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Abstract. Compressed Σ-Protocol Theory (CRYPTO 2020) presents
an “alternative” to Bulletproofs that achieves the same communication
complexity while adhering more elegantly to existing Σ-protocol theory,
which enables their techniques to be directly applicable to other widely
used settings in the context of “plug & play” algorithmics. Unfortunately,
their techniques are restricted to arithmetic circuits over prime fields,
which rules out the possibility of using more machine-friendly moduli
such as powers of 2, which have proven to improve efficiency in applica-
tions. In this work we show that such techniques can be generalized to
the case of arithmetic circuits modulo any number. This enables the use
of powers of 2, which can prove to be beneficial for efficiency, but it also
facilitates the use of other moduli that might prove useful in different
applications.
In order to achieve this, we first present an instantiation of the main
building block of the theory of compressed Σ-protocols, namely compact
vector commitments. Our construction, which may be of independent
interest, is homomorphic modulo any positive integer m, a result that
was not known in the literature before. Second, we generalize the Com-
pressed Σ-Protocol Theory from finite fields to Zm. The main challenge
here is ensuring that there are large enough challenge sets as to fulfill
the necessary soundness requirements, which is achieved by considering
certain ring extensions. Our techniques have application as publicly veri-
fiable zero knowledge proofs of correct computation on homomorphically
encrypted data, where for a more flexible parameter instantiation it is
useful that the ciphertext space is allowed to be a modular or Galois
ring rather than a field: concretely, our protocols can be plugged as a
commit-and-proof argument into a recent result on efficient verifiable
computation schemes on encrypted data with context-hiding (PKC 21)
which exploited this advantage.

⋆ Work partially done while Daniel Escudero was at Aarhus University



1 Introduction

Zero knowledge proofs, introduced in [35], constitute an important tool
used all across cryptography to build several other powerful constructions,
and they also find applications outside cryptography thanks to their con-
siderable flexibility and high potential. In a nutshell, a zero knowledge
proof enables a prover to convince a verifier that a given statement be-
longs to certain language, without revealing anything else beyond this
fact. In addition, in a zero knowledge proof of knowledge the verifier gets
convinced that the prover actually knows certain information, without
leaking the information itself.

Given the generic nature of zero knowledge proofs, several applications
and uses of these tools have been found, both inside and outside cryptog-
raphy. For example, zero knowledge proofs are used thoroughly in several
cryptographic constructions such as secure multiparty computation and
other distributed protocols to prove, without leaking sensitive informa-
tion, that certain messages are “well formed” (e.g. [33,11]). In many cases
this turns out to be essential to be able to support “active adversaries”,
which model real-world attackers who can deviate from the specifica-
tion of the cryptographic construction at hand. Furthermore, thanks to
a rich and fruitful series of works [32,36,15,17,20,2,42,10,44], several zero
knowledge protocols with a wide range of desirable properties and trade-
offs exist today. Quite interestingly, many of these techniques are being
applied to real-world tasks, with an example being the case of ZCash [9],
a digital currency that uses zero knowledge proofs to protect privacy of
transactions.

Typically, zero knowledge techniques operate by somehow translating
general statements to arithmetic statements, ultimately dealing with ad-
ditions and multiplications over some algebraic structure. Traditionally,
this arithmetic happens over what is known as a finite field, which is a set
with addition and multiplication operations where every non-zero element
has a multiplicative inverse. As an example, the set Zp, which stands for
the integers modulo p, is a field when p is a prime. The tendency to use
this type of structures is also present in other areas such as secure mul-
tiparty computation [24,1,26,19], and in essence, this is due to the fact
that these structures possess very nice properties that make them “easy”
to work with.

Finite fields, on top of being simple and well-structured algebraic con-
structions, can be used already in a wide range of applications. For in-
stance, just the set {0, 1} with the XOR and AND operations is a finite field
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(Z2, integers modulo 2), so any binary circuit as traditionally known from
electrical engineering can be expressed in terms of arithmetic over the field
Z2. Additionally, by choosing p to be large enough so that wraparound
modulo p does not occur, the set Zp can be used to emulate integer arith-
metic, which facilitates numerical applications. However, from a mere
use-case standpoint, the choice of arithmetic modulo a prime number may
seem a bit arbitrary; after all, what is so special about prime numbers? 7

Depending on the context, other moduli may be considered equally or
perhaps even more important. A natural example is the case of arithmetic
modulo powers of two like 264 or 2128, since this corresponds to the type
of basic arithmetic performed by arithmetic logic units and is expected
to lead to improvements in efficiency, as is the case for secure multiparty
computation [24,26]. Some other examples may include moduli structured
in specific ways, such as RSA integers N = p · q for large prime numbers
p and q, and variants of this, which could benefit applications making use
of these constructions. Finally, we observe that, in mathematics, it is cus-
tomary and quite enlightening to gradually reduce/abstract the required
properties of a given construction to see, in essence, what are the features
or patterns that enable certain propositions or constructions to hold. It
is in this direction that it becomes natural to wonder if, nice and well-
behaved algebraic structures such as finite fields, are really “necessary”
within the context of zero knowledge proofs, or if they are simply more
“convenient” to deal with.

Compressed Σ-protocols. The umbrella term “zero knowledge proofs”
comprises a lot of different techniques that, although aimed at solving es-
sentially the same problem, may drastically differ in several metrics such
as efficiency, security level, underlying computational assumption, and
many other. Of particular importance among these techniques, however,
lies the concept of Σ-protocols [22] These tools constitute honest verifier
zero knowledge proofs of knowledge, meaning that they enable a verifier
to be convinced that a prover knows certain secret data, and this data is
not leaked assuming that the verifier behaves honestly. Σ-protocols have
proven to be an essential tool for building more complex protocols, like
actual malicious verifier zero knowledge proofs, but also more elaborate
systems such as proofs of disjunctions and proofs of some-out-of-many
statements [25], identification schemes [41], among many others. They

7 Of course, within mathematics, prime numbers hold a special throne, but from an
application point of view modular arithmetic is essentially the same regardless of
the chosen modulus.
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have also been used in other contexts such as maliciously secure multi-
party computation with a dishonest majority (e.g. [11]).

In [3], the authors presented a series of techniques for compressing Σ-
protocols, in a way that adheres to the existing theory of Σ-protocols and
therefore inherits all the results and applications from the field. Other
works such as [17] achieved similar results in terms of communication
efficiency, but were presented as a replacement for standard Σ-protocol
theory and, as a result, do not serve as a building block for constructions
making use of Σ-protocols, or at least not without any (typically non-
trivial) adaptation.

The results in [3] shed an important light on the expressibility and
efficiency of the Σ-protocol framework. However, as is the case with most
of the literature on interactive proofs and zero knowledge proofs, their
techniques are restricted to finite fields, which is made evident from the
fact that they use several tools restricted to finite fields such as polyno-
mial interpolation or Pedersen commitments, among others. Given the
importance of this general theory, a worthy goal is then to extend the
results in [3] to the setting in which the algebraic structure under con-
sideration is not necessarily a finite field Zp. This would enable the use
of these tools in a much wider range of applications and scenarios, and it
could also potentially boost its efficiency by considering rings of the form
Z2k . In addition, as discussed earlier, such study would make more clear
what is the inherent reach and limitation of the theory on compressed
Σ-protocols, in terms of the underlying algebraic structure.

1.1 Our Contribution

In this work we explore an extension of the compressed Σ-protocol frame-
work from [3], from the case in which the algebraic structure is a field of
the form Zp, to the more general setting of Zm, for an arbitrary positive
integer m. In a nutshell, our results show that compressed Σ-protocols
for partial openings over Zm, where a prover shows that it knows how to
open a commitment to a vector that maps to a given value under certain
Zm-linear map, are possible. This is achieved in a direct and efficient man-
ner, without the need to “emulate” arithmetic using existing field-based
techniques.

Finally, our techniques inherit all the “plug & play” applications of [3],
and in particular, they can be used in a wide range of settings in which Σ-
protocols prove useful, without the restriction of having a prime modulus.
As an example of this, we show in Section 5 an application to the domain
of efficient verifiable computation schemes on encrypted data, where the
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recent work of [14] offered a flexible framework that can deal efficiently
with the general case in which the ciphertext space of the homomorphic
encryption scheme is a polynomial ring with coefficients in a ring Zm.
Their variant with context-hiding, where the verifier is not allowed to
learn information about the inputs of the computation (including the
possible inputs from the server doing the computation), requires commit-
and-prove arguments for certain statements defined over modular and
Galois rings. They leave open the existence of succinct arguments that
work directly over rings. Given that the majority of these statements are
linear maps over Zm (the remaining being range proofs, which are also
easily dealt with using compressed Σ-protocols), our results seem much
better suited for this application than using an argument that works
over a field and having to emulate the arithmetic over Zm, which would
introduce more non-linear conditions.

A detailed overview of our techniques is presented in Section A in the
Supplementary Material. At a high level, our results are obtained as a
combination of two main contributions, discussed below.

Compact Vector Commitments over Zm. One of the core ingredients in
the context of zero-knowledge proofs, and in particular [3], are commit-
ment schemes. These must be homomorphic over the given algebraic do-
main, which is Zm for an arbitrary integer m in our setting. In [3] different
instantiations of this construction are considered, namely Pedersen com-
mitments and also RSA-based commitments. However, these construc-
tions are restricted to m being a prime, and, besides a few exceptions
that will be discussed in Section 1.2 below, no construction of a compact
vector commitment scheme with homomorphism over Zm for an arbitrary
m is known. To tackle this issue we present in Section 3, as a contribution
of potential independent interest, an efficient construction of said com-
mitment schemes. This is achieved by first abstracting and generalizing
a template present in several previous schemes like Pedersen’s to obtain
a compact vector commitment scheme from a single-value construction,
and then focusing on instantiating the latter type of commitments. To
this end, depending on the parity of m, we either rely on the hardness of
finding roots over RSA groups, or factoring.

