
D-KODE: Mechanism to Generate and Maintain a Billion Keys
Easwar Vivek Mangipudi Aniket Kate

Purdue University

{emangipu,aniket}@purdue.edu

ABSTRACT
This work considers two prominent key management problems

in the blockchain space: (i) allowing a (distributed) blockchain

system to securely airdrop/send some tokens to a potential client

Bob, who is yet to set up the required cryptographic key for the

system, and (ii) creating a (distributed) cross-chain bridge that

allows interoperability at scale by allowing a (changing) set of nodes

in a blockchain to perform transactions on the other blockchain.

The existing solutions for the first problem need Bob to either

generate and maintain private keys locally for the first time in his

life—a usability bottleneck—or place trust in third-party custodial

services—a privacy and censorship nightmare. Towards solving

both problems in a distributed setting against a threshold-bounded

adversary, distributed key generation (DKG) based solutions are

actively employed; here, a set of servers generate the transaction

keys in a distributed manner and link them to clients’ ids. Never-

theless, these solutions introduce computation and communication

overhead that is linear in the number of keys and do not scale well

even for a million keys, especially for proactive security against a

mobile adversary.

This work presents a Keys-On-Demand (D-KODE) 1 distributed
protocol suite that lets the blockchain system securely generate

the public key of any Bob against a mobile, threshold adversary.

Multiple servers, here, compute discrete-log private/public keys on

the fly through distributed pseudo-random function evaluations

on the queried public string. D-KODE also introduces a proactive

security mechanism for the employed black-box secret-sharing

based DKG to maintain the system’s longitudinal security. The

proposed protocol scales well for a very high number of keys as

its communication and computation complexity is independent of

the number of keys. Our experimental analysis demonstrates that,

for a 20-node network with 2/3 honest majority, D-KODE starts

to outperform the state of the art as the number of keys reaches

94K. D-KODE is practical as it takes less than 100msec to generate

a secret key for a single-threaded server in a 20-node setup.

1 INTRODUCTION
As blockchain systems proliferate, we increasingly tokenize finan-

cial and supply-chain assets using cryptographic (private/signing)

keys. The total number of keys generated in the cryptocurrency

systems is increasing rapidly. According to a recent repor [8], in

the year 2021, roughly 500, 000 Bitcoin keys have been generated

per day, amounting to around 88 million keys in the first half of

the year 2021 for Bitcoin alone. This extensive use of cryptographic

keys brings interesting security and scalability challenges that need

immediate attention. For example, if a user loses their private key,

they lose the associated assets—there is no recovery mechanism

1
D in D-KODE indicates discrete-log. This is to differentiate from other key types.

as with the typical password-based authentication. Given the gen-

eral lack of familiarity with the technical aspects of cryptographic

key management and maintenance, most first-time users choose

custodial wallets [2, 6, 10], where a third party controls their keys.

However, these third parties become single points of failure for

large-scale thefts, financial surveillance, and censorship. In general,

this key management problem, combined with a lack of simpler

tools for key setup, is a bottleneck of blockchain adoption.

Cross-chain bridges and Airdrops. Allowing communication

between two or more blockchains (or blockchain interoperability)

brings further challenges. Today, this is typically achieved through

smart contracts called “bridges” and nodes that track a transaction

initiating blockchain and a destination blockchain. The nodes here

are trusted with the keys and are ideal targets of the adversary

as it is expected that they may soon be responsible for significant

cross-chain currency transfers. In this cross-chain bridge scenario,

a group of servers of one blockchain sign transactions (on behalf of

a user) on a different blockchain. When a user requests, the servers

generate private key shares corresponding to the user and threshold

sign the transaction.

In the airdrop [1, 5, 7] scenario, a crypto firm wishes to send

some funds to Bob, who does not have a public key address on their

system yet. This can be because Bob either has never generated

a key pair and is not available to engage immediately, or Bob is

offline with his already generated public key not being available.

The firm should be able to compute the public key corresponding to

Bob’s public string (identity) such that later Bob can use the same

string to generate the related private key and claim funds.

Existing distributed key generation (DKG) approaches. Cur-
rent solutions [12, 14] off-load the key generation and storage to a

set of 𝑛 servers while preserving the secrecy of the keys against any

𝑡 compromised servers. The servers generate key-shares in a dis-

tributed form by running a distributed key generation (DKG) [40]

instance for each identity and providing the secret key or pub-

lic key shares for the identity as required. These architectures do

not scale well because the servers have to perform several DKG

instances to generate the key shares for all the keys resulting in

high computational and communication overhead. The overhead

further amplifies if the system, over longer terms, attempts to pro-

vide proactive security [45] against mobile adversary [57]: All the

millions of key shares need to be refreshed periodically, giving rise

to issues of availability while the computation and communication-

intensive refreshing process are in progress.

Start-ups such as Torus [14], Keep Network [9], Chainlink [3]

are developing similar threshold cryptographic solutions towards

maintaining secrecy and availability of the clients’ keys; the moti-

vating factor for this work is that their current approaches do not

scale well with keys and cross-chain bridges. This work aims to

provide a scalable key management system to generate keys on the

1

fly for the rapid proliferation of blockchains to millions of users

and bridges amounting to millions or even billions of keys.

Employing distributed PRF. In this work, we generate keys on-

the-fly as pseudo-random function (PRF) [22, 42, 53] evaluations. A

PRF is a deterministic function of amaster (private) key and an input

tag indistinguishable from a truly random function of the input.

We plan to use the PRF output as a private/signing key. As a single

node holding a master key 𝐾 introduces a key escrow and a single-

point-of-failure for PRFs, we distribute the trust using distributed

PRF (DPRF) such that a set of servers holds the master key 𝐾 in a

secret shared fashion and generates shares of the client’s private

keys as partial PRF evaluations. Indeed, generating private keys

using DPRFs [28, 33, 54] is considered in the literature; however,

none of the existing solutions is suitable for the scenario involving

any Alice obtaining public keys of an offline Bob.

As an illustrative example consider private key generation for an

identity (tag) ID𝐴 using the well-known PRF by Naor et al. [33, 54].
This involves computing 𝑠𝑘𝐴 = 𝐻2

(
𝐹 (𝐾, ID𝐴)

)
= 𝐻2

(
𝐻1 (ID𝐴)𝐾

)
,

where hash functions𝐻1 (·) and𝐻2 (·) map to a multiplicative group

(of elliptic curve points) G and a scalar additive group Z𝑝 respec-

tively.When the key𝐾 is shared amongmultiple servers, computing

her secret key 𝑠𝑘𝐴 from partial evaluations is straightforward for

Alice: she first computes 𝐻1 (ID𝐴)𝐾 using Lagrange interpolations

and then applies𝐻2 to the output locally. The airdrop scenario, how-

ever, asks to securely provide Alice the public key 𝑝𝑘𝐵 of an offline

party Bob with identity ID𝐵 . To ensure that Alice cannot determine

𝑠𝑘𝐵 , computation of 𝑝𝑘𝐵 = 𝑔𝐻2 (𝐹 (𝐾,ID𝐵))
involves computing hash

function 𝐻2 (·) through multi-party computation (MPC)—a highly

expensive process in the threshold setting [18, 43].

To generate the public keys efficiently, we need a PRF whose

output is a scalar value in Z𝑝 and does not involve 𝐻2 (·) hash com-

putations in the multi-party setting. We observe that most other dis-

tributed PRF [38, 55, 56] and easy-to-distribute key-homomorphic

PRF constructions [37] in literature do not satisfy this requirement.

Our Approach. We employ the PRF in the lattice-based cryptog-

raphy setting [28], 𝐹 (𝑋,k) =
⌊
𝐻 (𝑋) · k

⌋
𝑝
∈ Z𝑝 ,k ∈ Z𝑢𝑞 , 𝐻 (·) ∈

Z𝑢𝑞 , 𝑝 < 𝑞 to generate keys as in Figure 1. It is an almost-key ho-

momorphic PRF, with an error {0, 1} in the evaluation for every

additive term. The master key k is threshold-shared among the

servers. However, unlike standard threshold designs [14, 17], we

cannot employ Shamir secret sharing (SSS) [59] for sharing k in

almost-homomorphic PRF as the reconstruction (Lagrange) coeffi-

cients blow up the error (and error combinations) when computing

the PRF output from the partial evaluations. Another common se-

cret sharingmechanism, replicated secret sharing (RSS) [34, 47] may

be employed as the RSS shares need to be simply added to compute

the value, which ensures that the error remains bounded within

the range [−𝑛, 𝑛]. However, the number of RSS shares grows expo-

nentially as

(𝑛−1
𝑡

)
for an (𝑛, 𝑡) threshold structure among servers

with 𝑡 = 𝑂 (𝑛); this has high share-refreshing computation over-

head and RSS-based distributed PRF can only be applied to settings

with ten or lower servers. Therefore, solving our distributed PRF

problem requires going beyond the commonly employed SSS and

RSS schemes.

In this work, we demonstrate that the black-box secret sharing

(BBSS) approach [35] can be made practical towards catering to a

higher number of servers; this is the first effort that realizes its utility

in practice. We propose the D-KODE protocol, which generates

discrete-log private and public keys using almost key-homomorphic

PRF evaluations, where key-sharing among the servers is performed

through BBSS. Our BBSS instantiation ensures that the evaluation

coefficients are in the set {−1, 0, 1}, resulting in the output key

being in a very small range of keys linear in the number of servers

such that Bob can efficiently compute the private key associated

with the public key employed by Alice to pay Bob.

In D-KODE, a single master key vector of 8192 Z𝑞 elements is

BBSS-shared among the servers making proactive secret sharing

independent of the number of keys; resulting in only constant over-

head for share refreshing. To allow the clients to verify the evalua-

tions while generating keys, we propose a verifiability mechanism

for the almost key-homomorphic PRF employed. Our prototype

implementation provides D-KODE protocol with BBSS-DKG mech-

anism for network size up to 50 servers. We observe that D-KODE
starts to outperform the state of the art at 94K keys for a 20-server

system. Moreover, using D-KODE, a server supports generating
upto ten secp256k1 keys per second per thread.

In summary,

• We propose a solution D-KODE making airdrops of crypto

funds possible for users who are not yet in the system. D-KODE
helps generating keys where two parties like to transact when either

or both the parties do not have mechanisms for locally generating

keys; even when one of them is offline and the other party only

knows his verifiable identity. D-KODE solution also achieves cross-

chain bridges where a client can request a group of servers to sign

transactions on their behalf.

• As a key step in D-KODE, we propose efficient approaches to

realize black box secret sharing (BBSS) for practical setting, which

can be of independent interest to threshold cryptography [11] com-

munity.

• We instantiate the first DKG mechanism using BBSS scheme

and provide a dynamic committee proactive secret sharing scheme.

Our scheme offers constant computational overhead and hence

scales well with a large number of keys in the system.

2 SYSTEM SETUP AND SOLUTION OVERVIEW
2.1 System Setup
Consider a system of 𝑛 servers {𝑃1, 𝑃2, · · · , 𝑃𝑛} that share a master

secret (vector) k2 through a (𝑛, 𝑡)-threshold scheme. The servers

interact with clients who join and leave the network anytime. All

the servers have access to a broadcast channel and the network is

synchronous. We consider a 𝑡−bounded static adversary that cor-

rupts up-to 𝑡 servers at the start of the protocol. Corrupted servers

remain so through-out the protocol run. Each pair of servers is con-

nected through a secure channel that provides secrecy and authen-

ticity; this is typically achieved through TLS channels [15] which

mitigate any man-in-the-middle attacks. While we consider a static

adversary model for the distributed key generation mechanism, we

2
We denote all vectors in bold font small and matrices in bold font capital letters.

2

extend it to a mobile adversary model for the proactive secret shar-

ing mechanism discussed in Section 7. The secrecy/confidentiality

of the secret key in the D-KODE-protocol is based on the discrete

logarithm (DLog) and Learning-with-rounding assumptions:

Definition 2.1. The Discrete Logarithm (DLog) assumption [52]:

For a generator 𝑔 ∈ G and 𝑎
$←− Z𝑞 , given the value 𝑔𝑎 , the probabil-

ity of a ppt algorithmADLog to output the value𝑎, Pr[ADLog (𝑔,𝑔𝑎) =
𝑎] is negligible.

Definition 2.2. The Learning-with-rounding (LWR) [50] prob-
lem consists of distinguishing the distribution (A, ⌊As⌋𝑝) where
A ∼ 𝑈 (Zm×n𝑞), s ∼ 𝑈 (Zn𝑞) and the uniform distribution𝑈 (Zm×n𝑞 ×
Zm𝑝); 𝑞 ≥ 2. We say that the LWR(𝑞,m,n) is hard if for all ppt al-

gorithm A, the advantage 𝑨𝒅𝒗LWR
𝑞,m,n (A) = |Pr[A(A, ⌊As⌋𝑝) =

1] − Pr[A(A,u) = 1] | is negligible, with the probabilities taken

over A ∼ 𝑈 (Zm×n𝑞), s ∼ 𝑈 (Zn𝑞), and u ∼ 𝑈 (Zm𝑝).

2.2 Design Overview
In the D-KODE protocol, a master key k is (𝑛, 𝑡)-threshold secret-

shared among 𝑛 servers and the client private key is computed as

the PRF [28] evaluation 𝐹 (𝑋,k) =
⌊
𝐻 (𝑋) · k

⌋
𝑝
∈ Z𝑝 , for 𝑋 ∈ X

where X is the client-input space, k ∈ Z𝑢𝑞 the server key and

𝐻 : {0, 1}∗ → Z𝑢𝑞 a cryptographic hash function. (·) indicates the
vector dot product computation (see Appendix A for details on

the employed PRF). The master key vector k is shared among the

servers with each server 𝑃𝑖 obtaining the share matrix K𝑖 . The
shares K𝑖 are generated in a distributed manner using distributed

key generation (DKG) involving verifiable black box secret sharing

(BBSS) scheme (elaborated in Section 3). The BBSS scheme involves

a distribution matrix which is constructed such that the reconstruc-

tion coefficients for the shares are in the set {−1, 0, 1}. It is done by
realizing the (𝑛, 𝑡)-threshold access structure as a threshold circuit

and expressing it as a monotone boolean function. This function

is then converted to a distribution matrix using the Benaloh and

Leichter [24] construction (recalled in Appendix C).

Let each server 𝑃𝑖 be associated with a set 𝑇𝑖 such that 𝑃𝑖 re-

ceives the matrix K𝑖 = {k𝑗 , 𝑗 ∈ 𝑇𝑖 },k𝑗 ∈ Z𝑢𝑞 . The partial eval-

uations of server 𝑃𝑖 upon client input 𝑋 is a vector of evalua-

tions {𝐹 (𝑋,k𝑗), 𝑗 ∈ 𝑇𝑖 }. To compute the required keys, the client

forwards the public string 𝑋 , obtains partial evaluations and re-

constructs the corresponding keys. Let 𝑦 = 𝐹 (𝑋,k) and 𝑦ℓ =

𝐹 (𝑋,kℓ), ℓ ∈ ∪𝑖𝑇𝑖 be the set of all partial evaluations received

from the servers. To generate the private key the client obtains a

linear combination 𝑦 =
∑
𝑖∈𝑆 𝜆𝑖 ·𝑦𝑖 where each 𝜆𝑖 ∈ {0, 1,−1}. 𝑦 dif-

fers from 𝑦 by a small error 𝜃 < |∑𝑖 𝑇𝑖 | depending the evaluations

used for the computation.

