
Practical and Improved Byzantine Reliable
Broadcast and Asynchronous Verifiable Information

Dispersal from Hash Functions
Nicolas Alhaddad

nhaddad@bu.edu
Sisi Duan

duansisi@mail.tsinghua.edu.cn
Mayank Varia
varia@bu.edu

Haibin Zhang
haibin@bit.edu.cn

Abstract—This paper improves upon two fundamental
and closely related primitives in fault-tolerant distributed
computing—Byzantine reliable broadcast (BRB) and asyn-
chronous verifiable information dispersal (AVID). We make
improvements asymptotically (for our AVID construction), con-
cretely (much lower hidden constants), and practically (having 3
steps, using hash functions only, and avoiding using online error
correction on the bulk data).

The state of the art BRB protocol of Das, Xiang, and Ren
(DXR BRB, CCS 2021) uses hash functions only and achieves a
communication overhead of O(nL+kn2), where n, L, and k are
the number of replicas, the message length, and the security
parameter, respectively. More precisely, DXR BRB incurs a
concrete communication of 7nL + 2kn2, with a large constant
7 for the bulk data term (i.e., the nL term). Das, Xiang, and
Ren asked an open question if it is possible ”from a practical
point of view to make the hidden constants small.” Two other
limitations of DXR BRB that authors emphasized are that
”higher computation costs due to encoding and decoding of the
message” due to applying error correcting codes on bulk data
and the fact that ”in the presence of malicious nodes, each honest
node may have to try decoding f times” due to the use of an
online error correcting algorithm. Meanwhile, the state of the
art AVID protocols achieve O(L+kn2) communication assuming
trusted setup. Apparently, there is a mismatch between BRB and
AVID protocols: another natural open problem is whether it is
possible to build a setup-free AVID protocol with O(L + kn2)
communication.

In this work, we answer all these open questions in the
affirmative. We first provide a hash-based BRB protocol that
improves concretely on DXR BRB, having low constants and
avoiding using online error correction on bulk data. Our key
insight is to encode the consistency proof, not just the message.
Our technique allows disseminating the message and proof
together. Then we provide the first setup-free AVID protocol
achieving O(L+ kn2) communication. Both our BRB and AVID
protocols are practical because they have 3 steps, a multiplicative
factor of 3 for the bulk data term, use hash functions only, and
they avoid applying online error correction on bulk data.

I. INTRODUCTION

Byzantine reliable broadcast (BRB) and asynchronous ver-
ifiable information dispersal (AVID) are two fundamentally
important primitives in fault-tolerant distributed computing.
Both primitives allow one to reliably disseminate data among
a set of n replicas even in the presence of Byzantine failures.
The difference, roughly speaking, is that replicas in BRB
obtain a full copy of the message broadcast, while replicas
in AVID may store data fragments instead of a full copy

of message during the dispersal protocol—as long as these
fragments altogether allow reconstructing the original message
using the retrieval protocol.

A. Existing BRB and AVID Protocols

Since Bracha’s broadcast [9, 10], the research of BRB has
primarily focused on reducing the communication complexity
of BRB protocols; clearly, the O(n2) message complexity
for Bracha’s broadcast has already been optimal. Indeed, a
number of BRB protocols have been proposed to save the
communication complexity [5, 13, 14, 17, 36]. All these BRB
protocols use erasure coding or error correcting codes. Nayak,
Ren, Shi, Vaidya, and Xiang [36] propose an erasure-coded
BRB protocol achieving a communication cost of O(Ln+kn2)
and relying on trusted setup, where n, L, and k are the number
of replicas, the message length, and the security parameter,
respectively.

In fact, assuming trusted setup, one can use vector com-
mitments [15] to build a generic BRB framework, called VC-
BRB, which also achieves O(Ln+kn2) communication. VC-
BRB can be regarded as a generalization of [14] and has been
described in [4].

The state of the art BRB protocol of Das, Xiang, and Ren
(DXR BRB) achieves a communication overhead of O(nL+
kn2) [17] by relying on hash functions only. DXR BRB uses
online error correction (OEC) [7] for the goal.

The related notion of AVID was originally introduced by
Cachin and Tessaro [14]. Specifically, their work contributed
two constructions for each of AVID and BRB protocols,
with the only difference being that AVID stores erasure-
coded fragments, while BRB stores the whole message. Their
initial AVID/BRB constructions use a list of n hashes (cross-
checksum) [23, 31] to achieve O(nL+ kn3) communication;
we refer to these protocols as CT0 AVID and CT0 BRB,
respectively. Their improved constructions use a Merkle tree
to attain O(nL+kn2 log n) communication; we call the AVID
protocol and the BRB protocol using Merkle tree CT AVID
and CT BRB, respectively.

Hendricks, Ganger, and Reiter [27] use fingerprinted cross-
checksum to build the HGR AVID protocol that has O(L +
kn3) communication. Alhaddad, Duan, Varia, and Zhang,
ECP-AVID, uses an erasure coding proof (ECP) system to
achieve O(L+kn2) dispersal communication and O(L+kn)

retrieval communication, albeit at the expense of requiring
trusted setup. The same authors also propose a construction
ECP2-AVID that does not rely on trusted setup but has higher
retrieval communication complexity (O(L + kn log n)). In
fact, assuming trusted setup, one could also build a generic
framework for AVID using vector commitments, VC-AVID,
which can be viewed as being implied by a series of protocols
and implementations [1, 4, 14]. We describe VC-BRB and VC-
AVID in Sec. IV.

B. Open Problems for BRB and AVID

We describe three open problems we aim to solve in this
paper for BRB and AVID protocols. The first two open
problems are directly from DXR, where the authors discussed
two limitations of DXR BRB [17, Section 8].

Reducing the concrete expansion factor in BRB and AVID
protocols. Asymptotically, DXR BRB achieves O(nL+ kn2)
communication without trusted setup. However, the authors
of DXR BRB acknowledged in [17, Section 8 Discussion]
that: ”Although we mostly discuss asymptotic cost in this
paper, it is equally important from a practical point of view
to make the hidden constants small. Indeed, this is the case
with the primitives we construct in this work.” As the authors
pointed out, DXR BRB has a concrete communication cost of
7nL+2kn2 +2n2. In particular, the hidden constant 7 in the
nL term is quite large and makes DXR BRB less attractive
in practical applications. We refer to this hidden constant as
the expansion factor throughout this work. In the same paper
of ECP-AVID [5], the authors also propose ECP-BRB which
achieves a concrete communication of 6nL + 2kn2 (using
trusted setup), where the expansion factor remains large—6.
Meanwhile, NRSVX BRB achieves the same communication
complexity using trusted setup [36], albeit with more steps
than the above two protocols.

In another example, CT BRB (also an AVID protocol) [14]
is deemed in practice as one of the most computationally
efficient BRB protocols, as it assumes hash functions and
authenticated channels only, being very simple to implement.
As we have described, it has O(nL + kn2 log n) commu-
nication. The original design for CT BRB has a concrete
communication of 6nL+2kn2 log n with an expansion factor
of 6 for its bulk data term (i.e., the nL term). The influential
HoneyBadgerBFT paper [35]—considered by many to be the
first practical asynchronous BFT protocol—implemented CT
BRB (code available [1]). When implementing CT BRB, the
authors apparently noticed the expansion factor in CT BRB
is large and reduced it from 6 to 3 in their implementation.
Following the implementation, the known implementations for
CT BRB [1, 2, 3, 20, 21, 26] use an optimized version with
an expansion factor of 3.

Inefficiency issue for (online) error correction. Another
open problem left by Das, Xiang, and Ren in DXR BRB
is related to the inefficiency problem of Reed-Solomon (RS)
error correcting codes (ECC) [40] and online error correction
(OEC) algorithm [7]. In particular, the authors of DXR BRB

discussed in [17, Section 8] that: ”One limitation of using
ADD in our RBC is its higher computation costs due to
encoding and decoding of the message. Additionally, in the
presence of malicious nodes, each honest node may have to
try decoding f times. Contrary to this, in the RBC protocol of
Cachin and Tessaro, each node needs to run the decoding
algorithm only once.” This limitation stems from the fact
that DXR BRB uses Reed-Solomon ECC, instead of erasure
codes, to encode the message, while using OEC to decode
the message in an online manner. However, DXR BRB only
addresses the message with the ECC field size. DXR BRB
has no limitation on the field size being used and assumes
that each symbol fits in the field. Since each symbol is of size
M/(f +1) for a message M , the field can grow impractically
large. One easy fix may be to set a small constant size for
the field. For a field of size GF(2a), a message can be split
into M

a(f+1) polynomials and each fragment i would then be
the concatenation of the evaluation of those polynomials at
the same point i. However, such an approach is expensive
for ECC. For a single polynomial of degree n, the standard
error correcting decoding algorithm has a run time complexity
of O(n log n) [22]. For M

a(f+1) polynomials the ECC has to
be repeated M

a(f+1) times. The run time becomes even more
expensive when running online error code, because the ECC
has to be repeated again f times. This would bring the total run
time complexity to O(M

a(f+1)n
2 log n) = O(Ma n log n). (Note

OEC for a vector of small-sized messages outputs a result only
if OEC is successful for each small-sized message.)