Compressing Mechanism over Zm. In order to compress a basic three-
move Σ-protocol, the work of [3] resorts to using an efficient proof of
knowledge to handle the last message in such a protocol, which consti-
tutes the prover’s response to the verifier’s challenge. In [3], the proof of
knowledge used is an adaptation of Bulletproof’s folding technique [15,17].
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This is not restricted to finite fields per se, but it does require large enough
exceptional sets, also known as challenge sets, for it to obtain reasonably
small soundness error. If m is prime, and in general, if m does not have
small prime factors, then such sets over Zm exist, but if m is divisible by
a small prime then this does not hold. To address this issue, we resort to
considering ring extensions of the form Zm[X]/(f(X)) for a polynomial
f(X), which increases the sizes of the required exceptional sets. We show
in Section 4 that our commitment construction is compatible with this
type of arithmetic, and that this leads to a natural adaptation of the
results from [3] from the field setting to Zm, for an arbitrary m.

1.2 Related Work

Compressed Σ-protocol theory [3], which we take as a starting point,
presents a Σ-protocol for proving knowledge that a vector underlying a
given commitment satisfies certain linear relation. The linear communica-
tion complexity of this Σ-protocol is then compressed down to logarithmic
by adapting the techniques from [15,17]. As we have already mentioned,
the techniques in the references cited above are mostly suitable when the
computation domain is a finite field Zq.

An instantiation of compressed Σ-protocol theory in the context of
lattices is presented in [4]. Lattice-based (compressed) Σ-protocols allow
provers to prove knowledge of a short homomorphism preimage, i.e., a
preimage of bounded norm. However, these protocols have the additional
complication that the norm bound β of the secret witness, known by an
honest prover, differs from the norm bound τ · β that the prover ends up
proving. The factor τ is referred to as the soundness slack. In most prac-
tical scenarios, this relaxed functionality is sufficient. However, due to the
soundness slack, lattice-based compressed Σ-protocols have polylogarith-
mic, instead of logarithmic, communication complexity. These complica-
tions would be attenuated by using ring extensions as we do here, so their
techniques do not directly fit our purpose.

Further, [18] presents an adaptation of Bulletproofs defined over the
integers Z. Their techniques allow a prover to prove knowledge of a vector
of bounded integers satisfying arbitrary constraints captured by a circuit
over Z. However, Block et al. [13] recently found a gap in the analysis
of [18]. A non-trivial adaptation, increasing the communication complex-
ity from logarithmic to polylogarithmic, was required to overcome this
issue [13].

By appropriately encoding vectors x ∈ Znm as (bounded) integers, we
thus obtain a zero-knowledge proof system for relations defined over the
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ring Zm for an arbitrary m ∈ N. However, this indirect approach re-
sults in polylogarithmic communication complexity, while our construc-
tion works directly over Zm and achieves O(logn log logn) communica-
tion complexity. Moreover, it cannot harness the efficiency improvements
foreseen when the arithmetic takes place in rings Zm, with m = 264 or
m = 2128, corresponding to machine computations. These efficiency im-
provements have already been demonstrated in multiparty computation
applications [24,26],

Zero knowledge for more general rings than Zq for a prime q has not
been studied in great detail, to the best of our knowledge. In this direc-
tion, the only works we are aware of are Rinocchio [30], which presents a
succinct non-interactive arguments of knowledge (SNARK) protocol for
statements represented as circuits over general commutative rings hav-
ing large enough exceptional sets, and the “Appenzeller to Brie” zero-
knowledge protocol from [7]. None of these two works are based on Σ-
protocols.

Finally, in terms of homomorphic and compact vector commitments,
to the best of our knowledge, no previous work has tackled the case in
which the underlying algebraic structure is Zm, for an arbitrary m. Most
existing constructions only work for m a prime, as is the case for example
with Pedersen commitments [40] and also constructions based on homo-
morphic encryption such as ElGamal [27]. Furthermore, some schemes
such as Paillier [39] or Okamoto-Uchiyama [38] operate over non-prime
modulus, but these are still very structured (e.g., N = PQ or N = P 2Q).
Homomorphic commitments over Z2k exist, such as the Joye-Libert con-
struction [37], but it is not clear how to generalize this approach to powers
of odd primes. Even most lattice-based homomorphic commitments such
as [8,12] require a prime modulus so that their associated algebraic struc-
ture factors nicely.

2 Preliminaries

We begin by recalling some basic notions that we will use thoughout
our work. This is organized as follows. First, in Section 2.1 we present
the concept of vector commitments, which are the core objects underlying
our techniques and contribution. Then, in Section 2.2, we discuss the idea
of an interactive protocol, and we consider concepts like completeness,
soundness and zero-knowledge.

Some general notation. Before we dive into the aforementioned ideas, we
introduce some general notation. Let m be a positive integer. The ring of
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integers modulo m is denoted by Zm. Vectors are denoted by bold letters,
like x and y, and, unless explicitly specified, their coordinates will be
denoted by the same letter with normal font and a subscript representing
the index, e.g. xi and yi. The notation x + y mod m represents addition
modulo m coordinate-wise, although we remark that most of the time we
will omit the “mod m” notation and assume operations are modulo m
when it is clear from context. Also, given a finite set A, we denote by
a← A the process of sampling a uniformly random value a from A.

2.1 Vector Commitments

At a high level, a vector commitment over Znm enables a party to compute
some data from an n-dimensional vector over Zm in such a way that (1)
the derived data does not reveal anything about the original vector and
(2) if the party decides to “open” the vector (e.g. announce it to other
parties) at a later point, then the additional computed data ensures he
cannot “change his mind” by announcing a different vector. In essence,
this is effectively the mathematical analogue of writing down the vector
in a “paper envelope”, hide it, and announce the vector in the future
together with the envelope.

The formal definition is as follows.

Definition 1 (Vector commitments). A homomorphic vector com-
mitment scheme for Znm is defined by a tuple (G,Com, R), where G is a
probabilistic polynomial time algorithm, called the key generation algo-
rithm, and Com, R are polynomial time computable functions, satisfying
the following syntax.

– G(m,n, κ) outputs a public key pk.
– Compk takes as input a vector x ∈ Znm and a uniformly random r

sampled from a domain R, and produces a string c. We assume that
the image of Compk is a finite group, and we assume that the group
operation can be computed efficiently given the public key. We use
multiplication notation for this operation.

– Rpk produces as output an element of R. It receives different possible
inputs and these will be clarified below. Also, we typically omit the pk
subindex, using the notation R(·) instead of Rpk(·).

The properties required from these algorithms are the following. Below,
we let pk← G(m,n, κ).
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– Perfect Hiding. For any values x,x′ ∈ Znm, the distributions of
Compk(x, r) and Compk(x′, r′) for uniformly random r, r′ ∈ R are
identical.

– Computational Binding. Consider the following experiment on a
probabilistic polynomial time algorithm A: Sample pk ← G and send
this value to A, who wins the game if it outputs (x, r,x′, r′) such that
x ̸= x′ and Compk(x, r) = Compk(x′, r′). The probability (taken over
the choice of pk and the random coins of A) that any such A wins is
negligible (in κ).

– Homomorphic property. The following holds:8

Compk(x, r) ·Compk(x′, r′) = Compk(x + x′, R(x,x′, r, r′)) ,

Compk(x, r)−1 = Compk(−x, R(x,−1, r)) .

What the equations in the final homomorphic property above say is
that the product of two commitments can be opened to reveal the sum
modulo m of the two original values, and the inverse of a commitment can
be opened to minus the original value (modulo m). Furthermore, in all
cases, the committer, that is, the party who computed the commitments
in a first place, can compute appropriate randomness values for the new
commitments using the function R. Finally, note that, by adding a com-
mitment to itself and using the above rules, it is implied in a natural way
that ca, for commitment c = Compk(x, r) and integer a, can be opened
as a · x (modulo m). We write the associated randomness as R(x, a, r),
i.e., Compk(x, r)a = Compk(a · x, R(x, a, r)

)
.

In addition to the properties from Definition 1 above, we also require
the following property:

– Randomization property. For any correct pk, x′,x ∈ Znm, if at least
one of r or r′ is chosen uniformly at random in R, then R(x,x′, r, r′)
is uniform in R.

Intuitively, this property will enable us to randomize commitments by
multiplying by a random commitment. In a nutshell, the idea is that, if
one opens a product commitment Compk(x + x′, R(x,x′, r, r′)), then, as
long as one of r, r′ is uniform, the only information this reveals on x,x′
is x + x′.

8 Note that we allow the R-function to take both 1 (zero-openings), 3 and 4 arguments.
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Single-Commitments. Finally, we consider the notion of a single-commitment
scheme. At a high level, a single-value commitment scheme is a vector
commitment scheme that only allows n = 1, i.e. only “vectors” of di-
mension 1 can be committed to. However, for our needs, we impose the
following additional condition on single-value commitment schemes.

Definition 2. A single-value homomorphic commitment scheme for Zm
is a homomorphic vector commitment scheme for values in Znm that only
allows n = 1, and has the additional property specified below.

– Zero-commitment opening. For any single-value commitment c,
cm can be opened as zero, More specifically, we have that9

cm = Compk(0, R(c)).

Note that the zero-commitment opening property implies that, given
a commitment c, cm can be opened by a party who possibly did not cre-
ate c in a first place. The fact that cm is a commitment to 0 is already
implied by the homomorphic property implies given that, if c is a com-
mitment c = Compk(x, r), it holds that cm = Compk(m ·x, R(x,m, r)) =
Compk(0, R(x,m, r)). However, the zero-commitment opening property
ensures that this is the case, and that the corresponding randomness can
be derived from c alone.

