
PAC Learnability of iPUF Variants

Durba Chatterjee, Debdeep Mukhopadhyay, and Aritra Hazra

Indian Institute of Technology Kharagpur, India
durba@iitkgp.ac.in, debdeep@iitkgp.ac.in, aritrah@cse.iitkgp.ac.in

Abstract

Interpose PUF (iPUF) is a strong PUF construction that was shown to be vulnerable
against empirical machine learning as well as PAC learning attacks. In this work, we extend
the PAC Learning results of Interpose PUF to prove that the variants of iPUF are also
learnable in the PAC model under the Linear Threshold Function representation class.

1 Introduction

Interpose PUF (iPUF) [7], proposed in CHES 2019 claimed to be secure against state-of-the-
art machine learning (ML) attacks. However in CHES 2020 [9], it was demonstrated to be
vulnerable against a targetted attack using Logistic Regression (LR) algorithm that models
each layer PUF one at a time. The attack was followed by the proposition of some variants of
iPUF, namely Domino-iPUF, XOR-Domino-iPUF, Tree-iPUF and XOR-Cascaded-iPUF, which
were also shown to be vulnerable against empirical ML attacks.The first provable ML attack
on iPUF was reported in [1], wherein iPUF construction was proven to be PAC Learnable, by
assuming the interpose bit to be random, thereby eliminating the upper layer PUFs. However
no results were presented for the iPUF compositions. In this work, we evaluate the learnability
of these constructions in the PAC learning framework.

2 Background

This section briefly describes the concept of PUFs, LTF, Perceptron algorithm and PAC model.

2.1 Physically Unclonable Functions

Arbiter PUF and XOR Arbiter PUF

Arbiter PUF is one of the first PUFs developed and henceforth has been used as a fundamental
component is various other PUFs. It consists of a series of multiplexers followed by an arbiter.
A signal passing in two identical paths through the multiplexers controlled by the challenge
bits, reach the arbiter, which decides the output of the PUF, depending on whether the signal
reaches the top or bottom input first. An n-bit APUF, consists of n multiplexers, each of which
is controlled by a challenge bit. The schematic of an Arbiter PUF is shown in Figure 1.

The challenge-response behaviour of an APUF can be represented using a linear delay
model [5]. Let c ∈ {−1, 1}n be a challenge and y ∈ {−1, 1} be the response where n be the
number of switches in the APUF. Let ci ∈ {−1, 1} be the ith challenge bit. The total delay
difference at the end of (n)th stage can be given by :

∆(n) = ⟨w, ϕ⟩ (1)

where w denotes the weight vector comprising of the propagation delays and ϕ is the parity
vector or the transformed challenge vector. The APUF output is given by y = sign(∆(n)).

PAC Learnability of iPUF Variants

r3
s3

y

C = (c1,c2,c3,...,cn)
c1=0 c2=1 c3=0 cn=0

Clk

D Q

Figure 1: Block diagram of an Arbiter PUF

APUF

C = (c1,c2,c3,...,cN)

r

APUF

APUF

Figure 2: Block diagram of a 3-XOR Arbiter PUF

XOR Arbiter PUF is a composition comprising of multiple APUFs where each of the con-
stituent APUFs is fed the same challenge and their responses are combined by an XOR gate.

Interpose PUF (iPUF)

A (ku, kl)-iPUF takes an n-bit challenge as input and returns a 1-bit output. It comprises of
2 XOR PUFs in two layers. The ku-XOR APUF in the upper layer takes the n-bit challenge
and returns a 1-bit response. The output of the ku-XOR PUF is given is interposed at a given
position in the input of the second kl-XOR APUF. The kl-XOR APUF takes an (n + 1) bit
challenge and returns a 1-bit response which is the final response of the iPUF. The schematic
of (ku, kl)-iPUF is shown in Figure 3.