In contrast, applying erasure coding to a vector of messages
would easily bring down the run time complexity to O(Ma).
In fact, there exist highly optimized erasure coding schemes
that can be applied to a vector of small-sized messages, such
as Cauchy Reed-Solomon code [38, 39]. If using these erasure
codes, the performance difference between OEC and erasure
coding is more significant.

AVID without trusted setup. AVID is different from BRB,
as it is possible that each replica eventually delivers an
coded fragment rather than the original data. While CT
BRB and CT AVID share the same complexity, later works,
such as HGR AVID by Hendricks, Ganger, and Reiter [27],
and recently ECP-AVID by Alhaddad, Duan, Varia, and
Zhang [14], have shown CT AVID can be obtained in a
much more communication-efficient manner. In particular,
ECP-AVID achieves the communication of O(L + kn2) by
using a trusted setup. The concrete communication for ECP-
AVID is 6L+2kn2. Clearly, AVID protocols require reducing
the expansion factor as well. Note that we have mentioned VC-
AVID using vector commitments can also achieve O(L+kn2)
communication.

For BRB protocols, O(nL+kn2) communication complex-
ity was first attained with the help of trusted setup in [36] and
then later achieved by DXR BRB that does not rely on trusted
setup. For AVID protocols, while the state of the art protocols
have O(L+ kn2) communication, it is still an open question
to ask if one can achieve the same communication without the

2

need of trusted setup.

C. Our Contributions

This paper resolves the three open problems mentioned
above, proposing practical BRB and AVID protocols with low
expansion factors and a setup-free AVID protocol achieving
O(L + kn2) communication. The protocols avoid applying
inefficient OEC to the bulk data. In particular, we make the
following contributions:
• We offer a highly efficient BRB protocol (CC-BRB) that

asymptotically matches the state of the art BRB protocols,
while having an expansion factor of 3. The protocol has
3 steps, using hash functions only. Notably, CC-BRB uses
ECC for hashes (of size nk) and uses much more efficient
erasure coding for the bulk data.
• We provide a new AVID protocol (CC-AVID) that matches

the communication complexity of the state of the art AVID
protocols that need trusted setup. CC-AVID uses hash func-
tions only. Our AVID extends our BRB protocol and inherits
the low expansion factor property of our BRB protocol.

Concurrent work. Concurrent to our work, Das, Xiang, and
Ren provide a new BRB protocol and an AVID protocol [18]
that share the same communication complexity as ours. We
call their protocols DXR2022-BRB and DXR2022-AVID, re-
spectively. They studied the protocols from a different perspec-
tive: can one design protocols with balanced cost, meaning
that all replicas send the same asymptotic communication?
Their protocols achieved the goal. Both protocols in our paper
achieve the goal of balanced cost, too.

However, their protocols have one more step than ours
(4 steps for them versus 3 steps for our protocols). More
importantly, they do not address the two major open problems
left by DXR BRB [17]. First, they have even higher expansion
factor than DXR BRB, while our protocols have much smaller
expansion factor than DXR BRB. Second, they use ECC
and OEC more extensively than DXR BRB, while we avoid
applying OEC to the bulk data.

D. Our Core Techniques Explained In a Nutshell

Here we briefly describe our core techniques. We focus on
BRB protocols, as we feel that BRB appears a bit better-
known, though we emphasize that the techniques apply to
AVID protocols analogously.

We first observe that it is difficult to improve concrete
communication complexity by tweaking the DXR BRB or
ECP-BRB protocols directly. DXR BRB internally uses an
asynchronous data dissemination (ADD) protocol that inher-
ently needs 7nL communication—1nL for the first broadcast
phase, and then 2 × 3nL for the two ADD phases involving
two all-to-all communication transmitting coded fragments.
Moreover, ECP-BRB relies on a proof system where the proof
is of the same size of the erasure-coded fragments, which
yields 6nL communication.

Hence, instead of directly working on the two existing
protocols, we design our own. We begin with CT0 BRB of
Cachin and Tessaro [14] (that uses cross-checksum). At first

glance this may appear to be a strange starting point, since CT0
BRB achieves O(nL + kn3) communication complexity—
that is not just more expensive than the state of the art BRB
protocols (O(nL + kn2)), but also than the well-known and
widely used CT BRB described in the same paper by Cachin
and Tessaro (O(nL+ kn2 log n)).

CT0 BRB uses a hash-based cross-checksum, applying
hashes to each erasure-coded fragments and yielding n hashes.
It is straightforward to reduce the expansion factor of CT0
from 6 to 3. Our design based on CT0 follows the classic,
three-step design: SEND, ECHO, and READY. In the first step,
the sender sends each replica an erasure-coded fragment along
with all n hashes. The replicas then compute a hash h for the
n hashes. Then replicas agree on h and meanwhile apply ECC
instead of erasure codes to the n hashes. In particular, replicas
use ADD to disperse the n hashes, while carefully using both
h and the n hashes (in various places) to ensure consistency of
reconstructed data. In this way, the communication overhead
of transmitting ECC encoded hashes is only O(kn2), while
the expansion factor for the nL term remains 3. Note we use
hash functions in a much more fine-grained manner than all
prior constructions to ensure consistency of our BRB protocol.

Note, above, our BRB also naturally solves an inefficiency
problem due to using Reed-Solomon ECC to the bulk data. In
our BRB protocol, we use erasure coding for bulk data, and
only apply ECC for n hashes—which does not bottleneck the
protocol.

Extending the technique, we provide the first setup-free
AVID protocol (CC-AVID) that achieves O(L + kn2) com-
munication. For the dispersal protocol, we mainly follow
the technique of CC-BRB to reduce expansion factor and
minimize the use of OEC. For the retrieval protocol, instead of
sending the full list of hashes, we use online error correcting
on the hashes to achieve the goal of having O(L+kn) retrieval
communication as well as achieve low expansion factor.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider Byzantine reliable broadcast (BRB) and asyn-
chronous verifiable information dispersal (AVID) protocols
consisting of n replicas, where f out of them replicas may
fail arbitrarily (Byzantine failures). We assume the existence
of point-to-point authenticated channels between every pair of
replicas. We design protocols in asynchronous environments
making no timing assumptions. This paper considers adaptive
corruption, where the adversary can choose its set of corrupted
replicas at any moment during the execution of the protocol,
based on the information it obtained so far. The weaker static
corruption requires the adversary is restricted to choose its set
of corrupted replicas at the start of the protocol and cannot
change this set later on. All protocols we consider assume
that f is a constant fraction of n with f ≤ ⌊n−1

3 ⌋ (which is
optimal). A Byzantine quorum is a set of ⌈n+f+1

2 ⌉ replicas.
Without loss of generality, this paper may assume n = 3f +1
and a quorum size of 2f + 1.

Byzantine reliable broadcast (BRB). We review the defini-
tion of Byzantine reliable broadcast (BRB). A BRB protocol

3

BRB protocols setup asymptotic communication concrete communication (omitting insignificant terms)
Bracha’s BRB [10] none O(n2L) 2n2L

CT BRB [14] none O(nL+ kn2 logn) 6nL+ 2kn2 logn
DXR BRB [17] none O(nL+ kn2) 7nL+ 2kn2

ECP-BRB [5] trusted O(nL+ kn2) 6nL+ 2kn2

VC-BRB ([4, 14]; Sec. IV) trusted O(nL+ kn2) 3nL+ 2kn2

VC2-BRB ([4, 14]; Sec. IV) none O(nL+ kn2 logn) 3nL+ 2kn2 logn

CC-BRB (this paper) none O(nL+ kn2) 3nL+ 9kn2

TABLE I: Comparison of BRB constructions. L is the input length and k is the security parameter. A trusted setup means
that a trusted dealer is needed to generate public parameters for the system (e.g., the public key for threshold signatures) or
replicas have to interactively generate public parameters. VC-BRB is a generic BRB framework using vector commitment
(see Sec. IV), while VC2-BRB is an instantiation from the generic framework using Merkle tree. CC-BRB is our core protocol
we design in this paper and relies on hash functions (and authenticated channels).

AVID protocols setup dispersal communication concrete dispersal retrieval communication concrete retrieval
CT AVID [14] none O(nL+ kn2 logn) 6nL+ 2kn2 logn O(L+ kn logn) 3L+ kn logn

HGR AVID [27] none O(L+ kn3) 3L+ 2kn3 O(L+ kn3) 3L+ kn2

ECP-AVID [5] trusted O(L+ kn2) 6L+ 2kn2 O(L+ kn) 6L+ 2kn
ECP2-AVID [5] none O(L+ kn2) 6L+ 2kn2 O(L+ kn logn) 6L+ kn logn

VC-AVID ([1, 4, 14]; Sec. IV) trusted O(L+ kn2) 3L+ 2kn2 O(L+ kn) 3L+ 2kn
VC2-AVID ([1, 4, 14]; Sec. IV) none O(L+ kn2 logn) 3L+ kn2 logn O(L+ kn logn) 3L+ kn logn

CC-AVID (this paper) none O(L+ kn2) 3L+ 9kn2 O(L+ kn) 3L+ 4kn

TABLE II: Comparison of AVID constructions. Notably, CC-AVID achieves the same communication complexity as ECP-AVID
but does not use trusted setup. When describing concrete communication, we omit obviously insignificant terms (e.g., the kn
item, the n log n item). Also, while theoretically one could retrieve data from a set of 2f + 1 replicas for all approach, we
follow the traditional metric and ask all replicas to send fragments during the retrieval protocol.

is specified by two protocols r-broadcast and r-deliver such
that the following properties hold:
• Validity: If a correct replica p r-broadcasts a message m,

then p eventually r-delivers m.
• Agreement: If some correct replica r-delivers a message m,

then every correct replica eventually r-delivers m.
previously broadcast by replica ps.