Intuitively, the reason why this property is needed is the following.
The commitment schemes we consider in this work are intended to be ho-
momorphic modulo m, meaning that their message space forms a module
over Zm, and (linear) operations over commitments should correspond to
the analogue operations over the message space. Nevertheless, we are only
assuming that the set in which the commitments live is a finite group,
and we do not assume anything about its order. The zero-commitment
property ensures that, even though this group’s exponent may not be a
divisor of m (so commitments raised to the m-th power may not lead to
the identity of the group), raising to the m-th power still leads to com-
mitments that can be easily dealt with. We will make use of this property,
for example, in Theorem 1 when we prove the homomorphic property of
our vector commitment scheme.

2.2 Interactive Proofs

In this work we consider interactive proof that, given an NP-relation R,
enable a prover to prove knowledge of a witness w with respect to a

9 Here we, once again, abuse notation and let R take a commitment as input.
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given statement x, where (x;w) ∈ R. An interactive proof is (perfectly)
complete (or satisfies completeness) if for all inputs (x;w), if (x;w) ∈ R,
then the verifier outputs accept with probability 1. We also consider
the notion of (k1, . . . , kµ)-special soundness, which means that, given a
(k1, . . . , kµ)-tree of accepting transcripts and a statement x, a witness
w such that (x;w) ∈ R can be computed efficiently. Interactive proofs
satisfying this notion are known to be proofs of knowledge [4]. For more
details we refer to Section B in the Supplementary Material.

In this work we consider public coin interactive proof in which the
messages sampled by the verifier are uniformly random. In regards to
zero-knowledge, as typical with Σ-protocols, we restrict our attention
to special honest-verifier zero-knowledge (SHVZK), which requires that,
given a statement x and a set of uniformly random verifier messages, it
is possible to produce (without knowing any witness) an accepting tran-
script that follows the same distribution as an actual interaction between
the prover and the verifier.

3 Vector Commitments over Zm

In this section we present one of the main contributions of our work,
namely, the construction of a compact modulo-m homomorphic vector
commitment scheme. Here, compact, means that the size of a commit-
ment is independent of the vector dimension n. Our result is achieved
in two steps. First, we show in Section 3.1 a generic method to obtain a
compact vector commitment scheme from any single-value commitment
scheme, as defined in Section 2.1. Then, in Section 3.2, we present a con-
struction of a single-value commitment scheme based on what we call
commitment friendly groups. This transformation works for any value of
m, and, in the same section, we present an instantiation of commitment
friendly groups that, unfortunately, is restricted to odd values of m. To
address this issue, we present in Section 3.3 a construction of single-value
commitment schemes for the case in which m is even.

3.1 Vector Commitments from Single-value Commitments

Let m be any positive integer, and let (G′,Com′, R′) be a single-value
commitment scheme for Zm. The goal of this section is to derive from this
scheme, for any positive integer n, a compact vector commitment scheme
(G,Com, R). At a high level, our construction generalizes the approach
followed in Pedersen’s construction to obtain compact commitments to

11



long vectors, by essentially taking a “random linear combination in the
exponent”. We present our compact vector commitment scheme in full
detail below.

VCm,n: Vector Commitment Scheme for Znm

(G′,Com′, R′) is a single-value commitment scheme for elements over Zm

– G, on input n,m, κ, proceeds as follows.
1. Run pk′ = G′(m,κ).
2. For i = 1, . . . , n, sample ai ← Zm and ri ←R. Set gi = Com′

pk′ (ai, ri)
3. Output pk = (pk′, g1, . . . , gn).

– Given x = (x1, . . . , xn) and r ∈ R as input, Compk outputs Com′
pk′ (0, r) ·∏n

i=1 g
xi
i .

As we shall see in a moment, there is a very efficient reduction that
shows that the binding property holds in VCm,n, assuming that it holds
on the underlying single-value commitment scheme, with only a 1/2 fac-
tor loss (which is independent of n) in terms of success probability of
the corresponding computational binding experiment. In addition, ob-
serve that the vector commitment scheme VCm,n is compact, given that
a commitment is made of a homomorphic combination of single-value
commitments.

Finally, it may seem that a trusted set-up is needed in our construc-
tion, given that the public key generation algorithm G chooses the gi’s
with known content ai and, as we will see, the binding property depends
on the ai’s being unknown. However, in some cases, including the instan-
tiations we will present, it is possible to choose the gi’s obliviously with
identical or at least indistinguishable distribution, removing this potential
point of failure.

Theorem 1. When based on a single-value homomorphic commitment
scheme for Zm satisfying Definition 2, VCm,n is a homomorphic vector
commitment scheme for Znm, according to Definition 1.

Proof. To see that the perfect hiding property holds, begin by observing
that, by construction of the gi’s and the homomorphic property of the
single value scheme, we have

Compk
(
x, r

)
= Com′pk′

( n∑
i=1

aixi, s
)
·Com′pk′(0, r),

for some s that can be computed by applying the R-function of the single
value scheme several times on inputs x and r1, . . . , rn. Perfect hiding now
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follows immediately from the perfect hiding property of the underlying
single-value scheme, together with its randomization property, which en-
sures that the randomness appearing in the overall commitment above is
uniformly random.

For the the binding property, assume the existence of an adversary
A that wins the binding experiment for VCm,n with probability ϵ. We
will show that such an adversary can be used to build an adversary B
that breaks binding experiment of the original single-value scheme with
probability at least ϵ/2. Since ϵ is negligible, given that the underlying
single-value scheme satisfies the binding property, we obtain that VCm,n
satisfies the property as well.

We define the algorithm B as follows. B gets a public key pk′ as input,
and then expands this to a public key pk = (pk′, g1, . . . , gn) following the
definition of G. Then B runs A on input pk. Now, assume that A wins,
which means that A outputs (x, r,x′, r′) with x ̸= x′ and Compk(x, r) =
Compk(x′, r′). As we did with the hiding property, we can write both
sides of the expression above in terms of single-value commitments, as
follows: the left-hand side equals Com′pk′(

∑n
i=1 aixi, s)·Com′pk′(0, r), while

the right-hand side is Com′pk′(
∑n
i=1 aix

′
i, s
′) ·Com′pk′(0, r′), for values s, s′

that can be efficiently computed. Using the homomorphic property of the
original scheme once more, we get

Com′
pk′

( n∑
i=1

aixi, R
′
( n∑
i=1

aixi, 0, s, r
))

= Com′
pk′

( n∑
i=1

aix
′
i, R

′
( n∑
i=1

aix
′
i, 0, s′, r′

))
.

If
∑
i aixi ̸=

∑
i aix

′
i mod m, this clearly means that B can break

binding of the original scheme by outputting these values together with
the corresponding randomness used for the commitments above. To finish
the proof of our main claim, it suffices then to show that

∑
i aixi ̸=∑

i aix
′
i mod m happens with probability at least 1/2.

To see this, assume that
∑
i ai(xi − x′i) = 0 mod m. Since we are

assuming that A wins, we have xi0 − x′i0 ̸= 0 mod m for some i0. From
this, it must be the case that xi0 − x′i0 ̸= 0 mod p for at least one prime
factor p in m. Additionally, notice that

∑n
i=1 ai(xi−x′i) = 0 mod p, given

that the corresponding congruence holds modulo m, so we can rewrite
ai0 = −(xi0 − x′i0)−1 ·

∑
i ̸=i0 ai(xi − x

′
i) mod p. Now, notice that by the

hiding property of the single-value scheme, the gi’s included in the public
key of VCm,n follow a distribution that is independent of the ai’s, so, in
particular, the xi − x′i values produced by A are independent of these
ai’s. From this, we see that the right-hand side of the previous expression
is independent of the left-hand side, which is uniformly random, so the
probability of this equation being satisfied is at most 1/p, or, in other

13



words, B wins the binding experiment with probability 1−1/p ≥ 1−1/2 =
1/2. This implies that B succeeds with an overall probability of at least
ϵ/2, which proves the binding property of the vector commitment scheme.

To establish the homomorphic property, consider commitments Compk(x, r) =
Com′pk′(0, r) ·

∏n
i=1 g

xi
i and Compk(x′, r′) = Com′pk′(0, r′) ·

∏n
i=1 g

x′
i
i . Using

the homomorphic property of the single-value scheme, we can write

Compk(x, r) ·Compk(x′, r′) =
n∏
i=1

g
xi+x′

i
i ·Com′pk′(0, r) ·Com′pk′(0, r′)

=
n∏
i=1

g
xi+x′

i
i ·Com′pk′(0, R′(0, 0, r, r′))

=
n∏
i=1

g
xi+x′

i mod m
i gℓimi ·Com′pk′(0, R′(0, 0, r, r′)),

where ℓi is defined by xi+x′i =
(
(xi+x′i) mod m

)
+ ℓim. Now, recall that

the zero-commitment opening property from Definition 2 of the single-
value commitment scheme enables, for any commitment c, to open cm

to zero. Since gℓii is a valid commitment (to ℓi · ai mod m, but this is
irrelevant), we have that (gℓii )m = Com′pk′(0, R′(gℓii )). Inserting this in
the above is easily seen to imply that

Compk(x, r) ·Compk(x′, r′) =
n∏
i=1

g
xi+x′

i mod m
i Com′

pk′ (0, R′(gℓi
i )) ·Com′

pk′ (0, R′(0, 0, r, r′))

=
n∏
i=1

g
xi+x′

i mod m
i Com′

pk′ (0, s) = Compk(x + x′, s) ,

for some s ∈ R that can be computed by applying the randomness func-
tionR′ of the single value scheme several times on inputs x,x′, r, r′, g1, . . . , gn.
This (implicitly) defines the randomness function R of the vector scheme.
In a very similar way, one proves that Compk(x, r)−1 can be opened as
−x mod m. Namely, if we insert the expression for Compk(x, r), we get
−xi’s appearing in the exponent, but these are equal to −xi mod m ex-
cept for a multiple of m which can “absorbed” into the randomness factor
in the commitment using the zero-commitment opening property.