2.2 Linear threshold functions and Perceptron algorithm

A Linear Threshold Function h : Rn → {0, 1} is given by:

ku-XOR PUF

kl-XOR PUF r

c1 c2 c3 ci cn

c1 c2 c3 cnci rx ci+1

rx

Figure 3: Block diagram of (ku, kl)-Interpose PUF

2

PAC Learnability of iPUF Variants

h =

{
1, if

∑n
i=1(w[i].ϕ[i]) ≥ θ

0, if
∑n

i=1(w[i].ϕ[i]) < θ
(2)

where ϕ ∈ Rn is the input vector andw represents the weight vector. The sets of positive and
negative examples of h form two halfspaces S0 and S1 where S1 = {ϕ ∈ Rn|

∑n
i=1(w[i].ϕ[i]) ≥ θ}

and S0 = {ϕ ∈ Rn|
∑n

i=1(w[i].ϕ[i]) < θ}. Mapping {0, 1} → {1,−1}, including the constant in
the weight vector w and appending 1 to the input vector ϕ, we get

h = sign(w.ϕ)

where w = (w1, w2, · · · , wn, θ) and ϕ = (ϕ[1], · · · , ϕ[n], 1). Decision hyperplane is given by
P : w.ϕ = 0

Perceptron Algorithm
Perceptron algorithm is an online algorithm used to learn LTF efficiently. The algorithm takes
a set of r labelled examples ⟨(ϕ1, y1), (ϕ2, y2), · · · , (ϕr, yr)⟩ and outputs a vector w. It begins
with a zero vector (w0 = (w0[1], w0[2], · · · , w0[n], θ0) = (0, · · · , 0)) and updates the vector when
there is a mismatch between the actual and the predicted label. Let wj−1 be the weight vector
before the jth mistake. The updated vector wj is computed as

wj [i] =

{
wj−1[i] + yj .ϕj [i] 1 ≤ i ≤ n

θj − yj i = n+ 1
(3)

The convergence theorem of the Perceptron algorithm gives an upper bound of the error
that can occur during the execution of Perceptron algorithm.

Convergence theorem of the Perceptron Algorithm:
Let ⟨(ϕ1, y1), (ϕ2, y2), · · · , (ϕr, yr)⟩ be a sequence of labelled examples with ∥xi∥ ≤ R. Let w∗
be the solution vector with ∥w∗∥ = 1 and let γ > 0. The deviation of each example is defined
as di = max{0, γ − yi(w

∗.ϕi)}, and D =
√∑r

i=1 d
2
i . The number of mistakes of the online

Perceptron algorithm on this sequence is bounded by

Nmis =
(R+D

γ

)2

(Please refer [2] for details.)

2.3 PAC Model

The Probably Approximately Correct or PAC model of learning is a general model which enables
us to formally analyse machine learning algorithms. It can be formally stated as follows:

Let Cn be a concept class defined over an instance space Xn = {0, 1}n and let X = ∪n≥1Xn

and C = ∪n≥1Cn. Let f be the target function in Cn. Let Hn be the hypothesis class and
H = ∪n≥1Hn. The concept class Cn is said to be PAC Learnable if there exists a learning
algorithm A, polynomial p(., ., .) and values ϵ and δ with the following property: For every
ϵ, δ ∈ (0, 1)2, for every distribution D over Xn and every target concept f ∈ Cn, when A is pro-
vided with p(n, 1/ϵ, 1/δ) independent examples drawn with respect to D and labelled according
to f , then with probability atleast 1−δ the algorithm A returns a hypothesis h ∈ Hn such that

3

PAC Learnability of iPUF Variants

error(h) ≤ ϵ. The smallest polynomial p satisfying this condition is the sample complexity of
A. The concept class C is said to be properly PAC Learnable if C = H. When C ̸= H, C is
known as agnostic PAC Learnable. The error of the hypothesis h with respect to target f is
defined as error(h) =

∑
x∈h△f D(x) where △ denotes the symmetric difference.

