic scenarios are introduced. Basic ideas used
to extend previous collision attacks by one round in both classical and quantum
settings are also presented.

2.1 Limitations of Previous Collision Attacks

As depicted in Figure 1, the collision attacks on SHA-3 and KECCAK instances
take a 3-stage analytic framework, i.e.,

— at stage 1, prepare n,,-round colliding trails of high probability that ensure
d-bit digest collision. AS; and ASp stand for the input and output difference
of colliding trails.

— at stage 2, construct n,,-round connectors that promise a subspace of mes-
sage pairs which meet both the message difference AM imposed by the
sponge construction® and the input difference AS; of the colliding trails.

— at the last stage, exhaustively enumerate the messages pairs generated with
the connectors until one message pair that collides in digest bits is found.

A continuous series of investigations [DDS12,DDS14,QSLG17,SLG17,GLL™20]
have been conducted on collision attacks against SHA-3. Both the colliding trail
search phase and the connector construction phase have been intensively in-
spected. At first glance, it seems that there is no room for further improve-
ments. Actually, no essential progress has ever been published since the last
work [SLG17] presented five years ago. The lack of new results can be explained
from two aspects, i.e., the constrained and low-efficiency colliding trail search al-
gorithms, and the quick consumption of degrees of freedom from the connectors
by (full) linearization.

2.1.1 Difficulty in generating colliding trails of more rounds. Due
to the huge state size of Keccak-f, trail search of any kind, be it the general
truncated differential trail or the colliding trail, is a difficult task. In previous
collision attacks, the strategy to search colliding trails is quite simple, i.e.,

2 In this attack model, collision messages of 1-block are generated. The constraints
imposed by the sponge construction include (1) the ¢-bit capacity, i.e., ¢ continuous
“0” bits, and (2) 2-bit padding “11” which is concatenated with a “01” or “1111”
string at the tail of the message block.
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Figure 1: Overview of (n,, +nr,)-round collision attack on SHA-3

1. General 3-round differential trails obtained from dedicated search algorithms,
e.g., [DVA12, MDA17,LQT19], are extended forward by one round and ex-
haustively searched for possible d-bit collision.

2. When sufficient 3-round trails with digest collision are collected, extend them
backward by one round to determine satisfactory output differences for con-
nectors, which at the same time are the input differences AS; of the n,.,-
round colliding trails.

There are two problems regarding to this colliding trail search strategy. On
one hand, the exhaustive colliding trail search, especially the backward extension,
drain computing resources significantly. In practice, sophisticated implementa-
tion techniques and even GPU resources [SLG17] are introduced to speed up the
colliding trail search. However, without dramatical increase in computing power,
it’s unlikely that the search efficiency can be improved further. On the other
hand, the colliding trails are limited by the results of general truncated differ-
ential trail search. For example, the 5-round practical collision attack on SHA3-
256 [GLL™20] is not possible until new results on general 3-round trails [LQT19]
are published. Particularly, even with ultimate computing power, better colliding
trails won’t be possible unless results of general trail search are updated. Then
it comes to the common trail search problem again which is a challenging task.

2.1.2 Quick consumption of degrees of freedom in connector con-
struction. The connector construction is comprised of two parts. In the first
part, as depicted in Figure 1, connecting trails whose input difference (i.e., AM)
and output difference (i.e., ASy) are partially or fully fixed are constructed. In
the second part, data structures that output a subspace of message pairs follow-
ing the connecting trail are generated. Essentially, as long as the connecting trail
is determined, systems of equations (i.e., the data structures) on messages are
listed in which the degree of freedom (DF for short) are quickly consumed?®. As

3 The practical algorithms are much more complex. We just describe in this abstract
way to express basic ideas.



conditions of both AM and AS; are strict, the sophisticated Target Difference
Algorithms (TDA for short) are devised to determine the exact connecting trails.
When we try to extend the connector by one more round, AM and AS; are so
heavy that connecting trails are hard to generate. Even if the TDA generates
connecting trails, data structures become impossible to construct as almost all
DF is consumed to meet conditions of the heavy connecting trail. Therefore,
developing new connecting trail search methods to generate lighter connecting
trails would be a feasible way to save DF and possibly allow to extend collision
attacks for more rounds.

Summary. Limitations of collision attacks lie in inefficiency of differential trail
search, more specifically, the lack of effective search techniques for trails of special
requirements.

2.2 SAT-based Automatic Trail Search Toolkit

Automatic search has long been introduced to evaluate robustness of symmetric
primitives. However, it’s not the case of Keccak-f permutation. Indeed, the ini-
tial attempts with MILP method failed to generate good trails due to the large
Keccak-f state. Researchers have to develop dedicated techniques to investigate
the propagation properties of Keccak-f. On the other hand, automatic search
based on other mathematical problems, such as SAT and SMT, is not prop-
erly studied. In this work, SAT-based automatic search shows productivity in
generating trails involved in collision attacks on SHA-3.

2.2.1 SAT-based colliding trail search. With the SAT-based toolkit, dif-
ferential trails that (1) satisfy the d-bit digest collision, (2) cover more rounds,
(3) follow any specific differential pattern, and (4) meet any probability con-
straint can be effectively generated. The search space is expanded to the extent
that efficiency of automatic search tool outperforms dedicated search strategy.
Moreover, as the new method does not rely on truncated differential trails, col-
liding trail search will not be limited by progress of such general trails any more.
Cryptanalysts are also free from devising and implementing sophisticated trail
search algorithms. We emphasize that colliding trails of low probability, e.g.,
with complexity near or even beyond the birthday bound, are easily generated.
Such trails are utilized to mount collision attacks in quantum settings.

2.2.2 SAT-based connecting trail search. Similar to the case of colliding
trail search, the SAT-based connecting trail search is effortlessly implemented.
Good connecting trails that (1) follow the fixed input and output differences of
the connectors and (2) provide adequate DF for messages are generated. The
idea of finding connecting trails with SAT gives insights to the constrained-
input constrained-output (CICO) problem [BPVA™11] of sponge constructions.
As the input and output differences of connecting trails are partially or fully
fixed, this is generally a difficult problem. Except for the sophisticated approach



used in [DDS12,DDS14,QSLG17,SLG17,GLLT20], there is no other progress on
constructing connecting trails. The SAT-based connecting trail search method
presents the first general solution for the problem of bypassing the constraints
imposed by the sponge construction in collision attacks on SHA-3.

2.3 Improved (Quantum) Collision Attacks on SHA-3

With the SAT-based automatic tool, collision attacks on SHA-3 instances that
cover one more round are mounted in both quantum and classical settings.

2.3.1 6-round collision attacks on SHAKE128. With the SAT-based tool,
4-round colliding trails of 256-bit digest collision are generated. Although one
round is extended compared to trails used in previous works, the 4-round col-
liding trails are of low probability. To mount valid collision attacks, one round
of the colliding trails is merged into the connectors, i.e., the 6-round collision
attacks consist of a 3-round connecting trail and a 3-round colliding trail. Due
to the low probability, the 3-round connectors can only be partially constructed,
i.e., only a fraction of the third round conditions are treated while the other
constraints are left for the brute force stage. Ultimately, a theoretical 6-round
collision attack on SHAKE128 are mounted with complexity 2'23-® which is slightly
better than the generic attack.

2.3.2 6-round quantum collision attacks on SHA3-224 and SHA3-256.
The identical 4-round colliding trail is used to mount 6-round collision attacks
on SHA3-224 and SHA3-256. Constrained by the great amount of DF consumed,
it becomes impossible to construct even partial 3-round connectors for these in-
stances. Therefore, for SHA3-224 and SHA3-256, only 2-round connectors are fea-
sible. 6-round collision attacks on SHA3-224 and SHA3-256 cannot be mounted in
classical setting as complexity of the 4-round colliding trail exceeds the birthday
bound. Fortunately, colliding trails of low complexity can be employed to mount
quantum collision attacks. In a nutshell, 6-round quantum collision attacks on
SHA3-224 and SHA3-256 with complexity 2°""°/v/s and 2'°**° /3 are presented.

3 SHA-3 and SAT-based Automatic Search Toolkit

In this section, we describe notations used in the collision attacks and specifica-
tions of the SHA-3 family hash functions. Afterwards, the SAT-based automatic
search toolkit developed for Keccak-f permutation is presented.

3.1 Notations

Most of the notations to be used in this paper are listed below.



Capacity of a sponge function

Rate of a sponge function

Length of the digest in bits

Number of fixed bits in the initial state due to padding

Ny Number of rounds

Keccak-f The underlying permutation of SHA-3 hahs functions

0, p,m,x,t The five operations of the round function of Keccak-f. A subscript i
denotes the operation at the i-th round, e.g., x; denotes the x layer
at the ¢-th round where ¢ =0,1,2,---

"V L3I o

A Composition of 8, p, 7 and its inverse denoted by A~!

