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Abstract. Typical lattice-based cryptosystems are commonly believed
to resist multi-target attacks. For example, the New Hope proposal stated
that it avoids “all-for-the-price-of-one attacks”. An ACM CCS 2021
paper from Duman–Hövelmanns–Kiltz–Lyubashevsky–Seiler stated that
“we can show that AdvIND-CPA

PKE ≈ Adv(n,qC )-IND-CPA
PKE ” for “lattice-based

schemes” such as Kyber, i.e. that one-out-of-many-target IND-CPA is as
difficult to break as single-target IND-CPA, assuming “the hardness of
MLWE as originally defined for the purpose of worst-case to average-case
reductions”. Meanwhile NIST expressed concern regarding multi-target
attacks against non-lattice cryptosystems.
This paper quantifies the asymptotic impact of multiple ciphertexts per
public key upon standard analyses of known primal lattice attacks,
assuming existing heuristics. The qualitative conclusions are that
typical lattice PKEs asymptotically degrade in heuristic multi-ciphertext
IND-CPA security as the number of ciphertexts increases. These
PKE attacks also imply multi-ciphertext IND-CCA2 attacks against
typical constructions of lattice KEMs. Quantitatively, the asymptotic
heuristic security degradation is exponential in Θ(n) for decrypting many
ciphertexts, cutting a constant fraction out of the total number of bits of
security, and exponential in Θ(n/ log n) for decrypting one out of many
ciphertexts, for conservative cryptosystem parameters.
This shows a contradiction between the existing heuristics and the idea
that multi-target security matches single-target security. Also, whether
or not the existing heuristics are correct, (1) there are flaws in the
claim of an MLWE-based proof of tight multi-target security, and (2)
there is a 288-guess attack breaking one out of 240 ciphertexts for
a FrodoKEM-640 public key, disproving FrodoKEM’s claim that “the
FrodoKEM parameter sets comfortably match their target security levels
with a large margin”.
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1 Introduction

Given (AESk(0), AESk(1)) for an AES-128 key k, brute-force search finds k
with at most 2128 AES-128 computations, about 2143 bit operations. Given
(AESk(0), AESk(1)) for each k in a list of 240 AES-128 keys, a batch
version of brute-force search finds the entire list with at most 2128 AES-128
computations. The obvious batch attack is bottlenecked by memory access
rather than computation, but the Hellman–Rivest–van Oorschot–Wiener parallel
batch attack uses essentially the same amount of computation and much less
communication; see generally [24].

These batch algorithms will find one of the keys in the list with only about
2103 bit operations. To put this in perspective, Bitcoin currently carries out
roughly 2111 bit operations per year. The original 2143 bit operations sounded
comfortably out of reach, but 2103 is certainly feasible for a large-scale attacker.

After these 2103 bit operations, the attacker has acquired a secret key
that the attacker was not supposed to have, perhaps exposing other critical
information—e.g., a password that can be used to launch further attacks. Any
particular user is likely to be safe, but the full multi-user cryptographic system
has been broken.

There are more examples in the literature of cryptographic systems for
which known multi-target attacks are much more efficient than state-of-the-art
single-target attacks. For example, state-of-the-art non-quantum algorithms to
compute discrete logarithms in the group (Z/p)∗, where p is a prime chosen in
the usual way, can compute many discrete logarithms for only slightly higher
total cost; see, e.g., [2]. More subtly, work can be shared across many primes p;
see [20, Chapter 7]. Finding one of many discrete logarithms for a single p is as
expensive as attacking a single prespecified target, but the batch attacks have
lower per-target cost and undermine a common argument for taking small p; see
[25, “difficulties for the ‘attacker economist’ philosophy”].

Given the tremendous diversity of ways that multi-target security has been
shown to fail, some cryptosystem proposals (see, e.g., [5, Section 8.3]) presume
that there will be lg T bits of security loss from T -target attacks—for example,
40 bits of security loss from 240-target attacks—unless proven otherwise.
However, one can easily find many other cryptosystem proposals that choose
low single-target security levels, implicitly or explicitly presuming that there is
no multi-target security loss. For those systems, multi-target attacks can easily
make the difference between being safe and being broken in the real world.

1.1. Bleeding-edge lattice systems. The current version of Kyber-512 was
proposed in [17] in October 2020. The same document presented a new security
analysis [17, Section 5] and concluded that “this preliminary analysis gives a
cost of 2151 gates” to break Kyber-512. This might sound safely beyond 2143,
but there are at least three reasons for concern:

• The same document [17, page 26] said that “this number could be affected
by a factor of up to 216 in either direction”—i.e., possibly as low as 2135 bit
operations—because of “known unknowns”.
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• Subsequent work has added knowledge regarding the “known unknowns” but
has also found exploitable gaps in the analysis in [17]. See, e.g., the attacks
in [53] and [78], the latter estimating 2137 bit operations; some newer papers
claim that this is an underestimate, but others claim further speedups.

• These are single-target security analyses, leaving open the possibility of much
more efficient multi-target attacks. Even if there are no further single-target
improvements, why should users believe that multi-target attacks against
Kyber-512 are not already feasible with current technology?

Regarding the third point, the literature quoted in Appendix A gives
the impression that typical lattice systems such as Kyber are safe from
all-for-the-price-of-one attacks, one-out-of-many attacks, and other types of
multi-target attacks. For example, an ACM CCS 2021 paper [47, page 3] stated
that “we can show that AdvIND-CPA

PKE ≈ Adv(n,qC)-IND-CPA
PKE ” for “lattice-based

schemes”, meaning that single-target and one-out-of-many IND-CPA security are
approximately the same for these PKEs. This statement relied on a hypothesis,
but [47] argued plausibility of the hypothesis.

1.2. Contributions of this paper. This paper has three main contributions:

• Asymptotic analysis and optimization of parameters for well-known
single-target lattice attacks, assuming accuracy of the existing heuristics
regarding those attacks. See Section 2.

• Asymptotic analysis of an attack breaking many ciphertexts for one public
key, assuming the existing heuristics. This attack has total heuristic cost
asymptotically similar to the single-target message-recovery attacks, i.e.,
much lower heuristic cost per ciphertext. This does not rely on key recovery:
it applies even if the cryptosystem is modified to put extra defenses around
the secret key. See Section 3.

• Asymptotic analysis of an attack breaking one out of many ciphertexts
for one public key, assuming the existing heuristics. For a wide range of
cryptosystem parameters, this attack has heuristic cost beating the usual
single-target message-recovery attack by a factor 2Θ(n/ lg n), contrary to the
statement “AdvIND-CPA

PKE ≈ Adv(n,qC)-IND-CPA
PKE ”. See Section 4.

This paper also identifies logical gaps in how the previous literature arrived
at various statements contrary to this paper’s calculations. See Appendix A.
Furthermore, this paper presents a particularly easy attack specifically against
FrodoKEM, disproving the claim in [12] that “the FrodoKEM parameter
sets comfortably match their target security levels with a large margin”. See
Appendix B. The gap identification and the FrodoKEM attack apply even if the
existing heuristics are so inaccurate as to undermine the other analyses.

1.3. Caveats. In the literature on algorithms, papers introducing asymptotic
speedups are often followed by papers doing more work to show corresponding
concrete speedups. Sometimes, however, concrete input sizes of interest turn
out to be too small for the asymptotic speedups to apply, even after further
optimization effort. See, e.g., [52].
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Establishing Kyber-512’s single-target security level remains a challenging
research problem today; see, e.g., the open problems listed in [78]. Establishing
Kyber-512’s T -target security level is even more challenging. Perhaps Kyber-512
is too small for the heuristic multi-target speedups to be applicable.

Furthermore, relying on heuristics is error-prone, as illustrated by previous
lattice-attack literature endorsing application of the same heuristics to S-unit
lattices, where the heuristics were later shown to be highly inaccurate; see
[32]. Typical techniques to detect errors in analyses, such as checking proofs
and carrying out experiments, are inherently unreliable for heuristic asymptotic
analyses: saying that the analyses are heuristic implies that the results are not
completely proven, and saying that the analyses are asymptotic implies that
discrepancies from experiments are to be expected.

Sections 2, 3, and 4 of this paper are saying that two ideas visible in the
literature—the idea that the existing heuristics accurately predict lattice security
via the standard analysis, and the idea that multi-target lattice security matches
single-target lattice security—cannot both be correct. This paper is not saying
that one idea is accurate and the other idea is inaccurate; it seems more likely
that there are serious inaccuracies in both ideas.

Yet another caveat is that, like many previous papers on this topic, this paper
relies on unrealistic models of computation where arbitrarily large arrays can be
accessed for free. The multi-ciphertext attack analyzed here is not exceptionally
memory-intensive—it handles one ciphertext at a time, and, for each ciphertext,
uses memory in similar ways to the usual single-target attacks—but the issue is
that all of these attacks could be outperformed by lower-memory approaches in
more realistic models of computation.

Finally, the importance of multi-target attacks rests on the cryptographic
community’s habit of taking narrow security margins. See generally [16] and
[28]. This habit is not a rule; in particular, at the time of this writing, NIST
has not committed to standardizing Kyber-512.3 However, NIST’s latest report
claims that Kyber-512 is harder to break than single-target AES-128,4 and there
are ongoing large-scale deployment experiments with Kyber-512, such as [39].
3 For example, NIST’s announcement [84] of the Kyber selection includes a statement

that “NIST will seek input on specific parameter sets to include” in the resulting
standard. NIST stated in November 2022 [90] that it wanted “a broader range of
perspectives on whether our current plan to standardize Kyber512 is a good one”.