Conversion from online to PAC Learning model: Among various conversion mechanisms
we use the method used in [6] as it is asymptotically the most efficient. The steps are as follows:

1. A sequence of labelled examples obtained from Oracle EX() is fed to the online algo-
rithm Aon.

2. Hypotheses generated by Aon are stored.

3. A new sequence of labelled examples is obtained from EX() which is used to calculate
the error rate of the hypotheses stored. The hypothesis with the lowest error rate is the
outputted.

The sample complexity of the PAC learning algorithm is related to the mistake bound Nmis

by the following theorem proved in [6].

Theorem: Let Aon be an online algorithm that updates its hypothesis only when the predicted
and received label differ. The total number of calls that the PAC algorithm A makes to the
Oracle is O(1/ϵ(log(1/δ) +Nmis)).
Therefore, the following holds: (Refer corollary 1 in [3])

Corollary: Let Cn be the class of LTF over {0, 1}n such that wi ∈ Z and

n∑
i=1

|w[i]| ≤ U , then

the online Perceptron algorithm can be converted to a PAC learning algorithm running in time
poly(n,U, 1/ϵ, 1/δ).

Note that the weight vector can be converted to an integer vector by using the delay dis-
cretization technique given in [4]. The delay discretization step states that the delay values of
an Arbiter PUF can be mapped to in integer value in the range [−m,m] where m = ⌈6σ/κ⌉, κ
is the precision of the arbiter and σ is the variance of the delay distribution. Therefore
wi ∈ [−2m, 2m].

3 PAC Learning of Interpose PUF Variants

We prove the learnability of variants of iPUF proposed in [9].

3.1 PAC Learning of Domino-iPUF

A Domino-iPUF [9] consists of 3 XOR-PUFs arranged in a cascaded manner as shown in
Figure 4a. The final response of the construction is the output of the lowest layer XOR-PUF.

Note that, in the last layer XOR-PUF, n out of n + 1 bits are known. If the interpose bit
and the bit position is known, the Domino-iPUF can be reduced to an (n+1)-bit k3-XOR-PUF
and represented using an LTF. Consequently, the final response can be calculated as follows:

fDOM =

k3∏
j=1

sign(wj .ϕ) = sign
(k3⊗

j=1

wj .

k3⊗
j=1

ϕ
)

= sign(WDOM .ϕDOM)

(4)

4

PAC Learnability of iPUF Variants

k3-XOR PUF

k2-XOR PUF

k1-XOR PUF

(a) Domino-iPUF

k2-XOR PUF

k1-XOR PUF

k4-XOR PUF

k3-XOR PUF

(b) Cascaded-iPUF

k2-XOR PUF

k1-XOR PUF

k3-XOR PUF k3-XOR PUF

k2-XOR PUF

k3-XOR PUF k3-XOR PUF

(c) Tree-iPUF

Figure 4: Schematic Representation of iPUF Variants [9]

where WDOM = ⊗k3
j=1wj and ϕDOM = ⊗k3

j=1ϕj are (n+2)k3-dimensional vectors denoting the
tensor product of the individual APUF weights and the tensor product of the parity vectors
respectively. Since the interpose bit is internal to the circuit, it is chosen randomly during
modelling. This in turn introduces some noise in the predicted responses.

To estimate the classification noise introduced by the random interpose bit, we first calculate
the dependence of the final response on the interpose bit. Using theoretical bias calculation
given in [8], we obtain the response bias on flipping the interpose bit as η = 1

2 + 2k3−1
(
1
2 −

2
π tan

−1
√

2t−1
2(n+1)−2t+1

)k3
. In other words, 1 − η denotes the probability that the predicted

response flips if the interpose bit is guessed incorrectly. Let h denote the hypothesis generated
by the Perceptron algorithm and let f denote the target function (PUF). Let Ch be the set
of challenges for which h outputs 1 and let Cf be the set of challenges for which f returns
1 when the interpose bit is correct. Then Ch△Cf denotes the set of challenges for which
the hypothesis output mismatches with the PUF response, given the interpose bit guess is
correct. In the PAC model, the probability that a challenge chosen with respect to input