RC; Round constant of the i-th round, where i =0,1,2,---

Ri(-) Keccak-f permutation reduced to the first 4 rounds

S(+) 5-bit Sbox operating on each row of Keccak-f state

Oins Oout 5-bit input and output differences of an Sbox

DDT Differential distribution table, and DDT(d;p,, dout) = |{z : S(z)+S(z+
Oin) = dout }| , where | - | denotes the size of a set

«; Input difference of the i-th round, where i = 0,1,2,- - -

Bi Input difference of x in the i-th round, where ¢ =0,1,2,---

w; Propagation weight (weight for short) of the i-th round

w(fi) Weight of j3;, where §; is the input difference of x

w™(e;)  Minimal reverse weight of «;

DF Degree of freedom of the solution space of connectors

M Padded message of M. Note that M is of one block in our attacks.

My || My Concatenation of strings M; and M,

x; Bit value vector before A\ of each round, where i =0,1,2,---

Yi Bit value vector before x of each round, where i =0,1,2,---

Ey, System of equations on y; of each round, where i =0,1,2,---

3.2 Description of SHA-3 family

The SHA-3 family [Dwol5] consists of a subset of KEccAk [BDPVA13] hash
functions that are built upon the sponge construction [BDPVA07, GIMG11]
with an internal permutation called Keccak-f.

3.2.1 Specification of Keccak-f permutation. The underlying permuta-
tion Keccak-f takes a large state size of 1600 bits and there are 24 iterative
rounds in total. Each round of Keccak-f is comprised of five operations, namely,
the four linear operations denoted by 6, p, ™ and ¢, and one solely nonlinear op-
eration denoted by x. The 1600-bit state is organized as a 3-dimensional array of
bits, i.e., 5x 5x 64, denoted with A[5][5][64]. Each of the state bits indexed by the
coordinate (i, j, k) in the state array is denoted by Al[d][j][k] where 0 < i,5 < 5,
and 0 < k < 64. The 5 step mappings of the Keccak-f round are specified with
the following transformations.

6: A[D)[][K] + ALK @ 5o Ali — 117K © 25— Ali + 1]17'][k — 1.



Ali][] «+ Ali][j] <€ T(i,j), where T'(i, j)s are constants.
m ALj2i+ 3]« Al

x: Al[f][k] < Alil[5][k] & (Ali + 1][j][k] @ 1) - Alé + 2][F][K].

t: A[0][0] « A[0][0] @ RC;,,where RC;, is the i,-th round constant.

The multiplication used in x operation is in GF(2). As ¢ won’t affect differences,
we ignore it in the rest of the paper unless otherwise stated.

3.2.2 Instances of SHA-3 family. According to the bit length of digest, SHA-3
contains 6 instances, i.e., the four variants SHA3-224/256/384/512 that have a
fixed hash length (where the numbers 224/256/384/512 stand for the hash size
in bits) and the two variants SHAKE128 and SHAKE256 of extendable outputs. A
multirate padding rule 10*1 is defined for all SHA-3 instances. For the four stan-
dardized instances SHA3-224/256/384/512, a 2-bit string “01” is concatenated
to the message before padded while the capacity is specified as ¢ = 2 x d. In
regards to the two extendable variants, a 4-bit string “1111” is concatenated to
the messages, and the capacity is 256 and 512 bits for SHAKE128 and SHAKE256
respectively. The digest size d of SHAKE128 and SHAKE256 can vary, and there-
fore the collision resistance level is given by min(d/2,128) and min(d/2,256)
correspondingly.

3.3 SAT Implementation

In the following, the SAT solver employed, the descriptions of the Keccak-f
permutation and the related differential propagation, as well as the objective
functions, are illustrated briefly.

CryptoMiniSAT We choose CryptoMiniSAT as the underlying SAT solver
to implement our automatic trail search tools. Since proposed in [SNCO09], the
conflict-driven clause-learning(CLDL) SAT solver has been improved greatly
with works in [SNC10,S0014,S0016,SBH*19,SDG20,SSK*20]. Enhanced with
a sequence of advanced search strategies such as Gauss-Jordan elimination and
target phases [QUE19], CryptoMiniSAT shows outstanding performances among
other SAT solvers. Except for high performance, CryptoMiniSAT is selected to
take advantage of its feature that an interface for XOR expressions is provided.
In fact, most well-performed SAT solvers only understand constraints in conjunc-
tive normal form (CNF for short). To exploit SAT solvers, cryptanalysts need
to describe cryptographic primitives with CNFs which is generally challenging
task. With XOR operation handled, CryptoMiniSAT allows attackers concen-
trate on problems emerged in collision attacks on SHA-3 while providing high
performance as well as simple implementation.

To implement SAT-based automatic trail search method, two kinds of con-
straints are fed into CryptoMiniSAT, namely, conditions imposed by (1) differ-
ential propagation over round functions (or in other words the description of

10



round functions with CNFs), and (2) objective functions such as the number of
active Sboxes and the propagation probability. Since CryptoMiniSAT provides
very simple interface, the overall implementations are straightforward. Only ba-
sic ideas of listing all the constraints are described.

Round Function As depicted in the following model,

TOop

(4 X
Qp = Cp — B = g

two state differences, i.e., o, (the input difference of the r-th round) and S, (the
input difference of the y operation of the r-th round) are introduced to the SAT
implementation for a single r-th round. The 1600-bit difference «,. is represented
by 1600 variables, i.e., variable of each bit (whose coordinate is «,[i][j][k] where
0<i4,j<5and 0 <k < 64) is indexed with (320 X j 4+ 64 x i 4+ k),,.. This
way we establish the mapping relationship between the 1600 variables and the
corresponding state difference.

Recall that p and 7 are simply bit permutations. Therefore, differential propa-
gations over the two linear operations are described through mapping the indexes
of variables. For example, assuming that an active bit ¢, [i][j][k] is transformed
to Br[¢'][§'][K'] through 7 o p, then the index mapping of the two variables is
(320 X j +64 x i+ k)., 25 (320 % (2X i +3x ) +64x 5+ (k—T(i,7))%64)5,.
These operations are described with easy index transformation of variables and
no additional SAT computation is required.

By definition, # operation updates each bit through XORing itself to two
columns. Accordingly, 6 is described with XOR clauses that could be directly
understood by CryptoMiniSAT. That is, the XOR, sums of 320 columns (denoted
by «[i][k]) are described with 320 variables each of which is indexed by 64 x i + k.
As a result, the mapping of variable indexes induced by 6 operation is captured
with (320X j+64Xxi+k).,. = (320X j+64Xi+k)q, (64X (i—1)+E)cotumnSum ®
(64 x (i+1)+ (k—1))cotumnsum- Here, the subscript ColumnSum indicates the
variables of column sums.

Practically, the three linear operations (i.e., 6, p and 7) are treated as a
whole. The total index mapping of variables is described with (320 x (2 x i+ 3 X
J)+64 x5+ (k—T(,7))%64) = (320 x j +64 X i+ k)qa, ® (64 x (i —1) +
k)ColumnSum 2] (64 X ('L + 1) + (k - 1))ColumnSum-

In regard to the only nonlinear operation y which is generally considered
as 5-bit Sbox, both the difference distribution table (DDT for short) and the
operation itself are interpreted with truth tables. Specifically,

— The DDT is described with listing a truth table of 11 variables, including 10
variables that represent input and output difference and 1 variable marking
compatibility of DDT entries. When fed into Logical Friday (refer to https:
//download.cnet.com/Logic-Friday/3000-20415_4-75848245.html), 46
CNFs are generated to describe the DDT. Differential propagation over Y,
i.e., relationship between the input difference 3, and output difference a1,
is then depicted with simply writing CNFs of each Sbox.
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— Similarly, variables that correspond to the input and output values of x are
connected with CNFs generated from x truth table. Empirically, 11 variables
are needed to construct truth tables and 29 CNFs are produced.

In summary, 1600 x 2 + 320 = 3520 variables are used to describe one round
of Keccak-f permutation in the SAT-based implementation. The relationship
among variables are specified with methods illustrated above. Identical round
description that is of different variable sets is implemented for each round. Mul-
tiple rounds are described by connecting each round, i.e., (1) the input variables
of each round are the output variables of its previous round and (2) the output
variables of each round are the input variables of its next round.