4 [4, page 8] says “Figure 1 shows [performance] for Kyber, NTRU, and Saber for
security categories 1 and 3”. The Kyber parameter sets in [4, Figure 1] are Kyber-512
and Kyber-768, evidently assigning Kyber-512 to “category 1” and Kyber-768 to
“category 3”. [4, page 6] says “category 1” means “the best attack violating the
security definition of a parameter set should cost more than a brute-force key search
attack on a single instance of AES-128, according to any plausible assumption
regarding the relative cost of the various computational resources involved in a
real-world attack”.
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2 Asymptotic heuristic cost of single-target attacks

The starting point for this paper is the standard heuristic analysis of the usual
single-target message-recovery and key-recovery attacks against lattice PKEs.
This analysis was introduced in the original New Hope paper [13, Section 6.3]
in 2015, building on various earlier components, and was then copied into many
newer cryptosystem proposals. Recent literature continues to report results of the
same analysis; see, e.g., [12, Section 5.2.2]. There have been subsequent speedups
and corrections, but the literature generally portrays these adjustments as minor;
see, e.g., the recent paper [7], starting with the “history of refinements” title.

As a specific target for attacks, consider the Lyubashevsky–Peikert–Regev
PKE [76, eprint version, page 4], using the ring (Z/q)[x]/(xn + 1) and sampling
each error position from distribution χ. The standard heuristic analysis cares
only about (n, q, s), where s is the standard deviation of χ. As illustrated by
the tables in [6], the same heuristic analysis also applies to a wide range of
further cryptosystems; all the analysis needs to know about each cryptosystem
is (n, q, s), without regard to complications such as the error-correcting codes in
New Hope or the matrices in Kyber.

A critical parameter in the usual attacks is a “block size” β. The standard
heuristic analysis includes a standard choice of β, namely the smallest β for
which the analysis says that the attacks succeed. The point of this section is to
calculate how the standard choice of β scales with the PKE parameters (n, q, s).

Specifically, fix real numbers Q0, Q1, S0, S1. To simplify the analysis, assume
0 ≤ S0 ≤ 1/2 < Q0 − S0. Consider an infinite sequence of (n, q, s) where

• n runs through a subsequence of 2, 3, 4, . . .;
• lg q ∈ Q0 lg n + Q1 + o(1), or equivalently q ∈ nQ0(2Q1 + o(1)), where o(1)

means the set of functions of n that converge to 0 as n → ∞; and
• lg s ∈ S0 lg n + S1 + o(1).

The conclusion of this section, in short, is that the standard block size β has
β/n ∈ z0 + (z1 + o(1))/ lg n where z0 = 2Q0/(Q0 − S0 + 1/2)2 and

z1 =
(

2S1+ lg z0−
(

S0−Q0+3
2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
2Q0

(Q0−S0+ 1
2 )3 .

Unsurprisingly, this conclusion applies equally to (1) the usual key-recovery
attack and (2) the usual single-target message-recovery attack. This makes
the key-recovery attack more attractive, since key recovery trivially implies a
multi-ciphertext attack that breaks all of the ciphertexts, with just minor cost
per ciphertext to run the same decryption algorithm as the legitimate user.

Presumably the use of key-recovery attacks as multi-ciphertext attacks is the
motivation for, e.g., [74, Section 6] saying “arguably, the secret key ought to
be better-protected than any individual ciphertext”. One can easily modify the
LPR cryptosystem to use one error distribution for encryption and a larger error
distribution for key generation. This section’s asymptotics for β/n quantify the
impact of moving from one pair (S0, S1) for encryption to a (lexicographically)
larger pair (S0, S1) for key generation.
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2.1. Comparison to the structure of concrete analyses. What this section
does is conceptually similar to what the literature already does in evaluating
attack costs for, e.g., New Hope or Kyber: the same heuristic analyses of the
same attacks are used to predict which attack parameters will succeed; these
predictions are then used to optimize attack parameters.

The big difference is that the previous predictions and optimizations are
concrete while this section is asymptotic. Consider, e.g., [13, Table 1] saying
the optimal β/n is 967/1024 for the original version of New Hope, while this
section says the optimal β/n is 270/289 + o(1) if the parameters (Q0, S0) are
(1.35, 0.15). These statements about β might seem similar, especially since in this
example the numbers 967/1024 = 0.944 . . . and 270/289 = 0.934 . . . are close;
but 967/1024 is a statement about one parameter set, while 270/289 + o(1) is a
statement about an infinite family of parameter sets.

This change forces calculations to be carried out symbolically, rather than
through simple enumeration of all possible parameter choices. The compensating
advantage is that a reader can use asymptotics to see “big” costs and “big”
optimizations, such as changes in algorithm exponents, without having to
worry about “small” costs and “small” optimizations, such as polynomial-factor
speedups to an exponential-time algorithm. The literature contains many “small”
improvements in lattice attacks, and it is useful to be able to skip those in seeing
the “big” improvements—such as multi-target improvements.

2.2. Block size versus cost. The main bottleneck in the usual attacks is a
BKZ-β computation. BKZ-β is a family of algorithms, not a single algorithm;
its cost has dropped over the years, in part because underlying subroutines
have been improved, notably for SVP-β, and in part because the use of those
subroutines inside BKZ-β has been improved.

For example, Becker–Ducas–Gama–Laarhoven [21] reported heuristic costs
(3/2+o(1))β/2 = 2(log4(3/2)+o(1))β for a non-quantum5 algorithm to solve SVP-β.
The exponent log4(3/2) = 0.292 . . . was smaller than in previous papers.

To first order, the heuristic BKZ-β cost is the same as the heuristic SVP-β
cost: e.g., 2(log4(3/2)+o(1))β using [21]. Combining this with the standard heuristic
analysis of the required β, and with the first-order asymptotics β/n ∈ z0 + o(1)
from this paper where z0 is defined above, gives an overall heuristic attack cost
of 2(z0 log4(3/2)+o(1))n, showing that n must be at least λ/(z0 log4(3/2) + o(1)) to
reach λ bits of heuristic security.

This paper computes more complicated second-order asymptotics β/n ∈
z0 + (z1 + o(1))/ lg n so that attack improvements that change block sizes by
Θ(n/ lg n) become visible in the asymptotics. Examples of such improvements
are “dimensions for free” from [45], heuristically reducing block size β to
5 The literature reports somewhat lower exponents for quantum algorithms, including

improvements in 2021; see [37] and [56]. This directly produces better heuristic
exponents for quantum lattice attacks. However, quantum algorithms in this context
are typically dismissed as not producing enough speedup to overcome quantum
overhead for realistic sizes (see, e.g., [8]) or as not being competitive with quantum
speedups against AES. This paper focuses on non-quantum algorithms.
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β−(lg(4/3)+o(1))β/ lg β = β−(0.415 . . .+o(1))β/ lg β; the improved techniques
from [44], heuristically improving lg(4/3) to lg(13/9) = 0.530 . . .; and Section 4
of this paper.

Beware that the first-order asymptotics stated in the literature, such as
(3/2+o(1))β/2 from [21], are logically insufficient to conclude that a second-order
improvement in β such as [45] produces a corresponding improvement in attack
cost. To see the issue, imagine a version of BKZ-β in which the cost depends
only on x = d0.01(log β)2e. This is compatible with the cost having the form
2(c+o(1))β : for example, 10

√
x − log β ∈ o(1), so exp(10

√
x) ∈ (1 + o(1))β,

so 20.1 exp(10
√

x) ∈ 2(0.1+o(1))β . However, decreasing β to β − β/ lg β changes
0.01(log β)2 by only about 0.02 log 2 = 0.0138 . . ., and thus changes costs for
under 1.4% of the values of β, perhaps missing the occasional values of β that
appear, asymptotically, in a particular cryptosystem of interest.

It would be interesting to see second-order asymptotics for various algorithms
for SVP-β and BKZ-β. For purposes of this paper, it suffices to observe that if
costs are 2(c+o(1))β then the total impact of Θ(lg β) reductions in β, where each
reduction replaces β with β − (d + o(1))β/ lg β, is an improvement in c. Even if
this improvement is not divided evenly across the reductions in β, it is useful on
average across any sufficiently large interval of β, and is thus useful on average
across the broad spectrum of parameter choices considered in this paper.

2.3. Review of the LPR cryptosystem. This PKE has three parameters:
an integer n ≥ 2; an integer q ≥ 2; and a probability distribution χ supported
on a finite set of integers. Assume for simplicity that the average of χ is 0. Write
R for the ring Z[x]/(xn + 1).

Key generation works as follows. Generate uniform random G ∈ R/q.
Generate a, e ∈ R with coefficients drawn independently at random from χ.
Compute A = aG + e ∈ R/q. The secret key is (a, e). The public key is
(G, A) ∈ (R/q)2.

The set of messages is the set of elements of R with coefficients in {0, dq/2e}.
Encryption of a message M to a public key (G, A) works as follows. Generate
b, c, d ∈ R with coefficients drawn independently at random from χ. Compute
B = Gb+d ∈ R/q and C = M +Ab+c ∈ R/q. The ciphertext is (B, C) ∈ (R/q)2.