5

PAC Learnability of iPUF Variants

distribution (D) lies in Ch△Cf is bounded by ϵ, the maximum permissible error of hypothesis.
This can be mathematically represented as Pr[Ch△Cf] ≤ ϵ. The probability that the output
of a hypothesis generated by the Perceptron algorithm (h) differs with the response obtained
from the target PUF instance (r) for a challenge c as

Pr[h(c) ̸= r] = p = Pr[c /∈ Ch△Cf].P r[r2 impacts r].P r[r2 guess is incorrect]

+ Pr[c ∈ Ch△Cf].P r[r2 does not impact r]

= ϵ.η + ((1− ϵ)(1− η).
1

2
)

=
(1− η)

2
+

ϵ(3η − 1)

2

Thus the hypothesis output disagrees with the actual response in the following two cases – (i)
when h and f disagree over an input c (c ∈ Ch△Cf) and the interpose bit has no impact on the
final output and (ii) when the h and f produce the same output for a challenge c (c /∈ Ch△Cf)
and the final response gets flipped due to the incorrect interpose bit assumption.

For a ideal hypothesis, since error will occur only due to the change in response as a result of
random selection of interpose bit, we obtain classification error to be (1− η)/2 by substituting
ϵ = 0 in Eq. 3.1. Since η > 1/2, the classification noise is less than 1/2, which implies that
the learning algorithm can still model the PUF. However, the classification error decreases the
margin of the hypothesis to ϵ(3η − 1)/2. Thus, the updated mistake bound of the Perceptron

algorithm is Nmis =
(

2R
ϵ(3η−1)

)2
= 4(n+2)k3

ϵ2(3η−1)2 where R = (n+2)k3 is the length of the transformed

input vector. Using Theorem 2.3, we obtain the sample complexity of the learning algorithm

to be O
(

2
ϵ(3η−1)

(
log(1δ) + Nmis

))
= O

(
2log(1/δ)
ϵ(3η−1) + 32d2(n+2)k3

ϵ3(3η−1)3

)
. Since the sample complexity

is poly(n, d, 1/ϵ, 1/δ), Domino-iPUF is PAC learnable. Note that in our learnability proof, we
have assumed the interpose bit position to be fixed. However, the learnability result still holds
even if the interpose bit position is set at random.

3.2 PAC Learning of XOR Cascaded-iPUF

Let us consider the example of Cascaded PUF [9] shown in Figure 4b. It consists of multiple
XOR-PUFs arranged in a cascaded manner, where the interpose bit in the ith layer is the XOR
combination of the interpose bits in the previous i− 1 layers. The interpose bit fed to the last
layer PUF is XORed with the output of the final layer PUF to obtain the response.

Similar to Domino-iPUF, we represent the last layer XOR PUF using LTF. Let h denote
the hypothesis produced by the Perceptron algorithm and f denote the target function. Here
s denotes the interpose bit in the last layer that is also XORed with the last layer PUF output
to generate the final response. Let q = Pr[s = 1]. Then, the probability that h disagrees with
a CRP (c, r), where c is chosen with respect to input distribution D is given by

Pr[h(c) ̸= r] = Pr[c /∈ Ch△Cf].P r[s impacts r]

+ Pr[c ∈ Ch△Cf].P r[s does not impact r]

= Pr[c /∈ Ch△Cf].
(
Pr[s impacts rin].P r[r = rin]

+ Pr[s does not impact rin].P r[r ̸= rin]
)

+ Pr[c ∈ Ch△Cf].
(
Pr[s impacts rin].P r[r ̸= rin]

+ Pr[s doesn’t impact rin].P r[r = rin]
)

= ϵ
(
η.q + (1− η)(1− q)

)
+ (1− ϵ)

(
η(1− q) + (1− η)q

)
= (η + q − 2ηq) + ϵ(1− 2η − 2q + 4ηq)

(5)

6

PAC Learnability of iPUF Variants

Since h corresponds to the hypothesis for the last layer XOR PUF including the XOR gate,