The randomization property follows immediately from the random-
ization property of the original scheme.

3.2 Single-Value Commitments via Commitment Friendly
Groups

In the previous section we show how one can obtain a compact vector
commitment scheme over Znm assuming the existence of a single-value

14



commitment scheme over Zm. In this section, we proceed to present an
instantiation of one such scheme. We begin by introducing the concept of
commitment friendly groups, which plays a pivotal role in our construc-
tion.

Commitment Friendly Groups. We will assume we have a proba-
bilistic prolynomial time algorithm GG which, on input m and security
parameter κ, outputs a finite Abelian group G.10 For a prime p dividing
m, consider the function ϕp : G 7→ G given by ϕp(g) = gp, where p is a
prime factor in m.

Definition 3 (Commitment friendly groups). We say that GG is
commitment friendly if for all primes p | m, the following holds:

1. ϕp is collision intractable, i.e, it is hard to find a collision: g ̸= g′ such
that ϕp(g) = ϕp(g′). More formally, the experiment where GG is run
on input (m,κ) to get G and then a given probabilistic polynomial time
algorithm A is run on input G will result in a collision with negligible
probability, for any such A.

2. Let Gm = {am| a ∈ G}, and note that Gm is a subgroup of G. Given
a uniformly random g ∈ Gm, it is hard to find h ∈ G with ϕp(h) = g.
More formally, the experiment where GG is run on input (m,κ) to get
G, g is sampled at random in Gm, and then a probabilistic polynomial
time algorithm A is run on input (G, g), will result in a p’th root of g
only with negligible probability, for any such A.

G can reasonably be conjectured to be commitment friendly if com-
puting the order of G is hard, which can be the case if G is a class group
or an RSA group, as we discuss in more detail later. To see this, notice
that, if ϕp(g) = ϕp(g′) and g ̸= g′, then the order of g′g−1 is p, and finding
such an element can be conjectured hard if the order of G is not know.
Finally, notice that ϕp is always collision intractable if gcd(p, |G|) = 1,
since in this case ϕp is injective.

Commitments from Commitment Friendly Groups. We now con-
struct a single value commitment scheme for Zm, assuming a group gen-
erator algorithm GG that outputs commitment friendly groups. The con-
struction is described in detail below.
10 We use G as shorthand for a specification of the group with which you can efficiently

choose random elements in G and compute the group operation and inverses.
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SVm: Single-Value Commitment Scheme over Zm

– Key generation. Run GG on input m and κ to get G. Let g = am for a
uniformly random a ∈ G. Return pk = (G, g).

– Commitment. Set R = G and compute Compk(x, r) = gxrm.

Theorem 2. The construction SVm from above constitutes a single-value
commitment scheme over Zm.

Proof. First, observe that the perfect hiding and randomization proper-
ties follow immediately from the fact that a commitment to any value is
a uniformly random element in Gm.

The homomorphic property follows from

Compk(x, r)Compk(x′, r′) = gx+x′(rr′)m

= gx+x′ mod m(gtrr′)m = Compk(x+ x′ mod m, gtrr′) ,

where t is defined by x+ x′ =
(
(x+ x′) mod m

)
+ tm. So we can set

R(x, x′, r, r′) = gtrr′. Likewise, we have that Compk(x, r)−1 = g−x(r−1)m,
which in turn equals g−x mod m(gℓr−1)m, where ℓ is defined by −x =(
−x mod m

)
+ ℓm, so we set R(x,−1, r) = gℓr−1. Also, the zero-opening

property follows trivially since Compk(x, r)m = Compk(0,Compk(x, r)).
Finally to argue binding, assume an adversary is able to produce x ̸=

x′, r, r′ such that gxrm = gx
′
r′m. Setting s = r′r−1 we get gx−x′ = sm.

Since x− x′ ̸= 0 mod m, there must be a prime factor p dividing m such
that, if pt is the maximal p-power dividing x− x′ and pk is the maximal
power dividing m, we have pt < pk. The equation above can be written
as (g(x−x′)/pt)pt = (sm/pt)pt . Since ϕp is assumed collision intractable, we
conclude11 that g(x−x′)/pt = sm/p

t . Now, because pt < pk, we can define
a = sm/p

t+1 , and inserting in the equation gives g(x−x′)/pt = ap.
Observe that gcd(p, (x − x′)/pt) = 1 and hence we can compute α, β

such that αp+ β(x− x′)/pt = 1. Now set h = gαaβ, and observe that

hp = gαp(ap)β = gαp(g(x−x′)/pt)β = gαp+β(x−x′)/pt = g .

Hence, we have found a p’th root of g. This contradicts the assumption
that G is commitment friendly, and so the binding property of the com-
mitment scheme holds.

11 We use that if ϕp is collision intractable, then it is hard to find a ̸= b with ap
t

= bp
t

.
Indeed, given such a and b, there must exist 0 ≤ i < t such that ap

i

̸= bp
i

but
ap

i+1
= bp

i+1
which yields the collision (ap

i

, bp
i

) for ϕp.
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Examples of Commitment Friendly Groups for Odd m. Theo-
rem 2 shows that a single-value commitment scheme can be obtained
from a commitment friendly group, and now we discuss different instanti-
ations of the latter. A first natural example is to choose an RSA modulus
N and set G = Z∗N . If m is odd, we can choose N such that m is rela-
tively prime to φ(N). This choice leads ϕp(g) = gp to be injective for all
p | m, and hence the collision intractability condition is trivially satisfied.
Furthermore, the assumption about p-th roots being hard to compute is
essentially the RSA assumption. In more detail, even if m is exponentially
large, it can only have a polynomial number of different prime factors, so
in contrast to the strong RSA assumption the adversary cannot choose
the “public exponent” freely in the p-th root finding experiment, which
makes this assumption weaker with respect to the strong RSA assump-
tion.

3.3 Single-Value Commitment Schemes for Even m.

If m is even, we have the problem that collision intractability is violated
for p = 2 because we have x2 = (−x)2 mod N . As a result, we cannot use
the template presented before with Z∗N in a direct manner.

If we choose N = PQ such that both P and Q are congruent to 3
modulo 4, then we could use the template with G = QR(N), the group
of quadratic residues modulo N , because in that case this group is of
odd order (as shown below), and QR(N) satisfies the properties of a
commitment-friendly group. However, this construction has the practi-
cal drawback that it requires an expensive set-up to establish g, because
membership in QR(N) cannot be efficiently decided (so rejection sam-
pling on random elements in Z∗N does not work), and the alternative of
sampling an element in Z∗N and squaring it would require a protocol that
keeps the initial value hidden for everybody, only revealing the squared
value, which is expensive.

Instead, we will describe a slight variant of the single-value commit-
ment construction from Section 3.2 that solves this problem. First, instead
of Z∗N or QR(N), we will use G = J+(N), the subgroup of numbers with
Jacobi symbol 1 modulo N , and (as above) choose N = PQ such that
both P and Q are congruent to 3 modulo 4. With this setup, G has
even order (namely (P − 1)(Q− 1)/2), and also −1 ∈ G, so in particular
it is unfortunately still the case that, for x ∈ G, −x is also in G and
x2 = (−x)2 mod n. To address this issue, we describe below a series of
modifications (with respect to our previous construction) that ensure this
will not play any effect in the binding property.
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The choice of N ensures that the subgroup of quadratic residues
QR(N) has odd order (more precisely, |QR(N)| = (P − 1)(Q − 1)/4).
Therefore we can choose N in such a way that gcd(|QR(N)|,m) = 1. Fur-
thermore, we have QR(N) ≤ J+(N) ≤ Z∗N , where |J+(N)| = 2|QR(N)|.
As a final background fact, we note that −1 ∈ J+(N) but −1 ̸∈ QR(N).
Also recall that one can compute the Jacobi symbol efficiently given only
N , so membership in J+(N) can be verified efficiently.

With these tools at hand, we are ready to present our construction of
a single-value commitment scheme.

Single-Value Commitment Scheme over Zm, for even m

– Key generation. Return pk = (G, g), where G = J+(N) and N is chosen as
above, and g ← G.

– Commitment. Set R = {0, 1} × G. Given x ∈ Zm, choose (b, r) ∈ R, and
output Compk(x, (b, r)) = gx(−1)brm mod N .

Theorem 3. Under the assumption that factoring N is hard, the con-
struction SVm from above constitutes a single-value commitment scheme
over Zm.

Proof. Perfect hiding follows because rm is uniform in QR(N) and there-
fore (−1)brm is uniform in J+(N). The homomorphic and randomization
properties are easy to verify in much the same way as in Theorem 2.

For binding, we proceed in a similar way as the aforementioned theo-
rem. If an adversary breaks the binding property this means it would be
able to find x, x′, r, r′, b, b′ such that gx(−1)brm = gx

′(−1)b′
r′m mod N .

There must be a prime factor p in m such that the maximal p-power pt
dividing x − x′ is smaller than the maximal p-power pk dividing m. If p
is odd, we can proceed in exactly the same way as in Theorem 2, except
that in our current case the powers of −1 may lead to the equations being
satisfied up to a ±1 factor. We therefore end up concluding that we can
compute h such that hp = ±g mod N . If we have hp = −g mod N , then
since p is odd, this implies that (−h)p = g mod N , so we get a p’th root
of g in any case.

The more challenging case is when p = 2. In this case, the same
arguments will lead to the equation

(
g(x−x′)/2t)2t = ±

(
sm/2t)2t mod N .