(Scenario 1A) Private key generation. Alice securely authenti-

cates herself to the servers (using email-login, OAuth tokens etc.)

and forwards her public string ID𝐴 (for example, her email ID),

obtains the partial evaluations 𝑦ℓ = 𝐹 (ID𝐴,kℓ) from servers and

computes the private key as 𝑠𝑘𝐴 =
∑
𝑖 𝜆𝑖 · 𝑦𝑖 as depicted in Fig-

ure 1a. The values of 𝜆𝑖 are determined by the qualified set of

servers whose evaluations are utilized in the reconstruction (refer

Section 3). From the private key 𝑠𝑘𝐴 , she can compute the public

Alice

(a) Scenario 1a: Alice uses her public string ID𝐴 , obtains evaluations
and reconstructs private key 𝑠𝑘𝐴 after authentication

Alice

 Transaction T,

Signature
request

(b) Scenario 1b: Alice uses her public string ID𝐴 , sends a transaction
𝑇 and requests the servers for a (threshold) signature on 𝑇 after
authentication

Figure 1: Private key and signature generation using servers
with shares 𝑘𝑖 of a master key 𝑲 shared with a linear thresh-
old scheme.

Alice

Figure 2: Scenario 2: Alice uses Bob’s public string ID𝐵 to
obtain his public key shares and compute the public key 𝑝𝑘𝐵

key as 𝑝𝑘𝐴 = 𝑔𝑠𝑘𝐴 . With the key pair (𝑠𝑘𝐴, 𝑝𝑘𝐴), she can perform

any required transaction.

3

(Scenario 1B) Partial signature generation. Instead of request-

ing for the secret key shares to reconstruct the secret key, Alice can

request the servers to generate shares and generate the signature

on her behalf. Upon request, the servers can generate secret key

shares and generate partial signatures using the secret key shares

(see Figure 1b). These partial signatures from different servers are

threshold-combined [29] to generate valid signature and authenti-

cate any transaction. Alice forwards an identity string and a formed

transaction to the servers, similar to the previous scenario. The

servers generate the partial signature using the identity and sign

the transaction. They also publish the public key corresponding to

the secret key generated.

When a party wishes to verify the transaction by generating

Alice’s public key on the fly, the generated public key will have a

slight ‘error’ of 2𝜃 . Hence the verifying party generates a list of 4𝜃

public keys and confirms the transaction if at least one matches the

published public key and verifies the signature.

(Scenario 2) Public key of an offline Bob. When Alice tries to

pay Bob, she forwards Bob’s public string ID𝐵 to the servers and

obtains the evaluations 𝑧ℓ = 𝑔
𝑦′ℓ where 𝑦′

ℓ
= 𝐹 (ID𝐵,kℓ) as depicted

in Figure 2. She computes a public key of Bob as 𝑝𝑘𝐵 =
∏
𝑖 (𝑧𝑖)𝜆𝑖

and proceeds to pay Bob using the computed public key 𝑝𝑘𝐵 .

When Bob tries to compute his private key later corresponding

to this public key 𝑝𝑘𝐵 , he authenticates to the servers and obtains

a private key 𝑠𝑘 ′
𝐵
which differs from the private key 𝑠𝑘𝐵 (corre-

sponding to the public key 𝑝𝑘𝐵), by a maximum of 2𝜃 . He simply

computes all the private keys in the range [𝑠𝑘 ′
𝐵
− 2𝜃, 𝑠𝑘 ′

𝐵
+ 2𝜃],

obtains the corresponding public keys [𝑔𝑠𝑘′𝐵−2𝜃 , 𝑔𝑠𝑘′𝐵+2𝜃]. For ex-
ample, for twenty servers, 𝜃 is distributed among [−216, 216] and
highly concentrated around 0; each of the key can be generated

by one multiplication from 𝑝𝑘 ′
𝐵
. 𝑝𝑘B will be in that set of 4𝜃 keys,

and since he has private keys corresponding to all of them, he can

utilize the funds transferred by Alice to 𝑝𝑘B. Note that only Bob

owns these secret keys.

Thus Alice can airdrop cryptocurrency to Bob by computing

𝑝𝑘𝐵 . Bob can later compute the corresponding key 𝑠𝑘𝐵 and retrieve

the funds whenever necessary. This solution does not involve any

interaction between the servers for the computation of client keys,

since they just evaluate 𝑦′
𝑖
= 𝐹 (ID𝐵,k𝑖) and forward 𝑔𝑦

′
𝑖 to the

client non-interactively. In summary, the proposed solution for the

two scenarios consists of the following steps:

• The servers 𝑃𝑖 , 𝑖 ∈ [𝑛] participate in DKG involving BBSS and

obtain shares K𝑖 = {k𝑗 , 𝑗 ∈ 𝑇𝑖 } of a master key k.
• For Scenario 1: The servers generate partial evaluations 𝑦ℓ =

𝐹 (𝑋,kℓ) using the server key shares K𝑖 and public input string

input 𝑋 from the client. The client combines the shares to compute

the private key evaluation 𝑦 = 𝐹 (𝑋,k).
• For Scenario 2: The servers evaluate 𝑦′

𝑖
= 𝐹 (𝑋 ′,k𝑖) and for-

ward 𝑔𝑦
′
𝑖 for the evaluation of public key 𝑧 = 𝑔𝑦

′
for the input 𝑋 ′

from any client.

Since we envisage a full-fledged deployment where the servers

are used to evaluate keys for a large number of clients over a long

period, we propose a proactive secret sharing mechanism for BBSS.

The servers store only one set of key shares corresponding to the

master key k and perform share-refreshing periodically using the

proposed Proactive BBSS scheme (refer Section 7). For share re-

freshing, the servers re-share each of their share elements to the

set of servers in the next period. The servers then compute the new

shares from the shares of the share-elements.

We implement the full protocol and extract many interesting

aspects of BBSS scheme in the practical regime. While the existing

works discussing BBSS and the related Linear Integer secret sharing

(LISS) scheme [36, 50] have shown that the circuit size for the con-

struction of distribution matrix varies from 𝑂 (𝑛5.3) −𝑂 (𝑛2.414), we
show that for certain threshold access structures, efficient construc-

tion can be achieved bringing the sharing scheme into a practical

regime.

3 BLACK BOX SECRET SHARING—BBSS
In a secret sharing scheme [23, 25, 26, 59], a designated dealer shares
a secret among a set of parties such that a certain subset of parties

can interact to reconstruct the secret. All the subsets designated to

reconstruct the secret are qualified sets, and the set of all qualified

sets is called an access structure. The threshold-𝑡 access structure

𝑇(𝑛,𝑡) is the collection of subsets of parties of cardinality greater

than 𝑡 . Any subset of parties outside the access structure has no

information about the secret. When the total number of parties is

𝑛, we denote such a scheme as (𝑛, 𝑡)-secret sharing, where at least
𝑡 + 1 parties are needed for reconstruction.

A black-box secret sharing scheme is a linear secret sharing

scheme over a finite Abelian group; it can be instantiated with just

black-box access to group operations and random group elements.

The secret generation and reconstruction are by a linear combina-

tion of share elements; the mechanism is independent of the group

used for the secret sharing. We use a construction of the black-box

secret sharing scheme such that the reconstruction coefficients lie

in the set {−1, 0, 1}.
In black-box secret sharing [35], the dealer shares an element of

an Abelian group (e.g., Z𝑞 with publicly known 𝑞) where the share

elements are computed as a linear combination of the secret value

and random elements chosen by the dealer. They are computed by

multiplication of a distribution matrixM and the random element

vector 𝝆. Any set of parties from the qualified set can reconstruct

the secret as a linear combination of their shares.

Share generation. Consider a dealer sharing a secret 𝑠 ∈ Z𝑞 with a
set of parties over the (monotone) access structure denoted by Γ. To
generate shares for the parties in BBSS, the dealer uses a distribution

matrix M ∈ Z𝑑×𝑒 and a distribution vector 𝝆 = (𝑠, 𝜌2, 𝜌3, · · · , 𝜌𝑒)𝑇
with secret 𝑠 , {𝜌𝑖 }𝑒𝑖=2 uniform randomly chosen from Z𝑞 . The vector

of share elements s = (𝑠1, 𝑠2, · · · , 𝑠𝑑)𝑇 is computed as s = M · 𝝆.
Each party 𝑃𝑖 , 𝑖 ∈ {1, 2, · · · , 𝑛} is assigned a set of share elements

using a surjective function𝜓 : {1, · · · , 𝑑} → {1, · · · , 𝑛}, 𝑑 > 𝑛. The

𝑖th share element 𝑠𝑖 is assigned to the party 𝜓 (𝑖) who is said to

own the 𝑖th row of the matrix M. For any subset of shareholders 𝐴,

M𝐴 ∈ Z𝑑𝐴×𝑒 , s𝐴 ∈ Z𝑑𝐴 denote the set of rows ofM and elements

of s jointly owned by the parties in 𝐴. We let 𝑇𝑗 = 𝜓
−1 (𝑗) be the

set of all row indices held by party 𝑃 𝑗 . Any set 𝐴 ∈ Γ is a qualified

set and sets 𝐴 ∉ Γ are forbidden sets. The 𝑗 th share holder holds

𝑑 𝑗 = |𝜓−1 (𝑗) | number of share-units.

The tupleM = (M,𝜓, 𝜖) is called an Integer span program (ISP)

when M ∈ Z𝑑×𝑒 and the rows of M are labelled by the surjective

4

function𝜓 . 𝜺 = {1, 0, · · · , 0} ∈ Z𝑒 is called the target vector. When

M is an ISP for Γ, the conditions specified by Definition 3.1 hold

and M can be used as a distribution matrix to realize the access

structure. This defines a reconstruction vector, which is used to

reconstruct the secret when M is used as distribution matrix to

share the secret value.

Definition 3.1. An integer span program (ISP) [35, 36] M =

(𝑀,𝜓, 𝜖) is an ISP of the access structure Γ if for all𝐴 ∈ {1, 2, · · · , 𝑛}
the following holds: If 𝐴 ∈ Γ, then there exists a reconstruction
vector 𝝀𝐴 ∈ Z𝑑𝐴 such that M⊤

𝐴
𝝀𝐴 = 𝜺, where 𝜺 = {1, 0, · · · , 0}. If

𝐴 ∉ Γ, there exists a sweeping vector k = (𝑘1, 𝑘2, · · · , 𝑘𝑒) ∈ Z𝑒 such
that M𝐴k = 0 ∈ Z𝑑 with k⊤ · 𝜺 = 1.

The first condition states that for every qualified set, there exists

a reconstruction vector, thereby making the reconstruction of the

shared secret possible.

Reconstruction. For a qualified set 𝐴, the secret value 𝑠 is recon-

structed as 𝑠 = s⊤
𝐴
· 𝝀𝐴 . Here s𝐴 is the vector of all share elements

(subset of vector s) held by the parties in the set 𝐴 and 𝝀𝐴 is the

corresponding reconstruction vector.

To realize a threshold access structure, one needs to compute the

corresponding distribution matrixM. For that, we use the Benaloh-

Leichter (BL) secret sharing construction [24, 36] where the ac-

cess structure is expressed as monotone boolean formulae. The

BBSS scheme using the BL construction ensures that elements of

the reconstruction vector 𝝀 are small and in {−1, 0, 1}. We recall

the BL construction of generating a distribution matrix from a

monotone boolean formula representation of threshold structure in

Appendix C. Due to space constraints, we also shift the verifiable

BBSS description to Section 5.1.

4 DISTRIBUTION MATRIX FROM
THRESHOLD FUNCTION

To generate the distribution matrixM for a (𝑛, 𝑡) threshold BBSS

scheme used in the DKG mechanism, we realize the (𝑛, 𝑡) threshold
access structure as a threshold circuit of sufficient depth. We convert

the monotone boolean function representation of the circuit to

the distribution matrix using the Benaloh-Leichter (BL) [24, 36]

construction (recalled in Appendix C). Much of the previous works

[30, 36, 63] suggest realizing the threshold access structure using a

majority function [63]. Valiant [63] first proved that a polynomial

size monotone circuit is realizable for majority circuit and provided

a construction of size𝑂 (𝑛5.3), while the work by Hooray et al. [46]
further improved the size of the circuit to 𝑂 (𝑛1+

√
2). Valiant[63]

suggested realizing threshold function using majority circuit of 2𝑛

variables
3
which was adapted by other works like Damgard et al.

[36] following similar approach. Also, the proposed constructions

[46, 63] are probabilistic, and the depth of the circuits is such that

the probability with which the circuit outputs 1, on a majority in the

𝑛 input variables, is 1 − e where e = 2
−𝑛

. This work computes the

required threshold circuit directly instead of realizing the threshold

circuit using the majority circuit. Also, we report that choosing

e = 2
−𝑛

is indeed an overkill increasing the depth of the circuit.

3
For (𝑛, 𝑡) threshold function, take 𝑛 extra variables (total 2𝑛 variables), fix 𝑛 − 𝑡 of
them to be 1 and the rest 𝑡 to 0; whenever there are more than 𝑡 1s in the original 𝑛

variables, the majority function outputs 1.

Table 1:𝑚 values obtained through threshold circuit for dif-
ferent 𝑛, p values and error margins

𝑛
e = 2

−𝑛 e = 2
−𝑛

4

p = 0.5 p = 0.66 p = 0.5 p = 0.66

5 81 9 9 9

10 2187 81 81 27

20 59049 729 2187 27

30 177147 2187 19683 81

Table 2: Dimensions of Distribution matrix M for different𝑚

𝑚 Rows Columns

3 6 4

9 36 22

27 216 130

81 1296 778

243 7776 4666

Larger e > 2
−𝑛

is sufficient to realize the required access structure

in the practical system profiles considered. Essentially, we relax the

error to achieve efficient implementation while still reconstructing

the secret for all the qualified sets of the access structure.

We adapt the construction provided by Goldreich [41] for the

majority circuit construction that uses a MAJ3 probability amplifier

node
4
(Refer Appendix B for a brief description of Goldreich’s [41]

construction and analysis of the majority circuit). The construction

as depicted in Figure 3 in Appendix consists of𝑛 variables 𝑥𝑖 , 𝑖 ∈ [𝑛]
and𝑚 variables 𝑦 𝑗 , 𝑗 ∈ [𝑚] are assigned as follows: choose random
indices 𝑖 uniformly between 1 and 𝑛 and assign the corresponding

𝑥𝑖 to each 𝑦 𝑗 , 𝑗 ∈ [𝑚] sequentially. Construct a 3-ary tree of MAJ3

nodes with 𝑦 𝑗 as leaves. The probability p = Pr(𝑦 𝑗 = 1) is taken
as 0.5 for designing a majority circuit. However, we choose the

value of p as
𝑡
𝑛 for the threshold access structure (𝑛, 𝑡), we also

compute depth with e= 2
−𝑛

4 . To see why this is significant, we

first present how the dimensions of the distribution matrix 𝑴 are

related to the value𝑚, the number of leaves in the circuit. Table

2 presents 𝑚 values and the dimensions of M when the circuit

is constructed using MAJ3 nodes and the distribution matrix is

constructed by BL construction [24, 36] from the monotone boolean

formula representation of the circuit. With the above construction,

the number of rows of matrixM grow as 6
log

3
(𝑚)

. Table 1 depicts

the value of𝑚 needed to represent the threshold access structure for

different values of p and e. For instance, from Table 2 for𝑚 = 243,

the number of rows of M is 7776. Observe from Table 1 that for

(𝑛, p, e) = (20, 0.5, 2−𝑛), the value𝑚 = 59049. For𝑚 = 243 itself, the

number of rows is 7776, for𝑚 = 59049 the number of rows make it

extremely difficult (almost impossible) to perform the secret sharing

on a laptop or a phone using a majority circuit implementation

(p = 0.5) with e = 2
−𝑛

. However, through implementation (by

computing different threshold combinations) we find that e = 2
−𝑛

4

is indeed sufficient to successfully reconstruct the secret for the

qualified sets for number of servers 𝑛 up to 50.