η = 1
2+2k4

(
1
2−

2
π tan

−1
√

2t−1
2(n+1)−2t+1

)k4
where t denotes the interpose bit position. In this case,

the classification error rate for an ideal hypothesis (ϵ = 0) is q+η(1−2q). The classification noise
rate is less than 0.5 if q > 0.5. Thus, the updated mistake bound of the Perceptron algorithm is

Nmis = (n+2)k4

ϵ2(1−2η−2q+4η.q)2 and the sample complexity is O
(

1
ϵ(1−2η−2q+4η.q)

(
log(1δ) +Nmis

))
=

O
(

log(1/δ)
ϵ(1−2η−2q+4η.q) +

4d2(n+2)k4

ϵ3(1−2η−2q+4η.q)3

)
. On the other hand, if q < 0.5 the Perceptron algorithm

learns the complement of the target PUF functionality.

3.3 PAC Learning of XOR-Domino-iPUF

Let us consider the example of XOR-Domino-iPUF that consists of k Domino-iPUFs whose
outputs are combined using an XOR gate. From Eg. 3.1, we gather that Domino-iPUF is PAC
learnable under LTF with noise representation class. Assuming the interpose bit is known, we
can represent each Domino-iPUF output as

yi = sign(WDOM,i.ϕDOM), i ∈ [k]

Since the interpose bit is unknown and chosen at random, the outputs generated by the models
have a classification error of (1− η)/2 (refer Eq. 3.1). The XOR of these outputs can be given
as follows

fXDOM =

k∏
j=1

sign(WDOM,j .ϕDOM)

=

k⊗
j=1

WDOM,j .

k⊗
j=1

ϕDOM

= sign(WXDOM .ϕXDOM)

(6)

where WXDOM = ⊗k
i=1W

T
DOM,i is the tensor product of the weight vectors and ϕXDOM =

⊗k
i=1ϕDOM is the tensor product of the parity vectors. Assuming a (k1, k2, k3)-Domino-iPUF,

ϕXDOM and WXDOM are (n+ 2)k.k3 -dimensional vectors. Given η to be the response bias of
Domino-iPUF, the classification error of XOR-Domino-iPUF can be calculated using Piling up
lemma and is given by 1− η′ = 1

2 − 2k−1ηk. From Eq. 6, we know that an XOR composition of
k n + 1-dimensional LTFs results in an (n + 1)k-dimensional LTF. Thus, we can represent an
XOR-Domino-iPUF using LTF. Since the classification error is less than 1/2, for a constant k,
XOR-Domino-iPUF can be learned using the Perceptron algorithm. The mistake bound and
the sample complexity of the construction can be calculated as described in [1] and in Eg. 3.1.

The sample complexity of the Perceptron algorithm is O
(

2
ϵ(3η′−1)

(
log(1δ)+

32d2(n+2)k.k3

ϵ2(3η′−1)2

))
which

is poly(n, d, 1/ϵ, 1/δ). This proves that XOR-Domino-iPUF is PAC Learnable using LTF rep-
resentation.

3.4 Tree-iPUF

Tree-iPUF [9] consists of XOR-PUFs arranged in a hierarchical manner (refer Figure 4c). The
output of the top layer XOR-PUF is interposed in the input of both the second layer XOR-PUFs
and their outputs are then interposed in the third layer XOR-PUFs. Finally, the output of the
last layer XOR PUFs are combined using an XOR function to generate the PUF response. A

7

PAC Learnability of iPUF Variants

generic Tree-iPUF construction can consist of more than three layers as well. However, we
restrict it to 3 layers for ease of exposition.