First, since both sides are squares and −1 is not a square modulo N ,
is must be that

(
g(x−x′)/2t)2t =

(
sm/2t)2t mod N. Unfortunately, since G

has even order, we cannot conclude that g(x−x′)/2t = sm/2t . However, we
can instead say that g(x−x′)/2t = sm/2tα mod N , where α2t mod N = 1.
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In particular, α has order a 2-power, and by construction of N , the only
possible orders of α would be 1 or 2.

Given the above, one possibility is that α is a non-trivial square root
of 1. In this case, we can use α to factor N easily since (α− 1)(α+ 1) =
0 mod N implies that gcd(α − 1, N) is either P or Q, which breaks the
assumption. Otherwise, α is plus or minus 1. We can now continue the
reasoning in the same way as in the original proof, and find that we can
compute h such that h2 mod N = ±g. Computing such a square-root
easily implies you can factor N and break the computational assumption.

In both our instantiations for odd and even m, we only need trusted
setup to generate the modulus N but not to choose the rest of the public
key g. We discuss this further in Section C in the Supplementary Material,
where we also discuss instantiations based on class groups.

4 Compressed Σ-Protocol

Let (G,Com, R) be a vector commitment scheme as defined in Section 3.1,
allowing a prover to commit to vectors x ∈ Znm. In this section, we consider
the problem of proving knowledge of an opening (x, γ) of a commitment
P = Compk(x, γ) satisfying a linear constraint L(x) = y captured by a
linear form L : Znm → Zm. We construct a compressed Σ-protocol [3] for
this problem.

In contrast to the compressed Σ-protocols of [3], our protocols are
not defined over a finite field F but over the ring Zm. Because non-zero
challenge differences are required to be invertible, a challenge set C ⊆
Zm has to be exceptional. Recall that a subset C of a ring is said to be
exceptional if c − c′ is invertible for all distinct c, c′ ∈ C. The largest
exceptional subset of Zm has cardinality p, where p is the smallest prime
divisor of m. Therefore, a straightforward application of [3] can result
in (much) smaller challenges sets and therefore larger knowledge errors.
In many scenarios, this problem can be overcome by a t-fold parallel
repetition reducing the knowledge error from κ down to κt [5]. However,
as we will see, this parallel repetition approach is sub-optimal and in
some cases even insufficient. Namely, since the compression mechanism is
3-special sound, the challenge set is required to have cardinality at least 3.
This is impossible when 2 | m. For this reason, we adapt the compressed
Σ-protocols of [3] to allow for challenges sampled from an appropriate
extension of the ring Zm.
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In Section 4.1, we extend our Zm-vector commitment scheme to a
commitment scheme for vectors defined over an extension S of the ring
Zm. In Section 4.2, we describe a standard Σ-protocol for proving that
a committed vector x ∈ Sn satisfies a linear constraint. This Σ-protocol
has a communication complexity that is linear in the dimension n of the
secret vector x ∈ Sn. Subsequently, we describe a compression mechanism
for this Σ-protocol, allowing the communication complexity to be reduced
from linear down to logarithmic (Section 4.3). The compressed Σ-protocol
described in Section 4.4 is a recursive composition of the basic Σ-protocol
and the compression mechanism and has a logarithmic communication
complexity for a fixed ring extension S.

4.1 Vector Commitments over Ring Extensions

Let f(X) ∈ Zm[X] be a monic polynomial of degree d and let S =
Zm[X]/(f(X)) be a degree d ring extension of Zm. Then the commit-
ment scheme (G,Com, R) for Zm-vectors has an immediate extension to
a commitment scheme (G,Com′, R′) for S-vectors12 where vectors are
committed coefficient-wise, i.e.,

Com′pk
(

∑d
i=1 a1,iX

i−1

...∑d
i=1 an,iX

i−1

 ,

γ1
...
γd

)
7→

Compk

(
(a1,1, . . . , an,1), γ1

)
...

Compk

(
(a1,d, . . . , an,d), γd

)
 .

This commitment scheme inherits the homomorphic, randomization
and zero-opening properties of (G,Com, R). Furthermore, it has an addi-
tional homomorphic property that allows committed vectors to be mul-
tiplied by ring elements a ∈ S. More precisely, for any commitment
c = Com′pk(x, γ) and a ∈ S, the commitment ca is well-defined and
can be opened to a · x ∈ Sn. To see this note that any a ∈ S corresponds
to a matrix M(a) ∈ Zd×dm , such that for all b ∈ S:

a ·
d∑
i=1

biX
i−1 =

d∑
i=1

ciX
i−1 ∈ S ⇐⇒ M(a)

b1
...
bd

 =

c1
...
cd

 ∈ Zdm .

12 Notice that in Section 2.1 we only defined commitments for vectors over Zm, while
here we need commitments for vectors over S, and moreover, we need these to be
homomorphic as a S-module. This notion is defined in a similar manner as the
homomorphism from Section 2.1.
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By lifting this matrix to Zd×d,13 it follows that the homomorphic oper-
ation ca can be expressed in terms of the standard homomorphic prop-
erties of the Zm-commitment scheme (G,Com, R). As before, we write
R′(x, a, γ) for the randomness required to open ca to a · x ∈ Sn. We say
that this commitment scheme is S-homomorphic. Finally, a Zm-vector
commitment P can also be viewed as a S-vector commitment (P, 1, . . . , 1),
now with S-homomorphic properties.

Remark 1. Alternatively, one can commit to a vector

( d∑
i=1

a1,iX
i−1, . . . ,

d∑
i=1

an,iX
i−1)
∈ Sn

by committing to all coefficients (a1,1, . . . , an,d) ∈ Zndm in a single Zm-
vector commitment. This approach results in commitments that are a
factor d smaller. However, these commitments are only Zm-homomorphic.
Hence, to obtain a scheme that is S-homomorphic, it is crucial that the
commitment function Com′pk is a coefficient-wise application of the Zm-
commitment function Compk.

4.2 Standard Σ-Protocol

The reason for considering vectors defined over the ring extension S =
Zm[X]/(f(X)) is that when this extension is appropriately chosen it con-
tains larger exceptional subsets than the ring Zm. Namely, if f(X) is ir-
reducible modulo all prime divisors of m, then S contains an exceptional
subset of cardinality pd where p is the smallest prime dividing m. This al-
lows us to design (compressed) Σ-protocols with larger challenge sets and
therefore smaller knowledge errors. From now on we will assume f(X) to
be of this form and C ⊆ S to be an exceptional subset of cardinality pd.

Protocol 1, denoted by Π1, is a standard Σ-protocol, with challenge
set C, for proving knowledge of a commitment opening satisfying a linear
constraint, i.e., it is a Σ-protocol for relation

X d = {(P, y; x, γ) : Com′pk(x, γ) = P, L(x) = y},

where x ∈ Sn and L : Sn → S is a linear form. The properties of Π1 are
summarized in Theorem 4.

This Σ-protocol can also instantiated for relation X . More precisely,
to prove knowledge of an opening (x; γ) ∈ Znm × R to the Zm-vector
13 We lift to Zd×d because the homomorphic properties are defined over Z.
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commitment P satisfying the Zm-linear constraint L(x) = y, Π1 can be
instantiated with statement

(
(P, 1, . . . , 1), y

)
for relation X d. The same

holds for the protocols in the subsequent sections.

Protocol 1 Standard Σ-Protocol Π1 for relation X d.

Input(P, y; x, γ)
P = Com′

pk(x, γ)
y = L(x)

Prover Verifier

r←R Sn
ρ←R Rd

A = Com′
pk(r, ρ)

t = L(r) A,t−−−−−−−−−−−−−−→
c←R C ⊆ S

c←−−−−−−−−−−−−−−
z = r + cx

ψ = R′(r, cx, ρ, R′(x, c, γ)
)

z,ψ−−−−−−−−−−−−−−→ Com′
pk(z, ψ) ?= A · P c

L(z) ?= t+ cy

Theorem 4 (Standard Σ-Protocol). Protocol Π1 (as defined in Pro-
tocol 1) is a Σ-protocol for relation X d. More precisely, it is a 3-round
protocol that is perfectly complete, special honest-verifier zero-knowledge
and unconditionally knowledge sound with knowledge error 1/pd, where p
is the smallest prime dividing m.

Proof. Completeness follows directly by the homomorphic properties
of Compk(·) and the linearity of L.

SHVZK: We simulate a transcript as follows. Given a challenge c, sam-
ple (z, ψ)←R Sn×Rd uniformly at random and let A = Com′pk(z, ψ)·
P−c and t = L(z) − cy. By the randomization property of Com′pk it
follows that the simulated transcripts (A, t, c, z, ψ) have exactly the
same distribution as honestly generated transcripts.

Knowledge Soundness: We show that Π1 is special-sound. Knowledge
soundness is then implied. Let (A, t, c, z, ψ), (A, t, c′, z′, ψ′) be two
accepting transcripts with c ̸= c′ ∈ C, and let c̃ = (c − c′)−1. Then
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define

z̃ := c̃(z− z′),
ψ̃ := R′

(
c̃z,−c̃z′, R′(z, c̃, ψ), R′(z′,−c̃, ψ′)

)
.

By the homomorphic properties of Com′pk(·) and since the transcripts
are accepting, it follows that Com′pk(z̃, ψ̃) = P c̃(c−c

′) = P · P ℓm for
some ℓ ∈ Z. Hence, by the zero-opening property of Com′pk(·), (z̃, ψ̄)
is an opening of commitment P , where ψ̄ = R′

(
z̃, 0, ψ̃, R′

(
P−ℓ

))
. By

the linearity of L, it additionally follows that L(z̃) = y, i.e., (z̃, ψ̄) is
a witness for statement (P, y) ∈ LX d .