We remark that as explained in, e.g., [11], agreement implies
the properties of consistency and totality.

Asynchronous verifiable information dispersal (AVID).
AVID is introduced by Cachin and Tessaro [14] and used to
disperse a data block among a set of replicas.

An AVID scheme consists of a dispersal protocol and a
retrieval protocol. The dispersal protocol is specified by avid-
disperse and avid-deliver. A client (which may also be a
replica) starts avid-disperse (id, M), and replicas complete
the dispersal protocol and avid-deliver M for id. The retrieval
protocol is defined by avid-retrieve and avid-output. In the
retrieval protocol, a client ct may trigger avid-retrieve and
eventually avid-output the full block M .

An AVID scheme with tag id should satisfy the following
properties with overwhelming probability:
• Termination: If avid-disperse for id is initiated by a correct

client, then avid-deliver for id is eventually completed by
all correct replicas.
• Agreement: If a correct replica completes avid-deliver for

id, then all correct replicas eventually complete avid-deliver
for id.
• Availability: If a correct replicas completes avid-disperse

for id, then any correct client that initiates avid-retrieve for
id eventually reconstructs some block M .
• Correctness: If a correct replica completes avid-deliver for
id, then all correct clients that initiate avid-retrieve for id
eventually retrieve the same block M . Moreover, If a correct
client initiated avid-disperse(id, M ′) then M = M ′.

Expansion factor. The communication cost of a BRB or an
AVID protocol can be (roughly) divided into a bulk data
term which involves bulk data and n (e.g., 3nL, 6nL and
7nL for BRB protocols, 3L and 6L for AVID protocols),
additional security parameter terms (e.g., 2kn2 log n, 2kn2),
and optionally some insignificant lower-order terms (e.g., n2).

The security parameter terms may become significant only
when n becomes large, or the bulk data is small itself. But
in general, the bulk data term is more practically impor-
tant, because the bulk data terms are usually bottlenecks for
major applications of BRB or AVID protocols. We define
the constant in the bulk data term as being the expansion
factor. Reducing the expansion factor is a practically important
research problem as emphasized by Das, Xiang, and Ren in
their state of the art BRB protocol [17], and explored by a line
of practical BRB and AVID implementations [1, 2, 26, 35].

For example, CT BRB was designed to have an expansion
factor of 6, but follow-up implementations [1, 2, 3, 20, 21, 26]

4

on CT BRB all uses an optimized version that has expansion
factor 3. From a different angle, asynchronous BFT protocols,
such as HoneyBadgerBFT [35] (CT BRB vs. Bracha’s broad-
cast), BEAT [19] (CT BRB vs. HGR AVID), and WaterBear
(CT BRB vs. Bracha’s broadcast) [21], have shown the bulk
data term is the bottleneck for the throughput of all these
protocols, because the other terms, including the security
parameter terms, are roughly the same for these BRB or AVID
protocols.

III. BUILDING BLOCKS

State of the art BRB protocols use erasure codes or error
correcting codes. Both can encode the data block into frag-
ments. Erasure codes tolerate erasures (unavailable fragments),
while error correction codes tolerates errors (incorrect/corrupt
fragments). In general, error correcting codes have more re-
stricted syntax and more expensive operations. Looking ahead
to our own constructions, we will use erasure codes when
possible and error correcting codes only when needed.

Erasure coding scheme. An (m,n) erasure coding scheme
over an alphabet M is a pair of algorithms (encode, decode),
whereM denotes the alphabet for a single fragment, encode :
Mm → Mn and decode : Mm → Mm. The encode
algorithm takes as input a data block, consisting of m
data fragments, and outputs n > m coded fragments. The
decode algorithm takes as input any m-size subset of coded
fragments and outputs the original data block containing m
data fragments. Namely, if [d1, . . . , dn] ← encode(M), then
decode(di1 , . . . , dim) = M for any distinct i1, . . . , im ∈
[1..n]. An (m,n) erasure coding scheme is linear if each
coded fragment di (i ∈ [1..n]) is a linear combination of the
first m data fragments, i.e., di =

∑m
j=1 bijdj , where bij’s are

coding coefficients. The coding coefficients for a generator
matrix for the linear code. An (n, m) erasure coding scheme
is systematic, if the first m coded fragments are the original
m data fragments.

Error correcting code (ECC). An error correcting code
allows a sender to add redundancy to the data transmitted such
that the receiver can detect and correct a limited number of
errors. In this paper we will use the standard Reed-Solomon
(RS) error correcting code (ECC) [40]. An (m,n) Reed-
Solomon ECC over a finite Galois Field F = GF(2a) has
two algorithms RSEncode and RSDecode. RSEncode(M,m,n)
takes a message M made of m elements in F i.e. |M | = ma
and produces n fragments in F . In more details, the message
M is split into m coefficients of a polynomial P in F . The
polynomial of degree deg = m − 1 is then evaluated at
n different points where n ≥ m to produce n fragments,
i.e., fragments = [P (1), P (2), . . . , P (n)]. Note that any m
fragments can interpolate the polynomial P and reconstruct the
message M out of the coefficients of P . RSDecode(n′, e, deg)
takes as input n′ fragments, e the number of errors in n′ and
deg the degree of the polynomial such that n′ ≥ 2e+deg+1.
The algorithm outputs a unique polynomial of degree deg that
passes through at least n′ − e points in n′, or outputs ⊥ if

it cannot find any such polynomial. We leave the details of
implementing RSDecode to Gao [22]. Note that for efficiency
reasons it is better to work in smaller fields (where a is small).
For a message M with |M | denoting the number of bits of M ,
if |M | > ma, then m is broken into M/(ma) polynomials,
each of which has degree m− 1. A fragment i is then the set
of all polynomial evaluation at i, i.e., di = f1(i) . . . fn(i).

Online error correcting (OEC) algorithm. Online error
correcting was first described in [7] and was recently used
by [17] to build the state of the art BRB algorithm. OEC
uses RS ECC to enable a receiver pi to reconstruct a message
M from n different replicas (where f of these replicas may
be faulty), each of which sends a different fragment of M .
The OEC algorithm is said to be online, because replica pi
receives up to n different fragments in no particular order and
can decide when the fragments it received are enough to stop
listening for new messages.

Lemma 1 ([7]). For n′ ≥ 2f +1 messages received with e =
n′− (2f +1), replica pi will find P = RSDecode(n′, e, f +1)
encoding M . If n = 3f + 1 then it is guaranteed that pi will
eventually reconstruct M in an asynchronous system.

In more details, the algorithm has at most f + 1 iterations.
Each iteration requires a different pair of values for n′ (the
number of fragments received so far) and e (the number
of errors), while the degree of the polynomial returned is
fixed at degree f . The algorithm starts when n′ = 2f + 1
and e = 0. OEC runs RSDecode with 0 error(s), i.e.,
RSDecode(n′, 0, f) (assuming all 2f + 1 senders sent correct
fragments). If RSDecode returns ⊥, then replica pi has to
wait for another fragment (increasing n′ by 1) and increases
the number of errors by 1. Otherwise RSDecode must have
returned a polynomial that agree with all 2f + 1 points in n′

and hence can recover M and the algorithm stops. It is easy
to see that the algorithm is guaranteed to stop if n′ = 3f + 1
and e = f is reached.

Vector commitments. Vector commitments allow a prover to
commit to an ordered list of values in such a way that they can
later open the commitment at a specific position. The prover
can convince a verifier that the opening is correct by generating
a proof that the verifier can validate. We review the definition
of deterministic vector commitments [15]. A static vector
commitment scheme V = (VSetup, VCom, VGen, VVerify)
comprises four algorithms that operate as follows:
• VSetup(1k, U, n) → pp is given a security parameter k, a

set U , and a maximum vector length n. It generates public
parameters pp.
• VCom(pp, v⃗) → c is given a vector v⃗ ∈ U ℓ where ℓ ≤ n.

It outputs a commitment string c.
• VGen(pp, v⃗, i)→ wi is given a vector v⃗ and an index i. It

outputs a witness string wi.
• VVerify(pp, c, u, i, w)→ b takes as input a vector commit-

ment c, an element u ∈ U , an index i, and a witness string
we. It outputs a Boolean value b that should only equal 1
if u = v⃗[i] and w is a witness to this fact. Note that this

5

implies correctness.
Some vector commitments like Merkle trees [34] do not

require a trusted setup, while others such as the one by
Kate, Zaverucha and Goldberg [29] do. For the later type of
vector commitments we will assume that VSetup returns ⊥.
Moreover, we will omit passing pp and assume that all the
replicas that use vector commitments have already initialized
VSetup correctly.

While some vector commitments have both hiding and
binding properties, in this work, we only care about the
binding property.