4
The MAJ3 node realizes majority of 3 variables (𝑥1, 𝑥2, 𝑥3) as 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3

5

MAJ3

MAJ3 MAJ3 MAJ3

MAJ3 MAJ3MAJ3MAJ3 MAJ3MAJ3MAJ3 MAJ3MAJ3

MAJ3 MAJ3 MAJ3MAJ3 MAJ3MAJ3

�1 �
�−1�2 �3 ��

�
�−2

�1 �
�−1�2 �3 ��

�
�−2

Figure 3: Majority circuit realization using MAJ3 nodes. The
variables 𝑥𝑖 , 𝑖 ≤ 𝑛 are mapped to 𝑦 𝑗 , 𝑗 ≤ 𝑚 uniformly ran-
domly. MAJ3 tree is formed from 𝑦 𝑗 .

In this work we consider the (𝑛, ⌊ 2𝑛
3
⌋) access structure and gen-

erate the matrix M with depth analysed using p = 2

3
. The distri-

bution matrix size is dependent on the computed𝑚 value rather

than directly on the value 𝑛. That is to say, multiple 𝑛 values may

result in similar 𝑚 value computed and hence will have similar

distribution matrices. Since the designed circuit is a 3-ary tree, the

𝑚 value chosen will be a power of 3 for any given 𝑛. Table 5 in

Appendix compares the value of𝑚 needed for different 𝑛, p values

using majority circuit and threshold circuits to achieve error margin

e = 2

−𝑛
4 .

4.1 Search for Distribution Matrix
We realize the threshold circuit using 𝑀𝐴𝐽3 internal nodes and

compute the distribution matrix for different values of 𝑛. To gen-

erate the matrix, different random instances of assignment of 𝑦𝑖
values of Figure 3 from 𝑥𝑖 values are considered. A distribution ma-

trix is taken as the matrixM for the access structure if any secret

shared using the matrix M can be successfully reconstructed by

any qualified subset of nodes.

We consider a (𝑛, ⌊ 2𝑛
3
⌋) access structure and compute the distri-

bution matrix M for different number of nodes. A random instance

of mapping from literals 𝑥𝑖 , 𝑖 ∈ [𝑛] to literals 𝑦 𝑗 , 𝑗 ∈ [𝑚] needs to
be fixed for the computation, to do so one needs to search across

the possible random instances of mapping when each𝑦 𝑗 is assigned

a uniformly sampled 𝑥𝑖 . Since for each 𝑦 𝑗 , any of the 𝑥𝑖 values

can be assigned, the size of the assignment space is 𝑛𝑚 , however

the search space can be drastically reduced when considering the

number of occurrences of each literal among 𝑥𝑖s. Each literal 𝑥𝑖
corresponds to the node with index 𝑖 , hence in an ideal scenario, all

the nodes need to occur “uniformly" among the literals 𝑦 𝑗 , that is

to say, the number of occurrences/assignments of each 𝑥𝑖 to certain

𝑦 𝑗 should be almost equal. Thus we look at only those random

instances where each literal 𝑥𝑖 occurs ∼ 𝑚
𝑛 times, so we restrict

ourselves to those instance where each literal is assigned literals

between

[
⌊𝑚𝑛 ⌋, ⌈

𝑚
𝑛 ⌉ + 1

]
, for each of the instance of random map-

ping, the distribution matrix is constructed and checked against all

the possible threshold combinations.

For an access structure (𝑛, 𝑡), there are ∑𝑛
𝑘=𝑡+1

(𝑛
𝑘

)
qualified sets

that can reconstruct the secret value, however if the reconstruction

is successful for all the 𝑡 + 1 element subsets, it will successful for

any of the subsets with more than 𝑡 +1 elements. Thus a distribution

matrix is declared to be valid if all the 𝑡 + 1 element subsets result

in correct reconstruction.

Reconstruction. When a subset T of nodes come together to

reconstruct a secret, they first compute the vector 𝝀T such that

M⊤T𝝀T = (1, 0, · · · , 0)⊤. As can be observed from the dimensions

of the matrix M, for a threshold access structure (𝑛, 2𝑛
3
), 𝝀T is

a solution for under-determined system of linear equations with

solution {𝜆𝑖 } ∈ {0, 1,−1}.

5 VERIFIABLE BBSS (V-BBSS) AND
DISTRIBUTED KEY GENERATION

5.1 Verifiable BBSS
Verifiability of a secret sharing scheme is the property that lets the

parties receiving the shares from a dealer verify the shares’ validity.

Several verifiability techniques [39, 58, 60] have been proposed for

different secret sharing schemes, here we discuss the verifiability

of the BBSS scheme. After generating the share elements by per-

forming s = M · 𝝆, for a distribution matrixM and a random vector

𝝆 = {𝜌1, 𝜌2, · · · , 𝜌𝑒 } ∈ Z𝑒𝑞 , the dealer commits to each element

of the vector 𝝆 and forwards the commitments to all the parties

receiving the shares. The matrix M =𝑚𝑖, 𝑗 , 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑒] is public
and known to all the parties. We briefly sketch the different steps

of the Verifiable-BBSS scheme [61]:

Share Generation. The dealer samples a random vector 𝝆 =

{𝜌1, 𝜌2, · · · , 𝜌𝑒 } ∈ Z𝑒𝑞 and sets the element 𝜌1 to the desired secret

value 𝑠 to be shared. For a (𝑛, 𝑡) threshold sharing, he computes

the distribution matrixM and generates share element vector s =
M · 𝝆, s = {𝑠𝑖 }, 𝑖 ∈ [𝑑]. The dealer generates a commitment vector

𝐶 consisting of commitments 𝐶𝑖 to each element of the vector

𝝆. The element 𝜌𝑖 is committed using Pedersen commitment as

𝐶𝑖 = 𝑔
𝜌𝑖ℎ𝜌

′
𝑖 using random 𝜌 ′

𝑖
∈ Z𝑞 . The dealer also computes the

vector s′ = M ·𝝆 ′ where 𝝆 ′ = (𝜌 ′
1
, 𝜌 ′

2
, · · · , 𝜌 ′𝑒) and s′ = {𝑠 ′𝑖 }, 𝑖 ∈ [𝑑]

The dealer forwards the share vectors s𝑖 = {𝑠 𝑗 }, s′𝑖 = {𝑠
′
𝑗
}, 𝑗 ∈ 𝑇𝑖

to party 𝑃𝑖 where 𝑇𝑖 is the set of all row indices owned by party

𝑃𝑖 . The dealer also broadcasts the commitment vector 𝐶 to all the

parties.

Verification. Each party 𝑃𝑖 receives the share vector s𝑖 and the

broadcast commitment vector c. All the parties compute the matrix

M corresponding to the access structure. The parties verify each of

the received share elements as follows: let the 𝑖th row ofmatrixM be

(𝑚𝑖1,𝑚𝑖2, · · · ,𝑚𝑖𝑒), the party with share element 𝑠𝑖 (and 𝑠
′
𝑖
) verifies

the share using the following verification: 𝑔𝑠𝑖ℎ𝑠
′
𝑖 =

∏𝑒
𝑗=1 𝑐

𝑚𝑖 𝑗

𝑗

𝑒∏
𝑗=1

𝐶
𝑚𝑖,𝑗

𝑗
=

𝑒∏
𝑗=1

(
𝑔𝜌 𝑗ℎ𝑟 𝑗

)𝑚𝑖,𝑗

=

𝑒∏
𝑗=1

(
𝑔𝜌 𝑗𝑚𝑖,𝑗

) (
ℎ𝑟 𝑗𝑚𝑖,𝑗

)
= 𝑔

∑𝑒
𝑗=1 𝜌 𝑗𝑚𝑖,𝑗ℎ

∑𝑒
𝑗=1 𝑟 𝑗𝑚𝑖,𝑗 = 𝑔𝑠𝑖ℎ𝑠

′
𝑖

If the verification does not hold, the party with the share element

𝑠𝑖 broadcasts a complaint along with the share elements (𝑠𝑖 , 𝑠 ′𝑖). If
more than 𝑡 + 1 complaints are broadcast in the system, the dealer

6

is deemed malicious; else the dealer responds to the complaint by

broadcasting the share forwarded to the party.

5.2 Distributed Key Generation using BBSS
A distributed key generation (DKG) [40] protocol allows a set of

nodes to share a secret among themselves without a trusted third

party such that any qualified subset of nodes can use/reveal their

shares to compute the secret. However, any subset of nodes outside

the set of qualified sets has no information about the shared secret.

For a (𝑛, 𝑡)−DKG, any subset of 𝑡 + 1 or more nodes constitutes

the qualified subset. At the heart of any DKG is a verifiable secret

sharing (VSS) scheme. To achieve a (𝑛, 𝑡)-DKG protocol, we consider

a (𝑛, 𝑡)-VSS scheme; unlike a VSS scheme which requires a trusted

dealer, the DKG mechanism distributes the trust among the nodes

removing the requirement of a trusted party. In this work, we

consider a DKG protocol resistant to 𝑓 malicious nodes with the

total number of nodes 𝑛 = 3𝑓 + 1 in the network.

Using the verifiable BBSS scheme (refer Section 5.1), we obtain

a DKG on the lines of the scheme by Gennaro et al. [40]. The
protocol proceeds in two phases, in phase 1, each party 𝑃𝑖 performs

a verifiable secret sharing of a random value 𝑧𝑖 and every party

verifies the received shares using the broadcast commitments. After

this, every party 𝑃 𝑗 forms the qualified set of parties Q whose

shares are verified and compute its share sk𝑗 by locally adding

the verified shares. The computed shares correspond to shares of a

random secret key 𝑠𝑘 ∈ Z𝑞 . In Phase 2, the parties of the qualified

set forward the exponentiation of their shared secret 𝑧𝑖 and a zero-

knowledge proof that the forwarded Pedersen commitment in Phase

1 corresponds to the same. Every party computes the public key

𝑝𝑘 = 𝑔𝑠𝑘 after verifying the zero-knowledge proofs. The complete

DKG protocol based on BBSS sharing is described in Figure 4.

The proposed DKG mechanism offers the following properties:

• Correctness: All qualified subsets of shares provided by honest

parties define the same unique secret key 𝑠𝑘 ; All honest parties

compute the same public key 𝑝𝑘 = 𝑔𝑠𝑘 value corresponding to the

secret key 𝑠𝑘

• Secrecy:No information on 𝑠𝑘 can be obtained by the 𝑡−limited

adversary except what can be inferred from the public information.

Theorem 5.1. Given a correct and secure (𝑛, 𝑡) verifiable BBSS
scheme, the DKG protocol of Figure 4 satisfies correctness and secrecy
properties under the Dlog assumption (Theorem 2.1)

All the proofs have been postponed to Appendix G owing to

space constraints.

6 D-KODE PROTOCOL
ByD-KODE protocol we refer to set of all algorithms for generating

client keys in a distributed fashion. These algorithms include gener-

ation of shares of master key k at the servers using BBSS-DKG, PRF

evaluation upon user input and algorithms to combine the partial

evaluations to compute keys at the client. Since BBSS-DKG and PRF

are run on the server, we refer to them as server-side algorithms and

the algorithms for combining the partial evaluations for computing

keys at the client as client-side algorithms. On the client side, we

have two different versions corresponding to offline or online client.

Offline client refers to the one to whose public key the payment

has been made and wishes to retrieve the funds by generating the

corresponding secret key. Online client computes the private key

of self and public key of another client to process payment etc.

For the ease of exposition, we present the verifiability of the PRF

evaluation as a separate subsection. The D-KODE protocol consists

of following algorithms.

6.1 Server Side Algorithms
Cryptographic Setup. Setup(𝜆, 𝑛, 𝑡): It takes as input the security
parameter 𝜆, the threshold 𝑡 and the number of servers 𝑛. It outputs

the public parameters pp := {𝐻 (·), 𝑝, 𝑞, 𝑞′, 𝑢,G, 𝑔,G, g, h,𝑴,𝜓 (·)}.
Distributed Key Generation. DKG (𝑛, 𝑡, 𝑞,𝑢): The servers run
the BBSS-DKG mechanism among themselves using (𝑛, 𝑡)-BBSS to
generate shares of a master key k ∈ Z𝑢𝑞 .
The BBSS-DKG mechanism presented in Section 5.2 (Figure 4)

provides shares corresponding to a single element 𝑠𝑘 ∈ Z𝑞 to all the

servers. However, for the PRF evaluation, 𝐹 (𝑋,k) = ⌊𝐻 (𝑋) · k⌋𝑝
introduced in Appendix A, the key k is a vector of length 𝑢. Hence,

initially, the servers run 𝑢 instances of DKG to generate shares of

elements of vector in Z𝑢𝑞 . Let the share element matrix obtained by

each server 𝑃𝑖 be E𝑖 .
PRF evaluation. The servers run the PRF service through the Par-
SecretKeyEval and ParPubKeyEval algorithms to compute private

key or public key shares respectively for an identity forwarded by

the client.

ParSecretKeyEval(𝑋,E𝑖 , pp): Sever 𝑃𝑖 takes the client input string
𝑋 , share matrix E𝑖 , the public parameters pp and returns the eval-

uation of the PRF as the vector 𝒛𝑖 . The matrix E⊤
𝑖
is parsed into

𝑑𝑖 columns of 𝑢 length each while input 𝑋 is hashed to a vector

of length 𝑢 using the hash 𝐻 : {0, 1}∗ → Z𝑢𝑞 . 𝑑𝑖 is the number

of rows of matrix M owned by 𝑃𝑖 . ParSecretKeyEval is shown in

Algorithm 1.

Algorithm 1 ParSecretKeyEval (𝑋,E𝑖 , pp)

1: Parse the matrix E⊤
𝑖
∼ Z𝑢×𝑑𝑖𝑞 as [k𝑖1 |k𝑖2 | · · · |k𝑖𝑑𝑖]

2: for 1 ≤ 𝑗 ≤ 𝑑𝑖 do
3: 𝑧𝑖 𝑗 =

⌊
𝐻 (𝑋) · k𝑖 𝑗

⌋
𝑝
∈ Z𝑝

4: return z𝑖 = {𝑧𝑖1, 𝑧𝑖2, · · · , 𝑧𝑖𝑑𝑖 } ∈ Z
𝑑𝑖
𝑝

ParSig(𝑋,E𝑖 , pp,msg): To generate a partial signature on the

message msg, the server first generates the secret key share of

the user by invoking ParSecretKeyEval(𝑋,E𝑖 , pp). This secret key
share is used to generate a partial signature. 𝜎 ′(msg, 𝑋,E𝑖) =

{𝜎 (msg, 𝑧𝑖1), 𝜎 (msg, 𝑧𝑖2), · · · , 𝜎 (msg, 𝑧𝑖𝑑𝑖)}. The partial signature
vectors from the servers are threshold combined to form the final

signature on the message.

ParPubKeyEval(𝑋 ′,E𝑖 , pp): Partial evaluation for public key gen-
eration is similar to that of the secret key except that the final vector

is the exponentiated version of partial secret key evaluation. Server

𝑃𝑖 takes the client input string 𝑋
′
, share matrix E𝑖 , the public pa-

rameters pp and returns a vector y𝑖 . The matrix E⊤
𝑖
is parsed into

𝑑𝑖 columns of 𝑢 length each while input 𝑋 is hashed to a vector

of length 𝑢 using 𝐻 : {0, 1}∗ → Z𝑢𝑞 . 𝑑𝑖 is the number of rows of

matrix M owned by 𝑃𝑖 . Each of the elements of the PRF evaluation

7

pp: {𝑛, 𝑡, 𝑞, 𝑝,M ∈ {0, 1}𝑑×𝑒 ,𝜓 (·)}
Phase 1: Generating shares of 𝑠𝑘 ∈ Z𝑞 :

(1) Each party 𝑃𝑖 performs a Verifiable BBSS of a random value 𝑧𝑖 ∈ Z𝑞 :

(a) 𝑃𝑖 chooses two random vectors 𝝆𝑖 = {𝜌𝑖1, 𝜌𝑖2, · · · , 𝜌𝑖𝑒 } and 𝝆 ′
𝑖
= {𝜌 ′

𝑖1
, 𝜌 ′
𝑖2
, · · · , 𝜌 ′

𝑖𝑒
}; 𝝆𝑖 , 𝝆 ′𝑖 ∈ Z

𝑒
𝑞 . Sets the first element

𝝆𝑖1 = 𝑧𝑖 .
(b) 𝑃𝑖 computes two vectors s𝑖 = M · 𝝆𝑖 and s′

𝑖
= M · 𝝆 ′

𝑖
, generates commitment vector c𝑖 consisting of commitments to

each of the elements of the vector 𝝆𝑖 as 𝑐𝑖𝑙 = 𝑔
𝜌𝑖𝑙ℎ𝜌

′
𝑖𝑙 ; 𝑙 ∈ [𝑒] where 𝑔, ℎ are generators of a multiplicative group G. Let

the computed vectors be s𝑖 = {𝑠𝑖1, 𝑠𝑖2, · · · , 𝑠𝑖𝑒 }, s′𝑖 = {𝑠
′
𝑖1
, 𝑠 ′
𝑖2
, · · · , 𝑠 ′

𝑖𝑒
}.