Remark 2. The above Σ-protocol can be used to prove knowledge of the
openings of d different Zm-commitments P1, . . . , Pd by defining the S-
commitment P = (P1, . . . , Pd), i.e., a protocol for proving knowledge of d
witnesses for relation X 1. The naive approach for achieving this function-
ality would be to instantiate d different Σ-protocols defined directly over
Zm. However, as displayed in Table 1 this results in a larger knowledge
error. Alternatively, one could apply standard amortization techniques to
prove knowledge of d witnesses with the same communication costs as
proving knowledge of only 1 witness (see for example [3]). This approach
reduces the communication costs by a factor d. However, it comes at the
cost of increasing the knowledge error.

Table 1. Properties of different Σ-protocols for proving knowledge of d witnesses for
relation X 1. Columns 2-4 contain communication costs, while the last column contains
knowledge error.

Protocol # Zm-elements # R-elements # Znm-Commitments K. error
d Separate Σ-Protocols d(n+ 1) d d 1/p
Amortized Σ-Protocol n+ 1 1 1 d/p

Our Σ-Protocol Π1 d(n+ 1) d d 1/pd

4.3 Compression Mechanism

The communication complexity of the standard Σ-protocol Π1 is linear
in the dimension n of the secret input vector x ∈ Sn. The compression
mechanism for Σ-protocols of [3], based on Bulletproof’s folding tech-
nique [15,17], allows the communication complexity to be reduced from
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linear down to logarithmic. A key observation of this compression mech-
anism is that the final message of protocol Π1 is a witness for relation
X d, i.e., the final message is a trivial proof-of-knowledge (PoK) for this
relation. Therefore, this message can also be replaced by another PoK for
relation X d. In particular, it can be replaced by a PoK with a smaller com-
munication complexity. Compression mechanism Π2, described in Proto-
col 2, is a PoK for relation X d. Bulletproof’s folding technique takes an
n-dimensional witness x = (xL,xR) ∈ Sn and, given a challenge c ∈ C, it
folds the left and right halves xL,xR ∈ Sn/2 onto each other obtaining a
new message z = xL + cxR of dimension n/2. This technique reduces the
communication complexity by roughly a factor 2. The properties of this
protocol are summarized in Theorem 5. For more details we refer to [3].

Protocol 2 Compression Mechanism Π2 for Relation X d.

Input(P, y; x, γ)
P = Com′

pk(x, γ)
y = L(x)

Prover Verifier

ρ←R Rd
A = Com′

pk((0,xL), ρ), a = L(0,xL)

B = Com′
pk((xR,0), ρ), b = L(xR,0) A,B,a,b−−−−−−−−−→

c←R C ⊆ S
c←−−−−−−−−−

z = xL + cxR
ψ1 = R′

(
(0,xL), cx, ρ, R′(x, c, γ)

)
ψ2 = R′

(
(xR,0), c2, ρ

)
ψ = R′

(
(0,xL)+cx, c2(xR,0), ψ1, ψ2

)
z,ψ−−−−−−−−−→ Com′

pk

(
(cz, z), ψ

) ?=
A · P c ·Bc2

L(cz, z) ?= a+ cy + c2b

Theorem 5 (Compression Mechanism). Let n be even. Protocol Π2
(as defined in Protocol 2) is a 3-round protocol for relation X d. It is
perfectly complete and unconditionally knowledge sound with knowledge
error 2/pd, where p is the smallest prime diving m. Its communication
costs are

– From Prover to Verifier: 2 S-commitments, n/2 + 2 elements in S and
1 elements in Rd.
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– From Verifier to Prover: 1 challenge in C ⊆ S.

Due to space limitations, the proof of this Theorem is presented in
Section D in the Supplementary Material.

4.4 Compressed Σ-Protocol

To reduce the communication costs of the Σ-protocol Π1 down to loga-
rithmic the compression mechanism is applied recursively, i.e., instead of
sending the final message of protocol Π2 the protocol is applied again un-
til the dimension of the final message equals 4. Note that the compression
mechanism could be applied even further, reducing the dimension of the
final message to 2 or 1. However, since the prover has to send 4 elements
in every compression, this would result in a sub-optimal communication
costs. This recursive composition is referred to a Compressed Σ-Protocol,
it is denoted by

Πc = Π2 ⋄ · · · ⋄Π2︸ ︷︷ ︸
⌈log2(n)⌉−2 times

⋄Π1 ,

and its properties are summarized in the following theorem. In particular
the protocol is (2, 3, . . . , 3)-special-sound, which has recently been shown
to tightly imply knowledge soundness [4].

Theorem 6 (Compressed Σ-Protocol). Let n = 2µ ≥ 4. Then,
Protocol Πc is a (2µ − 1)-round protocol for relation X d. It is perfectly
complete, special honest-verifier zero-knowledge. Moreover, it is uncon-
ditionally (2, 3, . . . , 3)-special-sound and therefore knowledge sound with
knowledge error

1− (pd − 1)(pd − 2)µ−2

pd(µ−1) ≤ 2µ− 3
pd

,

where p is the smallest prime dividing m. Its communication costs are

– From Prover to Verifier: 2µ− 3 S-commitments, 2µ+ 1 elements in S
and 1 element in Rd.

– From Verifier to Prover: µ− 1 challenges in C ⊆ S.

In practical applications, Πc should be instantiated with knowledge
error at most 2−λ, where λ denotes the security parameter. To this end,
we choose a ring extension S of degree

d ≥ 1 + λ+ log logn
log p = O(λ+ log logn) .
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Hence, to obtain a knowledge error negligible in the security parame-
ter, the degree must depend on the input dimension n. However, thus
far we have only consider the communication complexity for fixed ring
extensions S of degree d and thus with fixed, not necessarily negligible,
knowledge error. In fact, the communication complexity of Πc is only
logarithmic in n for fixed S and d. Taking into account that in practice
d = O(λ+log logn), shows that the communication complexity is actually
O(λ logn+ logn log logn), i.e., it is not logarithmic in n. However, this is
still an improvement over the polylogarithmic communication complexity
achieved by the naive approach using integer commitment schemes.

Further, the knowledge error of the Compressed Σ-Protocol Πc shows
that we must choose the degree d of the ring extension such that pd > 2.
In particular, if p = 2 the compression mechanism can not be defined
directly over Zm. If p > 2, then the compressed Σ-protocol could have
been defined over Zm directly. However, this would result in a larger
knowledge error. Reducing this knowledge error by a d-fold parallel com-
position would result in exactly the same communication costs as the
protocol defined over the ring extension S. However, this parallel compo-
sition approach results in a knowledge error of(

pµ−1 − (p− 1)(p− 2)µ−2)d
pd(µ−1) ≤ (2µ− 3)d

pd
,

which is larger than the the knowledge error of our protocol. Hence, even
for the case p > 2, it is beneficial to define the protocols over the ring
extension S. Moreover, this approach allows a prover to prove d Zm-
statements simultaneously (coordinate-wise) with exactly the same costs
as proving only 1 statement.

Remark 3. The communication complexity of protocol Πc can be further
reduced with roughly factor 1/2, by incorporating the linear form eval-
uation L(x) into the commitment. More precisely, before evaluating the
Compressed Σ-Protocol, the verifier sends a random challenge c ∈ C ⊆ S
to the prover, and relation X is transformed into relation

X dc = {(P, y; x, γ) : Com′pk(x, c · L(x), γ) = P} .

After this transformation the prover does not have to send the linear form
evaluations a, b in compression mechanism Π2 to the verifier. For more
details see [3].

Remark 4. With small adaptations to existing work, we can use our Σ-
protocols to prove non-linear constraints. Namely, following [3], we can
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“linearize” this type of constraints by an arithmetic secret sharing based
technique, after which the protocols described in previous sections can be
used in a black-box manner. In the lattice-based compressed Σ-protocols
of [4] it was already shown how to adapt this techniques to the ring
scenario.14 For a general arithmetic circuit C over S we can then construct
a protocol that can prove the relation

{(P, y; x, γ) : Com′pk(x, γ) = P, C(x) = y},

with communication complexity logarithmic in the dimension n of x ∈ Sn
and the number of multiplication gates m in the circuit C.

Finally, our protocols are also compatible with the Fiat-Shamir heuris-
tic. We discuss this in Section E in the Supplementary Material.

5 An Application: Verifiable Computation with
Context-Hiding

In this section, we argue that our commitments and compressedΣ-protocols
over rings are useful in the context of proofs of correct computation on
homomorphically encrypted data. We illustrate this concretely by consid-
ering the problem of verifiable computation on encrypted data support-
ing non-deterministic computations and context hiding from the recent
work [14].

In verifiable computation [31], a client wants to delegate a (typically
expensive) computation y = g(x) to a server, which must later prove that
the computation has been carried out correctly. When the client does not
want the server to learn information about the actual inputs x of the
computation, we speak of private verifiable computation. To address this
privacy consideration, several works [28,29,14] have proposed to combine
verifiable computation and homomorphic encryption: the client encrypts
the input data with a fully homomorphic scheme and sends the ciphertexts
ctx1 , ctx2 , . . . to the server, which carries out the corresponding compu-
tation ĝ(ctx1 , ctx2 , . . . ) on the encrypted data and proves its correctness
via a verifiable computation scheme. One problem of this approach is
how to reconcile the ciphertext space of homomorphic encryption (which
can generally be a polynomial ring of the form (Zq[X]/(f))D where q is
not necessarily prime) and the space on which the verifiable computation
system operates (typically a large field).
14 On the other hand, since they only considered rings with large enough exceptional

sets, their protocol for proving linear statements could be defined over the base ring
and therefore the adaptations of the previous sections were not required in [4].
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This motivated [14] to introduce a scheme that provides flexibility
in this combination, where the idea is to “homomorphically hash” the
computation on the ciphertext space into a computation on a smaller
Galois ring Zq[X]/(h) (where dh := deg h ≪ df := deg f)15, and then
to prove the correctness of the computation on the hash images of the
ciphertexts, for which one can use as succinct argument a version of the
GKR protocol [34] adapted for Galois rings, presented in [21].