• Binding. No polynomial time adversary can compute
a vector commitment c, a position i, two elements
u and v, and two witnesses w1 and w2 such that
VVerify(c, u, i, w1) = VVerify(c, v, i, w2) = 1.

Hash. We use a collision-resistant hash function hash map-
ping a message of arbitrary length to a fixed-length output.

IV. REVIEW OF BRB AND AVID PROTOCOLS

A. CT AVID and DXR BRB

We first describe CT AVID and DXR BRB that are techni-
cally more relevant to our protocols. We begin with the two
BRB protocols of Cachin and Tessaro [14]: CT0 BRB based on
cross-checksum [23, 31] and CT BRB based on Merkle tree.
Both protocols follow the three-step communication pattern of
Bracha’s broadcast.

In CT0, the sender uses an (f+1, n) erasure coding scheme
to form n erasure-coded fragments (each being of size L

f+1).
It also computes the hash of each fragment and forms a
cross-checksum with n hashes. In the SEND phase, the sender
sends each replica a fragment and the cross-checksum. In the
ECHO phase, each replica echoes the its fragment and cross-
checksum to all replicas. When receiving 2f+1 fragments and
a matching cross-checksum, a replica first decodes the original
block, re-encodes the block to generate all n fragments,
computes the hashes of n fragments, and verifies if all hashes
match the hashes in the cross-checksum. In the READY stage,
each replica broadcasts the cross-checksum and its fragment
to all replicas. If a correct replica receives f + 1 READY
messages, it broadcasts the cross-checksum and its fragment to
all replicas. In CT0, the communication is upper bounded by
both ECHO and READY phases. The concrete communication
is:

n(
L

f + 1
+ kn)︸ ︷︷ ︸

the SEND phase

+n2(
L

f + 1
+ kn)︸ ︷︷ ︸

the ECHO phase

+n2(
L

f + 1
+ kn)︸ ︷︷ ︸

the READY phase

,

which is about 6nL+2kn3 (if assuming optimal resilience of
n = 3f + 1 and omitting insignificant terms such as 3L).

The other BRB protocol by Cachin and Tessaro, CT BRB,
uses Merkle tree instead of cross-checksum. In CT BRB, each
message is sent with O(log n) hashes instead of n hashes. The
concrete complexity is 6nL+ 2kn2 log n.

The state of the art BRB protocol without using trusted
setup, DXR BRB, uses asynchronous data dissemination

(ADD) to achieve nL+ kn2 communication [17]. DXR BRB
has provided two BRB protocols, one having 5 steps and
the other having 3 steps. We only describe the 3-step DXR
BRB that follows the message pattern of Bracha’s broadcast.
In particular, the first phase broadcasts the whole data m.
This strategy, to the best of our knowledge, is first used in
Haven [6]. The second phase echoes individual coded frag-
ments and a hash of the whole data h. When receiving 2f +1
matching ECHO messages with the same coded fragment and
h, replicas send READY messages with h. If receiving f + 1
READY messages with the same h, replicas wait for f + 1
matching ECHO messages with the same h and send READY
messages. Each replica stores all fragments received in the
READY messages and uses OEC to obtain a message. If the
message matches h, then the replica delivers the message.
DXR BRB needs 7nL communication—1nL for the first
phase and 2× 3nL for the following two phases.

To study the expansion factor problem in a systematic
manner, we consider a BRB framework (VC-BRB) and an
AVID framework (VC-AVID) below, both of which use vector
commitments. VC-BRB slightly modifies CT BRB and has
been described in [4]. VC-AVID can be viewed as a variant
implied by [1, 4, 14]. Specifically, the difference between VC-
AVID and the implementation in HoneyBadgerBFT [1] is that
our VC-AVID checks inconsistencies in the ECHO step, while
the latter does it in the READY step. All protocols derived
from the frameworks have low expansion factor.

B. VC-BRB and VC-AVID

We recall VC-BRB algorithm in Appendix A. Just as in
Bracha’s broadcast and CT BRB, VC-BRB also follows the
three-step message pattern. In all phases replicas transmit
fragments instead of the original data, replicas limit the frag-
ment transmission in the ECHO phase but not in the READY
phase (which sends cryptographic values only), and replicas
identify inconsistent shares in the ECHO phase using vector
commitments.

VC-BRB can encompass the two BRB algorithms by Cachin
and Tessaro, because cross-checksum and Merkle tree can be
viewed as vector commitment schemes. If assuming trusted
setup, one has vector commitment schemes with a constant-
size commitment and a constant-size proof [15]. Thus, as-
suming trusted setup, one obtain a BRB construction that has
O(Ln + kn2) communication and low expansion factor of
3. All the above mentioned instantiations have an expansion
factor of 3, because all of them involve all-to-all fragment
broadcast in the ECHO message (incurring n2L/(f+1) ≈ 3nL
communication). In contrast, all other protocols that have the
same communication complexity either have high expansion
factor (e.g., DXR BRB [17], ECP-BRB [5]) or have more steps
than this one (e.g., [36]).

We present VC-AVID in Appendix A. VC-AVID is slightly
different from VC-BRB. As in VC-BRB, assuming trusted
setup, we directly obtain an AVID construction that has O(L+
kn2) communication and low expansion factor of 3. Such a
scheme matches the asymptotic communication complexity for

6

the ECP-AVID protocol, but outperforms ECP-AVID that has
an expansion factor of 6. One could also use Merkle tree to
instantiate an AVID (called VC2-AVID), though this results in
a higher communication.

The frameworks allow us to better understand the low
expansion factor problem and motivate us to design more
efficient schemes. Indeed, for both BRB and AVID protocols,
the instantiations using the frameworks match the state of the
art BRB and AVID protocols, but they rely on trusted setup
and computationally expensive (because of the usage of vector
commitments). This paper aims at building practical protocols
with no trusted setup.

V. PRACTICAL AND IMPROVED BRB AND AVID
PROTOCOLS USING HASH FUNCTIONS

A. CC-BRB

This section first provides a BRB protocol, CC-BRB, with
an asymptotic communication complexity of O(Ln+kn2) and
a concrete communication complexity of 3nL + 9kn2. CC-
BRB has the same complexity as DXR BRB [17], but differs
from it in the expansion factor: CC-BRB has an expansion
factor of 3, while DXR BRB has an expansion factor of 7.
Meanwhile, CC-BRB avoids using OEC on the bulk data,
removing a practical efficiency bottleneck of DXR BRB.

The BRB construction requires only 3 steps. It shares
the structure of Bracha’s broadcast and ”combines” both
approaches of DXR BRB [17] and CT BRB [14]. On a high
level, the protocol uses the cross checksum of CT BRB [14]
to send fragments of a message m (SEND phase and ECHO
phase) but use the DXR BRB [17] approach to send fragments
of the cross checksum itself (in the ECHO and READY phases).
This approach will:
• avoid sending the whole message M in the SEND phase to

every replica (like what DXR BRB [17] does), otherwise
we would not obtain low expansion factor, and
• avoid sending the whole cross checksum in the ECHO phase

(like what CT BRB [14] does), otherwise we would obtain
higher than kn2 communication.

To make the protocol “work,” however, we need a very fine-
grained and careful treatment for various hashes used. Equally
important, we use erasure coding to deal with bulk data, and
use inefficient OEC only for n hashes. The minimized use of
OEC makes DXR BRB practical for large-size messages.

We describe the pseudocode of CC-BRB in Algo-
rithm 1. Our BRB protocol, CC-BRB, uses both standard
erasure coding (encode, decode) and Reed-Solomon ECC
(RSEncode, RSDecode). We also define two hash func-
tions: hash : {0, 1}∗ → {0, 1}k (applied to fragments) and
H : {0, 1}nk → {0, 1}k (applied to cross-checksum).

We initialize CC-BRB by creating two empty dictionar-
ies called fragmentsdata and fragmentshashes for each
replica pi. Here, fragmentsdata maps each id tag and c to
possible data fragments for some message M . Additionally,
fragmentshashes maps each id tag message of a message
M and c to possible fragments of the list of hashes of all

n fragment of that message M . Then, CC-BRB proceeds as
follows.
• SEND phase: The sender ps encodes the messages M into n

fragments using an erasure code (f + 1, n). Each fragment
is of size L

f+1 . The dealer then hashes each fragment and
create D, a list of n hashes each of size k. The dealer
then sends each replica pj a SEND message containing the
fragment dj and the list of hashes D.
• ECHO phase: Upon receiving a SEND message, each replica
pi verifies the fragment di by checking that hash(di) is
equal to the ith hash in the cross checksum D. If the check
succeeds then: replica pi uses ECC to encode D into n
fragments (each of size k) and stores them in the list π. Then
pi sends an ECHO message containing the data fragment di,
fragment πj (the jth fragment of π), and c = hash(D) to
every replica pj .
• READY phase: Each replica stores the fragments it received

in the ECHO messages. A replica pi broadcasts a READY
message containing c and πi in two cases:
1) Replica pi receives 2f+1 ECHO messages with the same

c and πi.
2) Replica pi receives f + 1 READY messages with the

same c and has not sent a READY message. In this case,
pi waits for f+1 ECHO with the same c and πi and then
sends a READY message.