(c) 𝑃𝑖 forwards the shares s𝑖, 𝑗 , a subset of the vector s𝑖 to 𝑃 𝑗 consisting of share elements 𝑠𝑖𝑘 , 𝑘 ∈ {𝑇𝑗 = 𝜓−1 (𝑗)} and it also

forwards the corresponding s′
𝑖, 𝑗
, a subset of the vector s′

𝑖
to the 𝑃 𝑗 , 𝑗 ∈ [𝑛].

(d) 𝑃𝑖 broadcasts its commitment vector c𝑖 with elements 𝑐𝑖𝑙 , 𝑙 ∈ [𝑒] to every other party 𝑃 𝑗 , 𝑗 ∈ [𝑛].
(e) 𝑃 𝑗 verifies the shares it received from the other parties using the specified verification procedure. 𝑠𝑖𝑘 (corresponding to

the row 𝑘 of the vector s𝑖 of 𝑃𝑖) received by 𝑃 𝑗 from 𝑃𝑖 is verified as: 𝑔𝑠𝑖𝑘ℎ𝑠
′
𝑖𝑘 =

∏𝑒
𝑙=1

𝑐
𝑚𝑘𝑙

𝑖𝑙
mod 𝑝 . (Here row 𝑘 is held by

𝑃 𝑗 , 𝑘 ∈ 𝑇𝑗).
If any verification fails, party 𝑃 𝑗 broadcasts a complaint against party 𝑃𝑖 by broadcasting the shares (𝑠𝑖𝑘 , 𝑠 ′𝑖𝑘).

(f) On receiving a compliant against self from 𝑃 𝑗 for any row 𝑘 , 𝑃𝑖 reveals the shares by broadcasting 𝑠𝑖𝑘 , 𝑠
′
𝑖𝑘
.

(2) Every party maintains a set of parties Qualified Q, any party excluded from the set is disqualified by that particular party.

Every party 𝑃 𝑗 excludes a party 𝑃𝑖 if 𝑃𝑖 either receives more that 𝑡 complaints or the broadcasted shares after complaint do

not pass the verification. At the end of the complaint and verification phase, every honest party will have the same qualified

set Q.
(3) Every party 𝑃 𝑗 locally forms its shares of the secret key 𝑠𝑘 by adding element-wise, the shares of the vectors s𝑖, 𝑗 received

from every other party 𝑃𝑖 , 𝑖 ∈ [𝑛] i.e., each 𝑃 𝑗 computes its share as sk𝑗 = {𝑠𝑘 |𝑘 ∈ 𝑇𝑗 } =
∑
𝑖 𝑠𝑖𝑘 for each 𝑘 ∈ 𝑇𝑗 . Share of each

party 𝑃 𝑗 is a vector sk𝑗 of share elements with cardinality 𝑑 𝑗 = |𝑇𝑗 |.
Phase 2: Computing the public key 𝑔𝑠𝑘 :

(1) Each 𝑃𝑖 , 𝑖 ∈ [𝑛] broadcasts the values 𝐴𝑖1 = 𝑔𝜌𝑖1 and a NIZKPoK 𝝅𝑖 (Refer Appendix E for the proof) proving that the value

committed 𝑧𝑖 = 𝜌𝑖1 is same value in both 𝐴𝑖1, 𝑐𝑖1 broadcast earlier to every other party 𝑃 𝑗 , 𝑗 ∈ [𝑛].
(2) Each party verifies the broadcast NIZKPoK of every other party and anyone failing verification is disqualified and removed

from Q.
(3) Finally the public key is computed as 𝑝𝑘 =

∏
𝑖∈Q 𝑔

𝜌𝑖1
.

BBSS-DKG

Figure 4: BBSS-DKG Protocol

is exponentiated resulting in a vector of elements of group G and

of length 𝑑𝑖 . ParPubKeyEval is shown in Algorithm 2.

Algorithm 2 ParPubKeyEval (𝑋 ′,E𝑖 , pp)

1: Parse the matrix E⊤
𝑖
∼ Z𝑢×𝑑𝑖𝑞 as [k𝑖1 |k𝑖2 | · · · |k𝑖𝑑𝑖]

2: for 1 ≤ 𝑗 ≤ 𝑑𝑖 do
3: 𝑧𝑖 𝑗 =

⌊
𝐻 (𝑋 ′) · k𝑖 𝑗

⌋
𝑝
∈ Z𝑝

4: return y𝑖 = {𝑔𝑧𝑖1 , 𝑔𝑧𝑖2 , · · · , 𝑔𝑧𝑖𝑑𝑖 } ∈ G𝑑𝑖

6.2 Client Side Algorithms
The client computes the private key by combining the partial eval-

uations using the CombSecKey algorithm and computes the public

key of identity𝑋 ′ by using the CombPubKey algorithm. The offline

client after generating private key of his identity searches for the

appropriate secret key - public key pair to which payment has been

made.

Private key generation. CombSecKey(pp, {z1, z2, · · · , z |T |}):
Let T with |T | ≥ 𝑡 + 1 be the set of parties whose evaluations

are used for reconstruction. CombSecKey() takes-in the partial

evaluation vectors 𝒛𝑖 received from the servers 𝑃𝑖 of the set T
and concatenates them to form z = {z1 | |z2 | | · · · | |z |T |} . Let the
set of all the row indices of matrix M held by the parties in T
be R =

⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ T . z is a vector of length |R |. The private

key is computed as the linear combination of the vector elements.

The reconstruction coefficient vector 𝜆T is computed by solving

M⊤T · 𝝀T = 𝜺. M⊤T is the set of all rows of matrix M held by the

parties in T . 𝜺 = {1, 0, · · · , 0}.
Online client : The online client computes the private key 𝑠𝑘 and

the corresponding public key as 𝑝𝑘 = 𝑔𝑠𝑘 and uses the key-pair

(𝑠𝑘, 𝑝𝑘) to perform different transactions as needed.

Offline client: Once the offline client computes the private key

𝑠𝑘 corresponding to his identity, he computes 4𝜃 secret keys. 𝜃

is the total number of values combined by the parties in set T
which is |R |. He computes them as [𝑠𝑘 − 2𝜃, · · · , 𝑠𝑘 + 2𝜃] and
obtains the corresponding public keys [𝑔𝑠𝑘−2𝜃 , · · · , 𝑔𝑠𝑘+2𝜃]. The
public key to which funds have been sent will be in this set; he uses

the corresponding secret key to transfer the funds. CombSecKey is

shown in the Algorithm 3.

8

Algorithm 3 CombSecKey (pp, {𝒛1, 𝒛2, · · · , 𝒛 |T |})

1: Compute z = {z1 | |z2 | | · · · | |z |T |} ∈ Z
|R |
𝑝

2: Compute 𝝀T ∈ {−1, 0, 1} |R | such thatM⊤T · 𝝀T = 𝜺

3: Compute 𝑠𝑘 = 𝝀⊤T · z ∈ Z𝑝
4: if Online client then
5: return 𝑠𝑘
6: if Offline client then
7: Compute [𝑠𝑘 − 2𝜃, · · · , 𝑠𝑘 + 2𝜃], 𝜃 = |R |.
8: Compute public keys

®𝑝𝑘 = [𝑔𝑠𝑘−2𝜃 , · · · , 𝑔𝑠𝑘+2𝜃]
9: Check public keys

®𝑝𝑘 and find corresponding 𝑠𝑘 ′

10: return 𝑠𝑘 ′

Public key generation. CombPubKey(pp, {y
1
, y

2
, · · · , y |T |}):

Let T with |T | ≥ 𝑡 + 1 be the set of servers whose evaluations

are used for reconstruction. CombPubKey takes-in the vector of

partial evaluations y𝑖 received from the servers 𝑃𝑖 of the set T
and concatenates them to form y = {y

1
| |y

2
| | · · · | |y |T |}. The set

of all the row indices (of matrix M) held by the parties in T is

R =
⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ T . y is a vector of length |R |. Compute the public

key as 𝑝𝑘 =
∏

1≤ 𝑗≤ |R | 𝑦
𝜆 𝑗
𝑗
, whereM⊤T ·𝝀T = 𝜺,M⊤T is the set of all

rows of matrixM held by the parties in T , 𝝀T = {𝜆 𝑗 , 1 ≤ 𝑗 ≤ |R|},
𝒀 = {𝑦 𝑗 , 1 ≤ 𝑗 ≤ |R|}.

Any client can forward the public identity of another client and

compute the public key from the obtained partial evaluations using

CombPubKey which shown as Algorithm 4.

Algorithm 4 CombPubKey (pp, {y
1
, y

2
, · · · , y |T |})

1: Compute y = {y
1
| |y

2
| | · · · | |y |T |} ∈ G |R |

2: Compute 𝝀T ∈ {−1, 0, 1} |R | such thatM⊤T · 𝝀T = 𝜺
3: 𝝀T = {𝜆 𝑗 }, y = {𝑦 𝑗 }, 1 ≤ 𝑗 ≤ |R|
4: Compute 𝑝𝑘 =

∏
1≤ 𝑗≤ |R | 𝑦

𝜆 𝑗
𝑗
∈ G

5: return 𝑝𝑘

Using the ring-variant of the PRF. For the simplicity of ex-

position, we presented the whole key generation using the PRF

𝐹 (𝑋,k) =
⌊
𝐻 (X) · k

⌋
𝑝
∈ Z𝑝 with a single Z𝑝 element as output.

However, one can consider the ring variant of the PRF where the

two input vectors of computation 𝐻 (𝑋) and k are polynomial ring

elements. Then the inner product computation would be replaced

by polynomial ring multiplication resulting in a ring element which

can be viewed as a vector of 𝑢 group elements. Thus using the ring

variant of the PRF 𝐹 (𝑋,k) =
⌊
𝐻 (X) ◦ k

⌋
𝑝
∈ Z𝑢𝑝 , 𝐻 (𝑋),k ∈ 𝑅𝑞 , the

servers can generate 𝑢 keys at a time for the user.

7 DYNAMIC-COMMITTEE PROACTIVE BBSS
MECHANISM

System attacks are common as flaws in the software realization of

the protocols are ubiquitous. While cryptographic secrecy protects

again break-ins, its effect is limited over a longer time. This is

especially true in-case of a mobile attacker [45, 57] who can break

into systems one-by-one over a long time. Proactive secret sharing

(PSS) guards against these gradual attacks by combining distributed

trust with periodic share renewing. When systems store keys for a

long time, even when the secret information is threshold-shared, it

is imperative to refresh the shares such that the adversary does not

eventually gain all the information. In proactive security [32, 45, 57],

the nodes modify their secret shares periodically such that the

adversary’s knowledge of secret information from any previous

period is not useful in the next. For the D-KODE protocol, we

propose proactive secret sharing for the BBSS scheme.

Adversary. We consider a computationally bounded mobile adver-
sary [45] that can corrupt any server any point of time, however,

the adversary can corrupt no more than 𝑡 servers at any instant of

time. The adversary after compromising the server has full access

to the server’s secret information and communication. We consider

malicious corruption in which the adversary makes the server de-

viate arbitrarily from the protocol. The adversary has access to

the complete view of the corrupted server’s communication, how-

ever, he can neither inject, access or deny messages between any

two non-compromised nodes nor affect the broadcast channel. The

adversary corrupting the servers is removable by a reboot mecha-

nism [32], which is handled by the system management interacting

with the servers. The defined protocol provides explicit mechanism

to detect malicious behaviour, we assume a reboot is triggered as

soon as malicious behaviour is detected which is completed with in

that epoch. The system management initializes the system by estab-

lishing server to server communication and no secret information

of the protocols is available to it.

The aim of the adversary corrupting the servers is to learn the

secret information or the secret key shares involved in the proto-

col. The user or clients interacts with the servers to obtain partial

evaluations of the keys. He may try to attack the system by either

predicting the server secret key or the evaluations for other clients.

At the end of each refresh phase, the servers erase the old infor-

mation of the previous epochs. This process is assumed reliable;

when the server is compromised, the adversary does not have ac-

cess to the secret information of the previous epochs. If a server

is compromised in the refresh phase, the server is assumed to be

compromised in both the phases adjacent to that phase.

Protocol.We propose a proactive secret sharing scheme [45] for

the black box secret sharing mechanism where the size of share-

elements does not increase with each refresh. The protocol proceeds

in intervals of time called 𝑒𝑝𝑜𝑐ℎ𝑠 , which are synchronized by the

common global clock. The parties participate in a share refresh
phase at the beginning of each epoch after which every party in

the system has access to the new shares. The adversary can corrupt

up-to 𝑡 parties, if it is detected that a certain party is corrupted in

an epoch, its shares are renewed in the share renewal phase phase
of the next epoch, similarly if a node crashes during an epoch, its

shares are reconstructed in the reconstruction phase of the next

epoch. Share renewal and reconstruction are a part of the refresh

phase of each epoch.

Without loss of generality, let (𝑛, 𝑡) be the access structure of
epoch e and (𝑛′, 𝑡 ′) be the access structure of the epoch e+ 1 with a

changing (dynamic) committee. Let the access structures of epochs

e, e + 1 correspond to the share distribution matrices M and M′.
Let sk𝑖 be the set of share elements held by the party 𝑃𝑖 for the

9

The public parameters pp = {𝑛, 𝑡, 𝑞, 𝑝,M,M′,𝜓 (·),𝜓 (·)′}. Each party 𝑃𝑖 begins with an initial verified share sk𝑖 (and sk′𝑖) consisting
of elements 𝑠𝑖,𝑘′ (and ˆ𝑠 ′𝑖,𝑘′) ∈ Z𝑞, 0 ≤ 𝑘 ′ ≤ |𝜓−1 (𝑖) |. M ∈ {0, 1}𝑑×𝑒 ,M′ ∈ {0, 1}𝑑

′×𝑒′
. All the honest parties begin with a commitment

vector v = (𝑣1, 𝑣2 · · · 𝑣𝑒). Share renewal:
For each 𝑘 ′ from above party 𝑃𝑖 performs the following:

(1) Performs a Verifiable-BBSS of each of the share elements among all the parties. Samples random vectors 𝝆𝑖 , 𝝆
′
𝑖 ∈ Z𝑒

′
𝑝 with

elements 𝜌𝑖𝑙 , 𝜌
′
𝑖𝑙 , 𝑙 ∈ [𝑒 ′] and computes s𝑖 = M′ · 𝝆𝑖 and s′

𝑖
= M′ · 𝝆′

𝑖 with 𝜌𝑖1 = 𝑠𝑖𝑘′ and 𝜌
′
𝑖1 =

ˆ𝑠 ′𝑖𝑘′
(2) Let the share elements of s𝑖 and s′

𝑖
be 𝑠𝑖𝑙 and 𝑠

′
𝑖𝑙 , 𝑙 ∈ [𝑒 ′]. Forward the share elements 𝑠𝑖𝑘 , 𝑠

′
𝑖𝑘 to party 𝑃 𝑗 , 𝑘 ∈ 𝑇𝑗 = 𝜓−1 (𝑗)

and commitments 𝑐𝑖𝑙 = 𝑔
𝜌𝑖𝑙ℎ𝑠

′
𝑖𝑙 , 𝑙 ∈ [𝑒 ′] to all the parties.