Decryption of a ciphertext (B, C) works as follows. Compute X = C − aB ∈
R/q. Round each coefficient of X to the closest element of {0, dq/2e} in Z/q,
specifically 0 if both elements are equally close.6

The above PKE definition skips two requirements from the LPR paper,
namely that n is a power of 2 and that q is a prime congruent to 1 modulo
2n; see [76, Section 1.1]. Cryptosystems after [76] loosened the restrictions on
q; for example, Kyber’s current prime 3329 is 1 + 13 · 256. As for n, readers
concerned about attacks enabled by factors of xn + 1 in Z[x] should feel free
to substitute the marginally larger polynomial xn − x − 1, as in [31]; this is
orthogonal to the topic of this paper.
6 This rounding detail is not specified in [76]; also, [76] says bq/2e without specifying

whether the rounding rounds 0.5 up or rounds to even. These details do not affect the
standard analysis; they are specified here so as to have a complete PKE definition.
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Correct decryption requires X = C − aB = M + eb + c − ad to round to
M , i.e., requires each coefficient of eb + c − ad to be smaller than about q/4. If
χ is, e.g., the uniform distribution on {−1, 0, 1} then each coefficient of eb is a
sum of n products where one expects about 4/9 to be nonzero, evenly balanced
between 1 and −1, so typically the coefficient will be on the scale of

√
n, with

considerable variation in the exact size. There are various proposals to reduce
q close to this scale, and to avoid frequent decryption failures by applying an
error-correcting code to M . In the opposite direction, sometimes cryptosystems
take larger χ and correspondingly larger q; sometimes cryptosystems pack more
message bits into each coefficient, again taking larger q. To cover many different
cases, this paper considers a spectrum of possibilities for the asymptotic sizes of
q and s.

2.4. Review of the usual key-recovery attack. Consider the problem of
recovering the private key (a, e) ∈ R2 from the public key (G, A) ∈ (R/q)2.
Recovering a suffices, since e = A − aG by definition. The usual “primal” attack
works as follows.

There is an attack parameter κ ≤ n. Define a function Firstκ : R → Zκ

that extracts the first κ coefficients from its input. This induces a function, also
written Firstκ, from R/q to (Z/q)κ.

Define L as the set of all (α, ε, β) ∈ R × Zκ × Z such that Firstκ(βA − αG)
is the same as ε modulo q. This is a lattice of full rank d = n + κ + 1 and
determinant qκ. Note that ±(a, Firstκ(e), 1) are elements of this lattice.

There is another attack parameter β. The attack writes down a basis for L,
applies BKZ-β to reduce this basis, and hopes that BKZ-β outputs one of the
short nonzero vectors ±(a, Firstκ(e), 1), in particular revealing a.

The problem being attacked here, the problem of finding a, e given a random
G and aG+e, is typically called “Ring-LWE”, specifically “normal-form 1-sample
search Ring-LWE”, where “normal form” refers to the secret a being small. The
Ring-LWE problem is typically credited to [98] and [76]. However, this problem
was already attacked in the 1998 Hoffstein–Pipher–Silverman NTRU paper, both
for the homogeneous case A = 0 (see [57, Section 3.4.1]) and for general A (see
[57, Section 3.4.2]). The problem statements in [98] and [76] merely generalize
to more “samples”: e.g., finding a, e1, e2 given random G1, G2, aG1 +e1, aG2 +e2,
or equivalently replacing G ∈ R/q and e ∈ R with row vectors (G1 G2) ∈ (R/q)2

and (e1 e2) ∈ R2 respectively.
The attack in [57] has κ = n. May–Silverman [80] generalized the attack

to any κ ≤ n. In the original 1996 NTRU handout [58], various concrete
examples chose different sizes for a and e, motivating another generalization
from Coppersmith and Shamir [41] to set up a lattice with, e.g., short vector
(3.14a, e, 1) rather than (a, e, 1); this paper focuses on cryptosystems that take
a and e of the same size, such as the LPR system. There can still be a tiny
improvement from setting up a lattice with, e.g., short vector (a, e, 3.14); this
paper ignores this improvement for simplicity.
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2.5. Review of the standard analysis. Beyond asking about the cost of
BKZ-β (see Section 2.2), the standard analysis of Section 2.4’s attack asks
whether BKZ-β succeeds at finding the target vector. The standard heuristic
conclusion is that BKZ-β succeeds if and only if the 2-norm of the target vector
is below (d/β)1/2δ2β−d−1qκ/d, where δ = (β(πβ)1/β/(2π exp 1))1/2(β−1). The
rationale for this inequality is as follows:

• One heuristic says that, for a “random” lattice L of rank d, BKZ-β finds a
nonzero vector of length close to δd−1(det L)1/d, with δ defined as above.

• Another heuristic says that the Gram–Schmidt lengths of the BKZ-β output
are close to a geometric series. Combining this with the shortest length
being close to δd−1(det L)1/d and the product of the lengths being det L
says approximately how large each length is. In particular, the length at
position d − β + 1 is close to δ2β−d−1(det L)1/d, which for this lattice is
δ2β−d−1qκ/d. The rationale treats this approximation as an equation.

• Another heuristic says that if the target vector has length t then its
projection onto the space spanned by the last β Gram–Schmidt vectors has
length approximately t

√
β/d. The rationale also treats this approximation

as an equation.
• If the latter length t

√
β/d is below the previous length δ2β−d−1qκ/d then the

above heuristics seem to contradict each other, since the last SVP-β call in
each “tour” of BKZ-β guarantees that the projection of the vector at position
d − β + 1 is a minimum-length nonzero vector in the projection of L. Note,
however, that the first heuristic was only for a “random” lattice. Another
heuristic says that this seeming contradiction occurs if and only if BKZ-β
detects the non-“randomness” of the lattice by finding the projection of v.

• A further heuristic says that BKZ-β finds the projection of v if and only if
BKZ-β finds v. A slightly different statement appears in [9], which says that
if BKZ-β finds the projection of v then BKZ-β finds v with “high probability”
for large β.

The following paragraphs use the inequality as a black box without regard to
the rationale, but the rationale matters for Section 3.

For the LPR PKE, the first n + κ entries in the target vector (a, Firstκ(e), 1)
are drawn independently and uniformly at random from χ. Each entry has square∑

i χii
2 = s2 on average (since χ has average 0 and standard deviation s), so the

squared 2-norm of (a, Firstκ(e), 1) is (n + κ)s2 + 1 on average. The standard
heuristic analysis treats the squared 2-norm as being exactly its average,
concluding for this PKE that BKZ-β works if and only if ((n + κ)s2 + 1)1/2 <
(d/β)1/2δ2β−d−1qκ/d; i.e., if and only if StandardRatio(n, q, s, κ, β) < 1, with the
notation of Definition 2.5.1.

Other PKEs do not necessarily choose (a, e) this way: consider, e.g., a PKE
that chooses a as a fixed-weight ternary vector. To apply the standard analysis
to such cases, the literature calculates s so that (n + κ)s2 + 1 is a reasonable
estimate of the squared 2-norm of (a, Firstκ(e), 1), and concludes heuristically
that BKZ-β works if and only if StandardRatio(n, q, s, κ, β) < 1.
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Definition 2.5.1 (the standard ratio). Let n, q, s, κ, β be real numbers such
that 2 ≤ n; 2 ≤ q; 0 < s; 1 ≤ κ; and 2 ≤ β. Then StandardRatio(n, q, s, κ, β)
is defined as ((n + κ)s2 + 1)1/2/(d/β)1/2δ2β−d−1qκ/d where d = n + κ + 1 and
δ = (β(πβ)1/β/(2π exp 1))1/2(β−1).
2.6. A known flaw in the standard analysis. Note that δ increases with β
until β reaches 36, contrary to ample evidence that, e.g., BKZ-20 usually finds
shorter vectors than BKZ-10 does. As an extreme case, if one takes β = 2 (or
any β < 13), then δ < 1, so the first heuristic says that BKZ-β finds a nonzero
vector of length exponentially below (det L)1/d. In fact, for most lattices, such
vectors do not even exist, so certainly BKZ-β will not find them.

The standard heuristic conclusion says that, for any particular (q, s), BKZ-2
breaks LPR for all n above an easily calculated bound. Choosing (q, s),
calculating that bound, and simply trying BKZ-2 shows that, no, BKZ-2 does
not in fact do this. The standard patch7 for this flaw is to simply disallow small
values of β: for example, require β ≥ 60.

For some of this paper’s calculations, it suffices to assume β ≥ 2, ensuring that
the exponent 1/2(β − 1) is defined. At many points in the logic, β/n is known
to grow asymptotically as Y0 + o(1) for some positive real number Y0, implying
β ≥ 60 for all sufficiently large n. However, Theorem 2.7.1(2) does not assume
any particular asymptotic growth of β/n, and the conclusion of Theorem 2.7.1(2)
would be incorrect if the hypothesis β ≥ 60 were weakened to β ≥ 2.

2.7. Asymptotics for the standard key-recovery attack. The following
theorem pinpoints how the standard block size β grows asymptotically with n
when the target cryptosystem has lg q ∈ Q0 lg n + Q1 + o(1) and lg s ∈ S0 lg n +
S1 + o(1). See Appendix C for the proof.
Theorem 2.7.1 (asymptotic growth of the standard block size). Let
Q0, Q1, S0, S1 be real numbers such that 0 ≤ S0 ≤ 1/2 < Q0 − S0. Let N be an
infinite subset of {2, 3, 4, 5, . . .}. Let n 7→ q and n 7→ s be functions from N to R
such that

2 ≤ q, lg q ∈ Q0 lg n + Q1 + o(1),
0 < s, lg s ∈ S0 lg n + S1 + o(1).