Upon receiving n − f READY messages with the same c,
each replica starts decoding. In particular, pi first decodes
the coded fragments of hashes using the RSDecode function
and outputs D′. It then compares H(D′) with c, the value
it receives from 2f + 1 READY messages. If H(D′) = c,
pi waits for at least f + 1 ECHO messages such that for
each coded fragment dj included in an ECHO message,
hash(dj) ∈ D′. Then pi decodes the fragments and outputs
M . Finally, pi further encodes M and calculates the list
of hashes for the coded fragments. If the list of hashes
are consistent with the hashes of the coded fragments, pi
r-delivers M . Otherwise, pi r-delivers ⊥.

Communication complexity. In the following analysis we
will assume optimal resilience with n = 3f +1. The protocol
consists of three steps:

1) SEND: ps sends one SEND message to all n replicas.
Each SEND message consists of the cross-checksum D
and the fragment di each of size nk and L

f+1 respectively.
Thus, the total communication complexity for the SEND
is 3L+ kn2.

2) ECHO: Every correct replica pi sends one ECHO message
to all n replicas. Each ECHO message consists of the
cross checksum fragment πj , the data fragment dj and a
hash c where the size of the terms costs nk

f+1 , L
f+1 and

k respectively. Thus the total communication complexity
for the ECHO is 3nL+ 4kn2.

3) READY: Every correct replica pi sends one READY
message to all n replicas. Each READY message con-
sists of the cross-checksum fragment πi and the hash c

7

Algorithm 1 CC-BRB using hash functions with identifier id and sender ps. Code shown for replica pi.
Initialization

fragmentsdata ← ⊥ {dictionary (id, c) 7→ list of fragments dj}
fragmentshashes ← ⊥ {dictionary (id, c) 7→ list of fragments πj}
e← 0 {number of errors to be corrected by the online error code}

upon r-broadcast(id,M) and replica is ps {step 1: SEND }
d← encode(M), D ← [hash(d1), . . . , hash(dn)]
for 1 ≤ j ≤ n, send (id,SEND, dj , D) to pj

upon receiving (id,SEND, D, di) from ps for first time {step 2: ECHO }
if hash(di) = Di

c← H(D), π ← RSEncode(D)
send (id,ECHO, (di, πj , c)) to pj

upon receiving (id,ECHO, (dj , πi, c)) from pj for first time {step 3: READY }
fragmentsdata[(id, c)]← fragments[(id, c)] ∪ [dj]
if (not yet sent a READY message and received 2f + 1 ECHO messages with the same id, c and same πi)

send (id,READY, c, πi) to all replicas
upon receiving (id,READY, c, πj) from pj for the first time {verification}

fragmentshashes[(id, c)]← fragmentshashes[(id, c)] ∪ [πj]
if (not yet sent (id,READY, c) and received f + 1 READY messages with the same c)

wait for f + 1 ECHO messages with the same c and πi

send (id,READY, c, πi) to all replicas
if fragmentshashes[(id, c)] ≥ 2f + 1 {online error correcting code to reconstruct D}

D′ ← RSDec(f + 1, e, fragmenthashes[id, c])
if H(D′) = c

wait for f+1 ECHO message where hash(dj) ∈ D′ and filter fragmentsdata[(id, c)] accordingly
M ← decode(fragmentsdata[(id, c)]) {reconstruct M from the fragments that are contained in D’}
d′ ← encode(M)
if D′ = hash(d′1), . . . , hash(d

′
n), r-deliver(M)

else r-deliver(⊥)
else e→ e+ 1 {increase the number of errors to align with the online error correcting code procedure}

respectively. Thus the total communication complexity is
4kn2.

Hence the total communication complexity is: 3nL+9kn2 +
3L.

Theorem 1. CC-BRB (Algorithm 1) is a secure BRB protocol.

Proof. Validity. If a correct replica ps runs r-broadcast for id
id and a message M then all correct replicas will pass the
check hash(dj) = Dj and have a valid data fragment of M
(dj = encode(M)[j]) because of the correctness property of
the hash function and the encoding algorithm. Hence, every
correct replica pi will echo to replica pj a valid data fragment
di of M , its own cross checksum fragment πj of D, c =
hash(D), and id. Therefore, all correct replicas will receive
at least 2f + 1 ECHO messages with a data fragment and the
same c, id and consistent cross checksum fragments. Thus,
every correct replica pi will receive at least f + 1 valid data
fragments of M whose hashes are contained in D. After that,
every correct replica pi will send a READY message with c,
id and πi. Accordingly, every correct replica will eventually
receive collectively at least 2f +1 READY messages with the
same c, id but 2f + 1 distinct cross checksum fragments of
D, and decodes the fragments to D. Even if some READY
messages with invalid cross checksum fragments of D were
received, the replica can detect this by virtue of the online error
correcting code according to Lemma 1 (since the maximum
number of faulty READY messages is f). Hence, every correct
replica will be able to reconstruct D and by consequence M .
M can be decoded because every correct replica has at least
f + 1 data fragments whose hashes are contained in D and

because of the collision resistance of the hash function.

Agreement. Agreement follows immediately from Lemmas
2-4 below.

Lemma 2. If a correct replica pi r-delivers M with id
associated with a cross checksum D and a hash c such that
c = hash(D), then every correct replica pi will eventually
receive at least f + 1 ECHO messages with the same id, c
and πi. Additionally, each of these f +1 ECHO messages will
contain a distinct data fragment dj whose hash is in the cross
checksum (hash(dj) ∈ D). Finally, πi is a valid fragment of
D; that is, πi = encode(D)[i].

Proof. If a correct replica r-delivers M with id, then it must
have received 2f + 1 READY messages with the same id and
c. Therefore, f +1 of those READY messages must have been
sent by correct replicas. Hence, there is at least one correct
replica pi that received 2f +1 ECHO messages with the same
id, c and πi. Since f is the total number of faulty replicas then
at least f+1 replicas received a SEND message from the sender
with id containing a fragment such that the hash is contained
in the cross checksum. Therefore, every correct replica pj will
eventually receive at least f+1 ECHO messages with the same
id, c and πj each containing a data fragment whose hash is in
the cross checksum. Finally, correct replicas who generate the
hash c for their ECHO messages must have received D in their
SEND message (unless ps has broken collision resistance of the
hash function), and therefore they will generate πi consistent
with D.

8

Lemma 3. If a correct replica pi r-delivers M with id
associated with a cross checksum D and a hash c such that
c = hash(D), then every correct replica will eventually be
able to reconstruct D.

Proof. As stated above, if pi r-delivers M then with id, then
it must have received at least f + 1 READY messages with
the same c and id from correct replicas (possibly including
pi itself). Therefore, all other f correct replicas will receive
at least f + 1 READY messages with the same c and id. By
Lemma 2, every correct replica pj will eventually receive f+1
ECHO messages with the same c and id and valid πj . Thus,
they will be able to send their own READY messages with valid
πj . As a result, at least 2f+1 correct replicas will send READY
messages with the same c and id as well as coded fragments
that are consistent with the encoding of D. By Lemma 1, it
follows that every correct replica will eventually reconstruct
D.

Lemma 4. If a correct replica pi r-delivers M with id
associated with a cross checksum D and a hash c such that
c = hash(D), then every correct replica eventually r-delivers
M associated with the same id and D.

Proof. By Lemma 3, every correct replica will receive the
same cross checksum D. Hence, every correct replica can
determine the validity of D deterministically and reconstruct
M accordingly. Then, either pi will detect that the cross
checksum D is a valid cross checksum consistent with some
message M ̸= ⊥, or will detect that D is an invalid cross
checksum and will r-deliver M = ⊥. Either way, all other
correct replicas will also detect D to be valid or invalid in the
same way, due to the collision resistance of the hash function
and the correctness of the encode and decode algorithm and
Lemma 2.

B. CC-AVID

We now present the first hash-based, setup-free CC-AVID
that achieves O(L + kn2) communication. CC-AVID has 3
steps and an expansion factor of 3, while using RS ECC on
cross-checksum instead of the bulk data. The pseudocode is
provided in Algorithm 2.

Dispersal protocol. The structure of the dispersal algorithm
of CC-AVID is almost identical to that of CC-BRB. In fact,
the only difference between them can be reduced to the ECHO
message of CC-AVID not containing a data fragment. After
all, the whole point of AVID is not to store the whole data in
one replica. In more details, the dispersal protocol has three
phases: SEND, ECHO, and READY. Each replica maintains
three local parameters: fragmentshashes, fragments, and e.
The fragmentshashes dictionary stores the coded fragments
for the list of hashes. The fragments is a dictionary for the
coded fragments of the bulk data. The e is a counter for the
number of errors, used as input in the RSDecode function.
• SEND phase: The sender ps first encodes M using the

standard erasure coding scheme and outputs fragments d.
Then ps generates D, a list of hashes for d. For each pj ,

ps sends a (id,SEND, dj , D) message, i.e., the fragment for
pj and the entire vector of n hashes.
• ECHO phase: Upon receiving a SEND message, each replica
pi verifies whether the ith hash in D matches its previously
received fragment. If so, it stores the fragment in the
fragments dictionary. Then ps sets c to H(D). It also
encodes D into n fragments using the RSEncode function
and stores them in the list π. Then pi sends an ECHO
message to each pj containing πi and c.
• READY phase: Each replica collects ECHO messages. The

replica sends a READY message containing πi and c under
two cases:
• Replica pi receives 2f+1 ECHO messages with the same
c and πi.
• Replica pi receives f+1 matching READY messages and

has not previously sent a READY message. In this case, pi
waits for f + 1 matching ECHO messages with the same
c and πi and then sends a READY message.