(3) 𝑃𝑖 verifies the shares and the corresponding commitments received from party 𝑃 𝑗 and broadcasts a complaint against 𝑃 𝑗 if

the verification fails.

(4) 𝑃𝑖 computes the qualified set Q ′ as in Phase 1 of BBSS-DKG, at the end of which all honest parties compute the same set Q ′.
(5) 𝑃𝑖 computes the new share as follows: Let M′Q′ be the set of rows held by the parties in the set Q ′. Each party computes

the vector 𝝀Q′ ∈ {0, 1,−1}𝑑𝑄′ such that M′⊤Q′ · 𝝀Q′ = 𝜺. The new share of 𝑃𝑖 is sk′𝑖 = s̃⊤
𝑖,Q′ · 𝝀Q′ , where s̃𝑖,Q′ is the set of all

share elements received by party 𝑃𝑖 from the parties in the set Q ′.

Proactive BBSS

Figure 5: Proactive BBSS Scheme

epoch e. In our proactive protocol, each party re-shares every share

element held by the party to all other parties of the next epoch. The

Proactive BBSS scheme is presented in Figure 5.

Proactive BBSS offers the following properties [32]:

• Robustness/Correctness: The new shares computed at the end

of the share renewal phase correspond to the original secret 𝑠𝑘

shared among the parties i.e., any qualified set of parties (𝑡 + 1 or
more) can reconstruct the secret 𝑠𝑘 .

• Secrecy: No information about the secret 𝑠𝑘 is obtained by the

𝑡-limited adversary in any epoch. The adversary who obtains shares

of no more than 𝑡 parties has no information about the secret 𝑠𝑘 in

any epoch.

• Liveness: All honest parties complete the refresh of shares (at

the beginning) in each epoch.

The proactive BBSS mechanism works mainly in two steps:

• Each party 𝑃𝑖 , 𝑖 ∈ [𝑛] does verified secret sharing of each of

its shares sk𝑖 among all the parties

• From the obtained verified shares, each party reconstructs their
new shares sk′𝑖 .

Let c𝑖 be the vector of commitments to the vector 𝝆𝑖 by each

party 𝑃𝑖 in the previous epoch and Q be the qualified set computed

during that epoch. Each party stores a vector v of commitments

from the parties of qualified set computed during the re-sharing

from the previous epoch for the verifiability of shares for the next

epoch. All the honest parties update the commitment vector v with

elements 𝑣𝑙 =
∏
𝑃𝑖 ∈Q 𝑐

𝜆𝑖
𝑖,ℓ
, ℓ ∈ [𝑒]. When party 𝑃𝑖 shares 𝑠𝑖𝑘 (while

using
ˆ𝑠 ′𝑖𝑘), each party 𝑃 𝑗 checks if 𝑔

𝑠𝑖𝑘ℎ𝑠
′
𝑖𝑘 =

∏
𝑘 (𝑣𝑘)𝑚𝑖𝑘

where

M⊤Q𝝀Q = 𝜀,𝝀 = {𝜆𝑘 , 𝑘 ∈
⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ Q}. Let 𝑠𝑖𝑘 , 𝑘 ∈ 𝑇𝑗 be the

shares received by 𝑃 𝑗 from party 𝑃𝑖 ∈ Q ′. R ′ = {
⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ Q ′} is

the set of all rows held by Q ′. 𝑃 𝑗 computes the new share element

𝑠𝑘 =
∑
𝑖∈Q′ 𝜆𝑖𝑠𝑖𝑘 , 𝑘 ∈ 𝑇𝑗 .

Theorem 7.1. Given a correct and secure (𝑛, 𝑡)-verifiable BBSS
scheme, the Proactive BBSS protocol of Figure 5 satisfies correctness
and secrecy properties under the discrete logarithm assumption.

Theorem 7.2. If the LWR(𝑞,m,n) assumption holds,
ParSecretKeyEval(𝑋, E, pp) is a pseudo-random function.

Theorem 7.3. If the LWR(𝑞,m,n) assumption holds, CombSecKey
is a (𝑛, 𝑡)-threshold evaluation of a pseudo-random function.

The proofs have been postponed to Appendix G.

8 PERFORMANCE ANALYSIS
We evaluate the performance of D-KODE protocol, using 10 AWS

EC2 c5a.8xlarge instances spawning the nodes in the network. Our

prototype Python implementation includes BBSS, BBSS-DKG, BBSS-

PSS, and the corresponding reference implementations of New-JF-

DKG [40] instantiated with Shamir secret sharing and replicated

secret sharing (RSS). We use Charm crypto library [4] for the cryp-

tographic implementation.

Distributed Key Generation (DKG). We implement the DKG

protocols using Tendermint [13] as a broadcast channel for verifi-

able secret sharing. Figure 6 provides a logarithmic plot comparing

the time taken to run DKG to generate shares of a 256-bit key using

Shamir and 283-bit replicated (RSS) and black-box (BBSS) secret

sharing schemes for up to 50 nodes. RSS is a well-known scheme

(refer Appendix D for a brief description) to share secrets in Z𝑞 in

an additive form. The access structure for the verifiable sharing

corresponds to (𝑛, ⌊ 2𝑛
3
⌋) threshold in all the protocols analyzed

through Figure 6.

Shamir secret sharing allocates one share element per node,

while BBSS and RSS allocate share vectors. The vector length for

RSS grows exponentially as

(𝑛−1
𝑡

)
for (𝑛, 𝑡)-sharing. The share vec-

tor length for a node in BBSS is determined by the distribution

matrix and the share allocation function𝜓 (·). While BBSS allocates

more than one share element per user, verifying shares is efficient,

involving only multiplications instead of exponentiations since the

distribution matrix is a sparse binary matrix. This is reflected in

the slightly lesser times recorded compared to Shamir-DKG for up

to 27 nodes. The distribution matrix is of dimension 36 × 22 (with
10

10 20 30 40 50

10
1

10
1.5

Nodes

T
i
m
e
i
n
s
e
c
o
n
d
s

BBSS-DKG

RSS-DKG

Shamir-DKG

Figure 6: Time taken to perform DKG to generate shares of
a 256-bit key for Shamir-DKG and 283-bit value for RSS and
BBSS-DKG. The values show the mean of values across nodes
for 10 runs of the protocol.

different𝜓 (·) function) when the number of nodes 𝑛 ∈ [4, 9]; it is
216 × 130 and 1296 × 778 for 𝑛 ∈ [11, 27] and 𝑛 ∈ [28, 50] respec-
tively. Beyond 28 nodes, the time to perform BBSS-DKG shows a

jump due to the distribution matrix size change. Such a change in

matrix occurs at 10 nodes as well; however, the change in the time

taken is not too significant. While using RSS, the time taken for

DKG grows exponentially owing to an exponential increase in the

number of shares per node with 𝑛, the scheme becomes unviable

beyond 12-15 nodes. In Shamir-DKG, since each node provides only

one share element for every other node, the time taken is the lowest

for higher 𝑛. Though the time taken to perform BBSS-DKG can be

higher than Shamir-DKG, it is the number of instances of the DKG
that is significantly lesser while employing D-KODE protocol when

compared to the Plain-DKG
5
.

Distributed PRF. D-KODE provides key-shares using PRF 𝐹 (𝑋,k)
where k is a vector. Each element of the vector k at the server is

a share generated using BBSS-DKG. The parameters (LWR) for
computing the PRF are chosen as following: n = 8192, 𝑞 : 283-

bit, 𝑝 : 256-bit. The parameter 𝑞′ > 𝑝𝑞 used for commitments is

571-bit with commitments on the curve secp571r1. The servers
run 8192 instances of BBSS-DKG to generate shares for the key k.
The PRF output is a 256−bit key; The corresponding public key is

computed on the secp256k1 curve. In the case of computing the

public key of another party, the servers generate the public key

share (on the curve secp256k1) and forward it to the user. Each

server takes < 200 msec to generate shares for a user per thread,

for 𝑛 ∈ [5, 50] on AWS EC2 c5a.8xlarge . The servers use the BLS
signature [27, 29] and the corresponding curve for public keys for

the threshold signatures.

While the chosen parameters offer more than 128−bits of LWR

security (for solving the LWR instance) as estimated using the LWE-

estimator [19], the overall security of the systems is determined

by both Discrete Logarithm and LWR parameters. Since the secret

keys are 256-bit with public keys on the secp256k1 curve, the bit-

security offered by our system is 128-bits, which is similar to the

Plain-DKG approach.

5
The basic differences between Plain-DKG and D-KODE are recalled in Table 4 of the

Appendix.

Table 3: Number of shares per server while using Plain-DKG
and D-KODE with either RSS or BBSS for Φ keys. Number
of verifiable secret sharing instances for share refreshing is
same as the average number of shares stored. The shares are
Z𝑞 elements where 𝑞 is 256-bit for Plain-DKG and 283-bit for
BBSS.

No. of keys

(Φ)

No. of

Servers

(𝑛)

Average number of shares per server

Plain DKG D-KODE
With RSS With BBSS

Φ

5 Φ 32768 58982.4

10 Φ 688,128 176,947.2

20 Φ 22.224e+7 88,473.6

30 Φ 82.016e+9 353,894.4

40 Φ 66.528e+12 265,420.8

50 Φ 27.424e+15 212,336.64

D-KODE vs Plain-DKG. D-KODE allows clients to generate pri-

vate and public keys using partial share-evaluations from different

servers. Plain-DKG approach is another way to provide such key

shares where one instance of DKG is run per user to provide the

shares (private or public key shares) whenever requested. In this,

for every new user, the servers perform consensus on the index of

pre-shared keys and offer the key shares to the user. As Shamir-

DKG is efficient even for a higher number of servers as shown in

Figure 6, we consider Shamir-DKG for Plain-DKG approach. We

compare D-KODE with Plain-DKG as it is the only other major

approach available currently in the industry (Torus[14], Sepior [12]

etc).

When the servers store keys, either own or user’s secret keys for

a long-time, proactively refreshing the shares is inevitable. This is

one of key phases whereD-KODE offers an advantage. To bring this
out, we compare the different numbers of shares and commitments

stored at each server when using different schemes to provide

the key shares in Table 3 (provided in Appendix owing to space

constraints). The table compares D-KODE where the master key

between servers is shared using RSS and BBSS and Plain-DKG for

the different numbers of servers and clients present in the system.

For share refreshing, each share value stored at the server is re-

shared in the next epoch. Hence the number of shares stored at

each server is the same as the number of verifiable secret sharings

to be performed in the next round.

Plain-DKG stores 𝑡 + 1 commitments for each (𝑛, 𝑡) DKG, hence
for 𝑐 number of clients, stores 𝑐 · (𝑡 + 1) commitments per server.

For BBSS with distribution matrix of size 𝑑 × 𝑒 , each server stores 𝑒

commitments per shared value. Hence for 8192-element master key,

stores 8192 · 𝑒 commitments. For RSS, each server forwards com-

mitments to each of the share, hence the number of commitments

is 8192 ·
(𝑛
𝑡

)
.

For Plain-DKG, since the number of shares is the same as the

number of clients and hence linear with, increasing the share-

refresh time with a higher number of clients. D-KODE uses a fixed

1024-element long master key vector shared among the servers.

Only shares corresponding to the master key vector need to be re-

freshed at each round and do not change with the number of clients.

11

10 20 30 40 50

10
1

10
2

10
3

Nodes

T
i
m
e
i
n
s
e
c
o
n
d
s

BBSS-PSS

Shamir-PSS

Figure 7: Time taken to perform share refreshing - proactive
secret sharing (PSS) of shares corresponding to one element
in the master key. These values correspond to re-sharing a
total of 216 values for 10-27 nodes and 1296 283-bit values
for 28 − 50 node network for D-KODE with BBSS. For Shamir
secret (re-)sharing, each node re-shares just one 256-bit el-
ement per key. The values show the mean of values across
nodes for 10 runs of the protocol.

For D-KODE with RSS, the number of shares is constant with re-

spect to the users but increases exponentially with the number of

servers. The number of shares stored at the server when D-KODE
is used with BBSS is dependent on the distribution vector. Since the

actual number of share elements per server may vary depending on

the share distribution function, we provide the average number of

share elements per server. For the ranges𝑛 ∈ [4, 9], [10, 27], [28, 50],
the distribution matrix would be the same within each range. Hence

with increasing 𝑛 in those ranges, the average number of shares

per server decreases. The distribution matrix would again change

at 𝑛 = 82. The distribution matrices and the different data-sets

have been provided at the link https://anonymous.4open.science/

repository/KODE/secretsharing/blackbox/

Figure 7 in Appendix shows the time to refresh one share through

proactive secret sharing(PSS). BBSS-PSS takes longer as the number

of share elements per server is higher whereas it is just one element

for Shamir secret sharing while sharing a single secret value. The

increase in time at 𝑛 = 10 and 𝑛 = 28 for BBSS-PSS is due to the

change in distribution matrix size. Figure 8 shows the estimated

time to refresh shares using D-KODE and Plain-DKG for increasing

number of keys. We note that any parallelization applied to speed-

up can be applied to both schemes. Hence, we provide an estimate

of times taken by appropriately scaling the timing values obtained

for re-sharing of single share value. D-KODE out-performs Plain-

DKG for 94K and higher keys when the number of servers used is

below 27. In the range of 28 − 50 servers, D-KODE out-performs

Plain-DKG from 1 million keys. D-KODE protocol also offers the

non-trivial advantages of storing shares of 8192-element key vector

versus millions of key-shares and the servers being essentially

non-interactive except during the share-refreshing phase. D-KODE
is particularly suitable for large-scale service-offering scenarios

involving millions of keys.

10 20 30 40 50
10

5

10
6

10
7

10
8

10
9

10
10

Nodes

T
i
m
e
i
n
s
e
c
o
n
d
s

D-KODE, all Φ
Plain-DKG, Φ = 100𝐾

Plain-DKG, Φ = 1 million

Plain-DKG, Φ = 10 million

Figure 8: Estimated time to refresh shares through proactive
secret sharing (PSS) for D-KODE and Plain-DKG for number
of keys Φ = 100𝐾, 1million and 10million. D-KODE re-shares
shares of a fixed number of 8192 values; Plain-DKG re-shares
values equal to the number of keys.

9 RELATEDWORK
Apart from the DKG based approaches studied in this work, firms

like ZenGo [17] and Unbound [16] have proposed solutions to

solve key-management problem. However, they store a key-share

of the secret key on the client device, requiring explicit registration

procedure. This prevents other clients from obtaining public keys

of parties which have not registered yet.

The other approaches which are closer to the goals of the pa-

per are in the domain of identity-based encryption (IBE) with a

distributed private-key generator (PKG). An IBE scheme allows

any party to generate a public key associated with a known iden-

tity value and employs a trusted PKG node to generated related

private key. As it is possible to distribute the trust of a PKG node

among a set of servers [49], it seems to directly fit both the scenar-

ios discussed in this work. However, use of IBE presents a nuanced

cryptographic challenge: the generated IBE private keys are elliptic

curve group elements, while current blockchains employ ECDSA

or Schnorr signatures and require private keys to be scalar from

Z𝑝 . While theoretically mapping the elliptic curve group elements

to Z𝑝 is possible through hashing, performing such a hash com-

putation in a multi-party setting is computationally expensive in

practice[18, 43].