Objective Function In the context of 6-round collision attacks on SHA-3, the
number of active Sboxes and the propagation weight (weight for short)* are the
two mainly considered objectives in implementation. To describe the objective
function, constraints on integers (i.e., number of active Sboxes and weights)
should be transformed to CNFs. The sequential encoding method [Sin05] is em-
ployed to describe addition over integers, e.g., Z;:Ol x; < w where w > 1. In this
process, (n X (w+ 1) — w) auxiliary variables are introduced. More specifically,

— Constraint on the Number of Active Sbox. To describe the number of active
Sboxes of each x, 320 variables are introduced to indicate whether an Sbox
is active or not. The sum of all the variables needs to satisfy a threshold
weight (say w), e.g., Zfi% x; < w. Accordingly, (320 x (w + 1) — w) extra
variables are introduced to transform the constraint on the number of active
Sboxes to CNFs.

— Constraint on the Propagation Weight. The DDT entries take 4 possible val-
ues (i.e., 2,4, 8, and 32), and the corresponding propagation weights belong
to {0,2,3,4}. As shown in Equation 1, four auxiliary variables denoted by
(po, p1, P2, p3) are introduced to represent the weight of each Sbox, meaning
that (320 x 4 x (w+1) —w) extra variables are added to describe constraints
on the weight of a whole state. Likewise, the weight constraint which is ob-
tained through summing up all the variables is then transformed to CNFs.

(1,1,1,1), DDT(din, Sout) = 2;
(07 17 ]-7 1)7 DDT((S’LTH (Sout) = 47
) ) ) = 1
(Po b1, P2, p3) (0,0,1,1), DDT(§sn, Fout) = 8 ()
(Oa Oa Oa 0)7 DDT(5i7u 6out) = 32.

3.4 SAT-based Automatic Search Toolkit

In this section, we explain how to implement various trail search algorithms
based on the SAT implementation. Let’s first review some definitions and con-

4 The propagation weight is defined as the opposite of the binary logarithm of the
propagation probability. For example, if the propagation probability of a differential
trail is 2732, the corresponding weight is 32.
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cepts introduced in [DVA12,BPVA*11]. The 6-round attack model presented in
Section 4.1.3 is placed here in advance to better explain definitions.

|:T 3-round €«
2-round Connector "l
, 3 R A

}\ X3 7)\ 7 )\7
4@5232—)0,3—)/33&&4—>64X—4>a5->[35x—5>ag;

Ne.o . i

(Bo) (B, B2) (B3, B4, Bs)

Figure 2: The 6-round collision attack model

Probabilistic property of x. As the algebraic degree of x is 2, its DDT shows
some interesting properties. For a given input difference, all its compatible
output differences share equal propagation probability. Correspondingly, for
a given f3;, all its compatible a; 1 take the same probability or weight. For a
given output difference, as the degree of x~! is 3, there exist one or several
compatible input differences that hold a better probability than the other
input differences. Likewise, for a given «, there exist some compatible 5;_
that have the best differential probability, which is also called the minimum
reverse weight (and generally denoted by w"®’(«;)).

Trail core. As depicted in Figure 2, a general 4-round differential trail consists
of input and output differences of all four rounds, i.e., (a2, a3, a4, as, ag).
Recall that as A is a linear transformation, «; propagates to §; determin-
istically. The 4-round differential trail is also denoted by (82,03, B4, 55).
Comparatively, the 4-round trail core is composed of three differences, i.e.,
(Bs, B4, PB5), taking advantage of the property that the minimal reverse weight
of a3 can be directly computed to evaluate the family of 4-round trails that
have (83, 84, 85) as their tail.

In the Figure 2 model, (53, 84, B5) represents the colliding trail, and (51, 82) and
(Bo) represent the connecting trail.

3.4.1 SAT-based colliding trail search. To set up the colliding trail search
model, description of differential trail (as,B83,04,81,05,85,0d) needs to be added
into the SAT model. Differential propagation over the round functions is imple-
mented in the way introduced in last section. At this stage, only constraints
that are exclusively imposed by the colliding trails are introduced. Aligned with
the requirements for constructing colliding trails in [GLL"20], the SAT-based
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search method is implemented from two aspects, i.e., the digest collision and the
connector construction.

From the perspective of collision search, we don’t have to check ag for d-bit
collision (denoted by ag). Rather, extra constraints on (5 that ensure ad colli-
sion are considered. Take colliding trail search of SHAKE128 as an example, to
guarantee the first 4 lanes of ag to be 0, the input difference to the first 64
Sboxes of #5 must belong to the set {00000, 00001, 00101, 10101, 00011,
01011, 00111, 10111, 01111, 11111}. The candidate input differences listed
above form a space which is represented by CNFs. Through adding the corre-
sponding CNFs on variables of 5 to the system, constraints on digest collision
is implemented.

On the other hand, to maximally facilitate the connector, the minimum re-
verse weight of ag (denoted by w™¢¥(«3)) and propagation weight w(8s) + w(B4)
+ w(BE) of the colliding trail are taken into consideration. Altogether, the ob-
jective function of w™(a3) + w(B3) + w(Bs) + w(BE) is described with CNFs
and added to the system. To speed up the SAT solving phase, the constraints on
weight is transformed to the number of active Sboxes, i.e., AS(a3) + AS(a4) +
AS(B4) + AS(BE) which results in (320 x 3 x (w + 1) —w) + (64 x (w+1) — w)
auxiliary variables included to the SAT system.

With this implementation, 3-round colliding trails are not only generated
more efficiently but also of better probability. In contrast, the best 3-round
colliding trail used in previous collision attack on SHA3-256 is of probability
2743 It’s worth noticing that 4-round colliding trails which could be utilized to
mount collision attacks of 6 rounds is generated for the first time. Table 2 gives
comparison of search efficiency. It demonstrates that the new SAT-based trail
search is superior to earlier strategies in both efficiency and effectiveness.

Table 2: Comparison of the SAT-based tools with other dedicated approaches

Type Permutation ‘ Rounds | Weight Time ‘ Reference
3 43 Several weeks*| [GLL™20]
_ T i 3.
Colliding trail Keccak-f[1600] 3 32 2.s J; Sect{. 3.4.1
4 141 5mins Secti. 3.4.1
Keccak- f[1600] 4 134 A [IMDAL7]
. 133 47.76h Sect. 3.4.3
General trail
Keccak-f800] 4 104 - [MDAL7]
95 28.42h Sect. 3.4.3

* There are two stages, i.e., the forward extension executed with one CPU core and the
backward extension deployed with three NVIDIA GeForce GTX970 GPUs.
f The SAT-based implementation is deployed with one 3.6 GHz Intel Core i9.
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3.4.2 SAT-based connecting trail search. In accordance with the consid-
erations for constructing connecting trails that promise valid connectors, the
trail search of (ap,B0,01,81,02,02) is specified with two phases.

Phase 1. In the first phase, (81, 82) are to be determined for given as. First,
description of the differential trail (51,xs,82,a3) are added to the SAT system.
Afterward, constraints on propagation weight of 5; and (s are established, i.e.,
CNFs of a minimal w(8;) + w(Bz) are listed. By now, 6400 + 320 variables are
used to describe the connecting trail where 6400 variables are introduced for the
2-round propagation and 320 variables correspond to conditions of the summed
weight. And we also restrict weight of each round, namely, w(5;) < w; and
w(B2) < wo which results in an extra (1280 x (w1 + 1) — w1) + (1280 X (we +
1) —ws9) variables. The objective function of weight is described with the method
illustrated in the last section. Overall, this model needs 6400 + 320 + (1280 x
(w1 +1) —wy) + (1280 x (wg + 1) — wq) variables.

Phase 2. The input difference of x¢ of the first round is determined in this
phase with the SAT-based implementation. Given the output difference o, vari-
ables that represent a pair of messages (zg,2%) and the input difference By are
introduced to describe the half round propagation. Precisely, constraints on bit
positions of capacity and padding are depicted by fixing the corresponding vari-
ables to be 0 or some settled value. Constraints on w(fp), the weight of 8y, are
also covered to make sure that the degree of freedom will be maximally produced
for connectors. Simply put, CNFs for objective function of a minimal w(f3p) are
added to the SAT model. With the SAT-based implementation, connecting trails
that yield much greater DF are generated.

3.4.3 SAT-based truncated trail search. Except for the special trail
search scenarios, SAT-based solution also performs well in general truncated
differential trail search. As can be seen from the experimental results, SAT-
based implementation handles 3-round Keccak-f permutation quickly. It turns
out that 3-round trail cores generated with the SAT-based automatic trail
search method are consistent with results from previous works [DVA12, MDA17,
LQT19].

We take 4-round differential trail search as an example to explain the SAT-
based trail search implementation. The 4-round trail is modelled with

A A A
Bo X a3 2 By S o D B S a5 D B 5 ae.