However, an additional challenge appears if the privacy of the input
data needs to be preserved with respect to a (public) verifier too. In this
case, we speak of verifiable computation with context-hiding (as intro-
duced in [29]) and [14] proposes to use the following commit-and-proof
strategy: the client commits publicly to the ciphertexts ctx sent to the
server, which blinds the resulting output ciphertexts with encryptions
ct0 of 0, commits to them and sends the resulting ciphertexts cty to the
verifier. After receiving the hash function H, the server publishes16 the
hash images H(ctx), H(ct0) of all input ciphertexts and encryptions of
zero, and carries out a commit-and-proof argument that these have been
computed correctly. This strategy even extends to non-deterministic com-
putations y = g(x; w) which may depend on randomness w chosen by the
server (which we want to be hidden even if the verifier is the client who
provided the data); in this case the server also commits to the encryptions
ctw of these random values and publishes the hashes.

The strategy above requires the server to prove that for every involved
ciphertext ct, H(ct) has been correctly computed, in addition to the fact
that ct0, ctw are correct encryptions. While [14] propose these generic
solutions, they leave as an open question the existence of succinct commit-
and-proof arguments that directly handle statements over (Galois) rings,
so that there is no need to emulate the ring arithmetic with an argument
over a finite field, which causes considerable overhead.

Our homomorphic commitments and compressed Sigma-protocols are
well suited for this context: indeed, the hash functions are Zq-linear maps

15 More precisely, the computation is first lifted from Zq[X]/(f) to Zq[X] and then
mapped to Zq[X]/(h) via the canonical homomorphism (which is a ring homomor-
phism), for an irreducible h ∈ Zq[X] chosen at random by the verifier among all
such h of a given degree. Moreover, the technique needs that q is a prime power,
but one can easily reduce to this case via the Chinese Remainder Theorem.

16 We are describing one of the versions in [14] where these hashes can be published
without harm to privacy. A more general version of the protocol would require to
commit to the hashes too, and prove the correctness of computation of ĝ via a
commit-and-proof argument rather than GKR, which can also be done with com-
pressed Σ-protocols (see Section E.1) but is considerably more complex.
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H : Z2df
q → Zq[X]/(h).17 In fact, by the right amortization technique,

one can even turn the hash statements for dh ciphertexts into one S-form
H : S2df → S where S = Zq[X]/(h). On the other hand, proving the
correctness of the encryptions can be reduced to range proofs, which can
be addressed by adapting the efficient protocols for range proofs described
in [3] to a large enough extension ring of Zq.

This provides a simple and efficient way of instantiating the type of
commit-and-proof arguments left open in [14]. In particular, the com-
munication complexity of the commit-and-proof part of the protocol be-
comes O(log df ·M), where M is the size of the inputs and outputs of the
computation (the total size of all x, w and y). The constant hidden in
the O-notation depends on the commitment instantiation, and the noise
parameters of the encryption scheme (because of the range proofs), the
latter of which depends on the complexity of the target computation g.
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Supplementary Material

A Technical Overview (Extended)

As a starting point, we begin with the theory of compressed Σ-protocols
presented in [3], and analyze in detail which parts are inherently depen-
dent on the underlying algebraic structure being Zp for a prime number
p. Let us begin with a short overview of the techniques in [3], which will
be followed by the aforementioned analysis.

Overview of the Techniques in [3]. The basic “pivot” presented in [3],
from which most of their results are derived, is a Σ-protocol that enables a
prover to convince a verifier that, given a commitment and certain value,
he knows how to open that commitment to a vector that maps, under a
some public linear mapping, to the given value. More precisely, let G be
a finite abelian group of prime order q. Let P be a Pedersen commitment
P = hγ

∏n
i=1 g

xi
i to a vector x = (x1, . . . , xn) ∈ Znq , where the g1, . . . , gn, h

are uniformly random elements from G sampled in a setup phase. Also,
let L : Znq → Zq be a linear form, and let y ∈ Zq be a given value. The
authors of [3] devise a communication efficient Σ-protocol that enables a
prover to prove knowledge of x, the vector underlying the commitment
P , while proving that this vector satisfies L(x) = y. At a high level, such
protocol is achieved by first considering a basic and natural three-move
Σ-protocol for this relation, which would involve the prover sending a long
response to the challenge provided by the verifier, and then optimizing
this last step by making use of a more efficient proof of knowledge of this
response, which is derived from the techniques in Bulletproofs [15,17].

The basic three-move Σ-protocol looks as follows:

1. The prover samples r ← Znq and ρ ← Zq, and sends t = L(r) and
A = hρ

∏n
i=1 g

ri
i to the verifier;

2. The verifier samples a challenge c← Zq to the prover;
3. The prover responds with z = cx + r and ϕ = cγ + ρ, and the verifier

checks that hϕ
∏n
i=1 g

zi
i = AP c and L(z) = cy + t.

In the second part, instead of the prover sending z and ϕ as the
last step of the protocol above, the prover uses a more efficient proof
of knowledge to prove to the verifier that he knows z and ϕ satisfying
hϕ

∏n
i=1 g

zi
i = AP c and L(z) = cy + t. This proof has logarithmic (in n)



communication complexity, and it is based on the core pivot of the Bul-
letproof protocol [15,17]. It is quite difficult to provide a general intuition
on these techniques in a few paragraphs but, in a nutshell, they consist
of splitting the data into two halves, and combining them via a new chal-
lenge that makes it hard for the prover to cheat. This can be recursed to
obtain logarithmic communication.

Dependencies on Zq for a Prime q. At this point, we can identify
two main locations in the protocol from [3] that seem to depend heavily
on the algebraic structure being Zq for a prime q.

– Challenges and soundness. To ensure low cheating probability, chal-
lenges are sampled by the verifier to somehow “randomize” the re-
sponse the prover needs to provide. Ultimately, to show special sound-
ness, one must show that successfully replying to multiple challenges
enables us to extract a witness. This is typically done by solving a
linear equation, or more generally, a set of linear equations. Such ap-
proach proves difficult when not operating over a field given the lack
of invertible elements.

– Homomorphic commitments. The techniques from [3] depend on a
commitment scheme that is homomorphic over the desired algebraic
structure. We considered above Pedersen commitments, but the re-
sults from [3] include other constructions whose security depends
on different assumptions such as Strong RSA and Knowledge-of-
Exponent, and Lattices were considered in [4]. All of these techniques,
however, require a specific type of modulus. For instance, Pedersen
commitments are defined over cyclic groups, and the construction from
[3] based on the Strong RSA assumption only allows for RSA moduli.

Our Approach to Extend to Zm for any m.

– Challenges and soundness. Fortunately, we can address the issue of
soundness and non-invertibility by sampling challenges from an excep-
tional set, which consists of elements whose non-zero pairwise differ-
ences are invertible. This approach has been used in quite a few works
in the context of secure multiparty computation [1], but also recently
in zero-knowledge proofs [30]. For some choices of m, Zm may not ad-
mit large enough exceptional sets, but this can be fixed by considering
a ring extension of Zm of large enough degree.

– Homomorphic commitments. Arguably, the biggest difficulty in ex-
tending the techniques in [3] to any ring of the form Zm lies in
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efficiently and securely instantiating the homomorphic commitment
scheme used to hide/bind the vectors on which statements are proved.
Traditionally, most commitment schemes that support any notion of
homomorphism, do so modulo very structured integers. For example,
constructions based on discrete-log-type assumptions typically work
modulo a prime, since operations are carried out over a cyclic group.
Alternatively, systems based on RSA-type assumptions tend to oper-
ate either modulo a prime, or modulo products of two primes.

To address this difficulty we present, as a contribution of potential
independent interest, a novel construction of a vector commitment
scheme that is homomorphic modulo m, for an arbitrary integer m.
Our construction follows a two-step approach. First, we show how to
derive a compact vector commitment scheme from any single-value
commitment scheme. This consists, in a nutshell, of committing using
the single-value scheme to a uniformly random linear combination of
the coordinates of the desired vector, making sure to randomize the
commitment with a commitment to zero. This approach is already
present in other compact commitment schemes such as Pedersen’s,
and in this work we present an abstraction of this “compactification”
technique, together with a generalization to the setting in which the
modulus is any integer m.

Second, we provide an instantiation for the homomorphic single-value
commitment scheme. We provide two constructions depending on the
parity of m. For odd m we propose a generic template based on
what we call commitment-friendly groups, which are essentially groups
where exponentiating to all primes dividing m leads to a collision-
resistant function. These groups can be used to obtain a single-value
commitment scheme defined as Compk=a(x, r) = (am)xrm. This is
clearly hiding, and it can be proven to be binding under the assump-
tion that p-th roots are hard to find, for any prime p dividing m. Fur-
thermore, we instantiate commitment-friendly groups with an RSA
group Z∗N .

The template above does not directly work for m even given that the
resulting group cannot be commitment-friendly: raising to a square
power clearly leads to collisions since x2 = (−x)2. To address this
complication, we instead work on a subgroup of Z∗N , containing all
elements in Z∗N having Jacobi symbol 1. This way, even though it still
holds that x2 = (−x)2 in this group, we can carefully choose N in such
a way that this does not play any effect into the binding property.
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B Special-Soundness

In this section, we recall the definition of (k1, . . . , kµ)-special-soundness
or more precisely (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-soundness. We
follow the notation of [4].

To this end, let (P,V) be a (2µ + 1)-move public-coin interactive
proof. Without loss of generality we may assume that the prover sends
the first and final message, i.e., we assume the interactive proof has an
odd number of moves (or rounds). Moreover, we assume the verifier to
sample its i-th challenge from a challenge set Ci of cardinality Ni. The
following defines a (k1, . . . , kµ)-tree of transcripts for (P,V) to be a set
of K = k1 · · · kµ protocol transcripts (a1, c1, a2, . . . , cµ, aµ+1) that are in
a certain tree structure. For a graphical representation see [4].