The BBSS scheme has been proposed by Cramer et al. [35] who
provide a construction of the scheme with reconstruction coeffi-

cients in Z. D-KODE uses the Benaloh-Leichter construction [24] in

the realization of the scheme tomake the reconstruction coefficients

small. Another closely related work is by Damgard et al. [36] which
proposes linear integer secret sharing (LISS) where an integer value

is shared instead of a finite group element Z𝑝 . The work proposes

to realize the distribution matrix using the mechanism proposed

by Valiant [63] and Hooray [46]. A verifiable version of the LISS

scheme has been proposed in [51, 61]. Unlike the LISS scheme, we

require the secret to be in the group Z𝑝 , hence we use the BBSS
scheme.

12

https://anonymous.4open.science/repository/KODE/secretsharing/blackbox/
https://anonymous.4open.science/repository/KODE/secretsharing/blackbox/

Distributed PRFs (DPRF) were studied in works like [28, 33, 54]

where in [54] the authors use the PRF for a secret key distribution

centre. Boneh et al. [28] study key homomorphic PRF for DPRF

computation, Libert et al. [50] propose a DPRF construction secure

against adaptive adversary in the standard model, however the PRF

proposed requires large groups and computing expensive rounding-

down functions in the multi-party setting.

Distributed Key Generation has been well studied both by the

academia and industry [40, 48]. Gennaro et al. [40] propose a DKG
mechanism that utilizes Shamir secret sharing and polynomial

commitments for verifiability. DKG for networks involving 15− 20
servers has been attempted in the work [20]. Recently work by

Tomescu et al. [62] has shown an efficient and fast DKG for large

systems. The authors use multi-point evaluation of polynomials

to perform efficient verifiable secret sharing and DKG. Another

recent work on aggregatable DKG [44] studies DKG with more

efficient transcript size and verification time. However, the focus of

the authors of [44, 62] is to scale with number of servers instead

of clients which we deal through the D-KODE protocol. Proactive

secret sharing [45] has been employed by Coca [64] which proposes

an online certificate authority with share refreshing. Zhou et al. [65]
study a proactive secret sharing scheme for asynchronous networks

using replicated secret sharing (RSS). However since the sharing is

RSS which provides exponential number of shares with increasing

number of servers, the scheme becomes unviable beyond 10 − 15
servers.

10 CONCLUSION
In this paper we present the D-KODE protocol, an efficient solution

for providing keys to parties who wish to transact among them-

selves and do not have access to key-setup, even when one them

is offline. A set of servers with a master secret threshold-shared

between them provide partial key shares as verifiable PRF evalua-

tions to the clients who reconstruct the desired keys. We envisage

a system where millions of clients avail the service and the solution

scales well with the number of keys. In this paper we instantiate a

distributed key generation mechanism using black-box secret shar-

ing and propose a proactive sharing mechanism of BBSS shared

keys to support the system over long periods of time. Our prototype

implementation shows the scalability of our solution as the number

of keys reaches 100 − 1000K depending on the number of servers.

ACKNOWLEDGEMENTS
We thank Leonard Tan and Zhen Yu of Torus for the discussions

and feedback regarding key management in cryptocurrency wallets.

This work has been partially supported by the National Science

Foundation under grant CNS-1846316.

REFERENCES
[1] Airdrop king. https://airdropking.io/en/.

[2] Binance. https://www.binance.com/en.

[3] Chainlink. https://chain.link/.

[4] Charm: A Framework for Rapidly Prototyping Cryptosystems. https://github.

com/JHUISI/charm.

[5] Cocoricos airdrops. https://cocoricos.io/airdrops.

[6] Coinbase wallet. https://wallet.coinbase.com/.

[7] Coindesk airdrop archive. https://www.coindesk.com/tag/airdrops.

[8] How many bitcoin addresses are being cre-

ated in 2021. https://appdevelopermagazine.com/

how-many-bitcoin-addresses-are-being-created-in-2021/.

[9] Keep network. https://keep.network/.

[10] Kraken. https://www.kraken.com/.

[11] Nist roadmap toward criteria for threshold schemes for cryptographic primitives.

https://csrc.nist.gov/publications/detail/nistir/8214a/final.

[12] Sepior. https://sepior.com/.

[13] Tendermint. http://Tendermint.com.

[14] Torus. http://Tor.us.

[15] The transport layer security (tls) protocol. https://tools.ietf.org/html/rfc8446.

[16] Uboundtech. https://www.unboundtech.com/.

[17] Zengo, kzen networks. https://zengo.com/.

[18] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal

multiplicative complexity. In Advances in Cryptology – ASIACRYPT 2016, pages
191–219, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[19] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness

of learning with errors. Cryptology ePrint Archive, Report 2015/046, 2015.

https://eprint.iacr.org/2015/046.

[20] Ian Goldberg Aniket Kate, Yizhou Huang. Distributed key generation in the

wild.

[21] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic

pseudorandom functions. In Annual Cryptology Conference, pages 353–370.
Springer, 2014.

[22] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions

and lattices. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 719–737. Springer, 2012.

[23] Mihir Bellare and Phillip Rogaway. Robust computational secret sharing and a

unified account of classical secret-sharing goals. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS ’07, page 172–184,
New York, NY, USA, 2007. Association for Computing Machinery.

[24] Josh Benaloh and Jerry Leichter. Generalized secret sharing and monotone

functions. In Shafi Goldwasser, editor, Advances in Cryptology — CRYPTO’ 88,
pages 27–35, New York, NY, 1990. Springer New York.

[25] Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of a

secret secret (extended abstract). In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 251–260, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

[26] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS
National Computer Conference, pages 313–317, Monval, NJ, USA, 1979. AFIPS

Press.

[27] Dan Boneh, Manu Drijvers, and Gregory Neven. Short signatures from the weil

pairing. In BLS Multi-Signatures With Public-Key Aggregation. https://crypto.
stanford.edu/~dabo/pubs/papers/BLSmultisig.html.

[28] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key

homomorphic prfs and their applications. In Annual Cryptology Conference,
pages 410–428. Springer, 2013.

[29] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil

pairing. In International conference on the theory and application of cryptology
and information security, pages 514–532. Springer, 2001.

[30] R. B. Boppana. Amplification of probabilistic boolean formulas. In 26th Annual
Symposium on Foundations of Computer Science (sfcs 1985), pages 20–29, 1985.

[31] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and

more. In 2018 IEEE Symposium on Security and Privacy (SP), pages 315–334. IEEE,
2018.

[32] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asyn-

chronous verifiable secret sharing and proactive cryptosystems. In Proceedings
of the 9th ACM Conference on Computer and Communications Security, CCS ’02,
page 88–97, New York, NY, USA, 2002. Association for Computing Machinery.

[33] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in con-

stantinople: Practical asynchronous byzantine agreement using cryptography. J.
Cryptol., 18(3):219–246, 2005.

[34] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom

secret-sharing and applications to secure computation. In Theory of Cryptography
Conference, pages 342–362. Springer, 2005.

[35] Ronald Cramer and Serge Fehr. Optimal black-box secret sharing over arbitrary

abelian groups. In Moti Yung, editor, Advances in Cryptology — CRYPTO 2002,
pages 272–287, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[36] Ivan Damgård and Rune Thorbek. Linear integer secret sharing and distributed

exponentiation. In Public Key Cryptography - PKC 2006, pages 75–90, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[37] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random func-

tions. In InternationalWorkshop on Public Key Cryptography, pages 1–17. Springer,
2003.

13

https://airdropking.io/en/
https://www.binance.com/en
https://chain.link/
https://github.com/JHUISI/charm
https://github.com/JHUISI/charm
https://cocoricos.io/airdrops
https://wallet.coinbase.com/
https://www.coindesk.com/tag/airdrops
https://appdevelopermagazine.com/how-many-bitcoin-addresses-are-being-created-in-2021/
https://appdevelopermagazine.com/how-many-bitcoin-addresses-are-being-created-in-2021/
https://keep.network/
https://www.kraken.com/
https://csrc.nist.gov/publications/detail/nistir/8214a/final
https://sepior.com/
http://Tendermint.com
http://Tor.us
https://tools.ietf.org/html/rfc8446
https://www.unboundtech.com/
https://zengo.com/
https://eprint.iacr.org/2015/046
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

[38] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with

short proofs and keys. In International Workshop on Public Key Cryptography,
pages 416–431. Springer, 2005.

[39] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.

In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages
427–438. IEEE, 1987.

[40] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure

distributed key generation for discrete-log based cryptosystems. J. Cryptol.,
20(1):51–83, January 2007.

[41] Oded Goldreich. Valiant?s polynomial-size monotone formula for majority. 2011.

[42] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions. In Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pages 241–264. 2019.

[43] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P.

Smart. Mpc-friendly symmetric key primitives. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, page
430–443, New York, NY, USA, 2016. Association for Computing Machinery.

[44] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. Aggregatable distributed key generation. Cryptology ePrint

Archive, Report 2021/005, 2021. https://eprint.iacr.org/2021/005.

[45] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. Proactive

secret sharing or: How to cope with perpetual leakage. In Annual International
Cryptology Conference, pages 339–352. Springer, 1995.

[46] Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for the

majority function. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 410–425. Springer, 2006.

[47] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing

general access structure. Electronics and Communications in Japan (Part III:
Fundamental Electronic Science), 72(9):56–64, 1989.

[48] Aniket Kate and Ian Goldberg. Distributed key generation for the internet. In

2009 29th IEEE International Conference on Distributed Computing Systems, pages
119–128. IEEE, 2009.

[49] Aniket Kate and Ian Goldberg. Distributed private-key generators for identity-

based cryptography. In Juan A. Garay and Roberto De Prisco, editors, Security
and Cryptography for Networks, pages 436–453, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[50] Benot Libert, Damien Stehl, and Radu Titiu. Adaptively secure distributed prfs

from lwe. In Theory of Cryptography Conference, pages 391–421. Springer, 2018.
[51] Chuangui Ma and Xiaofei Ding. Proactive verifiable linear integer secret sharing

scheme. In Information and Communications Security, pages 439–448, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[52] Alfred J Menezes, Jonathan Katz, Paul C Van Oorschot, and Scott A Vanstone.

Handbook of applied cryptography. CRC press, 1996.

[53] M. Naor and O. Reingold. Synthesizers and their application to the parallel

construction of pseudo-random functions. In Proceedings of IEEE 36th Annual
Foundations of Computer Science, pages 170–181, 1995.

[54] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random

functions and kdcs. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 327–346. Springer, 1999.

[55] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient

pseudo-random functions. J. ACM, 51(2):231–262, 2004.

[56] Jesper Buus Nielsen. A threshold pseudorandom function construction and

its applications. In Annual International Cryptology Conference, pages 401–416.
Springer, 2002.

[57] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In

Proceedings of the tenth annual ACM symposium on Principles of distributed
computing, pages 51–59, 1991.

[58] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 73–85, 1989.

[59] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November

1979.

[60] Markus Stadler. Publicly verifiable secret sharing. In Ueli Maurer, editor, Ad-
vances in Cryptology — EUROCRYPT ’96, pages 190–199, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[61] Rune Thorbek. Proactive linear integer secret sharing. 2009.

[62] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,

Guy Golan Gueta, and Srinivas Devadas. Towards scalable threshold cryp-

tosystems. In 2020 IEEE Symposium on Security and Privacy (SP), 2020.
[63] Leslie G. Valiant. Short monotone formulae for the majority function. Journal of

Algorithms, 5(3):363–366, 1984.
[64] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. Coca: A secure dis-

tributed online certification authority. ACM Trans. Comput. Syst., 20(4):329–368,
2002.

[65] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. Apss: Proactive secret

sharing in asynchronous systems. ACM Trans. Inf. Syst. Secur., 8(3):259–286,
2005.

A PSEUDO RANDOM FUNCTION
A pseudo-random function (PRF) family [22, 42, 53] is a set of keyed

functions with a common domain and range, such that no efficient

algorithm can distinguish between a randomly chosen function

from the PRF family and a random oracle. A key homomorphic PRF

[21, 28] is a PRF that is homomorphic with respect to the key-input

of the function. It can be used as a distributed PRF [33, 54, 56]

when the key is shared among the servers. With an almost-key

homomorphic PRF, the computed evaluation from the shares may

differ (may not be equal) from the evaluation of the PRF.

In this work, we use an almost-homomorphic PRF which is based

on the Learning-with-rounding (LWR) assumption (Definition 2.2).

Employed PRF [28]. Given a hash function 𝐻 : X → Z𝑢𝑞 , a key
vector k ∈ Z𝑢𝑞 and with 𝑝 < 𝑞, the PRF evaluation 𝐹 : X×Z𝑢𝑞 → Z𝑝
of the string 𝑋 is 𝐹 (𝑋,k) =

⌊
𝐻 (𝑋) · k

⌋
𝑝
∈ Z𝑝 . That 𝐹 (·, ·) is a

PRF in the random oracle model follows directly from the LWR
assumption discussed above, where 𝐻 (𝑋) corresponds to matrix A
with a single row (𝑚 = 1) and the secret key k to vector s.

In this work, we use the above PRF in the distributed setting,

with a key k shared among them and among 𝑛 servers and each

server locally computing a (partial) evaluation of the PRF on some

input 𝑋 non-interactively. Any party wishing to compute the PRF

𝐹 (𝑋,k) inputs 𝑋 to the servers and obtains evaluations from the

each of them to reconstruct 𝐹 (𝑋,k).

Table 4: Comparison of Plain-DKG and D-KODE with BBSS
for 𝑛 servers and Φ keys and a constant 𝑘 . Refer Table 3 for
the exact value of 𝑘 for different 𝑛.

Plain-DKG D-KODE (with

BBSS)

Key-generation DKG and Con-

sensus for ev-

ery new-id

Non-

interactive

PRF evaluation

Storage - shares Φ 𝑘

Communication

complexity

(PSS)

Φ ·𝑂 (𝑛3) 𝑘 ·𝑂 (𝑛3)

Security as-

sumptions

DLog DLog and LWR

Preferable for

number of keys

100 − 1000K >100 − 1000K

B MONTONE BOOLEAN FORUMULA FOR
MAJORITY FUNCTION

Majority function [63] of 𝑛 variables with values in {0, 1} is defined
as taking the value 1 if at least 𝑛/2 number of variables are 1 and

0 otherwise. Let {𝑥𝑖 }𝑛𝑖=1 be the 𝑛 variables over which Majority

function𝑀𝑎𝑗 (·) is being computed, then

𝑀𝑎𝑗 (𝑥1, 𝑥2, · · · , 𝑥𝑛) =
{

1 if

∑
𝑖 𝑥𝑖 ≥ 𝑛

2
; 𝑥𝑖 ∈ {0, 1}

0 if otherwise

While majority function of 𝑛 variables can be realized using non-

monotone circuits of size𝑂 (log𝑛), monotonicity places restrictions

14

https://eprint.iacr.org/2021/005

on the circuit that the circuit should only be realized using AND

and OR gates (but not NOT) gates. Valiant [63] first proved that

a polynomial size monotone circuit is realizable for majority cir-

cuit and provided a construction of size𝑂 (𝑛5.3). Subsequent works
like one by Hoory [46] discuss majority circuits and realize thresh-

old structures using majority circuit. Boppanna [30] showed that

𝑂 (𝑡4.3𝑛) is the optimal upper bound on the majority circuit over 𝑛

variables for a threshold 𝑡 . Hooray [46] further improved the size of

the circuite to𝑂 (𝑛1+
√
2) while keeping the circuit depth at𝑂 (log𝑛).

Goldreich [41] provided an exposition of Valiant’s approach to the

majority circuit construction, a probabilistic proof while using a

different probability amplifier (majority-3) than the one used by

Valiant.