First, CNF description of the differential trail («s,83,04,84,05,05) is added to the
SAT system. As 6 differences are involved, 10560 = 1600 x 6 + 3 x 320 variables
are required to describe the difference propagation. Similar to the colliding trail
search implementation, constraint on the sum of weight w = w"*"(a3) + w(Bs)
+ w(Bs) + w(B5) where w < 133 is also added to the SAT system. Another
685947 = (1280 x 4 x (133 + 1) — 133) auxiliary variables are included in the
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process of transforming the objective function to CNFs. In total, there are 696507
variables in this SAT-based 4-round differential trail search implementation.

With respect to search efficiency, although it displays unexpectedly well per-
formance in 3-round trail search, it cannot traverse the search space of 4-round
trails efficiently. A tight lower bound on propagation weight for 4-round differen-
tial trails is unfortunately not settled in this paper. However, two better 4-round
trails of weight 133 which is the lowest known weight so far are generated. Table 8
in supplementary material B shows the two trails.

The SAT-based differential trail search implementation is further extended
to other KECCAK permutations [BPVA111] such as Keccak-f[800]. Analogous
to Keccak-f (which is also denoted by Keccak-f[1600]), similar round functions
are iterated for multiple rounds in Keccak-f[800] only that its state size is of
800 bits. Table 9 in supplementary material B shows a good trail that improves
the lower bound of 4-round trails for Keccak-f[800]. Table 2 gives an overview
of the advantage of the automatic search compared to previous works.

Summary. By picking up different compositions of constraints on the number
of active Sboxes and weight or even considering a single state not in the whole,
we obtain variant SAT models with different efficiency. The SAT-based auto-
matic search toolkit helps us understand the differential propagation property
of Keccak-f in a distinct viewpoint. It also demonstrates that automatic solvers
perform efficiently on cryptographic primitives with large state size.

4 Collision Attacks against SHA-3 Instances in Classical
and Quantum Settings

In this section, a classical 6-round collision attack on SHAKE128, and two 6-round
quantum collision attacks on SHA3-224 /SHA3-256 are mounted. Basic attack strat-
egy will be illustrated before introducing the exact collision attacks. The meth-
ods, techniques, and results of each collision attack on the three SHA-3 instances
will be explained in detail.

4.1 Basic Attack Strategy

Aided by the SAT-based automatic search toolkit, we propose advanced colli-
sion attacks on SHA-3 instances based on the analytic framework described in
Section 2. The enhanced collision attack is comprised of three phases, i.e.,

— Phase 1, generate n,,-round colliding trails of d-bit digest with the SAT-
based tool.

— Phase 2, generate n,,-round connecting trails that link the conditions of
sponge construction and the input difference of the colliding trail with the
SAT-based tool.

— Phase 3, construct connectors that generate a subspace of messages which

follow the n,,-round connecting trails.

The brute force phase where collision messages are generated will not be included
as only theoretical collision attacks are presented in this work.
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4.1.1 Generating colliding trails. Based on the SAT implementation tech-
niques elaborated in Section 3, we add the implementation of colliding trail
search algorithms to the toolkit. Except that the d-bit collision must be sat-
isfied, the propagation weight of the 4-round colliding trail core must also be
small enough to promise a possible 6-round collision attack. Eventually, several
4-round colliding trail cores are generated. We select the best one to mount colli-
sion attacks. Without considering the connector, weight of the 4-round colliding
trail is 141 (i.e., 89424+ 20+ 8 = 141) . The propagation weight of the 4-round
trail core is shown in Figure 3 while the exact differences are listed in Trail No.1
(shown in Table 5) of supplementary material B.

Figure 3: The 4-round colliding trail model. The 4-round trail is purposely placed at
the last 4 rounds of a 6-round differential trail to be consistent with the collision attack
model. In the last round, only d-bit collision is concerned and denoted by of.

4.1.2 Generating connecting trails. As shown in Figure 3, even the min-
imal weight (i.e., > 141) of 4-round colliding trails exceeds the birthday bound
(e.g., 128 for SHAKE128 and SHA3-256). It’s impractical to randomly select a 4-
round colliding trail and generate the corresponding 2-round connecting trail.
We develop a two-step approach to determine the connecting trails. The input
difference of the 4-round colliding trail core is generated in combination with the
differences of connecting trails. Let’s explain the idea with the 6-round collision
attack model shown in Figure 4.

— In the first step, the input difference (i.e., 82) of the 4-round colliding trail
core (f3, B4, f5) is determined together with the input difference (i.e., 81) of
the second round of the connecting trails. Practically, the 2-round differential
trails (1, 82) that are not only compatible with ag, but also of minimal
weight are generated with the SAT-based tool.

— In the second step, the lightest Sy (in terms of weight) that are compatible
with a; and meet the restrictions on ay imposed by the sponge construction
are generated with the SAT-based tool.

To demonstrate the strength of the SAT-based method, we compare exper-
imental results on SHA3-256 with previous work. In previous results, when the
first round of the connector is processed, the DF remained is estimated to be
around 124 (for more illustration refer to Section 5.2 of [GLL"20]). In compari-
son, the new connecting trails provide a DF up to 330 ~ 430 which is surprisingly
superior. This accords with the number of active Sboxes of y. Almost all of the
320 Sboxes of [y are active (e.g., the number of nonactive Sboxes is around 10)
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with the previous target difference algorithm, while with our SAT-based strategy
there are around 40 ~ 50 nonactive Sboxes in 5. Without the extra gain of DF,
it’s impossible to extend the attack by one round.

Remark 1. The three undetermined differences 8y, 51, and B2 cannot be gener-
ated all at once. On one hand, even if (g, 81, B2) are determined in one step, the
distribution of weights (i.e., w(Bp), w(f1), and w(Bz)) is random. In our experi-
ments, such (8o, f1, f2) cannot sustain a good connector in general. On the other
hand, the SAT-based toolkit cannot support searching such trails efficiently.

4.1.3 Constructing connectors. The connecting trails, combined with the
colliding trails, constitute the full 6-round differential trail with which the con-
nectors that generate a subspace of messages that follow the connecting trails
can be constructed. Considering that weight of the 4-round colliding trail ex-
ceeds the birthday bound, to mount a valid attack, we transfer the first round
of the colliding trail to the connector. In detail, the 6-round collision attack on
SHAKE128 consists of a 3-round connector and a 3-round colliding trail (refer to
Figure 4). As for SHA3-224 and SHA3-256, 6-round quantum collision attacks that
consist of a 2-round connector and a 4-round colliding trail are mounted (refer to
Figure 4). We highlight that the connecting trails cannot provide enough DF to
satisfy all the constraints in connectors even for theoretical attacks. Therefore,
merely a fraction of constraints of the last round of 2/3-round connectors are
treated.

Lo A4 xa. Al a X4l A4 x5 d
—|'>[32»;.(—2>03—>,83&a4—>ﬂ4x—4>a5—>ﬁ5x—>ag;

(Bo) (B1,B2) (B3, B4, B5)

Figure 4: The 6-round collision attack model

2-round connectors. The algebraic-aided method adopted from previous
works [DDS12,DDS14, QSLG17,SLG17, GLL20] is improved to construct con-
nectors that generate message pairs following partially the output difference
of the connectors. Principally, the systems of linear equations on messages are
listed and solved. The linear equations correspond to the conditions of sponge
functions and differences of the connecting trail. The 2-round connector model
exhibited in Figure 5 explains at length on how the system of linear equations
is established.
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Figure 5: The 2-round and 3-round connectors

1. First, linear equations of the (¢ + p)-bit conditions imposed by the sponge

construction are listed, where c and p correspond to the capacity and padding
bits respectively. Take the case of SHA3-256 as an example, the capacity is
c = 256 x 2 = 512 bits, and the padding rule is 10*1. To provide as many
DF as possible, we set the padding as fixed “11” string. Also the 2-bit string
“01” is concatenated to the tail of the message block. In total, a 4-bit fixed
string (7.e., “0111”) is considered as the p-bit condition.
Linear equations on the (¢4 p)-bit conditions are directly listed on the input
messages rg. As yo and g are linked with the linear transformation A, the
linear equations on x( are easily transferred to equations on ygy. In the case
of 2-round connectors, the systems of linear equations on yg are listed and
denoted by E,,.

2. Next, linear equations on gy that meet conditions imposed by first round
differential (5o, a1) are added to E,,. Message pairs constructed from the
solutions of the current E,, system must follow the (fy, o1) differential. De-
tails on how the equations can be listed are illustrated with Property 1 of
the supplementary material A.

3. To list equations of conditions imposed by the second round differential
(81, a2), the first round must be bypassed. Linearization and partial lineariza-
tion techniques on y operation proposed in [QSLG17,SLG17] are borrowed
directly to ensure that the y; bits can be expressed by the linear combina-
tions of involved yo bits. Consequently, E,,, the system of linear equations
on y; for (B1, as), is transferred to a group of linear equations on yo.