Define x0 = (Q0 + S0 − 1/2)/(Q0 − S0 + 1/2); z0 = 2Q0/(Q0 − S0 + 1/2)2; and

z1 =
(

2S1+ lg z0−
(

S0−Q0+3
2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
2Q0

(Q0−S0+ 1
2 )3 .

(1) There are functions n 7→ κ and n 7→ β from N to Z such that

1 ≤ κ ≤ n for all n, κ/n ∈ x0 + o(1)/ lg n,

2 ≤ β ≤ n + κ + 1 for all n, β/n ∈ z0 + (z1 + o(1))/ lg n, and
StandardRatio(n, q, s, κ, β) < 1 for all sufficiently large n.

7 Some parts of the literature propose other estimates for the BKZ-β behavior and
give reasons to believe that these estimates are more accurate than the standard
estimate for concrete values of β. Perhaps these estimates have different second-order
asymptotics from the standard estimate. This paper focuses on the standard analysis.
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(2) Let n 7→ κ and n 7→ β be functions from N to R such that

1 ≤ κ ≤ 100n for all n,

60 ≤ β ≤ n + κ + 1 for all n, and
StandardRatio(n, q, s, κ, β) ≤ 1 for all sufficiently large n.

Then β ≥ ` for some function n 7→ ` with `/n ∈ z0 + (z1 + o(1))/ lg n.

2.8. Asymptotics for the standard message-recovery attack. Consider
now the problem of recovering the encryption secrets (b, d) from (G, B) where
B = Gb + d. The standard analysis handles this exactly the same way as the
key-recovery attack, except for starting with the distribution of (b, d) rather than
the distribution of (a, e).

In the case of the LPR PKE, the distributions are the same, so the conclusions
are the same. The attacker will then prefer to carry out the key-recovery attack
since it breaks many ciphertexts; this can be understood as motivation to modify
the PKE to take a larger distribution for (a, e) than for (b, d), as noted above.

The second-order asymptotics make it easy to see the effect of making errors
1 bit larger, i.e., increasing S1 by 1: this increases z1 by 4Q0/(Q0 − S0 + 1/2)3,
increasing the standard β by (4Q0/(Q0 − S0 + 1/2)3 + o(1))n/ lg n. This will be
important in Section 4.

2.9. Further attacks. The standard analysis also considers the problem of
recovering (b, c, d) given G, A, B = Gb + d, and C = Ab + c, i.e., from a public
key and an encryption of 0. A successful recovery attack immediately gives an
IND-CPA attack.

Structurally, this problem provides more “samples” to the attacker, allowing
κ to be chosen as large as 2n. However, Theorem 2.7.1(2) ends up with κ/n ∈
x0 + o(1) with x0 ≤ 1, even if κ/n is initially allowed to be much larger than 1.

The situation would change if S0 were allowed to be above 1/2: the same
optimizations would then produce x0 > 1. For essentially the same reason, a
close look at [6] finds, e.g., “Frodo-0640” listed as 2142 on [6, page 29] for “n
LWE samples” but as only 2141 on [6, page 35] for “2n LWE samples”.8

The literature often reports that a “dual” attack allows marginally smaller
β than the primal attack. However, [17, page 26, “Primal attack only”] argues
that the dual attack is actually much slower than the primal attack. On the
other hand, recent attack papers cited in Section 1 introduce new dual attacks
that are claimed to be noticeably faster than primal attacks. Since single-target
dual attacks are such an unstable topic at the moment, trying to optimize
8 This should already have raised questions regarding a common notion that releasing

more samples preserves security levels. This notion is made explicit in, e.g., [47,
page 3], which says “we believe that in practice the MLWE problem with k samples
is no easier than with 1 sample” (emphasis added). This notion is also implicitly
assumed by an argument in the literature that GAM/LPR cryptosystems are “at
least as hard” to break as NTRU; see generally [86, Sections 3.14, 5.1, and 5.2] for
analysis of that argument and further references.
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multi-target dual attacks would be premature. More to the point, this paper
is investigating how multiple ciphertexts asymptotically affect the standard
analysis; the standard analysis does not include the new dual attacks.

IND-CCA2 attacks against lattice KEMs can be much easier than the usual
lattice attacks against the underlying PKEs. See, e.g., the Round2 break in [22],
or the FrodoKEM attack in Appendix B. However, lattice attacks against PKEs
seem to be the top threat for most lattice proposals.

3 Asymptotic heuristic cost of breaking many ciphertexts

This section analyzes what the existing heuristics say about another attack
that breaks many ciphertexts. There is nothing new in the attack algorithm—in
short, it plugs [46] into the algorithm briefly outlined in [48, Section 5, third
paragraph], and applies this to multiple ciphertexts—but the impact on PKE
security and KEM security was not clear from the literature.

Quantitatively, say cryptosystem parameters are chosen so that the usual
single-target message-recovery attack reviewed in Section 2.8 has heuristic cost
2(1+o(1))λ. This section shows that total heuristic cost 2(1+o(1))λ suffices to
decrypt T ciphertexts, for any T ≤ 2(0.19...+o(1))λ. The heuristic per-ciphertext
cost is just 2(1+o(1))λ/T , as low as 2(0.80...+o(1))λ. Because this is a first-order
change in the heuristic per-ciphertext cost exponent as soon as T ∈ 2Θ(λ), there
is no need for this section to consider second-order terms in the asymptotics.

This is, at this level of asymptotic detail, an “all-for-the-price-of-one” attack
heuristically breaking many ciphertexts. This is already achieved by the usual
key-recovery attack from Section 2.4 if key generation and encryption use the
same error distribution, as in the LPR PKE; but it is important to realize that
modifying key generation to use a larger error distribution, so as to increase
the heuristic cost of the key-recovery attack, fails to heuristically protect the
ciphertexts. This section is also a stepping-stone to the one-out-of-many analysis
in Section 4.

“Multi-ciphertext security degradation” in the title of this paper refers to
the fact that the existing lattice heuristics claim less security against these
multi-ciphertext attacks—both in the all-for-price-of-one scenario of this section,
and the one-out-of-many scenario in Section 4—than they claim against the usual
single-ciphertext attacks.

Note that improved attacks could easily change the single-target/multi-target
cost ratio upwards or downwards. Certainly there is no proof to the contrary:
for example, no proof rules out the extreme possibility of an attack breaking
typical lattice-based cryptosystems in time nO(1), in which case attacking 2Θ(n)

ciphertexts would certainly not produce a 2Θ(n) speedup.

3.1. High-level structure of multi-target lattice attacks. In 2007,
Howgrave-Graham [61] introduced a “hybrid” attack algorithm against lattice
problems. “Hybrid” here refers to a mixture of combinatorial searches and
lattice-basis reduction. The algorithm was stated as an attack against NTRU
but also applies to LWE, Ring-LWE, etc.
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Howgrave-Graham’s algorithm starts with a single attack target. It carries out
a brute-force search for some error positions. Each guess of those error positions
produces a lower-dimensional target; note that there are many of these targets.
Each of these lower-dimensional targets is handled by an algorithm typically
called the “nearest-plane algorithm”, after a preliminary target-independent
reduction of the relevant lattice.

The nearest-plane algorithm, also known as “weak reduction”, finds lattice
vectors close to a given target. It takes a lattice basis as input, and the resulting
closeness depends on how well the lattice basis has been reduced. An analysis
of the nearest-plane algorithm appears implicitly as part of the analysis in the
LLL paper [73], and explicitly in a paper by Babai [19].

The previous two paragraphs oversimplify Howgrave-Graham’s algorithm in
two ways:

• [61, Section 4] presented a more sophisticated meet-in-the-middle search,
after presenting a brute-force search (“an algorithm that enumerates all
possible v”) as a warmup.9

• [61, Section 7] briefly suggested “using a better CVP algorithm than Babai’s
closest plane algorithm (e.g. mixing Babai’s CVP (which is essentially
blocksize 1) with searching in higher blocksizes 2, 3, . . .)”, while keeping the
total time under control.

This paper attacks errors of any size, and follows the standard analysis
of lattice security in ignoring the possibility of combinatorially searching for
small errors.10 Consequently, the distinction between a brute-force search and
a meet-in-the-middle search is not relevant here. What matters is simply the
portion of Howgrave-Graham’s algorithm that searches for lattice vectors close
to a batch of targets, after precomputation of short lattice vectors.

The question of what block size β to use—and how to handle β-dimensional
close-vector computations after precomputation—remains important in this
context. The nearest-plane algorithm, the case β = 1, runs in polynomial time,
but will it find vectors at the necessary distance, after a given amount of effort
9 A paper in 2010 from Lindner–Peikert [74] claimed a “new” lattice attack on LWE, a

“decoding” attack that “combines basis reduction with an enumeration algorithm”;
[74] does not explain any differences between this decoding attack and the warmup
in [61].