Upon receiving 2f+1 matching READY messages, pi executes
the RSDecode function on the fragments of the hashes and
obtains D′. Then pi compares H(D′) with c, If so, pi executes
RSEncode function on D′ and verify whether D′ is consistent
with the π it receives in the 2f + 1 READY messages. If so,
pi avid-delivers. Otherwise, pi continues to collect READY
messages until it avid-delivers.

Retrieval protocol. A client p maintains three parameters:
fragdata, fraghashes, and e. fragdata and fraghashes are
used to store the coded fragments for the bulk data and the
list of hashes, respectively. The e is a counter for the number
of errors.

If a replica receives a retrieval request from the client p, it
sends a RETRIEVE message to p containing fragments[id].
Upon receiving a (id,RETRIEVE, dj , πj , c) message from pj , p
first stores dj and πj locally. If p receives 2f + 1 RETRIEVE
messages, it starts the decoding processes. This process may
continue until p successfully avid-outputs some value.

The decoding process proceeds as follows. Client p first
decodes the fraghashes (i.e., the coded fragments of the
hashes) by executing the RSDecode function and outputs D.
It then compares each hash in D with the coded fragments
in fragdata (i.e., coded fragments for the bulk data.) If there
are at least f + 1 coded fragments in fragdata such that the
hashes match those in D, p decodes the filtered data fragments
and outputs a message M . Client p further encodes M again
using the standard erasure coding scheme. It also obtains a
list of hashes for the fragments D′. If H(D′) is the same as
c (the value included in at least 2f + 1 READY messages), p
avid-outputs M .

Concrete communication complexity analysis. Again, for
simplicity, we assume optimal resilience with n = 3f + 1.
The dispersal protocol of AVID consists of three steps:

1) SEND: Each SEND message consists of the cross check-
sum D and the fragment di each of size nk and L

f+1
respectively. Thus, the total communication for the SEND
step is 3L+ kn2.

9

Algorithm 2 CC-AVID using hash functions with identifier id and sender ps. Code shown for replica pi.
Initialization

fragmentshashes ← ⊥, fragments← ⊥ {fragmentshashes is a dictionary (id, c) 7→ [πi], fragments is a dictionary dictionary id 7→ di}
e← 0

� dispersal
upon avid-disperse(id,M) and replica is ps {step 1: SEND }

d← encode(M), D ← [hash(d1), . . . , hash(dn)]
for 1 ≤ j ≤ n, send (id,SEND, dj , D) to pj

upon receiving (id,SEND, D, di) from ps for first time {step 2: ECHO }
if hash(di) = Di

fragments[id]← (di, πi, c), c← H(D), π ← RSEncode(D)
send (id,ECHO, (πj , c)) to all j replicas

upon receiving (id,ECHO, (πi, c)) from pj for first time {step 3: READY }
if (not yet sent a READY message and received 2f + 1 ECHO messages with the same id, c and πi)

send (id,READY, c, πi) to all replicas
upon receiving (id,READY, c, πj) from pj for the first time {verification}

fragmentshashes[(id, c)].add(πj)
if (not yet sent READY message and received f + 1 READY messages with the same id, c)

wait for f + 1 ECHO messages with the same id, c and πi

send (id,READY, c, πi) to all replicas
if fragmentshashes[(id, c)].length ≥ 2f + 1

D′ ← RSDecode(fragmentshashes[(id, c)], e, f)
if H(D′) = c

π ← RSEncode(D′)
if fragments[id] ̸= (∗, πi, c), fragments[id]← (⊥,⊥, c)
avid-deliver(id)

else e← e+ 1
� retrieval
Initialization

fragdata ← ⊥, fraghashes ← ⊥, e← 0 {e is the number of errors to correct}
upon avid-retrieve(id, p) {broadcast fragments}

if fragments[id] ̸= ⊥
(di, πi, c)← fragments[id]
send (id,RETRIEVE, di, πi, c) to p

upon receiving (id,RETRIEVE, dj , πj , c) from pj {verify and decode}
fragdata[id].add(dj), fraghashes[(id, c)].add(πj)
if fraghashes[(id, c)].length ≥ 2f + 1 {online error correcting code to reconstruct D}

D ← RSDecode(fraghashes[(id, c)], e, f), M ← recoverMessage(fragdata[id], D, c)
if M ̸= ⊥, avid-output(M)
else e← e+ 1

� library
function recoverMessage(fragments,D, c)

filterdfragments ← ⊥
if (H(D) = c)

for 1 ≤ i ≤ fragments.length
iffragmentsi = Di

filterdfragments.add(fragmentsi)
if filterdfragments.length = f + 1

M ← decode(filteredfragments), d← encode(M), D′ ← [hash(d1), . . . , hash(dn)]
if H(D′) = c, return M

2) ECHO: Every correct replica pi sends one ECHO message
to all n replicas. Each ECHO message consists of the
cross-checksum fragment πj and a hash c with sizes nk

f+1
and k respectively. Thus, the total communication for
ECHO is 4kn2.

3) READY: Every correct replica pi sends one READY to all
n replicas. Each READY message consists of the cross-
checksum fragment πi and the hash c. Thus, the total
communication for READY is 4kn2.

Hence the concrete total communication for the dispersal is:
3L+ 9kn2.

The Retrieval protocol of CC-AVID consists of only one
step where each replica sends one message to the client. Each
message consists of a data fragment di, a cross checksum
fragment πj and a hash c of sizes L

f+1 , nk
f+1 and k respectively.

Thus, the total concrete communication complexity is 3L +
4nk.

Theorem 2. CC-AVID (Algorithm 2) is a secure AVID proto-
col.

The proof of this theorem follows similar techniques as
Theorem 1. We defer our security analysis to Appendix B.

VI. RELATED WORK

Both BRB and AVID can be directly used in various reliable
storage and communication applications. They are also core
building blocks for high-level protocols. BRB [10] can enable
applications from online payments [16] to Byzantine fault-
tolerant state machine replication (BFT) protocols [26, 30, 35].
Meanwhile, AVID can be used to build asynchronous BFT

10

storage [19] and blockchain applications such as Rollups [28,
37] and sharding [32].

The definitions of reliable broadcast were informally dis-
cussed in SIFT [42]. Later, Schneider, Gries, and Schlichting
formalize the notion of reliable broadcast and provide a reli-
able broadcast implementation in the crash failure model [41].
Reliable broadcast is used in the influential ISIS system by
Birman and Joseph [8].

Reliable broadcast and various broadcast variants have
been extensively studied and readers may see [12, Chapter
3] (Cachin, Guerraoui, and Rodrigues) for a comprehensive
summary.

For Byzantine failures, BRB has also been studied in various
other settings, such as probabilistic BRB [25] (which allowing
properties to be violated with a fixed and (arbitrarily) small
probability) and dynamic BRB [24] (which enabling replicas
to join or leave the BRB system dynamically).

Also, it is worth mentioning that prior to CT BRB and CT
AVID [14], Cachin, Kursawe, Petzold, and Shoup [13] propose
a BRB protocol that improves Bracha’s BRB in an ”optimistic”
way. Namely, if faulty replicas are not actively interfering with
the protocol, the communication complexity is O(nL+ kn2);
but in the worst case, it has O(n2(L + k)) communication,
which is no better than Bracha’s broadcast.

Lu, Lu, Tang, and Wang introduce asynchronous provable
dispersal broadcast (APDB) that uses threshold signature to
disperse erasure-coded fragments to replicas and uses it to
build Dumbo-MVBA [33]. APDB leverages vector commit-
ments and threshold signatures and achieves linear message
and word complexity. It is a primitive different from AVID or
BRB.

VII. CONCLUSION

This paper propose a novel BRB and an AVID protocol
that improve upon state of the art protocols. Both protocols are
practical, having 3 steps and low expansion factor, and relying
on hash functions only and minimizing the usage of inefficient
online error correction. Our AVID protocol is additionally
the first setup-free AVID protocol that achieves O(L + kn2)
communication.

ACKNOWLEDGMENTS

The first and third author’s contribution to this mate-
rial is based upon work supported by the National Science
Foundation under Grants No. 1718135, 1739000, 1801564,
1915763, and 1931714, by the DARPA SIEVE program under
Agreement No. HR00112020021, and by DARPA and the
Naval Information Warfare Center (NIWC) under Contract No.
N66001-15-C-4071.

REFERENCES

[1] HoneyBadgerBFT library. https://github.com/amiller/
HoneyBadgerBFT, 2016.

[2] BEAT library. https://github.com/fififish/beat, 2018.
[3] HoneyBadgerMPC library. https://github.com/initc3/

HoneyBadgerMPC, 2019.

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, Gilad Stern, and Alin Tomescu. Reaching
consensus for asynchronous distributed key generation.
In PODC, pages 363–373. ACM, 2021.

[5] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin
Zhang. Succinct erasure coding proof systems. Cryptol-
ogy ePrint Archive, 2021.