To this end, extra equations on gy that allows the involved y; bits linear
with respect to the x operation must be added to E,,. Practically, as there
is a whole round between y; and yg, the x; bits that are involved to the
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corresponding y; bits according to A operation are linearized. The principal
property exploited to linearize x; bits is briefly summarized in Property 2
of the supplementary material A.
The DF left after the last two steps cannot sustain solving all the 81 active
Sboxes. A greedy algorithm that sorts the active Sboxes of 8; by the number
of unlinearized z; bits is utilized to choose the 3; Sboxes to be treated®.
To sum up, linear equations on gy that linearize the involved z1 bits of
partially chosen 3; Sboxes are added to Ey, in this step.

4. At last, the system of equations on y; (i.e., Ey,) of the partially treated
(1 Sboxes is transferred to linear equations on gy with the linearization
equations generated in the last step, and added to the system E .

The Algorithm 1 shown in supplementary material A provides a concise descrip-
tion on construction of the 2-round connector. When a consistent system of
linear equations on yg (i.e., Ey,) is successfully generated, the alleged 2-round
connector is constructed. The solution space of E,, is composed of a subspace
of messages, i.e., yo. A pair of messages (y},y3) generated through XOR-ing y§
with Sy, while y§ is a random solution of Ey,, follows (1) the input difference o
and (2) a fraction of the output difference as of the 2-round connector.

3-round connector. In constructing 3-round connector, xq of the first round
is fully linearized, making the first round a linear layer. As a result, the 3-round
connector can be viewed as a 2-round connector. We adopt the model shown in
Figure 5 to explain how the system of linear equations of the 3-round connector
is constructed.

1. First, list linear equations on yg for (1) the (¢ + p)-bit conditions and (2)
the constraints imposed by the first round (8, o) differential. The system
of linear equations is denoted by E,,.

2. Next, fully linearize the x( layer of the first round and transfer the equations
on yg to equations on y;1. Namely, additional equations on gy that corresponds
to linearizing each active and non-active Sbox of (8o, ) differential are
added to the current E,,. Expressions of the linearized xo are utilized to
convert the system of linear equations on yy (i.e., E,,) to the system of
linear equations on y; (i.e., By, ).

3. List linear equations on y; for constraints imposed by the second round
(B1,02) differential. Add those equations to the present system of equations
E,.

4. With the same greedy algorithm utilized in 2-round connector construction,
select a fraction of conditions of B2 to solve and linearize the related xo bits.
Add the equations on y; that linearize the involved x5 bits of the partially
treated (f2,c3) differential to the current E,, system.

5. List equations on y, for conditions imposed by the partially solved (S2,a3)
differential of the last round of the 3-round connector. Convert the system
of linear equations on y» to equations on y; based on the linearization of

5 The other 81 Sboxes that are not treated are indicated with red block in Figure 5.
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involved x5 bit in the last step. Add the y; equations generated at this step
to the whole E,, system.

When all equations are listed and organized in the system of equations on y;
(i.e., By, ), the 3-round connector is successfully constructed. A subspace of mes-
sage pairs generated from the solution space of E,, satisfy that (1) the input
conditions imposed by sponge constructions are met and (2) the output differ-
ence of the 3-round connector is partially met as expected. The Algorithm 2 in
supplementary material A illustrates construction of the 3-round connector.

4.2 Collision Attack against 6-Round SHAKE128

Following the basic attack strategy, a collision attack on 6-round SHAKE128 is
mounted. The model in Figure 6 gives basic details of the attack.

A X3 A X4 A X5, 256
7.3 =7 Ba o e Ba T as = 65:,:;<r;%ﬁ1a6

I ot eoiting |

3-round connecting trail | round g-trail |

Figure 6: The 6-round collision attack model for SHAKE128

As discussed in Section 4.1.2, the minimal weight of the best 4-round colliding
trail core exceeds the birthday bound. To make the collision attack feasible,
the first round of the 4-round colliding trail is transferred to the connector.
Hence, the 6-round collision attack consists of a 3-round connector and a 3-round
colliding trail. Propagation weight of each round is identified in Figure 6. The
4-round colliding trail core is specified in Table 5 of supplementary material B,
more specifically, the (83, 84, 85) differences of Trail No.1. The probability of the
3-round colliding trail is 2752 (where 2752 = 2724.2720.278) The two-step SAT-
based connecting trail search method described in Section 4.1.2 is applied to first
determine (f1,532) differences and fix 5y difference subsequently. The connecting
trail is listed in Table 7, 7.e., Trail No.3 in supplementary material B.

Now that the whole 6-round differential trail is determined, the 3-round con-
nector can be constructed with the method illustrated in Section 4.1.3. The third
round of the 3-round connector is partially solved, e.g., in our experiment, 36 out
of the 116 constraints of (82,a3) are solved. The DF of the 3-round connector is
276, Alternatively, the 3-round connector generates a subspace of 227 messages

5 Indeed, the size of solution space is not always 227 (or DF=27). This is an average
number calculated from our experiments repeated on 2'43 connectors.
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that satisfy the 36 conditions of the input difference a3 of the colliding trail. A
pair of solution messages are given in Table 10.

The unsolved conditions of (8s2,a3) are treated together with the colliding
trail through exhaustive search. In the brute force phase, message pairs generated
from connectors are verified for whether satisfying a3 or not. If not, simply
abandon the current pair and try another one. Otherwise, further check the
256-bit digests of the pair until a collision is encountered.

Remark 2. Apart from the current work that exemplifies the collision resistance
of a typical 128-bit security level, inner collisions [GIMG11] could also be an-
alyzed with the same idea. As indicated in [GLL'20] (an inner collision of a
160-bit Keccak Challenge), the inner collision attack that constructs collision on
capacity bits yields collisions of any digest length.

Complexity. The overall complexity includes complexity of both the connector
construction phase and the exhaustive search phase.

— In the exhaustive search phase, the time complexity is 2!3? 6-round SHAKE128
computations (where 2132 = 2116-36.952) However, taking advantage of the
early-abort technique, the search process is sped up by iteratively filtering
out half of the message pairs at each step. The cost of computing each
additional bit constraint on 33 equals to 1445 - & = 2798 6-round SHAKE128
computation as 11 bits of ay states are involved. When checking all the
2132 message pairs with one bit constraint, only half of the pairs satisfy the
restriction while the other half are discarded, i.e., the so-called early-abort.
For the remaining message pairs, another bit constraint will be checked and
filter out half of those message pairs. This iterative process continues on the
surviving message pairs until all the bit constraints on S are checked. 1/2
of the messages stop by first bit constraint, 1/4 by the second bit constraint,
1/s by the third bit etc. Hence the time complexity would be 2132.279-8. (1.
o2 1/s43-18+---) = 21232 6round SHAKE128 computations.

— In the connector construction phase, the time complexity corresponds to
the time used to construct 21%° (i.e., 2% /227 = 219%) connectors. Let’s first
discuss the equivalent conversion of implementation efficiency between con-
nector construction and 6-round SHAKE128. The computation cost of 6-round
SHAKE128 is 6 - ((4-320+ 2-1600) +3 - 1600+ 64 ) = 56064 bitwise op-

—— =~

X L
erations. Further, solving esystems of linear equations dominates the time
of connector construction’. The time complexity of Gauss-Jordan elimina-
tion for system of boolean equations is O(m?n) bitwise operations [HJ12],
where m is the number of equations and n is the number of variables. In the
worst case, there are 1600 non-redundant equations in the final system, i.e.,
m = 1600. The complexity would be no greater than 1600® = 4.096 x 10° bit-
wise operations. Consequently, time cost of constructing a connector equals

7 Refer to Remark 3 for more discussion on the cost of connectors.
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to 4.096 x 10° 56064 = 2162 6-round SHAKE128. The time complexity in con-
nector construction is equivalent to 2105 . 216-2 = 21212 §.yround SHAKE128
computations.

In total, time complexity of the classical collision attack is 2123-2 4- 21212

:2123.5

6-round SHAKE128 computations. Complexity of quantum collision attack® is

267.25/\/§'

Table 3 gives an overview of the time complexity tradeoff between brute
force search phase and connector construction phase according to the number of
constraints on By solved. The more the constraints are solved, the smaller the
DF of connectors is, the better the brute force complexity is and the worse the
connector complexity is.