10 If the error width s is Θ(1) then, heuristically, hybrid attacks provide an exponential
speedup, reducing the asymptotic attack exponent; even for somewhat larger s, the
hybrid speedup should be visible in second-order asymptotics. This raises questions
regarding the wisdom of choosing parameters based on a standard attack analysis
that ignores hybrid attacks. The recent perception that dual attacks outperform
primal attacks, based in particular on the speeds reported in [78], could be explained
by the use of a brute-force search in [78]; it would be interesting to disentangle
the primal-vs.-dual question from the non-hybrid-vs.-hybrid question, and also to
understand the impact of more sophisticated combinatorial searches, such as the
meet-in-the-middle search from [61]. Quantifying the hybrid improvement is outside
the scope of this paper.
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precomputing short lattice vectors? The necessary distance could be too large
for the nearest-plane algorithm to find; perhaps a larger β succeeds within the
same total time budget for precomputations and main computations.

In 2015, the original New Hope proposal [13, page 5] briefly considered
the following attack against cryptosystems that share a lattice across many
ciphertexts: “finding once a good enough basis of the lattice” and then
compromising “all communications, using for example Babai’s decoding
algorithm”. This is the case β = 1 of the same multi-ciphertext attack. This
again begs the question of whether this attack is competitive with the usual
single-target attacks. Each ciphertext is handled efficiently, but one also has to
quantify the time spent on precomputation and analyze whether the ciphertexts
are decoded successfully.

In 2020, Espitau and Kirchner [48] introduced the name “nearest-colattice
algorithm” for the block-size-β generalization of the nearest-plane algorithm,
wrote “we believe that this algorithm has been in the folklore for some time”,
and analyzed the asymptotic performance of this generalization. Specifically,
[48, Theorem 3.3] states, assuming heuristics and assuming d > 2β, that
the nearest-colattice algorithm finds a vector in a d-dimensional lattice L at
distance Θ(β)d/2β(det L)1/d from any given target. The algorithm uses a series
of closest-vector computations in β-dimensional lattices derived from L; the
lattices are independent of the target, so one can “use CVP algorithms after
precomputations”, as noted in [48, Section 3].

Espitau and Kirchner also briefly outlined a variant of this algorithm [48,
Section 5, third paragraph] that, heuristically, finds an element of L when it is
known that the element has distance below (d/β)1/2Θ(β)1−d/2β(det L)1/d from
a given target vector, asymptotically the same inequality as in Section 2.5:

• Start by finding a “highly reduced basis” of the lattice L. Presumably this
means applying BKZ-β.

• Compute a “CVP on the tail of the basis”. This is just one closest-vector
computation (rather than a series of closest-vector computations) for the
given target, finding a vector in the β-dimensional projection of L closest to
the projection of the target.

• “Finish with Babai’s algorithm”, hopefully recovering the closest vector in
L to the target.

The rationale for claiming distance (d/β)1/2Θ(β)1−d/2β(det L)1/d is not spelled
out in [48], but presumably is intended to be as follows, by analogy to the
rationale reviewed in Section 2.5:

• The δ heuristic and the geometric-series heuristic imply that the shortest
nonzero vector in the projection has length approximately δ2β−d−1(det L)1/d.

• Another existing heuristic says that, for “random” lattices and “random”
targets, the distance to the closest vector is approximately the length of the
shortest nonzero vector, hence approximately δ2β−d−1(det L)1/d.

• If the target is at distance t from L then its projection is, heuristically, at
distance approximately t

√
β/d from the β-dimensional projection of L.
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• The approximations are again treated as equations, giving a contradiction if
t
√

β/d < δ2β−d−1(det L)1/d. Heuristically, this contradiction occurs if and
only if the computation finds the target.

• Finally, δ is Θ(β)1/2β as β → ∞, so δ2β−d−1 is Θ(β)1−d/2β .

The
√

β/d factor is claimed in [48] to not be “significant” under the
assumption d > 2β, and is thus suppressed in [48]. However, if d = 2β + 1,
then Θ(β)1−d/2β is Θ(β)−1/2β , which is in 1 + o(1), while

√
β/d =

√
1/2 + o(1).

To derive the asymptotics stated in [48] from the existing heuristics, one needs
to make a slightly stronger assumption, such as d > 2.01β, or modify the
asymptotics to include the

√
β/d factor. When the

√
β/d factor is included,

there is nothing in the existing heuristic analysis of this algorithm that relies on
the assumption d > 2β, so this paper does not make that assumption.11

If the closest-vs.-shortest ratio is heuristically assumed to be 1+o(1), as in [48,
Section 3.3, last sentence], then this rationale says that the algorithm works when
the distance is below (1+o(1))(d/β)1/2δ2β−d−1(det L)1/d. This is within a factor
1 + o(1) of the inequality in Theorem 2.7.1. The second-order asymptotics there
generalize immediately to this situation, since (lg(1 + o(1)))/ lg n is o(1)/ lg n.
For deriving first-order asymptotics, the weaker Θ(β) statement in [48] suffices.

3.2. CVP after precomputation. The next step in the analysis is to see how
precomputation changes the exponent of CVP algorithms, algorithms to find
closest vectors, since these algorithms are used as subroutines above.

The basic idea used in the literature is to precompute a database of all short
nonzero vectors in L, and then apply the following greedy reduction algorithm:12

start from a target vector t; repeatedly replace t with the shortest vector having
the form t − ju where u is a database entry and j is an integer; stop when no
t − ju is shorter than t. The algorithm output is the sum of vectors ju that
were used, i.e., the original t minus the final t. This is a lattice vector close to t,
hopefully the closest vector.

Sommer, Feder, and Shalvi [96] showed that a database of 2d+1 − 2
vectors suffices for perfect reduction. Laarhoven [72] argued heuristically that
2(1/2+o(1))d vectors suffice. The literature presents two important ways to further
reduce the heuristic cost exponent:

• Use a smaller database, i.e., precompute fewer short vectors in L. This
reduces the heuristic probability of finding the closest vector, but hopefully
saves more time. The literature then amplifies the heuristic probability close
to 1 by repeating the algorithm many times, each time adding a random
lattice vector to t.

11 The optimal d/β in Theorem 2.7.1 is Q0−S0+1/2+o(1). Readers who wish to restrict
attention to d/β being asymptotically above 2, so as to be able to more directly apply
[48], can restrict attention to parameter choices with Q0 − S0 + 1/2 > 2.

12 Often this greedy algorithm, the “iterative slicer”, is credited to [96]. However, the
algorithm had already appeared in a 2000 textbook by Cohen [40, pages 375–376].
See [32, Appendix D.3] for the relevant quotes.
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• Hash the database into buckets using a “locality-sensitive hash function”,
and search only buckets close to the hash of t. This again trades heuristic
probability for time. The literature then amplifies the heuristic probability
close to 1 by trying many hash functions.

The latter “near-neighbor” techniques are also used in, e.g., the aforementioned
paper [21] to heuristically save time in building the database of short vectors in
the first place.

Ducas–Laarhoven–van Woerden [46], heuristically improving on results from
Laarhoven [72] and Doulgerakis–Laarhoven–de Weger [43], concluded13 that
one can “heuristically solve CVPP instances in 20.234d+o(d) amortized time,
for batches of size at least 20.058d+o(d)”. Here (0.234, 0.058) actually means an
approximation to a pair of real numbers with sum log4(3/2). Formulas for the
real numbers can in principle be calculated from [46]; this paper takes 0.058 as
axiomatic and does not review the calculations.

The minimum batch size comes from the fact that there is an initial heuristic
cost of (3/2 + o(1))d/2 = 2(0.292...+o(1))d for computing the database of all short
vectors. The algorithm also works for smaller batches, but then the total heuristic
cost is dominated by this initial heuristic cost, so the per-target heuristic cost is
this initial heuristic cost divided by the number of targets.

3.3. Breaking many ciphertexts. The results cited above are used essentially
as black boxes in the following analysis of the heuristic cost of a multi-ciphertext
attack that breaks all of the ciphertexts.

By definition, the jth ciphertext is (Bj , Cj) = (Gbj + dj , Mj + Abj + cj); all
of bj , cj , dj are small, Mj is the jth message, and the public key reveals G and
A. The attack will use G and Bj to find bj , then subtract Abj from Cj to find
Mj + cj , then round to find Mj as desired. The critical step is finding bj , which
works as follows.

As in Section 2.4, there is an attack parameter κ, and a map Firstκ : R → Zκ

that selects the first κ coefficients of its input, inducing a map R/q → (Z/q)κ.
Lift Firstκ(Bj) ∈ (Z/q)κ to Zκ: i.e., choose a vector vj ∈ Zκ such that vj is

the same modulo q as Firstκ(Bj), i.e., as Firstκ(Gbj) + Firstκ(dj).
Define L as the set of all (α, ε) ∈ R ×Zκ such that Firstκ(Gα) is the same as

ε modulo q. This is a lattice of full rank d = n + κ and determinant qκ.
This lattice contains a vector close to (0, vj), namely (bj , vj − Firstκ(dj)),

since Firstκ(Gbj) is the same as vj − Firstκ(dj) modulo q. To quantify “close”:
13 The same paper [46, Section 7] also considered the special case of “bounded-distance

decoding” (BDD), the case that the target is guaranteed to have a particular
closeness to the lattice, as in the problem of decrypting a ciphertext. The paper
found that the algorithm obtained only limited benefit from this guarantee as the
distance bound decreases, and said “An open problem would be to adapt the iterative
slicer to make better use of this guarantee”. One solution to this problem is as follows:
use the slicer inside the CVP algorithm from [46], plug the CVP algorithm into the
algorithm from [48, Section 5, third paragraph], and then allow the block size in
that algorithm to drop in the usual way with the distance bound.
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the difference is (bj , − Firstκ(dj)), a vector consisting of coefficients that were
generated independently at random from χ.