We briefly explain the construction provided in [41]:

Let the 𝑛 variables be 𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ [𝑛]. Generate 𝑚 random

variables 𝑦 𝑗 , 𝑗 ∈ [𝑚] by uniform randomly sampling an index

among [𝑛] and assigning the correspding 𝑥𝑖 value to each 𝑦 𝑗 se-

quentially. When Pr(𝑧𝑖 = 1) = 𝑝 for each 𝑖 ∈ [3], the probability
that themajority function is 1 is given by Pr(𝑀𝐴𝐽3 (𝑧1, 𝑧2, 𝑧3)) = 1 is

3(1−𝑝)𝑝2+𝑝3. If 𝑝 = 0.5+𝜖, 𝜖 ≤ 𝜖0 < 0.5, then 𝑝 ′ ≥ 0.5+(1.5−2𝜖2
0
)𝜖 .

Thus the bias of 𝜖 is increased by the factor (1.5 − 2𝜖2
0
) for each

level of the tree. When the number of ones in the initial set of

variables 𝑥𝑖 is
𝑛
2
+ 1, the bias of the variables 𝑦𝑖 at the lowest level

of the tree would be
1

𝑛 . This bias is increased in three steps: First

the bias is brought to a constant (< 1

2
) using ℓ1 layers of the tree,

then that constant is increased further to be close to 1 using ℓ2
layers, finally the probability of majority function being 1 when

there is majority in the initial value is taken arbitrarily close to 1,

in other words, the probability of function returning 0 when there

is majority is made negligibly small < 2
−𝑛

in another ℓ3 layers of

the circuit. When using majority circuit, using 𝑝 = 0.5 for a given

𝑛, when𝑀𝐴𝐽3 nodes are used as probability amplifiers, this would

result in a circuit depth of ℓ1 + ℓ2 + ℓ3 ∼ 2.71 log𝑛. When 𝑀𝐴𝐽3 is

expanded using fan-in 2 gates, we have a circuit implemented using

only gates with fan-in 2. This would result in a total circuit size of

𝑂 (𝑛5.3).

C BOOLEAN FORMULA AND DISTRIBUTION
MATRIX

The circuit is represented as a boolean formula by expanding𝑀𝐴𝐽3
(𝑧1, 𝑧2, 𝑧3) as (𝑧1∧𝑧2)∨(𝑧2∧𝑧3)∧(𝑧1∨𝑧3), resulting in a monotone

boolean formula computing majority/threshold function. This for-

mula is then used to compute the distribution matrix of the linear

integer secret sharing scheme (LISS). The Benolah-Leichter (BL)

[24] construction of converting a monotone boolean formula is

briefly recollected here.

Consider Boolean functions 𝑓𝑂𝑅 = 𝑓1 ∨ 𝑓2 and 𝑓𝐴𝑁𝐷 = 𝑓1 ∧ 𝑓2
where 𝑓1, 𝑓2 are either Boolean functions or literals. Let𝑀𝑎 and𝑀𝑏
are share distribution matrices of 𝑓1 and 𝑓2 respectively. The share

distribution matrices of 𝑓𝑂𝑅, 𝑓𝐴𝑁𝐷 are computed as 𝑀𝑂𝑅, 𝑀𝐴𝑁𝐷
as shown in Figure 9, where 𝐶𝑎 is the first column of matrix 𝑀𝑎
and 𝑅𝑎 is the rest of the matrix except the first column of matrix

𝑀𝑎 . Similarly 𝐶𝑏 , 𝑅𝑏 are the first column of matrix𝑀𝑏 and the rest

of the matrix except the first column of matrix𝑀𝑏 respectively. If

the function contains only one literal, it is taken just as column i.e.,

for any literal 𝑓1 = 𝑥𝑖 , the matrix is just [1] with 𝐶𝑎 = 1 and no 𝑅𝑎 .

Figure 9: Share distributionmatrix forOR andAND functions

Table 5:𝑚 values when using majority and threshold circuits
for different 𝑛 values for p = 0.5, 0.66, e = 2

−𝑛
4

𝑛
Majority Circuit Threshold Circuit

p = 0.5 p = 0.66 p = 0.5 p = 0.66

5 9 81 9 9

10 81 2187 81 27

20 2187 59049 2187 27

30 19683 531441 19683 81

D REPLICATED SECRET SHARING
Replicated secret sharing [34] for a monotone access structure Γ
and its maximal unqualified sets T , the shares of secret 𝑠 ∈ Z𝑞
are generated as follows: the dealer first generates |T | number of

additive shares of 𝑠 , each labelled by a unique set in T . Let the
shares be {𝑟𝑇 ∈ Z𝑞,𝑇 ∈ T }, each player 𝑃𝑖 is given the vector of

shares 𝑟𝑇 such that 𝑖 ∉ 𝑇 . Parties of every maximal unqualified set

𝑇 ∈ T jointly do not have access to exactly one share element 𝑟𝑇 .

Parties of every qualified set jointly own all the share elements and

thus additively reconstruct the secret 𝑠 . For a (𝑛, 𝑡) threshold access
structure, each party is given

(𝑛
𝑡

)
share elements.

E ZERO-KNOWLEDGE PROOF OF EQUALITY
OF COMMITTED VALUE

The distributed key generation protocol in the Figure 4 involves a

zero knowledge proof of equality of values committed by Pedersen

commitment and discrete log commitment. Here we reproduce the

non-interactive zero knowledge proof of knowledge NIZKPoK [20]:

given a discrete log commitment (DLog) commitment of value 𝑠

as 𝐶1 = 𝑔𝑠 and a Pedersen commitment of the same value 𝑠 as

𝐶2 = 𝑔
𝑠ℎ𝑟 for 𝑔, ℎ ∈ G and 𝑠, 𝑟 ∈ Z𝑝 , the prover proves the knowl-

edge of (𝑠, 𝑟) for the given (𝐶1,𝐶2) using the proof we denote by

𝜋 . It is generated using the following steps: The prover P does the

following: (i) Picks values 𝑣1, 𝑣2
$←− Z𝑝 and computes (𝑉1,𝑉2) =

(𝑔𝑣1 , ℎ𝑣2) (ii) Computes the hash 𝑐 = 𝐻 (𝑔, ℎ,𝐶1,𝐶2,𝑉1,𝑉2) where
(𝐶1,𝐶2) = (𝑔𝑠 , 𝑔𝑠ℎ𝑟) and 𝐻 : G → Z𝑝 (iii) Computes values

(𝑢1, 𝑢2) = (𝑣1 − 𝑐𝑠, 𝑣2 − 𝑐𝑟) (iv) Sends (𝑐,𝑢1, 𝑢2) as proof 𝜋 along

with (𝐶1,𝐶2)
The verifier V with the values (𝑔, ℎ,𝐶1,𝐶2, 𝑐,𝑢1, 𝑢2) performs

the following check: (i) Computes: (𝑉 ′
1
,𝑉 ′

2
) =

(
𝑔𝑢1𝐶𝑐

1
, ℎ𝑢2

(𝐶2

𝐶1

)𝑐)
15

(ii) Computes 𝑐 ′ = 𝐻 (𝑔, ℎ,𝐶1,𝐶2,𝑉 ′
1
,𝑉 ′

2
). (iii) Accepts the proof if

𝑐 = 𝑐 ′ else rejects.

E.1 Equality of exponent with different bases
To prove equality of exponent in discrete logarithm commitment

with different bases 𝑔 ∈ G, g ∈ G, given 𝐶1 = 𝑔𝑠 and 𝐶2 = g𝑠 , the

prover P does the following: (i) Picks values 𝑣
$←− Z𝑝 and computes

(𝑉1,𝑉2) = (𝑔𝑣, g𝑣) (ii) Computes the hash 𝑐 = 𝐻 (𝑔, g,𝐶1,𝐶2,𝑉1,𝑉2)
(iii) Computes 𝑢 = 𝑣 − 𝑐𝑠 (iv) Sends (𝑐,𝑢) as proof along 𝜋Eq with
(𝐶1,𝐶2)

The verifierV takes the values (𝑔, g,𝐶1,𝐶2, 𝑐,𝑢) and computes

the following (i) (𝑉 ′
1
,𝑉 ′

2
) =

(
𝑔𝑢𝐶𝑐

1
, g𝑢𝐶𝑐

2

)
(ii) 𝑐 ′ = 𝐻 (𝑔, g,𝐶1,𝐶2,𝑉 ′

1
,𝑉 ′

2
).

(iii) Accepts the proof if 𝑐 = 𝑐 ′ else rejects.

F VERIFYING THE EVALUATION OF THE PRF
While the clients obtain shares as the PRF evaluations presented

in Section 6.1, it is imperative for the clients to verify if the values

received were generated correctly. The servers after evaluating the

PRF, forward a commitment and a zero-knowledge proof proving

that the values have been computed according to the protocol. For

ease of exposition, we present here the verifiability for one PRF
evaluation.

The PRF function employed by D-KODE protocol is

𝐹 (𝑋,k) =

⌊
𝐻 (𝑋) · k

⌋
𝑝
∈ Z𝑝 with 𝐻 : X → Z𝑢𝑞 , k ∈ Z𝑢𝑞 ,

𝐹 : X × Z𝑢𝑞 → Z𝑝 and 𝑝 < 𝑞. Let k = {𝛼1, 𝛼2, · · · , 𝛼𝑢 }.

Verification of the private key evaluation. Let 𝑧 = 𝐹 (𝑋,k)
for k defined as above. To compute 𝑧, the servers compute the

inner product 𝑤 = (𝐻 (𝑋) · k) ∈ Z𝑞 and perform the operation

𝑧 = ⌊𝑤⌋𝑝 ∈ Z𝑝 . Hence we have, 𝑧 =

⌊
𝑤 · 𝑝𝑞

⌋
=⇒ 𝑝𝑤 = 𝑧𝑞 + 𝑟

where the value 𝑟 < 𝑞. To provide verifiability, it is enough for

the server to prove that the above equation has been evaluated

correctly and that the value 𝑟 < 𝑞. The server uses commitments

and zero-knowledge range proof to do the same.

Server computation. For a key k = {𝛼1, 𝛼2, · · · , 𝛼𝑢 }, and a ran-

domk′ = {𝛽1, 𝛽2, · · · , 𝛽𝑛}, the server initially publishes the commit-

ments 𝑐𝑖 = g𝛼𝑖h𝛽𝑖 , 𝑖 ∈ [𝑢], g, h ∈ G are generators of multiplicative

group of order 𝜏 > 𝑝𝑞.

For proving the correct evaluation of 𝑧 = 𝐹 (𝑋,k), the server com-

putes 𝑧′ = 𝐹 (𝑋,k′) and 𝑟 = 𝑝𝑤 − 𝑞𝑧 mod 𝜏 , 𝑟 ′ = 𝑝𝑤 ′ − 𝑞𝑧′ mod 𝜏 ;

forwards the values 𝑐 = g𝑟h𝑟
′
and 𝑧′ = 𝐹 (𝑋,k′) The server also

computes and forwards zero-knowledge range proof [31] 𝜋𝑟 , 𝜋𝔨
proving that 𝑟 < 𝑞, 𝔨 < 𝑢 · 𝑞 such that𝑤 + 𝔨𝑞 =

∑𝑢
𝑖=1 𝛼𝑖ℎ𝑖 . Similarly,

he computes 𝔨′.
Thus when evaluating the PRF for an input 𝑋 , the server replies

with the following: {𝑧, 𝑧′, g𝑟h𝑟 ′, g𝔨h𝔨′, 𝜋𝑟 , 𝜋𝔨}. Note that 𝑐𝑖 values
are available to the client before the PRF evaluation.

Client side computation. Using the received values and the

initially published 𝑐𝑖 = g𝛼𝑖h𝛽𝑖 values, the client computes

g𝑤h𝑤
′
= g−𝑞𝔨h−𝑞𝔨

′
𝑢∏
𝑖=1

(g𝛼𝑖h𝛽𝑖)ℎ𝑖

To verify the PRF value 𝑧, after verifying the range proof 𝜋𝑟 , the

client verifies

g𝑝𝑤h𝑝𝑤
′
= g𝑞𝑧h𝑞𝑧

′
· g𝑟h𝑟

′

F.1 Verification of the public key evaluation
Previously for the secret key evaluation corresponding to identity𝑋 ,

the server computed and forwarded the value 𝑧 = 𝐹 (𝑋,k). However,
for public key evaluation, the server forwards 𝑔𝑧 , for 𝑔 ∈ G a

generator of a multiplicative group of order 𝑝 .

Similar to the procedure for PRF verification above, the server

forwards g𝑟h𝑟
′
such that 𝑝𝑤 = 𝑧𝑞 + 𝑟 ; 𝑝𝑤 ′ = 𝑧′𝑞 + 𝑟 ′ and 𝜋𝑟 , 𝜋𝔨

proving that 𝑟 < 𝑞 and 𝔨 < 𝑢 such that 𝑤 + 𝔨𝑞 =
∑𝑢
𝑖=1 𝛼𝑖ℎ𝑖 mod 𝜏 .

Similarly, he also computes 𝔨′. However, instead of values 𝑧, 𝑧′,
the server forwards g𝑧 and g𝑧h𝑧

′
where g, h ∈ G are generators of

multiplicative group of order 𝜏 > 𝑝𝑞.

Additionally, the server sends a zero-knowledge proof of equal-

ity of exponents 𝜋Equ (𝑔𝑧 , g𝑧h𝑧
′) proving that the value 𝑧 in both

the exponents (𝑔𝑧 , g𝑧h𝑧′) is equal (Refer Section E for the zero

knowledge proof used). Thus the server forwards the values

{𝑔𝑧 , g𝑧h𝑧
′
, g𝑟h𝑟

′
, g𝔨h𝔨

′
, 𝜋𝑟 , 𝜋Equ (𝑔𝑧 , g𝑧h𝑧

′
)}

After verifying the zero knowledge proofs, the client computes

g𝑤h𝑤
′
as before and verifies

g𝑝𝑤h𝑝𝑤
′
= g𝑞𝑧h𝑞𝑧

′
· g𝑟h𝑟

′

G SECURITY ANALYSIS
G.1 Correctness and secrecy of BBSS-DKG

Theorem 7.1. Given a correct and secure (𝑛, 𝑡)-verifiable BBSS
scheme, the Proactive BBSS protocol of Figure 5 satisfies correctness
and secrecy properties under the discrete logarithm assumption.

Proof. Correctness. In Phase 1 of the BBSS-DKG protocol

from Figure 4, all honest parties compute the same qualified set Q
as the complaint and disqualification information is broadcast to

all parties. Any party 𝑃𝑖 ∈ Q, which shared its value 𝑧𝑖 successfully

and any set T of 𝑡 + 1 or more honest parties can reconstruct the

secret key value, owing to the threshold structure of the BBSS per-

formed. Let R =
⋃
𝑖 𝑇𝑖 , 𝑖 ∈ T be the set of all row indices of 𝑴

held by the parties of T . Each 𝑧𝑖 =
∑
𝑘∈R 𝑠𝑖𝑘 · 𝜆𝑘 𝝀T = {𝜆𝑘 , 𝑘 ∈

R} such thatM⊤T ·𝝀T = 𝜺 and 𝑧𝑖 = s⊤T ·𝝀T , where sT is the vector

of all share elements held by all the parties in T . Every honest

party computes its share vector sk𝑗 = {𝑠𝑘 |𝑠𝑘 =
∑
𝑖∈Q 𝑠𝑖𝑘 , 𝑘 ∈ 𝑇𝑗 }

element-wise for each 𝑘 . Thus we have,

𝑠𝑘 =
∑︁
𝑖∈Q

𝑧𝑖 =
∑︁
𝑖∈Q

(∑︁
𝑘∈R

𝑠𝑖𝑘 · 𝜆𝑘
)

=⇒ 𝑠𝑘 =
∑︁
𝑘∈R

𝜆𝑘 ·
(∑︁
𝑖∈Q

𝑠𝑖𝑘

)
=

∑︁
𝑘∈R

𝜆𝑘 · 𝑠𝑘

This holds for any set qualified set T (and hence the corresponding

set of rows R), thus giving a unique 𝑠𝑘 for all such sets with 𝑡 + 1
or more parties.