Table 3: Summary of complexity corresponding to the number of constraints solved

#constraints DF Data Connector | Brute Force Total
of Connector | Complexity | Complexity | Complexity | Complexity
35 28 133 121.2 124.2 124.4
36 27 132 121.2 123.2 123.5
37 23 131 124.2 122.2 124.5
38 22 130 124.2 121.2 124.3
39 20 129 125.2 120.2 125.2
40 15 128 129.2 119.2 129.2
41 13 127 130.2 118.2 130.2
42 10 126 132.2 117.2 132.2
43 7 125 134.2 116.2 134.2
44 4 124 136.2 115.2 136.2
45 1 123 138.2 114.2 138.2

Remark 3. Experiments on 2'43 connectors show that solving systems of equa-
tions dominates the time of connector construction. In particular,

— when fully linearizing the first round, due to the large DF, almost all Sboxes
are successfully linearized in the first try and very occasionally it needs extra

tries;

— when partially linearizing the second round where no more than 40 con-
straints are treated, about 1/3 tests succeed with the first or a second try
for each Sbox while around 2/3 tests collapse and we should start the par-
tial linearizing process again. But as this process consumes 0.01s on average
(compared with 0.8s used to construct the whole connector) it won’t affect

the complexity analysis.

Overall, neglected time is consumed in listing equations which is consistent with
the observations from [GLL120].

8 Complexity analysis of quantum collision attack will be illustrated in Section 4.3.
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Remark 4. Experimental results outlined in Table 4 conforms to the theoretical
complexity analysis of the connector construction phase. The average execution
time of each connector construction (denoted by T¢) is 0.8 second. In our C++
implementation, around 22° 6-round SHAKE128 are computed in each second.
The time of connector construction equals to 210% . 219-67 = 2124.67 gypAKE128
computations which validates the attack.

Table 4: Experimental details of the collision attacks on 6-Round SHA-3 instances

Target ‘ Type ‘ Trail Core ‘ T ‘ DF ‘ Complexity ‘ Solution
Classical 21235

SHAKE128 Quantum No. 3 0.8s | 27 27 | /5 Table 10

SHA3-256 Quantum No. 1 3s 5 21042 [/ Table 11

SHA3-224 | Quantum No. 2 3s | 22 2T /5 Table 12

4.3 Quantum Collision Attack against 6-Round SHA3-256

The colliding trail used in 6-round collision attacks on SHAKE128 is also used
in attacks on SHA3-256 and SHA3-224. As shown in Figure 7, the 6-round colli-
sion attack on SHA3-256 consists of a 2-round connector and a 4-round colliding
trail. Note that, the (81, 82) used in the attack on SHAKE128 is also applied
here. The entire 6-round differential trail is given in Table 5, i.e., Trail No.1 in
supplementary material B. The 2-round connector solves 226 out of the total

X3 A X4 A X5 5
e 54'.;:::7;,: Qas =+ ﬁf}ﬁx agoﬁ

2-round connecting trail | 4-round-colliding trail |

Figure 7: The 6-round collision attack model for SHA3-256

264 conditions imposed by (81,a2). The solution space of the 2-round connector
ensures a subspace of message pairs that follow partial ay difference as expected.
In our experiment, the 2-round connector is constructed in 3 seconds on average.
The DF of the connector is 5. Or to put it differently, the size of the solution
space is 2°. Example of a pair of messages that follow the connector is given in
Table 11.
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The unsolved conditions (i.e., 38 left) of (81,a2) are treated together with
the colliding trail whose weight is 116 + 24 4+ 20 + 8 = 168. In classical settings,
the time complexity of the brute force phase is 2382168 = 2206 g_round SHA3-256
computations with which a valid collision attack cannot be conducted. However,
such differential trails of low probability can be exploited in quantum settings.

Quantum collision attack. As stated in [HS21], no existing quantum collision
attack on a random function could outperform classical attack based on parallel
rho method [VOW94] in terms of time-space tradeoff. We follow their way and
consider a quantum collision attack valid if its time complexity is less than 2*2/s,
where n denotes the digest length, and S is the hardware size required for the
attack (or in other words, S is the maximum size of quantum computers and
classical computers). Note that instead of designing concrete quantum circuits
matching the theoretical bound of time-space tradeoff, the authors of [HS21]
assume such quantum circuits exist already and concentrate on complexity eval-
uation of the quantum attacks. We adopt the same strategy in [HS21] to mount
the 6-round quantum collision attack on SHA3-256.

Suppose there exists a quantum circuit C; for the connector construction of
depth T, and width S.. That is, the quantum circuit constructs a connector in
time T, with S. qubits. Similarly, suppose there exists another quantum circuit
C, of depth T, and width S for the one-block SHA-3 variants, i.e., the quantum
implementation of the 6-round targets (in this case SHA3-256). The idea that
converts the classical attacks to the quantum collision attacks is described as
follows.

1. Prepare message pairs (M, M') with the quantum circuit C;.

2. For each (M, M’) pair, compute the digests with quantum circuit Cy, and
check whether they are identical.

3. Repeat the above two steps until a collision is found.

Complexity. Considering the solution space of the 2-round connector (which
is 25), 2201 connectors are needed in theory. There are simply two kinds of oper-
ations in the quantum implementation of connectors, namely, listing the system
of boolean equations and solving it with Gaussian-Jordan elimination, both of
which are linear operations. Compared with T of the nonlinear SHA-3 variants
(or more specific the x operation), the depth T, of C; where only linear opera-
tions are involved is negligible [AMG™16]. Hence, time complexity of quantum
collision attack is dominated by the time complexity of the exhaustive search
phase.

Suppose we have a quantum computer of size S, taking parallelization into
account, the time complexity of Grover search [Gro96] in the exhaustive search

phase is
Ta- (/1) /3] -5),
where p is the probability of finding a collision in the classical setting, and T4

(resp. S4) is the depth (resp. width) of the quantum collision attack. The depth
(resp. width) of the quantum circuits of the SHA-3 variants (i.e., C2) are defined
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as the unit depth (resp. width), meaning that Ts = 1 and Ss; = 1. Specifically,
as the state size and the digest size are 2 x 1600 + 256 = 3456 bits, we regard
at least 3456 qubits are required in circuit Cy. The overall depth and width are
evaluated with the following analysis.

— Depth (T4). As T, is negligible, Ty =T, = 1.

— Width (Sa). In the quantum circuits of connectors (i.e., C1), the quantum
states include (1) the auxiliary m qubits (as there are 264 conditions, m =
264 ) that mark whether a condition will be treated or not in the partial
linearizing step and (2) the k£x 1601 qubits that store the k boolean equations

(k < 1600) of the system of linear equations. The overall S4 = S. + S; =
(m -+ k % 1601 + 3456) /3456 < (264 + 1600 x 1601 + 3456) /3456 = 7429,

Therefore, the total time complexity of the quantum collision attack on 6-round

SHA3-256 is
1-(7/a) - \/m = 910425 /5.

Comparing to the generic attack cost under the time-space metric which is 2'*%/s,
our quantum collision attack is valid as long as S < 2475,

Remark 5. In the quantum search, we should prepare 2296 messages which brings

to the concern that whether it’s possible to construct so many connectors. This
concern could be answered through introducing multi-blocks. The first block
(which is identical for the two messages) provides distinct capacity bits at each
time which are used to construct different connectors of the same connecting
trails. We can try as many as 2°'2 first blocks which are sufficient for the attack.

4.4 Quantum Collision Attack against 6-Round SHA3-224

As shown in Figure 8, the 6-round trail of SHA3-224 (which is listed in Table 6)
is comprised of the same colliding trail used in attacks on SHAKE128 and SHA3-
256 and a 2-round connecting trail searched with the SAT-based tool. In our

A : A A
b, g = P2 ag & By s S By

g 5

|
2-round connecting trail | 4-round-colliding trail

Figure 8: The 6-round collision attack model for SHA3-224

9 More auxiliary qubits may be required for intermediate variables (e.g., in greedy
algorithm and Gaussian-Jordan elimination) in Ci. Those variables are of the state
size multiplied by a constant. As the worst case of Gaussian-Jordan elimination is
considered and Cz also contains intermediate variables, this evaluation is reasonable.
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experiment, the 2-round connectors are averagely constructed in 3 seconds. The
size of the solution space is 222. Example of a pair of messages that follow
the connector is given in Table 12. The 2-round connector solves 240 out of
the 268 conditions imposed by the (81,a2) differential. Therefore, the classical
complexity of the brute-force phase is 228+113+24+2048 — 9193 6_yound SHA3-224
computations. Similar to the attack on SHA3-256, we mount 6-round quantum
collision attack on SHA3-224. Likewise, we adopt the strategy utilized in [HS21].
Suppose we have a quantum computer of size S, the complexity of our attack is

1- (7r/4) . \/(((268 + 1600 x 1601 + 3424) /3404) X 2193)/5 — 297-75/\/3

under the time-space metric 2'*?/s, and the quantum collision attack is faster
than the generic attack when S < 2283,

5 Conclusion

We investigate the previous collision attacks on SHA-3, identify the limitations
of ideas, methods, and techniques employed in those attacks, and summarize
directions that can be improved to mount collision attacks on SHA-3 that cover
more rounds. Briefly, if the colliding trails that cover more rounds and connect-
ing trails that promise more degree of freedom in constructing connectors are
generated, the collision attacks are most likely to be improved. The major chal-
lenge lies in the fact that differential trails of Keccak-f permutation are difficult
to search as the large state size results in a search space that is too enormous
to be covered effectively. Luckily, we observe that the automatic search tool,
i.e., the SAT solver performs extraordinarily well in modeling the differential
propagation of Keccak-f. In this work, a powerful SAT-based automatic search
toolkit is proposed to overcome the clarified challenges. We demonstrate that
the SAT-based trail search methods are applicable to all kind of analytic sce-
narios where trails are involved. With the SAT-based toolkit, advanced collision
attacks on SHA-3 instances are presented. Totally, a 6-round collision attack on
SHAKE128 of complexity 2!23-5, a 6-round quantum collision attack on SHA3-256
of complexity 2'°**°//3, and a 6-round quantum collision attack on SHA3-224 of
complexity 2°7"/V/3 are proposed. It’s not only that the 6-round classical and
quantum collision attacks are introduced for the first time but also shows that
quantum collision attack is able to cover more rounds or targets than classical
collision attacks.
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Supplementary Material

A x Properties Exploited in Connector Construction

In constructing connectors for collision attacks, systems of linear equations are
listed and solved. Several properties of x operation that are principal for listing
equations are introduced in this section.