Now use the algorithm from [48, Section 5, third paragraph], with the CVP
subroutine from [46], to try to find this lattice vector:

• As precomputation for [48], apply BKZ-β to a basis for L. This costs,
heuristically, (3/2 + o(1))β/2. This work is shared across all j.

• Apply the precomputation step from [46] to the β-dimensional projection
of L, computing a database of all short vectors in that projection. (Some
versions of BKZ-β produce this database as a side effect.) This also has
heuristic cost (3/2 + o(1))β/2, again shared across all j.

• For each j, apply the main step from [46] to find a vector in the projection of
L close—hopefully closest—to the projection of (0, vj). The heuristic analysis
of [46] says that this costs just 2(0.234+o(1))β ; this is not a bottleneck if there
are fewer than 2(0.058+o(1))β targets.

• “Finish with Babai’s algorithm” as in [48], hopefully finding the desired
(bj , vj − Firstκ(dj)).

The existing heuristics say that this works if the difference (bj , − Firstκ(dj)) has
length below (d/β)1/2Θ(β)1−d/2β(det L)1/d; again, this is already stated in [48],
modulo the issues noted above regarding d/β.

At the level of detail of first-order asymptotics, this is the same inequality
as in Section 2.8, so the smallest β that heuristically works here is again
(2Q0/(Q0 −S0 +1/2)2 +o(1))n. The heuristic cost is the same (3/2+o(1))β/2 =
2((log2(3/2))Q0/(Q0−S0+1/2)2+o(1))n, if there are at most 2(0.058+o(1))β targets. The
critical difference is that this attack heuristically breaks all of the targets for
this total cost, whereas Section 2.8 was for just one target.

In particular, if n is chosen so that the usual single-target message-recovery
attack has heuristic cost 2(1+o(1))λ, then this attack breaks T targets, for any
T ≤ 2(0.058+o(1))β = 2(0.19...+o(1))λ, with total heuristic cost 2(1+o(1))λ.

4 Asymptotic heuristic cost of breaking one out of many
ciphertexts

This section analyzes what the existing heuristics say about an attack that
decrypts one out of many ciphertexts.14 The conclusion, in short, is that one can
heuristically reduce the block size β from Section 3.3 by Θ(n/ lg n) for breaking
one out of T ciphertexts, provided that lg T ∈ Θ(n).

The Θ constant in Θ(n/ lg n) depends on how many ciphertexts are being
attacked and, more subtly, on details of how the error distribution χ is chosen.
As a numerical example, consider the following conservative choices:
14 A decoding-one-out-of-many attack against code-based cryptography was dubbed a

“DOOM” attack in [93], but using the title “Lattice DOOM” for this paper would
be unnecessarily theatrical.
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• Choose χ as the binomial distribution on {−16, . . . , 16}, exactly as in the
original New Hope paper. Then S0 = 0 and S1 = 3/2.

• Since the literature says that smaller moduli are safer, and since any Q0
above 1/2 together with error correction suffices to asymptotically eliminate
decryption failures (given that S0 = 0), choose Q0 = 0.501.

One can then heuristically reduce the block size β by (0.60537 . . . + o(1))β/ lg β
for breaking one out of 2(0.0574+o(1)) lg β ciphertexts. This number of ciphertexts
fits inside the per-ciphertext budget from Section 3, since 0.0574 < 0.058. The
calculation of 0.60537 . . . is explained in detail below.

This is a larger heuristic improvement than the heuristic “dimensions for free”
improvements reported in [45] and [44] for SVP-β. Consequently, the standard
message-recovery attack plus the improvements from [45] and [44] is, for this
conservative (χ, Q0), heuristically outperformed by this one-out-of-many attack.

Qualitatively, compared to the security consequences of an attack decrypting
many ciphertexts, there are different, often stronger, security consequences of
a faster attack decrypting one out of many ciphertexts. For example, consider
what the attacks say regarding security levels:

• Section 3 illustrates the danger of the “attacker economist” philosophy,
choosing the security level λ so that 2λ is slightly beyond the attacker’s
benefit of breaking one ciphertext.

• This section illustrates the danger of choosing the security level λ so that 2λ

is slightly beyond a feasible computation.

As another example of the consequences, consider again the statement that
“AdvIND-CPA

PKE ≈ Adv(n,qC )-IND-CPA
PKE ”. If the time limit on attacks is too low for a

single-target attack but is high enough for a faster one-out-of-qC attack, then the
first Adv is essentially 0 and the second Adv is far above 0 (where exact numbers
depend on probabilistic aspects of the attacks), contradicting the statement.
For comparison, an attack breaking all targets is at least as expensive as a
single-target attack, so it cannot similarly contradict the same statement.

4.1. Designing one-out-of-many algorithms. There is a large overlap from
the algorithm designer’s perspective between solving many problems and solving
one of many problems, despite the differences in security consequences.

In particular, starting from an algorithm to solve many problems—especially
an algorithm that performs a shared precomputation and then handles each
problem separately—one can usually save time by simply reducing algorithm
parameters. There is then nothing new to design; what matters is the algorithm
analysis. Often it turns out that the reduced algorithm continues to successfully
break one or more of the problems, because of randomness in the problems,
randomness in the algorithm, or both. In the simple AES-key-guessing example
from Section 1, guessing only 288 keys has a good chance (more precisely,
probability close to 1 − exp(−1) = 0.632 . . .) of colliding with one of the 240

keys chosen at random by users.
In the T -target attack from Section 3.3, reducing the block size β

correspondingly reduces the heuristic cost of the initial BKZ-β computation and
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the precomputation of a database of short vectors in a β-dimensional lattice;
under a reasonable assumption on T , other steps are not heuristic bottlenecks.
The critical question is then how far one can reduce β so that the resulting
algorithm, when applied to one target, still has success probability at least 1/T .

There are large gaps in the literature at this point. It is clear from small-scale
experiments that there are probabilistic effects in lattice attacks;15 however,
for many of the necessary subroutines, the heuristic analyses in the literature
consider only the time taken for high success probability, rather than the whole
time-probability tradeoff curve. This is a defensible simplification, but it poses an
obstacle for the analysis of multi-target attacks.16 It seems necessary to revisit a
large part of the lattice-attack literature, systematically filling in every missing
probability analysis and building new heuristics accordingly.

Fortunately, the standard analysis has one step with two features that are
important for this paper:

• A probabilistic analysis of that step can be rigorously carried out as a
separate module. This is the main technical content of this section.

• Plugging the results for probability 1/2(c+o(1))n into the rest of the standard
analysis obtains a block size Θ(n/ lg n) smaller than before: more precisely,
(d + o(1))n/ lg n smaller, with d quantified below.

This makes no changes in the existing heuristics. The analysis here applies the
existing heuristics to a modified PKE; each ciphertext in the original PKE has
a noticeable chance, rigorously quantified below, of matching a ciphertext in the
modified PKE.

4.2. Computing 2-norm distributions from error distributions. Take
any probability distribution χ supported on a finite set of integers such that
0 and 1 each have nonzero probability and the average of χ is 0. Let n be a
positive integer. Let v be an element of Zn with each entry drawn independently
at random from χ.

The goal here is to analyze the chance that v has a particularly small 2-norm.
Section 4.4 will replace n with n + κ to see the chance of a ciphertext being
particularly weak in the context of attacks against the LPR PKE.

Define g as the polynomial
∑

i∈Z χiz
i2 ∈ R[z]. Then, for each j, the generating

function of v2
j is g. This means that the chance of v2

j = ` is the coefficient of z`

in g. See [101] for an introduction to generating functions.
One of the useful properties of generating functions is that adding independent

random variables corresponds to multiplying generating functions. In particular,
15 Consider, e.g., the first batch of experiments in [9, Table 1], reporting that

probabilities dropped from 93.3% to 52.8% to 4.8% as β dropped from the cutoff
mandated by the standard analysis to 5 or 10 lower.

16 Even for single-target attacks, understanding the cost of lower-probability attacks is
important. Presumably many users would be unhappy to hear that a feasible attack
succeeds with probability 10%. Furthermore, attacks with much lower probability,
such as 2−64, arise in the context of applying loose theorems.
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the generating function of
∑

j v2
j is gn: the chance of

∑
j v2

j = ` is the coefficient
of z` in gn.

Fix a positive rational number y below the degree of g. If yn ∈ Z then the
coefficient of zyn in gn is (c+o(1))n−1/2(g(ρ)/ρy)n; here ρ is the unique positive
real number satisfying ρg′(ρ) = yg(ρ), and

c =
(

2π

(
g(ρ)g′′(ρ) − g′(ρ)2

g(ρ)2 + y

ρ2

))−1/2

.

The previous sentence is an example of [49, Proposition VIII.8], which in turn
is an application of the saddle-point method in analytic combinatorics. For the
asymptotics in this paper, the important factor is (g(ρ)/ρy)n; but the extra
precision of (c+o(1))n−1/2(g(ρ)/ρy)n is used in the sanity check described below.

Take, for example, χ as the binomial distribution on {−16, . . . , 16}, and take
y = 8. Then g(1) = 1, g′(1) = 8, and g′′(1) = 180; ρ = 1 is a root of ρg′(ρ) =
yg(ρ), the unique positive root; g(ρ)/ρy = 1; and c = (248π)−1/2 = 0.035826 . . ..
The coefficient of z8n in gn, the chance of

∑
j v2

j being exactly its average value,
is ((248π)−1/2 + o(1))n−1/2.