[6] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang.
High-threshold AVSS with optimal communication com-
plexity. In Financial Cryptography, Lecture Notes in
Computer Science. Springer, 2021.

[7] Michael Ben-Or, Ran Canetti, and Oded Goldreich.
Asynchronous secure computation. In STOC, pages 52–
61. ACM, 1993.

[8] Kenneth P Birman and Thomas A Joseph. Reliable com-
munication in the presence of failures. ACM Transactions
on Computer Systems (TOCS), 5(1):47–76, 1987.

[9] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient
consensus protocol. In PODC, pages 154–162. ACM,
1984.

[10] Gabriel Bracha. Asynchronous byzantine agreement
protocols. Information and Computation, 75(2):130–143,
1987.

[11] Christian Cachin. State machine replication with byzan-
tine faults. In Replication, pages 169–184. Springer,
2010.

[12] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues.
Introduction to Reliable and Secure Distributed Pro-
gramming. 2nd edition, 2011.

[13] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Annual International Cryptology Con-
ference, pages 524–541. Springer, 2001.

[14] Christian Cachin and Stefano Tessaro. Asynchronous
verifiable information dispersal. In SRDS, pages 191–
201. IEEE, 2005.

[15] Dario Catalano and Dario Fiore. Vector commitments
and their applications. In International Workshop on
Public Key Cryptography, pages 55–72. Springer, 2013.

[16] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr
Kuznetsov, Matteo Monti, Matej Pavlovic, Yvonne-Anne
Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh,
and Athanasios Xygkis. Online payments by merely
broadcasting messages. In DSN, pages 26–38. IEEE,
2020.

[17] Sourav Das, Zhuolun Xiang, and Ling Ren. Asyn-
chronous data dissemination and its applications. In CCS,
2021.

[18] Sourav Das, Zhuolun Xiang, and Ling Ren. Balanced
quadratic reliable broadcast and improved asynchronous
verifiable information dispersal. Cryptology ePrint
Archive, Report 2022/052, 2022. https://ia.cr/2022/052.

[19] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In CCS, pages 2028–
2041. ACM, 2018.

[20] Sisi Duan and Haibin Zhang. Pace: Fully parallelizable

11

bft from reproposable byzantine agreement. Cryptology
ePrint Archive, 2022.

[21] Sisi Duan, Haibin Zhang, and Boxin Zhao. Waterbear:
Information-theoretic asynchronous bft made practical.
Cryptology ePrint Archive, 2022.

[22] Shuhong Gao. A New Algorithm for Decoding Reed-
Solomon Codes, pages 55–68. Springer US, Boston, MA,
2003.

[23] Li Gong. Securely replicating authentication services. In
[1989] Proceedings. The 9th International Conference
on Distributed Computing Systems, pages 85–91. IEEE,
1989.

[24] Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov,
Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, and
Andrei Tonkikh. Dynamic byzantine reliable broadcast.
In OPODIS, 2020.

[25] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, and Dragos-Adrian Seredinschi. Scalable
byzantine reliable broadcast. In DISC, 2019.

[26] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In CCS, 2020.

[27] James Hendricks, Gregory R. Ganger, and Michael K.
Reiter. Verifying distributed erasure-coded data. In
PODC, 2007.

[28] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen,
S Matthew Weinberg, and Edward W Felten. Arbitrum:
Scalable, private smart contracts. In USENIX Security,
pages 1353–1370, 2018.

[29] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In ASIACRYPT, volume 6477 of Lecture
Notes in Computer Science, pages 177–194. Springer,
2010.

[30] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and
Alexander Spiegelman. All you need is DAG. In PODC,
pages 165–175. ACM, 2021.

[31] Hugo Krawczyk. Distributed fingerprints and secure
information dispersal. In PODC, pages 207–218, 1993.

[32] Songze Li, Mingchao Yu, Chien-Sheng Yang, A. Salman
Avestimehr, Sreeram Kannan, and Pramod Viswanath.
Polyshard: Coded sharding achieves linearly scaling ef-
ficiency and security simultaneously. In ISIT.

[33] Y. Lu, Z. Lu, Q. Tang, and G. Wang. Dumbo-mvba:
Optimal multi-valued validated asynchronous byzantine
agreement, revisited. In PODC, 2020.

[34] Ralph C. Merkle. A digital signature based on a con-
ventional encryption function. In CRYPTO, volume 293
of Lecture Notes in Computer Science, pages 369–378.
Springer, 1987.

[35] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of BFT protocols. In
CCS, pages 31–42. ACM, 2016.

[36] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya,
and Zhuolun Xiang. Improved extension protocols for
byzantine broadcast and agreement. In DISC, 2020.

[37] Kamilla Nazirkhanova, Joachim Neu, and David Tse.
Information dispersal with provable retrievability for
rollups. Cryptology ePrint Archive, 2021.

[38] James S Plank, Scott Simmerman, and Catherine D
Schuman. Jerasure: A library in c/c++ facilitating erasure
coding for storage applications-version 1.2. University of
Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[39] James S Plank and Lihao Xu. Optimizing cauchy
reed-solomon codes for fault-tolerant network storage
applications. In NCA, pages 173–180. IEEE, 2006.

[40] Irving S. Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of The Society for
Industrial and Applied Mathematics, 8:300–304, 1960.

[41] Fred B Schneider, David Gries, and Richard D Schlicht-
ing. Fault-tolerant broadcasts. Science of Computer
Programming, 4(1):1–15, 1984.

[42] John H Wensley, Leslie Lamport, Jack Goldberg, Mil-
ton W Green, Karl N Levitt, Po Mo Melliar-Smith,
Robert E Shostak, and Charles B Weinstock. Sift: Design
and analysis of a fault-tolerant computer for aircraft
control. Proceedings of the IEEE, 66(10):1240–1255,
1978.

APPENDIX

A. VC-BRB

VC-BRB algorithm is depicted in Figure 3. VC-BRB works
as follows. Each replica first initializes a local parameter
fragments, which is a dictionary that maps the id tag and
vector commitment c to the coded fragments. In the first SEND
step, the sender ps uses erasure coding to generate erasure-
coded fragments and also build a vector commitment and
witnesses for all fragments. ps sends pi individual fragment
di, the vector commitment c, and a witness πi proving di is
committed in the ith position in c. Upon receiving a SEND
message, pi verifies the correctness of the vector commitment
and sends an ECHO message containing (di, πi, c) to all repli-
cas. Upon receiving a valid ECHO message with c, pi stores the
fragment received in the fragments dictionary. When there are
2f +1 fragments for the same c in the dictionary, pi decodes
the original message and re-encodes the message to generate
all n fragments. The pi computes a vector commitment for
these n fragments. If the vector commitment matches c, then
pi broadcasts a READY message with c (but not the fragment)
to all replicas. Upon receiving f+1 READY message, if pi has
not sent a READY message, it also sends a READY message.
If receiving 2f+1 READY messages with the same c, pi waits
for f + 1 valid ECHO messages with the same c and decodes
the original message M and then r-delivers M .

B. VC-AVID

The pseudocode is shown in Figure 4.

Dispersal protocol. The dispersal protocol involves three
steps: SEND, ECHO, and READY, similar to that in BRB. Each
replica maintains the fragments parameter, a dictionary to
store the received fragments.

12

Algorithm 3 VC-BRB with identifier id and sender ps. Code shown for replica pi.
Initialization

fragments← ⊥ {dictionary (id, c) 7→ list of verified fragments dj}
upon r-broadcast(id,M) and replica is ps {step 1: SEND }

d← encode(M), c← VCom(d), π ← [VGen(c, i) for i ∈ n]
for 1 ≤ j ≤ n, send (id,SEND, c, dj , πj) to pj

upon receiving (id,SEND, c, πi, di) from ps for first time {step 2: ECHO }
if VVerify(c, di, i, πi) = 1, send (id,ECHO, (di, πi, c), i) to all replicas

upon receiving (id,ECHO, (dj , πj , c), j) from pj for first time {step 3: READY }
if VVerify(c, dj , j, πj) = 1

fragments[(id, c)]← fragments[(id, c)] ∪ [dj]
if (not yet sent (id,READY, c) and fragments[(id, c)].length = 2f + 1) {received 2f + 1 consistent ECHO messages}

d′ ← encode(decode(fragments[(id, c)]))
c′ ← VCom(d′)
if c = c′, send (id,READY, c) to all replicas

upon receiving (id,READY, c) from pj for the first time {verification}
if (not yet sent (id,READY, c) and received f + 1 READY messages with the same c)

send (id,READY, c) to all replicas
if received 2f + 1 READY messages with the same c

wait for fragments[id, c].length ≥ f + 1
M ← decode(fragments[id, c]), r-deliver(M)