Property 1. The inputs of xy operation that follow a compatible differ-
ential («, 8) form a subspace. Assume that (x4, z3, 2,21, o) are the 5 input
bits of the y operation which is also called Sbox in general, and (4, 83, 82, 81, 5o)
(with respect to (ay,asz, s, a1, qg)) are the 5 bits of the input (output) differ-
ence, based on the definition of y, the relationship between the differential bits
and the input bits can be deduced. As demonstrated in the following expres-
sions, when the input difference o and the compatible output difference § of x
are given, equations on the five input bits z; where 0 < i < 5 are of at most
degree 1, i.e., linear equations.

Bo
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Ty Qo+ Q1 -T2+ Qg+ Qo+ Q1 - Q2

Ty a3 toag- Tz +o1t+az+ag-as

P2

1 )
2 )
Tz g+ a3 Tg+as+ag+az-ay)
4 00+ ay-To+az+ag+as-ap)
0 )

= (
= (
= (
B3 = (CE
Ba=(To-0n+0ap-x1 +0u+a1 +ag-0q
Following the above relations, when the y-compatible differential («, ) is deter-
mined, the linear equations on input bits x; are directly listed.

Property 2. Linearizable affine subspaces. As proved in [QSLG17,SLG17],
when the inputs x = (24, 3, 22, 21, o) of Sbox are restricted to a small subspace
(e.g., a subset of 4 inputs), the outputs y = (x4, z3, z2, 1, 2o) can be expressed
with linear combinations of input bits, 7.e., the so-called Sbox linearization,
while by definition y; := x; ® (z;41®1) 2412, y; bits are computed from nonlinear
equations on x; bits. In detail, the linearization of Sbox is discussed in two
classifications.

— For active Sboxes, as the inputs are already grouped to subset with the
constraints of differentials, some active Sboxes are already fully linearized
while the other active Sboxes still need to linearize one bit. More specifically,

1. for active Sboxes of DDT=2 and DDT=4 entry (i.e., for a certain («, 8),
there exist 2 or 4 input pairs that follow the differential), the subset of
inputs of the differential form an affine subspace. In other words, any
of the five output bits y; is expressed by a linear expression of input
bits ;. Within the subset restricted by the DDT entry, the nonlinear y
operation is essentially linear.
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2. for active Sboxes of DDT=8 entry, 4 out of the 5 output bits of y are
naturally linearized, to linearize the only nonlinear y; bit, extra equations
on x; bits are added.

— For non-active Sboxes, according to distinct attack scenarios, either the
whole Sbox or some output bits y; are linearized. Either case, the lineariza-
tions can be achieved by adding additional equations on input bits.

Algorithm 1: Constructing 2-round connector.

Input: 2-round connecting trail, (ao, Bo, a1, 51, @2)

Output: A system of linear equations on yo, i.e., Ey,

List and add equations on yo for (¢ + p)-bit conditions of ag to Ey;

List and add equations on yo for conditions of (8o, a1) differential to Ey;
while Ey, is not consistent do

Select the partially treated 81 Sboxes with greedy algorithms;

List equations on yo to linearize o for involved x1 bits;

Add the yo equations to Fy,;

Store the partially linearized expression of xo;

List and add equations on yi for conditions of (81, az) differential to Ey, ;
// According to the partially linearized expression of Xo

9 Convert E,, to equations on yo and add to Ey;

w N O oA W N

10 end

B Trails and Messages

In this section, we give details of differential trails of Keccak-f permutation and
the message pairs that satisfy the connecotrs of the collision attacks.

The 1600-bit state is displayed as a 5 x 5 array, ordered from left to right,
where ¢|” acts as the separator; each lane is denoted in hexadecimal using little-
endian format; ‘0’ is replaced with ‘-’ for differential trails.

B.1 Differential Trails

In this section, differential trail of 6-round collision attacks are listed. The full
6-round differential trail of the quantum collision attack on SHA3-256, i.e., Trail
No.1 is given in Table 5. Note that the differential probability of the last round
is 27® as only Sboxes of the digest bits are considered. As collision attacks on
the three SHA-3 instances make use of the same 4-round colliding trail core, the
last three round differences are omitted for SHA3-224 and SHAKE128.

Next, two newly searched 4-round trails that are of the best probability are
given.
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Algorithm 2: Constructing 3-round connector.

Input: 3-round connecting trail, (e, Bo, a1, 51, @2, B2, a3)
Output: A system of linear equations on yi, i.e., Ey,

1 List and add equations on yo for (¢ + p)-bit conditions of ag to Ey,;
2 List and add equations on yo for conditions of (8o, a1) differential to Fy,;
3 while E,, is not consistent do
4 Fully linearize xo and store the linearized expression of xo;
5 Add equations on yo for linearizing xo to Ey;
// According to the linearized expression of o
6 Convert Ey, to Ey,;
7 while E,, is not consistent do
8 Select the partially treated B2 Sboxes with greedy algorithms;
9 List equations on y; to linearize x1 for involved z2 bits;
10 Add the y1 equations to Ey,;
11 Store the partially linearized expression of x1;
12 List and add equations on y2 for partial conditions of (S32, as)
differential to Ey, ;
// According to the partially linearized expression of X1
13 Convert E,, to equations on y; and add to Ey,;
14 end
15 end

B.2 Instances of Solutions of Connectors

In this section, examples of message pairs that follow the connectors of 6-round
collision and quantum collision attacks on SHA3-256, SHA3-224 and SHAKE128 are
given respectively.
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Table 5: Trail No.1 used in the 6-round quantum collision attack on SHA3-256

-259C1951A-F934-|595-912-259--9C5 | 132E481-427751C- | 87C8B28--5-32-28 | A-8-441881-8922-
26-19181-4-8C---|5C984-32AB-623E5 | 9-3458--142E914~- | -419A51-4359A268 | -9D---9C15-6424~

Bo |F6D3F4913626149- | DA1-3D2227DD818- | 22EAF4964678D52- | 8282-11-62-42248 | 3598-896-3-3142-(27 777
8731E18-45-B95A8 | CBF862287E4183A1 | 3BCCEC316-3AD728 | -27-5419-9--274~ | 2819-1443E4594--
3CDB1FBD-E-2B12- | 43C3AA3981-46-81| 62FE14AC847D612- | 3FDB2B85478-7-4- | B-~1EA-D958681-—
-48-8--4-----22- | ~=—-4--—-—— 82D88 | 1--2---46---1--- | ~=-14------4--1- | -82-4-228-----—-
-48-C-12 2-| 6---8---8|1--24---6----48- | ---—---4--T--21- | -8--4-248-----—-

B |-48-8------- 12-8|----4--44--8--2-|1--2---9-----4-- | --5-4--2---4--1-| -82-4---8-—--—-- 2264
-48-C--2 2-1 2

8--4 2-|----4
17--| 24--| 7B--| A--| c2--
14--| 42--| B1--| cc-1| 82--
B2 73--| A4--| E1--| 4B--| 12--|27116
6--1 1--1 E—-1| -1l 7
5--| 3A--1 11--| c—-I F6--
I | I 2 |
| | |--E |
B3 [ 2 I I A-———- I 2724
| | 8 | 8 |
|--8 |--2 |--E |
| | |-—--1 |
---2 | | | |
Ba I |---14 I I 2720
| | | |----E
|-—--7 | | |
| | | |2C 1
9—-| 49| | |-—--28
Bs|----2 I--5 I 1--1-47 I 278
248-| 2 | 8 | 8
5 [ 4 I 248--—-| |---1C