The script in Figure 4.2.1 uses the Sage [92] mathematics system to carry
out the same computation for the same χ but with y = 21/4 = 5.25. The script
uses Sage’s built-in interval arithmetic to track rounding errors, printing question
marks for unknown digits. The output of the script indicates that ρ = 0.96713 . . .,
g(ρ)/ρy = 2−0.057241..., and c = 0.054093 . . .. The coefficient of zyn in gn is thus
2(−0.057241...+o(1))n if yn is an integer.

For comparison, naively modeling the distribution of the squared 2-norm of
v as a normal distribution with average 8n and variance 124n would say that
squared 2-norm ≤(21/4)n appears with probability (1−erf((11/4)

√
n/248))/2 ∈

exp((−(11/4)2/248 + o(1))n) = 2(−(11/4)2/(248 log 2)+o(1))n = 2(−0.043993...+o(1))n,
overestimating the actual 2(−0.057241...+o(1))n chance by an exponential factor.

As a sanity check, the script also runs through various small n where yn
is an integer, printing out tuples (n, yn, (gn)8n, (gn)8n/cn−1/2(g(ρ)/ρy)n. The
ratio here, the last tuple element, is 1 + o(1) according to the proposition cited
above, meaning that if the script is performing the right computations then the
printed ratios are also 1 + o(1). Concrete examples of the printed ratios include
0.87716 . . . for n = 8; 0.99683 . . . for n = 16; 0.99442 . . . for n = 32; 0.99718 . . .
for n = 64; 0.99859 . . . for n = 128; 0.99929 . . . for n = 256; and 0.99964 . . . for
n = 512. A proper test, rather than just a sanity check, would require explicit
bounds on the o(1) in c + o(1).

Changing y to 5511515/1048576 = 5.2561 . . . in the script produces ρ =
0.96724 . . ., g(ρ)/ρy = 2−0.056943..., and c = 0.054030 . . .; unsurprisingly, these
are close to the results for y = 5.25. For this value of y, the coefficient of zyn in
gn is 2(−0.056943...+o(1))n if yn is an integer. The script skips the sanity check in
this case given the size of 1048576.

What follows is a simpler example that can be checked by hand for variable
y—assuming Stirling’s well-known asymptotic formula for factorials. Stirling’s
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QQx.<x> = QQ[]

s2 = 16
B = (1+x)^(2*s2)/2^(2*s2)
g = sum(B[i+s2]*x^(i^2) for i in range(-s2,s2+1))

y = 21/4

assert all(gi >= 0 for gi in list(g))
assert g[0] > 0
assert g[1] > 0
assert y in QQ
assert y > 0
assert y < g.degree()

g1 = g.diff()
g2 = g1.diff()
foundrho = False
for rho in (x*g1-y*g).roots(RIF,multiplicities=False):
  if rho > 0:
    foundrho = True
    break
assert foundrho
base = g(rho)/rho^y
xi = (g(rho)*g2(rho)-g1(rho)^2)/g(rho)^2+y/rho^2
c = 1/(rho*sqrt(2*RIF(pi)*xi))

print('y',y)
print('rho',rho)
print('base',base)
print('lgbase',log(base,2.0))
print('lgnaive',-RIF((g1(1)-y)^2/(2*(g2(1)+g1(1)-g1(1)^2)*log(2))))
print('c',c)
sys.stdout.flush()

D = QQ(y).denominator()
if D < 1024:
  g = g.change_ring(RIF)
  gD = g^D
  n,gn = D,gD
  while n < 1024:
    est = c*base^n/sqrt(RIF(n))
    print('n',n,'yn',y*n,'coeff',gn[y*n],'coeff/est',gn[y*n]/est)
    sys.stdout.flush()
    n,gn = n+D,gn*gD

Fig. 4.2.1. Computing the asymptotic probability of a specific 2-norm of an error
vector; and computing the exact probability for various n as a sanity check. See text
for details.
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formula can be proven as an example of the saddle-point method, but can also
be proven more directly as in [91].

Take χ as the uniform distribution on {−1, 0, 1}, and take any rational number
y with 0 < y < 1. Then g = (1 + 2z)/3. The equation ρg′(ρ) = yg(ρ) is ρ(2/3) =
y(1 + 2ρ)/3, i.e., 2(1 − y)ρ = y, which has a unique positive root ρ = y/2(1 − y).
Here g(ρ)/ρy = ((1 + y/(1 − y))/3)/(y/2(1 − y))y = 2y/3yy(1 − y)1−y, so the
coefficient of zyn in gn is (2y/3yy(1 − y)1−y)n/n1/2+o(1) when yn is an integer.

The check, given that this g is linear, is to use the binomial formula for gn

to see that the coefficient of zi in gn is
(

n
i

)
2i/3n. Equivalently, observe that

there are exactly
(

n
i

)
2i ways for a vector v ∈ {−1, 0, 1}n to have i nonzero

positions, i.e., squared 2-norm i. By Stirling’s formula, the chance
(

n
i

)
2i/3n is

(2y/3yy(1 − y)1−y)n/n1/2+o(1) where y = i/n.

4.3. A modified cryptosystem. Fix a probability distribution χ. Assume as
above that χ is supported on a finite set of integers, that 0 and 1 each have
nonzero probability, and that the average of χ is 0. Fix a rational number y with
0 < y < s2, where s is the standard deviation of χ. Also fix a rational number
Q0 > 1/2, and define x0 = (Q0 − 1/2)/(Q0 + 1/2); then 0 < x0 < 1.

Consider a cryptosystem SqueezedLPR that is identical to the LPR PKE
with distribution χ except for two restrictions (to simplify the analysis) and one
critical change. The two restrictions are that x0n and y(1 + x0)n are integers.
The change is that encryption rejects (b, d) and starts over17 unless the sum of
the squares of the first (1 + x0)n components of the 2n-component vector (b, d)
is exactly y(1 + x0)n. (Non-rejected vectors exist for all sufficiently large n.)

Now apply the standard heuristic analysis to SqueezedLPR, specifically the
analysis of the usual single-target message-recovery attack, specifically with the
attack parameter κ chosen as x0n.

For LPR, the squared 2-norm of the target vector (b, Firstκ(d), 1) was
estimated as (n + κ)s2 + 1. For SqueezedLPR, the squared 2-norm of the target
vector (b, Firstκ(d), 1) is exactly y(1+x0)n+1 = (n+κ)y +1, in effect replacing
s2 with y. The standard analysis proceeds identically aside from this difference.

Now fix Q1, and fix a function n 7→ q with q ∈ Z, q ≥ 2, and lg q ∈ Q0 lg n +
Q1 + o(1). Asymptotically, SqueezedLPR is just like LPR with cryptosystem
parameters (n, q, χ) in that the asymptotics of the standard choice of β are
covered by Theorem 2.7.1, specifically with S0 = 0 since the error distribution
is independent of n. The only difference is that S1 drops from lg s to (lg y)/2.

The optimized attack parameters in Theorem 2.7.1 have z0 = 2Q0/(Q0+1/2)2

and z1 = (2S1 + · · · )2Q0/(Q0 + 1/2)3. The reduction of S1 by lg s − (lg y)/2
reduces z1 by (2 lg s − lg y)2Q0/(Q0 + 1/2)3, and thus reduces β by

((2 lg s − lg y)2Q0/(Q0 + 1/2)3 + o(1))n
lg n

= ((2 lg s − lg y)/(Q0 + 1/2) + o(1))β
lg β

;

17 There are much more efficient ways to sample the resulting distribution, but the
speed of encryption has no relevance to the standard attack analysis.
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the equation comes from β ∈ (z0 +o(1))n and 2Q0/(Q0 +1/2)3 = z0/(Q0 +1/2).
See Section 5 for a sanity check on this formula for the change in β.

For the multi-ciphertext attack in Section 3.3, the existing heuristics say that
the requirement on β is the same inequality—aside from a 1 + o(1) factor, which
has no effect on the first-order or second-order asymptotics. Again this change of
cryptosystem reduces the block size β by ((2 lg s− lg y)/(Q0 +1/2)+o(1))β/ lg β.

4.4. Attacks against the modified cryptosystem as attacks against the
original cryptosystem. Consider again LPR with distribution χ, and assume
that x0n and y(1 + x0)n are integers.

An LPR ciphertext has a chance of being a SqueezedLPR ciphertext; this
chance is quantified in Section 4.2. In a large enough collection of LPR
ciphertexts, one expects to find some SqueezedLPR ciphertexts. The standard
attack analysis, applied to SqueezedLPR, says, under the existing heuristics, that
a smaller block size β for the multi-ciphertext attack breaks those SqueezedLPR
ciphertexts; this is quantified in Section 4.3. Putting this together gives a
one-out-of-many-ciphertexts attack against LPR, heuristically faster than the
original multi-ciphertext attack.

Here is a numerical example of the asymptotic impact:

• Take Q0 = 0.501. Then x0 = 1/1001 and z0 = 1002000/1002001.
• Take χ as the binomial distribution on {−16, . . . , 16}. This has standard

deviation s = 23/2.
• Take y = 5511515/1048576. Restrict attention to n such that (1 + x0)n and

y(1 + x0)n are integers.
• The chance of the first (1 + x0)n entries of (b, d) having squared 2-norm

exactly y(1 + x0)n is 2(−0.056943...+o(1))(1+x0)n = 2(−0.056999...+o(1))n =
2(−0.056999...+o(1))β . This is simply replacing n with (1 + x0)n in one of the
examples from Section 4.2, and then rewriting n as (1/z0 + o(1))β.