16

Let C = {𝑃𝑖 , 𝑖 ∈ {1, · · · , 𝑡 ′}} denote the parties controlled by the

adversary andH = {𝑃 𝑗 , 𝑗 ∈ {𝑡 ′+1, · · · , 𝑛}} denote the set of honest
parties in the protocol. 𝑡 ′ ≤ 𝑡 . Stakes the public key 𝑦 as input.

(1) The simulator S performs all the steps in the Phase 1 of

the BBSS-DKG on behalf of the parties of setH including

generating and forwarding shares and commitments, veri-

fications of the received shares and handling all communi-

cations with the corrupted parties such that the following

hold:

(a) The values 𝝆𝑖 , 𝝆
′
𝑖
for 𝑃𝑖 ∈ H are chosen at random by

S.
(b) The set Q is well defined withH ⊂ Q
(c) The adversary’s view consists of (𝝆 𝑗 , 𝝆 ′𝑗) for 𝑃 𝑗 ∈ C,

shares (s𝑖, 𝑗 , s′𝑖, 𝑗) for 𝑃𝑖 ∈ Q and 𝑃 𝑗 ∈ C and commit-

ments 𝐶𝑖𝑘 , 𝑃𝑖 ∈ Q, 𝑘 ∈ [𝑡]
(d) S has all shares and commitments of the parties in

Q. For 𝑗 ∈ Q\H , S has enough valid shares to recon-

struct the vector 𝝆 𝑗 , 𝝆
′
𝑗
.

(2) Perform:

(a) Compute 𝐴𝑖𝑙 , 𝑙 ∈ [𝑒] = 𝑔𝜌𝑖𝑙 for 𝑖 ∈ Q\𝑛, 𝑙 ∈ [𝑒]
(b) Set 𝐴∗

𝑛0
= 𝑦

∏
𝑖∈Q\𝑛 (𝐴𝑖0)−1 and s∗

𝑛𝑘
= 𝒔𝑛𝑘 =

{𝑠𝑛𝑘 , 𝑘 ∈ 𝑇𝑛} where 𝑠𝑛𝑙 , 𝑙 ∈ [𝑒] is an element of the

vector 𝑀 · 𝝆𝑛 item Broadcast the values 𝐴𝑖𝑙 for 𝑖 ∈
H\𝑛 and 𝐴∗

𝑛𝑙
with 𝑙 ∈ [𝑒] along with the correspond-

ing NIZKPoK 𝝅𝑖

Simulator S

Figure 10: Simulator for BBSS-DKG

Also, each share element 𝑠𝑘 , 𝑘 ∈ 𝑇𝑗 of a party 𝑃 𝑗 , can be computed

and verified from the publicly available values 𝑔𝑠𝑖𝑘 .

𝑔𝑠𝑘 = 𝑔
∑

𝑖∈Q 𝑠𝑖𝑘 =
∏
𝑖∈Q

𝑔𝑠𝑖𝑘 =
∏
𝑖∈Q

(𝑒∏
𝑙=1

𝐴
𝑚𝑘𝑙

𝑖𝑙

)
which is available from Phase 2 of the protocol of Figure 4. Thus

each share (and share element) can be verified for correctness at

the time of reconstruction.

The public key 𝑝𝑘 =
∏
𝑖∈Q 𝑔

𝜌𝑖1
is computed from values broad-

cast in the protocol, hence the value can be obtained by all the

honest parties. It remains to be shown that 𝑝𝑘 = 𝑔𝑠𝑘 such that 𝑠𝑘 =∑
𝑖∈Q 𝑧𝑖 . For the parties against whom a complaint is generated,

the value 𝑧𝑖 is reconstructed publicly. For the other parties against

whom there was no complaint, all their values𝐴𝑖𝑙 , 𝑙 ∈ [𝑒] have been
verified using the verification step in Phase 2 of the protocol. Since

all such parties constitute the qualified set Q which is computed

by all the honest parties, the value 𝐴𝑖1 = 𝑔
𝜌𝑖𝑙 = 𝑔𝑧𝑖 . The value 𝑝𝑘

is computed by honest parties as 𝑝𝑘 =
∏
𝑖∈Q 𝑔

𝑧𝑖 = 𝑔
∑

𝑖∈Q 𝑧𝑖 = 𝑔𝑠𝑘 .

Hence all the honest parties compute the same public key 𝑝𝑘 corre-

sponding to 𝑠𝑘 . Also since the qualified set of parties Q computed

in the phase 1 of the protocol consists of at least one honest party

who shares the value 𝑧𝑖 which is chosen randomly, the secret key

𝑠𝑘 =
∑
𝑖∈Q 𝑧𝑖 is uniformly random.

Secrecy. We provide a simulator S in Figure 10 on the lines of

[20, 40] which simulates the adversary view of the BBSS-DKG pro-

tocol of Figure 4. With out loss of generality we assume that the

set of parties C = {𝑃1, · · · , 𝑃𝑡 ′} are corrupted and set of rest of

the parties H = {𝑃𝑡 ′+1, · · · , 𝑃𝑛} are honest. The simulator con-

trols all the honest partiesH and performs all computations and

communications with the corrupt parties on behalf of them.

The simulator follows the Phase 1 of the protocol as shown

in Figure 4 and generates share vectors 𝒔𝑖, 𝑗 using random 𝝆𝑖 for
𝑃𝑖 ∈ H , 𝑃 𝑗 ∈ C. Similarly it generates and forwards the vectors s′

𝑖, 𝑗

using random 𝝆 ′
𝑖
. Sfollows the protocol including the computation

of qualified set Q. However, in the second phase of the protocol,

it computes and broadcasts all the 𝐴𝑖,𝑙 for all the honest parties

except one party 𝑃𝑛 . For the party 𝑃𝑛 it sets the secret value 𝐴𝑖,0
such that the public key obtained as

∏
𝑖∈Q 𝐴𝑖𝑙 , 𝑙 ∈ [𝑒] is the desired

value 𝑦. The simulator S will be able to reconstruct the vector 𝝆𝑘
for any party 𝑃𝑘 which is present in the qualified set Q but not in

the setH .

Whenever a valid complaint is broadcast from any party con-

trolled by adversary, S constructs the secret value and opens it.

□

G.2 Correctness and Secrecy of Proactive secret
sharing

Correctness. Let (𝑛, 𝑡), (𝑛′, 𝑡 ′) be access structures in the epochs

e and e + 1. Without loss of generality let 𝒔𝒌𝑖 , 𝑖 ∈ [𝑛] be shares of
secret key 𝑠𝑘 of the 𝑛 parties in epoch e and 𝒔𝒌 ′𝑖 , 𝑖 ∈ [𝑛

′] be shares
of the 𝑛′ parties in epoch e + 1. We need to show that any set of

𝑡 ′ + 1 or more parties in epoch e + 1 reconstruct the secret key 𝑠𝑘 .
For epoch 𝑒 , the share elements held by parties in qualified set

Q are 𝑠𝑘 , 𝑘 ∈ R = {⋃𝑖 𝑇𝑖 , 𝑃𝑖 ∈ Q}. R is the set of all rows held by

the parties in Q. We know, 𝑠𝑘 =
∑
𝑘∈R 𝜆𝑘𝑠𝑘

However, each share element 𝑠𝑘 is verifiable secret shared in

the next epoch e + 1. Thus any qualified set Q ′ of 𝑡 ′ + 1 parties

can construct the share element 𝑠𝑘 . Let R ′ be the rows held by the

parties in Q ′. Then,

𝑠𝑘 =
∑︁
𝑖∈R

𝜆𝑖𝑠𝑖 =
∑︁
𝑖∈R

𝜆𝑖

(∑︁
𝑗 ∈R′

𝜆 𝑗𝑠𝑖 𝑗

)
=

∑︁
𝑗 ∈R′

𝜆 𝑗

(∑︁
𝑖∈R

𝜆𝑖𝑠𝑖 𝑗

)
=

∑︁
𝑗 ∈R′

𝜆 𝑗𝑠 𝑗 = 𝑠𝑘

Secrecy. The secrecy of the secret in each phase follows from the

security properties of Verifiable BBSS scheme. Let B,B′, |B|,B′ | <
𝑡 be the set of servers corrupted in an epoch e and e + 1. W.l.o.g let

B ∩ B′ = 𝜙 , from the correctness principle above, we know that

any 𝑡 ′ + 1 or more parties can construct the secret key in the epoch

e + 1. From the security of the BBSS scheme we know what no set

of 𝑡 ′ or less number of parties has any information about the secret,

hence maintaining the secrecy property.

G.3 Security of PRF evaluations
Here we argue the security of the ParSecretKeyEval and ParPub-
KeyEval by providing a reduction to LWR problem instance.

Theorem 7.2. If the LWR(𝑞,m,n) assumption holds, the function
ParSecretKeyEval(𝑋, E, pp) is pseudo-random.

Proof. Let ParSecretKeyEval(𝑋,E, pp) be 𝑓E (𝑋), we show that

𝑓E is a family of pseudo-random functions.

17

Let D be an efficient algorithm that gets the value of 𝑓E on ℓ − 1
uniformly chosen inputs 𝑋1, 𝑋2, · · · , 𝑋ℓ−1 and distinguishes 𝑓E (𝑋ℓ)
from random with a non-negligible advantage 𝜖 . We construct an

algorithm A that breaks the LWR assumption:

On input (𝑨, ⌊𝑨𝒔⌋𝑝) where𝑨 ∼ 𝑈 (Zm×n𝑞), 𝒔 ∼ 𝑈 (Zn𝑞).A parses

thematrix𝑨 as rows 𝒂1, 𝒂2, · · · , 𝒂m and vector ⌊𝑨𝒔⌋𝑝 as 𝒛′1, 𝒛′2, · · · , 𝒛′m.
For each 𝒛′𝑖 , 𝑖 ≤ m, sample𝑑−1 uniformly randomvalues 𝑠𝑖,2, 𝑠𝑖,3, · · · 𝑠𝑖,𝑑 ∈
Z𝑝 . Let 𝒛𝑖, 𝑗 = 𝒂𝑖 · 𝑠𝑖, 𝑗 for 𝑖 ≤ m; 2 ≤ 𝑗 ≤ 𝑑 . Now A invokes

m instances of algorithm D𝑖 each with the ℓ − 1 pairs of val-

ues {⟨𝐻 (𝑋 𝑗), 𝑓E (𝑋 𝑗)⟩}ℓ−1𝑗=1 and a pair ⟨𝑎𝑖 , [𝒛′𝑖 , 𝒛𝑖,2, 𝒛𝑖,3, · · · , 𝒛𝑖,𝑑]⟩
for 𝑖 ≤ m. D𝑖 distinguishes [𝒛′𝑖 , 𝒛𝑖,2, 𝒛𝑖,3, · · · , 𝒛𝑖,𝑑] from a uni-

formly random vector with advantage 𝜖 . AlgorithmA distinguishes

the LWR instance from a uniformly random vector 𝑈 (Z𝑑𝑞) with an

advantage at-least 𝜖 . □

Theorem 7.3. If the LWR𝑞,m,n assumption holds, CombSecKey is
a (𝑛, 𝑡)-threshold evaluation of a pseudo-random function.

Proof. Let D ′ be an efficient algorithm that differentiates an

evaluation of CombSecKey from a uniformly random vector with a

non-negligible advantage 𝜖 after ℓ − 1 queries. It takes the vectors
[𝒛1, 𝒛2, · · · , 𝒛𝑛], computes 𝜆𝑖 ·𝒛𝑖 such that the elements of the vector

𝜆𝑖 ∈ {−1, 0, 1} and differentiates the resultant vector 𝒔𝒌 from the

uniform vector𝑈 (Z𝑛𝑞) with an advantage 𝜖 .

We first consider the case when all the 𝑛 servers are honest and

then consider the case when 𝑡 of them are corrupt. We build an

algorithm A ′ with uses D ′ to solve the LWR instance. On input

(𝑨, ⌊𝑨𝒔⌋𝑝) where 𝑨 ∼ 𝑈 (Zm×n𝑞), 𝒔 ∼ 𝑈 (Z𝑛𝑞). A parses the matrix

𝑨 as rows 𝒂1, 𝒂2, · · · , 𝒂m and vector ⌊𝑨𝒔⌋𝑝 as 𝒛′
1
, 𝒛′

2
, · · · , 𝒛′m. For

each 𝒛′
𝑖
, 𝑖 ≤ m, sample𝑑−1 uniformly randomvalues 𝑠𝑖,2, 𝑠𝑖,3, · · · 𝑠𝑖,𝑑 ∈

Z𝑝 . Let 𝒛𝑖, 𝑗 = 𝒂𝑖 ·𝑠𝑖, 𝑗 for 𝑖 ≤ m; 2 ≤ 𝑗 ≤ 𝑑𝑖 ,𝑍𝑖 = [𝒛′𝑖 , 𝒛𝑖,2, 𝒛𝑖,3, · · · , 𝒛𝑖,𝑑𝑖].
Now A ′ invokes 𝑗 instances of algorithm D ′ each with ℓ − 1

vectors 𝑍𝑖, 𝑗 , 𝑖 ≤ ℓ − 1 and an additional input a vector 𝑍 ′
𝑗
=

[𝑍 𝑗 , 𝑍 𝑗+1, · · ·𝑍 𝑗+𝑛] for 1 ≤ 𝑗 ≤ ⌈m𝑛 ⌉. Each instance of D ′ dis-
tinguishes the input vector from uniformly random vector𝑈 (Z𝑛𝑝)
with an advantage 𝜖 , thus algorithm A ′ distinguishes an LWR
instance from a random vector with an advantage at-least 𝜖 .

In the case where 𝑡 ′ servers are corrupt, the adversary has ac-

cess to the secret key shares of the 𝑡 ′ servers. In such a case, the

algorithm A ′ supplies only 𝑛 − 𝑡 element vectors to each instance

of the algorithmD ′ through the vector [𝑍 𝑗 , 𝑍 𝑗+1, · · ·𝑍 𝑗+𝑛−𝑡]. Each
D ′ simulates the 𝑡 servers by sampling 𝑡 values 𝑍 𝑗+𝑛−𝑡 , · · · , 𝑍 𝑗+𝑛 ∈
Z𝑑𝑖𝑝 . It constructs the vector 𝑍 ′

𝑗
= [𝑍 𝑗 , 𝑍 𝑗+1, · · · , 𝑍 𝑗+𝑛], computes

𝒔𝒌 𝑗 = 𝜆𝑖 · 𝑍 𝑗 for each element of 𝜆𝑖 ∈ {−1, 0, 1}. The algorithm
D ′ differentiates the vector from uniform random vector with an

advantage 𝜖 . The algorithm A ′ differentiates the LWR instance

from random vector with an advantage of at-least 𝜖 . □

18

	Abstract
	1 Introduction
	2 System Setup and Solution Overview
	2.1 System Setup
	2.2 Design Overview

	3 Black Box Secret Sharing—BBSS
	4 Distribution Matrix from Threshold Function
	4.1 Search for Distribution Matrix

	5 Verifiable BBSS (V-BBSS) and Distributed Key Generation
	5.1 Verifiable BBSS
	5.2 Distributed Key Generation using BBSS

	6 D-KODE Protocol
	6.1 Server Side Algorithms
	6.2 Client Side Algorithms

	7 Dynamic-Committee Proactive BBSS Mechanism
	8 Performance Analysis
	9 Related Work
	10 Conclusion
	References
	A Pseudo Random Function
	B Montone boolean forumula for majority function
	C Boolean formula and distribution matrix
	D Replicated Secret Sharing
	E Zero-Knowledge Proof of equality of committed value
	E.1 Equality of exponent with different bases

	F Verifying the evaluation of the PRF
	F.1 Verification of the public key evaluation

	G Security Analysis
	G.1 Correctness and secrecy of BBSS-DKG
	G.2 Correctness and Secrecy of Proactive secret sharing
	G.3 Security of PRF evaluations