Definition 4 (Tree of Transcripts). Let k1, . . . , kµ ∈ N. A
(k1, . . . , kµ)-tree of transcripts for a (2µ + 1)-move public-coin protocol
(P,V) is a set of K =

∏µ
i=1 ki transcripts arranged in the following tree

structure. The nodes in this tree correspond to the prover’s messages and
the edges to the verifier’s challenges. Every node at depth i has precisely ki
children corresponding to ki pairwise distinct challenges. Every transcript
corresponds to exactly one path from the root node to a leaf node.

Definition 5 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ) Special-Soundness).
A (2µ+ 1)-move public-coin protocol (P,V) for relation R, where V sam-
ples the i-th challenge from a set of cardinality Ni ≥ ki for 1 ≤ i ≤ µ, is
(k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound if there exists a polynomial
time algorithm that, on input a statement x and a (k1, . . . , kµ)-tree of ac-
cepting transcripts outputs a witness w such that (x;w) ∈ R. We also say
(P,V) is (k1, . . . , kµ)-special-sound.

It is well known that, for 3-move protocols, k-special-soundness im-
plies knowledge soundness, but only recently it was shown that more
generally, for public-coin (2µ + 1)-move protocols, (k1, . . . , kµ)-special-
soundness tightly implies knowledge soundness [4].

Theorem 7 ([4]). A (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound in-
teractive proof is knowledge sound with knowledge error

κ = 1−
µ∏
i=1

Ni − ki + 1
Ni

.
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C Some Remarks on our Commitments

Remark 5 (Using class groups). Alternatively, we can take G to be a
class group. Such a group is constructed from a discriminant ∆, and
it is a standard assumption that for large enough ∆, the order of the
corresponding class group is hard to compute. If ∆ is a prime, then the
order of the group is odd, but otherwise we do not know any way to
efficiently compute information on prime factors in the order. However,
as we have already mentioned, if one finds a collision for ϕp as defined
above, one can find an element of order p, and for odd p one can reasonably
conjecture that this is a hard problem in class groups. The assumption
on p’th roots is motivated by the fact that the group order is hard to
compute, in a similar way as for RSA.

The case of p = 2 requires special care. The issue is that if the prime
factors of ∆ are known, one can compute square roots efficiently in the
class group. Therefore, for even m, we need that ∆ is hard to factor.
One can of course use an RSA modulus as discriminant, but this provides
little advantage as then it would be more efficient to do the RSA based
solution directly. For an alternative, see the discussion below on trusted
set-up.

Remark 6 (On trusted setup). It can be an advantage in practice if the
public key of the commitment scheme can be chosen in such a way that no
one knows any side information that would allow breaking the scheme.
Delegating key generation to a trusted party will work, but one would
clearly prefer a solution where no trusted party is needed.

For the RSA-based schemes, this cannot be completely satisfied since
the factors of the modulus must be unknown to the committer, and we
cannot generate a correctly formed modulus without access to the prime
factors, or using a less efficient solution based on multiparty computation.
However, observe that once the modulus N is generated, the rest of the
public key, namely g, can be chosen “in public”, since it is in fact just
a random group element (either in Z∗N for odd m, or in J+(N) for even
m). The vector commitment scheme we derived in Section 3.1 inherits
this property since the n commitments in the public key are also random
group elements. This can be useful, e.g., in case we have an RSA-based
PKI. In such a setting we must assume to begin with that the factorization
of the CA’s modulus N is safe, and we can then leverage this modulus to
generate the rest of the public key without trusted setup.

For class groups, one can generate the group G without trusted setup
since the discriminant is public in a first place. In this case, however, it
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is not possible to determine whether Gm = G or not, as the order of G
cannot be computed efficiently. Yet, precisely because of this, it seems
reasonable to conjecture that, for odd m, elements in Gm are indistin-
guishable from random elements in G. Under this assumption we can
choose g randomly in G and get a scheme that requires no trusted setup
at all and still is computationally hiding since a random g cannot be
distinguished from an m’th power.

For even m we need in addition, as mentioned above, that the discrim-
inant is hard to factor. We can get such a scheme with no trusted setup
by using a random discriminant large enough that it cannot be factored
completely. This results in a scheme that is not very efficient in practice,
but is still interesting from a theoretical point of view since no trusted
setup is required.

Remark 7 (On q-one-way homomorphisms). In [23], the notion of q-one-
way homomorphisms for a prime q is introduced. Informally, this is a
homomorphism f : G 7→ H between two finite groups G and H such that
(1) f is hard to invert and yet, (2) for any y ∈ H it is easy to compute
a preimage of yq. A commitment is constructed based on this notion: the
public key is y ∈ Im(f), and a commitment to x ∈ Zq is of the form
yxf(r), where r ∈ G is uniformly random. It is very easy to see that
this scheme satisfies our definition of a single-value commitment scheme,
where m = q, and therefore implies a vector commitment scheme based
on Theorem 1.

One example of a q-one-way homomorphism is f(x) = gx mod p,
where p is prime and g ∈ Z∗p has order q. In this case, we recover the
well-known Pedersen commitment scheme and its vector commitment
variant (which in particular shows that our efficient reduction for prov-
ing binding applies to Pedersen vector commitments). Another example
is f(x) = xq mod N for an RSA modulus N . Unfortunately, these con-
structions only work when q is prime, so they are not suitable for our
needs, where we require a single-value commitment scheme over Zm, for
any positive integer m.

D Proof of Theorem 5

Theorem 8 (Compression Mechanism, Thm. 5 re-stated). Let n
be even. Protocol Π2 (as defined in Protocol 2) is a 3-round protocol for
relation X d. It is perfectly complete and unconditionally knowledge sound
with knowledge error 2/pd, where p is the smallest prime diving m. Its
communication costs are
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– From Prover to Verifier: 2 S-commitments, n/2 + 2 elements in S and
1 elements in Rd.

– From Verifier to Prover: 1 challenge in C ⊂ S.

Proof. Completeness: Observe that (cz, z) = (0,xL) + cx + c2(xR,0).
Completeness now follows from the homomorphic properties of Com′pk(·)
and the linearity of L.

3-Special Soundness: Let (A,B, a, b, c1, z1, ψ1),
(A,B, a, b, c2, z2, ψ2) and (A,B, a, b, c3, z3, ψ3) be three accepting
transcripts for pairwise distinct challenges c1, c2, c3 ∈ C ⊂ R. Let
(a1, a2, a3) ∈ S3 be such that 1 1 1

c1 c2 c3
c2

1 c
2
2 c

2
3


a1
a2
a3

 =

0
1
0

 .

Note that such a vector (a1, a2, a3) exists because the Vandermonde ma-
trix has determinant (c2 − c1)(c3 − c1)(c3 − c2) and challenge differences
are invertible modulo in S.

Let z̃ :=
∑3
i=1 ai(cizi, zi). Then, for some ℓ ∈ Z, Com′pk(z̃, ϕ̃) =

P · P ℓm, where ϕ̃ can be computed by a recursive application of the
randomness function R′.

Hence, by the zero-opening property, (z̃, ϕ̄) is an opening of commit-
ment (P, y) ∈ LR, where ϕ̄ = R′

(
z̃, 0, ψ̃, R′

(
P−ℓ

))
. By the linearity of L,

it additionally follows that L(z̃) = y, i.e., (z̃, ψ̄) is a witness for statement
(P, y) ∈ LX d , which completes the proof.

E Remarks on our Compressed Σ-Protocol

E.1 Non-Linear Constraints

In Section 4 we have shown how to open a homomorphism L on a com-
mitted vector, i.e., to prove that a committed vector x ∈ Znm or x ∈ Sn
satisfies the linear constraint L(x) = y. In [3], it was shown how to han-
dle non-linear constraints. Their approach is to linearize non-linearities by
an arithmetic secret sharing based technique. After this linearization, the
compressed Σ-protocol for opening homomorphisms can be applied in a
black-box manner. However, we again require an adaptation, because our
protocols are defined over a ring and not a field. In the lattice-based com-
pressed Σ-protocols of [4] it was already shown how to handle this ring
scenario. For this reason, we refer to their work for a detailed description
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of the linearization techniques. The resulting protocol for proving that a
committed vector satisfies an arbitrary (possibly non-linear) constraint
captured by a circuit C : Sn → S is a protocol for relation

{(P, y; x, γ) : Com′pk(x, γ) = P, C(x) = y},

and it has a communication complexity that is logarithmic in the dimen-
sion n of the secret vector x ∈ Sn and the number of multiplication gates
m in the circuit C.

Remark 8. The lattice-based compressed Σ-protocols of [4] are also de-
fined over a ring. However, they only considered rings with sufficiently
large exceptional subsets, i.e., at least cardinality 3. For this reason, their
protocol for proving linear statements could be defined over the base ring
and the knowledge error could be made sufficiently small by a parallel
repetition. In other words, the adaptations of the previous sections were
not required in [4], when restricting to linear statements.

E.2 Fiat-Shamir Transformation

The compressed Σ-protocols of the previous sections are public-coin and
therefore amenable to be made non-interactive via the Fiat-Shamir trans-
formation. However, in general the security loss of the Fiat-Shamir trans-
formation grows exponentially in the number of rounds. Moreover, there
exist examples showing that this exponential security loss is tight. Choos-
ing our parameters to account for the exponential security loss would
negatively impact the efficiency.

Fortunately, it was recently shown that this exponential security loss
does not apply to special-sound interactive proofs such as our compressed
Σ-protocols [43,6]. In fact, the security loss was shown to be independent
of the number of rounds.
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