Algorithm 4 VC-AVID with identifier id and sender ps. Code shown for replica pi.
Initialization

fragments← ⊥ {dictionary id 7→ to a verified fragment di, it’s proof πi and the commitment vector c }
� dispersal
upon avid-disperse(id,M) and replica is ps {step 1: SEND }

d← encode(M), c← VCom(d), π ← [VGen(c, i) for i ∈ n]
for 1 ≤ j ≤ n, send (id,SEND, c, dj , πj) to pj

upon receiving (id,SEND, c, πi, di) from ps for first time {step 2: ECHO }
if VVerify(c, di, i, πi) = 1

fragments[(id)]← (di, πi, c)
send (id,ECHO, c) to all replicas

upon receiving (id,ECHO, c) from pj for first time {step 3: READY }
if (not yet sent (id,READY, c) and received 2f + 1 ECHO messages with both the same id, c

send (id,READY, c) to all replicas
upon receiving (id,READY, c) from pj for the first time {verification}

if (not yet sent (id,READY, c) and received f + 1 READY messages with the same c)
send (id,READY, c) to all replicas

if received 2f + 1 READY messages with the same c
(di, πi, c

′)← fragments[id]
if (c′ ̸= c), fragments[id]← (⊥,⊥, c)
avid-deliver(id)

� retrieval
Initialization

fragments← ⊥ {dictionary (id, c) 7→ list of verified fragments dj}
upon avid-retrieve(id, p)

(di, πi, c)← fragments[id]
send (id,RETRIEVE, di, πi, c) to p

upon receiving (id,RETRIEVE, dj , πj , c) from pj {verify and decode}
if VVerify(c, dj , j, πj) = 1, fragments[(id, c)]← dj
if fragments[(id, c)].length = f + 1)

M ← decode(fragments[(id, c)]), d′ ← encode(M)), c′ ← VCom(d′)
if (c = c′), avid-output(M)
else avid-output(⊥)

In the first step, the sender ps first encodes its input to
generate erasure-coded fragments and also build a vector
commitment and witnesses for all fragments. Then ps sends
each pi a SEND message, consisting of individual fragment di,
the vector commitment c, and a witness πi. Upon receiving a
SEND message, each replica pi verifies the vector commitment
and then broadcasts an ECHO message containing di, πi, and
c. If the message is verified, pi stores the tuple (di, πi, c) in a
dictionary fragments. Each replica continues to collect the
ECHO messages. If it receives 2f + 1 READY messages, it
broadcasts a READY message containing the vector commit-

ment c. The READY step involves an amplification step such
that if a replica receives f+1 READY messages with matching
c, it also broadcasts a READY message. Finally, if a replica
receives 2f + 1 matching READY messages with the same c.
It checks whether its received fragments can be verified by c.
If so, the replica directly avid-delivers. Otherwise, the replica
deletes its local fragment and simply stores a tuple (⊥,⊥, c)
in the fragments dictionary.

Retrieval protocol. In the retrieval protocol, a client needs
to maintain a dictionary fragments that stores the received

13

fragments. For each replica, upon receiving the avid-retrieve
request from client p, the replica obtains the tuple (di, πi, c)
in the fragments dictionary and sends a RETRIEVE message
to p. Upon receiving an (id,RETRIEVE, dj , πj , c) message from
pj with non-empty dj and πj , client p verifies whether
the correctness of vector commitment c. If so, p stores the
fragment dj . Upon receiving f + 1 valid fragments, p first
decodes the fragments to generate M . Then p encodes M
again and build a vector commitment c′. It then compares c′

with c. If c = c′, p avid-outputs M . Otherwise, p continues to
collect RETRIEVE messages, until it successfully avid-outputs
some value.

In the remainder of this section, we prove each of the four
security properties of an AVID protocol.

Termination. Termination follows immediately from
Lemma 5 below. The argument is similar to the one used to
prove validity of CC-BRB. We show a complete proof below.

Lemma 5. If a correct replica initiates avid-disperse for id
associated with a message M and a cross checksum D, then
every correct replica pi will eventually avid-deliver id and
store the associated cross checksum D and a fragment di such
that di = encode(M)[i].

Proof. If a correct replica ps initiates avid-disperse for id
and a message M then all correct replicas will pass the
check hash(dj) = Dj and have a valid data fragment of M
(dj = encode(M)[j]) because of the correctness property of
the hash function and the encoding algorithm. Hence, every
correct replica pi will send an ECHO message to each replica
pj its cross checksum fragment πj of D, c = hash(D) and
id. Therefore, all correct replicas will receive at least 2f + 1
ECHO messages with the same c, id and consistent cross
checksum fragments. Thus, every correct replica pi will send
a READY message with c, id and πi. Therefore, every correct
replica will eventually receive collectively at least 2f + 1
READY messages with the same c, id but 2f + 1 distinct
cross checksum fragments of D that reconstruct to D. Even
if some bad READY messages were sent with invalid cross
checksum fragments of D to a particular correct replica, the
replica can detect this by virtue of the online error correcting
code according to Lemma 1 (since the maximum number of
faulty READY messages is f). Hence, every correct replica
will be able to reconstruct D. In the end, every correct replica
has a fragment di = encode(M)[i] (from the SEND phase)
and will be able to avid-deliver id.

Agreement. The proof is similar to the agreement property
of CC-BRB. Notice that as previously stated, the only dif-
ference between the CC-BRB protocol and CC-AVID is that
in the ECHO phase CC-AVID does not send a fragment of
the original data. As such, the lemmas below are nearly
identical to Lemmas 2-4. We provide rigorous proofs below
for completeness.

Lemma 6. If a correct replica pi avid-delivers id associated
with a cross checksum D and a hash c = hash(D), then

every correct replica pi will eventually receive at least f + 1
ECHO messages with the same id, c and πi. Additionally, there
exist f +1 correct replicas where each replica pj will have a
distinct data fragment dj whose hash is in the cross checksum
(hash(dj) ∈ D). Finally, πi is a valid fragment of D; that is,
πi = encode(D)[i].

Proof. If a correct replica avid-delivers with id, then it must
have received 2f+1 READY messages with the same id and c,
and at least f + 1 of those READY messages must have been
sent by correct replicas. Hence there is at least one correct
replica pi that received 2f +1 ECHO messages with the same
id, c and πi. Since f is the total number of faulty replicas, at
least f + 1 replicas have received a SEND message from the
sender with coded fragments that are consistent with c. Hence
every correct replica pj will eventually receive at least f + 1
ECHO messages with the same id, c and πj . Finally, correct
replicas who generate the hash c for their ECHO messages
must have received D in their SEND message (unless ps has
broken collision resistance), and therefore they will generate
πi consistent with D.

Lemma 7. If a correct replica pi r-delivers id associated with
a cross checksum D and a hash c = hash(D), then every
correct replica will eventually be able to reconstruct D and
r-deliver id.

Proof. As stated above, if pi r-delivers id, then it must have
received at least f + 1 READY messages with the same c
and id from correct replicas (possibly including pi itself).
Therefore, all other f correct replicas will receive at least
f+1 READY messages with the same c and id. By Lemma 6,
every correct replica pj will eventually receive f + 1 ECHO
messages with the same c and id and valid πj . Therefore, they
will be able to send their own READY message with valid πj .
As a result, collectively the correct replicas will send 2f + 1
READY messages, and furthermore their READY messages
will contain the same c and id as well as coded fragments
that are consistent with the encoding of D. By Lemma 1, it
follows that every correct replica will eventually be able to
reconstruct D. Hence, every correct replica will eventually be
able r-deliver id that is associated with D.

Availability. Availability follows immediately from Lemma 8
below.

Lemma 8. If a correct replica completes avid-disperse of M
for id associated with a cross checksum D such that c =
hash(D), then any correct client that initiates avid-retrieve
for id will reconstruct M that is consistent with D.

Proof. If a correct replica completes avid-disperse M for id
with cross checksum D and hash c = hash(D), then by
Lemma 5 all correct replicas will eventually avid-deliver id
and store the associate cross checksum D and a fragment
di such that di = encode(M)[i]. Hence any arbitrary correct
client pi that initiate avid-retrieve for id will eventually receive
at least 2f+1 RETRIEVE messages from correct replicas with

14

consistent cross checksum fragments of D and erasure coded
fragments of M together with the same c and the same id.
Hence, by virtue of Lemma 1 about the online error correcting
code and by the collision resistance of the hash function, every
correct client can reconstruct the same M .

Correctness. Correctness follows from combining Lemma 8
with the lemma below.

Lemma 9. If a correct replica completes avid-deliver for id
associated with a cross checksum D such that c = hash(D),
then any correct client that initiates avid-retrieve eventually
retrieves the same block M associated with a cross checksum
D and c.

Proof. By Lemma 7, every correct replica will eventually
reconstruct D. Moreover by Lemma 6, at least f + 1 correct
replicas will eventually have fragments whose hashes are
contained in D. Hence any arbitrary correct replica pi that
initiates avid-retrieve for id will eventually receive at least
2f + 1 RETRIEVE messages from correct replicas containing
consistent cross checksum fragments of D and at least f + 1
consistent erasure coded fragments of M together with the
same c and the same id. As a result, every correct client can
reconstruct D by virtue of Lemma 1 about the online error
correcting code and by the collision resistance of the hash
function. Therefore, every correct client can determine the
validity of D deterministically and reconstruct M accordingly.
Then, either pi will detect that the cross checksum D is a
valid cross checksum consistent with some message M ̸= ⊥,
or will detect that D is an invalid cross checksum and will r-
deliver M = ⊥. Either way, all other correct clients will also
detect D to be valid or invalid in the same way, due to the
collision resistance of the hash function and the correctness of
the encode and decode algorithm.

15