Analogous to Domino-iPUF, we adopt the LTF with noise class to represent the XOR
PUFs in the last layer of the Tree-iPUF construction, assuming the interpose bit in each of
the XOR-PUFs to be random. For ease of exposition, we have assumed that the number of
XOR chains in all the last layer PUFs is the same (say k3-XOR PUF). The representations
for the individual XOR PUFs ((n + 2)k3-bit LTF) can be composed into LTF (with noise) of
length (n + 2)4k3 due to the XOR operation. As shown in Figure 4c, the first two XOR PUF
inputs are interposed with the same bit. Similarly, the last two XOR PUFs also share the same
interpose bit. Let us consider these two bits to be set randomly. Let η1 and η2 be the response
bias of the first two and the last two XORPUFs respectively. Then, the response bias of the
final output is η = 1

2 + 23(η1 − 1
2)

2(η2 − 1
2)

2. As explained in Section 3.1, the probability that
the hypothesis generated by the Perceptron algorithm disagrees with the target PUF is given

by p = (1−η)
2 + ϵ(3η−1)

2 . Therefore the classification noise imparted by the randomly chosen
interpose bits is (1−η)/2. Since the classification noise is less than 1/2, the Perceptron algorithm
can PAC learn the target function. The updated margin of the hypothesis is ϵ(3η−1)/2. Thus,

the updated mistake bound of the Perceptron algorithm is Nmis =
(

2R
ϵ(3η−1)

)2
= 4(n+2)4k3

ϵ2(3η−1)2

where R = (n+ 2)4k3 is the length of the transformed input vector. The sample complexity of

the learning algorithm is O
(

2
ϵ(3η−1)

(
log(1δ) +Nmis

))
= O

(
2log(1/δ)
ϵ(3η−1) + 32d2(n+2)4k3

ϵ3(3η−1)3

)
. Since the

sample complexity is poly(n, d, 1/ϵ, 1/δ), it proves that Tree-iPUF is PAC Learnable.

4 Conclusion

We proved that iPUF variants such as Domino-iPUF, XOR-Cascaded-iPUF, XOR-Domino-
iPUF and Tree-iPUF are learnable in the PAC model. The sample complexity of these con-
structions is polynomial in terms of the challenge length, the classification noise introduced by
the interpose bit and the PAC model parameters.

References

[1] Durba Chatterjee, Debdeep Mukhopadhyay, and Aritra Hazra. Interpose puf can be pac learned.
IACR Cryptol. ePrint Arch., 2020:471, 2020.

[2] Yoav Freund and Robert E Schapire. Large margin classification using the perceptron algorithm.
Machine learning, 37(3):277–296, 1999.

[3] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. Why attackers win: on the learnability of
xor arbiter pufs. In International Conference on Trust and Trustworthy Computing, pages 22–39.
Springer, 2015.

[4] Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. PAC learning of arbiter PUFs. Journal of
Cryptographic Engineering, 6(3):249–258, 2016.

[5] Daihyun Lim. Extracting secret keys from integrated circuits. 2005.

[6] Nick Littlestone. From On-Line to Batch Learning. In Proceedings of the Second Annual Workshop
on Computational Learning Theory, COLT ’89, page 269–284, San Francisco, CA, USA, 1989.
Morgan Kaufmann Publishers Inc.

[7] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel Mahmood, Ulrich Rührmair, and
Marten van Dijk. The interpose puf: Secure puf design against state-of-the-art machine learning
attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 243–290,
2019.

8

PAC Learnability of iPUF Variants

[8] Akhilesh Anilkumar Siddhanti, Srinivasu Bodapati, Anupam Chattopadhyay, Subhamoy Maitra,
Dibyendu Roy, and Pantelimon Stănică. Analysis of the strict avalanche criterion in variants of
arbiter-based physically unclonable functions. In International Conference on Cryptology in India,
pages 556–577. Springer, 2019.

[9] Nils Wisiol, Christopher Mühl, Niklas Pirnay, Phuong Ha Nguyen, Marian Margraf, Jean-Pierre
Seifert, Marten van Dijk, and Ulrich Rührmair. Splitting the interpose PUF: A novel modeling
attack strategy. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):97–120, 2020.

9

	Introduction
	Background
	Physically Unclonable Functions
	Linear threshold functions and Perceptron algorithm
	PAC Model

	PAC Learning of Interpose PUF Variants
	PAC Learning of Domino-iPUF
	PAC Learning of XOR Cascaded-iPUF
	PAC Learning of XOR-Domino-iPUF
	Tree-iPUF

	Conclusion