Table 6: Trail No.2 used in the 6-round quantum collision attack on SHA3-224

Bo

82-3-89-59-2-12-|71C-D431-3--BD84 | 84418-42A9E11AC- | 5-164719-B8524-8|893844-2--8822--
—----4A5-59-2----|F28334B---8-86-4| -5438-C-B-41--4-|5-14-118--281--8| -879-4C3929-3C84
4-333-2-DD83--1-|E19AB522883B96-- | 857AA1D8A-E-1-1-|-224E11--8-22-88| 1A3BB5819321881~
C-B-44F1DA47B22- | 9657B26--82-A648|81778-68A3E-3-4- | F-B485FB92-1A488|5C292-428-B238C8
9-134ABBC-A3344- | A6AABC51C8E9AD-~ | F918C4AEA1E-14C- |E-36791-4-286B4- | 3C597-EB42219F8-

27724

-48-8------—- 22- | ----4--4---82988| 1--2----6---1--- | -—-14--4---4--1- | -82-4-268----———
-48-C-12------ 2= |-~ 2---82--8|1--24--46---—- 8|~ 7--21-|-8--4-248----8--
B1|-48-C 16-8| 44--82-2-|1--24--9---—--——|--5----2---4--1-| -82-4---8----8-- |27 268
-48-C--—-——--- 2-|-==—-—- 2----2--8|----4--26 |--5 4-21-|-82-4-268----843
8 2-| 4---81D88|1--24---6-------|-8--4--4--74-21- | --2---268------ 3
13--| 24--| 7B--| A--| c2--
14--| 42--| B1--| cc-11 8
B2 33--| A4--| E1--| 4B--| 12--|27 113
6--1 1--1 E--1| 8-1l 7---
4--| 3A--1 11--| c—-1| F6--
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Table 7: Trail No.3 used in the 6-round collision attack on SHAKE128

--49--151E-E822- | DA8-912-218--845 | -2EE-89-44775-A~ | 1418738--3-E3--8| 334-C418851-81E-
26-1--81-3-4C--1|58-811A2BD-E-185 | 9-A4881--82AD12- | -41-A59-56558249 | -1C851-C18-22-2-
14-1C11-1226--9- | C88811A-2-8C8-88 | 1-2--8-3-171D-2- | --5AA481462C3348 | 27--5-84---8-52-| 27670
-425218-1--A-1-- | C888823821--9-A1| 1--4C82-167BC1-- | --9-14195D-83248 | 23C82-44-1-4152-
53099221-C--A-8- | -96223988-CC--81 | 55C6-CA--33F5-2~ | -49-B31845--51C- | A12-61341244812-
-48-8-—4---=-22~ | ~===4==—=— 82D88 | 1--2---46---1-—- | ~——14--———-4--1— | -82-4-228———————
-48-C-12------ 2-| === 6---8---8|1--24---6----48~ | ~===-=-4--T--21~ | ~8--4-248----=-~
-48-8-—————- 12-8| -==-4--44--8--2~ | 1-=2-=-9==-==4== | ==5-4--2-=-4-=1~ | ~82-4-—-8=—————— 9264
-48-C--2 2-| 2 8| ~===4-==6-=-—4== | ~=5========4-21~ | ~82-4-248----~ 43
8--4 2-|--—-4 82988 | 1--2---46---14-~ | ~-8--4--4--T4-21~ | -=2---228--—-—— 3
17--1 24--| 7B—-| A= c2--
14--| 42--| Bi--| cc-1| 82--
73--| A4--| E1--| 4B--| 12--|27 116
6--1 1--| E--1| 8-1| 7---
5--1 34--| 11--| c--1 F6--
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4-round differential trails of Keccak-f[1600]

4-Round Trail No. 1, with weight of 133

Table 8

279

2—8

2—84

2747

278

8[2732

4
R P

P

4-Round Trail No. 2, with weight of 133

4
1
1
1

a8
8
———--1

Bo

b1

B2

B3

B1|4

B2

Bs
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Table 9: 4-round differential trail of Keccak-f[800]

4 |24 | | |
4 I |2 14 |
Bo |4 | 12 | | 222
|-4 |12 | |
4 | 12 | |
I I I |
I I I 81
B1|-8 | | | 4-| 212
| | | |
8 | | | c-1
I I I |
| 14 | |
B2 | |8 | |----2---|2712
| | | IC
14 | | |
e [==--= 6--|--2----8|-——-1---
e e R et |-g------
B3|--===--- [======== |-2-===8~|-==--~ C-|8-=----- 2749
-------- |===2=== | ==mmmmom | === | 14
I | --8-=--2-|-=1----- | -—4---—- |-=————= 1

Table 10: Message pairs that follow the 3-round connector of SHAKE128

M,

717TE1DACTF3DCAF | 7TFEO04EEE547BE60 | 86632CAD7A156312 | C77DE0993E8503D1 | 9C1999581C84789A
F5D9FCCAOB11B895 | CF5F13219A51703F | 4D59EF658AE05CB0 | 7E6360300015E0CD | CA68151E871DE340
51F55064B2A1DDB3 | BABFOC027A5DFA4A | 10C31EC601E06620 | 2B4745C447B6A99A | 7450C64A9C16COEE
7EF18823DDEC3257 | 31FDCE0100143597 | 4F28C1C60406BF 14 | 3FABF55262DC1B14 | 3BE6E710ACOOCFE2
FE199297DE836625 | 0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000

M.

%)

7168266633A8C91F | 5DASFC2BESC59E60 | C707EC498A06E013 | 3F11A48A5A802BE2 | 9AD9745B88425CDA
T7T9F3269FDCCA726 | F515136C1A9DF87E | 60394743CA736FB2|720415309C01C2FC | 2DF08D9D1665DCD2
43B706CF59F11007 | D2C3157D76C944F2 | 0C89184CD5F13AE1 | 5B8F11CD53A78839 | 33D675E9CCDF58B5
F285CFA2D7BBED9E | 353764E016CD355A | 25FA4886EC250404 | 860BF1F3A5553B2F | 746670B73D24F793
FFO75CFE20F7F1B7 | 0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000

Table 11: Message pairs that follow the 2-round connector of SHA3-256

M,

9BE7DEE6B6466BFA | 655978BF618EBO6B|0751B61615B0C99D | 977D97FDF64DE5S50 | 764D6F03F1616012
42E520398CA4FCCF | F42227A8DB14CD98 | 30392DB5AC74056F | 08E94682644AA93E | B8227616B1EO7EFO
4C7BB462C374409A | 2E7C77A9473A09BE | 662FC2C39C847BDF | A1CFS8BCBA082588B | 6DOOBE23B7022FA9
3231FB3409F11485 | E7B6B3F16F21ECA6|0000000000000000|0000000000000000 | 0000000000000000
0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000

M.

%)

5CB61215AE6C787A | 3230F8749FFC1A63 | BABDCC0285881F1D | CEFOD3C1D3COFD68 | 9CBD5812073F5438
00093565923EFA2D | CA20042B2220F8D1 | 7DD169A18CD96169 | 96BC71BE291FAB91 | 929EA1DE25815062
9B753204C3D41272|C872FE112E03A74B | 2AA788C90CB40C16 | 84A45FE4906C1380 | 7C8AC6EOE7ASD7A2
359A366A2BCB79D0 | E334D3BF19006C2B | 0000000000000000 | 0000000000000000 | 0000000000000000
0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000

37




Table 12: Message pairs that follow the 2-round connector of SHA3-224

DC7B6C706F133812|B50C7222F3A9A9B0 | 4E81751A4654512D | 56CO9ED7FAOFC92A8C | 58E2DC5C755F30A0
6A16CB699BAB9455 | 0546AF387CEF0131 | 2CC41EAFF4F69865 | 7TASDAE1C8448704A | 09E8F2DF73EBBDOD
B12136F52C3FD4B6 | FOBBO902E72FE733|94792317346855F 1| 033A58E698652530 | E2008610306D6862
21D61434E90B327B|4E1EA3E780B0OC1D2 | E32D8E608E222478|0000000000000000 | 0000000000000000
0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000

M

iy

3C7C626EDB715DFA | 9A03B6084DE04ES8 | 4D0479E9D059640F | EEOE957ABDF547D5 | 9816BCA5735FACBB
0890C783FFAESBBB | 4940C30974207ADC | 6C8A5267EA57921D | 06B54FODE52AB95B | 898A991650A8BF25
M3 |D38D4063D7579076 | E68DO8D82DSF78DF | DFE43928F8F939E1 | 5A121224970D013C | 374162D8A1975BCB
CBF2068FA41B4D8F | 49C8FEODD07A2692 | E9F449151154E45B | 0000000000000000 | 0000000000000000
0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000 | 0000000000000000
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