• In a collection of, say, 2(0.0574+o(1))β LPR ciphertexts, there will be, with
probability 1−o(1), at least one ciphertext meeting this condition—in other
words, a SqueezedLPR ciphertext.18 This is also a small enough number
of ciphertexts to not be a heuristic bottleneck in the attack analyzed in
Section 3, since 0.0574 is safely below 0.058.

• Finally, (2 lg s− lg y)/(Q0 +1/2) is 0.60537 . . .. The analysis from Section 4.3
says that reducing β by (0.60537 . . . + o(1))β/ lg β suffices to break the
SqueezedLPR ciphertexts, according to the existing heuristics.

The gap between 0.056999 . . . and the 0.058 from [46] means that 0.60537 . . . can
be increased, but finding the exact limit would require a tedious recalculation of
the 0.058. The choice of 0.0574 here is designed to protect this paper against the
possibility that 0.058 actually means something as small as 0.0575. As a separate
matter, readers who prefer n to be a power of 2 can instead take Q0 = 1025/2046
with x0 = 1/1024; this marginally changes the other numbers listed above.
18 In fact, one expects an exponential number of SqueezedLPR ciphertexts, so this

is a some-out-of-many attack. More precisely, one expects to find more than
2(0.0004+o(1))β SqueezedLPR ciphertexts.
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The possibility of distance variations being important for security was
already pointed out in the NTRU Prime proposal [31, page 41] in 2019: “The
analysis does not take into account the variations in the 2-norm of g; this
simplification could overestimate or underestimate security”. However, that was
not the same as pointing out the possibility of exploiting these variations for
an efficient multi-ciphertext attack, let alone analyzing the resulting impact.
See also the 2021 survey [7, page 13], which states the usual “expected norm√

(n + m) · σ2 + t2” without mentioning the possibility of vectors being smaller
and easier to find than this formula indicates.

4.5. Countermeasures. Switching from the binomial distribution on
{−16, . . . , 16} to the binomial distribution on {−8, . . . , 8}, as in newer versions
of New Hope, and adjusting y appropriately, reduces the above 0.60537 . . .
to 0.59739 . . .. Switching from 8 to 3, one of the distributions used in the
latest version of Kyber, produces 0.56984 . . .. Switching from 3 to 2, another
distribution used in the latest version of Kyber,19 produces 0.54668 . . .. These
numbers were calculated by the Sage script in Figure 4.5.1.

More interestingly, switching to the uniform distribution on {−1, 0, 1}
produces just 0.32860 . . ., smaller than the constants from [45] and [44].
Compared to New Hope, this distribution has much smaller squared 2-norms on
average, but considerably less variation relative to the average: i.e., the variation
in heuristic security from one ciphertext to another is lower.

There is even less 2-norm variation in cryptosystem proposals that take, e.g.,
fixed-weight ternary vectors b and d. More generally, starting from cryptosystems
with any χ, one can modify vector generation to efficiently force a narrow range
of 2-norms (e.g., a specific 2-norm), limiting the size variations exploited in this
section. There is still some variation: Firstκ(d) selects some positions from d,
and the attacker can vary which positions are taken.

Ternary distributions with a prespecified number of 1 entries and a
prespecified number of −1 entries were already highlighted in the 1998 NTRU
proposal [57] as an attractive choice. Subsequent analysis consistently indicated
that proposed wider-than-ternary distributions damaged security against known
attacks for any given key size, as noted in, e.g., [31, Section 4.6].

New Hope’s use of a wide close-to-normal distribution on {−16, . . . , 16} can
be traced to the emphasis upon “worst-case-to-average-case reductions” for
Ring-LWE in [76]. On the other hand, New Hope is still not large enough for the
worst-case-to-average-case reductions to apply; see generally [70]. Descendants
of New Hope typically returned to smaller distributions, putting more emphasis
19 A full analysis of Kyber would also have to account for the rounding in Kyber

ciphertexts, which complicates single-target and multi-target attacks. This rounding
is mostly in the C component but also a little in the B component, slightly increasing
the effective size of d. The latest Kyber documentation claims that the rounding in
the latest version of Kyber-512 gains several bits of security for attacks against the
ciphertexts. The concrete question—not addressed by this paper’s asymptotics; see
Section 1.3—is then the extent to which security is damaged by variations in the
effective size of (b, d).
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batchtarget = 0.057 # safely below 0.058
QQz.<z> = QQ[]

def reldrop(g,Q0):
  W0 = (Q0-1/2)/(Q0+1/2)
  Z0 = 2*Q0/(Q0+1/2)^2
  g = QQz(g)
  assert all(gi >= 0 for gi in list(g))
  assert g[0] > 0 and g[1] > 0 and g(1) == 1
  g1 = g.diff()
  g2 = g1.diff()
  V = g1(1)

  def rhoy(y):
    return max((z*g1-y*g).roots(ring=RR,multiplicities=False))

  def grhorhoy(y):
    rho = rhoy(y)
    assert rho > 0
    return g(rho)/rho^y

  def yevaluation(y):
    # require y(n+kappa) = sum of squares of n+kappa positions
    lgbasenk = -log(grhorhoy(y))/log(2.0)
    # probability is 2^((-lgbasenk+o(1))*(n+kappa))
    lgbasen = (1+W0)*lgbasenk # n+kappa is (1+W0+o(1))n
    # probability is 2^((-lgbasen+o(1))*n)
    lgbasebeta = lgbasen/Z0 # beta is (Z0+o(1))n
    # probability is 2^((-lgbasebeta+o(1))*beta)
    return lgbasebeta-batchtarget

  y = find_root(yevaluation,0.001,V)
  y = RR(ceil(y*1048576)/1048576)
  return log(V/y,2.0)*Z0^2/(1+W0)

for Q0 in 0.501,1:
  for c in 16,8,3,2:
    g = sum(binomial(2*c,j)*z^((j-c)^2)
            for j in range(2*c+1))/4^(c)
    print('binomial -%d,...,%d Q0 %.8f reldrop %.8f'
          %(c,c,Q0,reldrop(g,Q0)))

  g = (1+2*z)/3
  print('uniform -1,0,1 Q0 %.8f reldrop %.8f'%(Q0,reldrop(g,Q0)))

Fig. 4.5.1. A script to calculate the asymptotic drops of the heuristically required β,
relative to β/ lg β, for various χ and Q0 ∈ {0.501, 1}, with S0 = 0, with batch size
fitting into at most 2(0.057+o(1))β ciphertexts.
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on security against known attacks—but often avoiding ternary distributions, for
example because of a common misimpression that hybrid attacks do not apply
to wider-than-ternary distributions.

Changing error distributions is not the only way to reduce the frequency
of particularly weak ciphertexts. Increasing Q0, while leaving the vector
distribution unchanged, generally reduces the variations that one can expect
to see within 2(0.058+o(1))β ciphertexts. Some cryptosystem proposals already
choose larger q (and correspondingly larger n to reach the same heuristic security
level), asymptotically with Q0 = 1, for another reason: namely, to provide proofs
that there are no decryption failures.

Instead of, or as a supplement to, trying to reduce variations, one can modify
the standard analysis to account for those variations, increasing parameter sizes
to protect the weakest ciphertexts. The obvious approach is as follows: decide
a limit on the number of ciphertexts, decide a limit on the acceptable success
probability of a multi-ciphertext attack, use generating-function techniques to
calculate the smallest 2-norm that will be found with that probability among that
number of ciphertexts, and use this 2-norm in place of an “expected” 2-norm.

5 A sanity check on block sizes

The critical formula from Section 4.3 says that the standard choice of β drops
by ((2 lg s − lg y)/(Q0 + 1/2) + o(1))β/ lg β when the variance drops from s2

to y. This formula relies on Theorem 2.7.1, which in turn relies on a chain of
asymptotic calculations.

As a sanity check on these calculations (analogous to the sanity check in
Section 4.2 on the calculations of how often the squared 2-norm is yn), this
section asks what the same drop in variance does to concrete values of β.

5.1. Using an existing estimator. The obvious way to see the change in β
for concrete sizes is to use an estimator already in the literature that calculates
β for concrete (n, q, s).

Specifically, consider [6], which reported security estimates for a wide range
of NIST submissions, specifically by plugging a variety of estimates for the
cost of BKZ-β into an estimator using the standard heuristic analysis. It is
straightforward to run the same estimator with different choices of variance to
see how the variance affects the choice of β for concrete examples of (n, q).

Take, in particular, n ∈ {25, 210, 215, 220} and q ∈ {
⌊
64n0.501⌋

, 64n}. These
are realistic sizes of q for n = 1024:

• FrodoKEM-976 uses the modulus 64 · 1024 = 65536.
• Back-of-the-envelope calculations suggest that using BCH codes as in

LAC [75] should make a modulus as small as 64
√

1024 = 2048 work with
the New Hope error distribution.

Extrapolating from these sizes of q for n = 1024 to formulas for q that differ only
in the exponent of n, namely 64n0.501 and 64n, corresponds to purely changing
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n q β0/n κ0/n β1/n κ1/n reldrop
32 363 1.25000 0.90625 1.25000 0.75000 0.00000

1024 2062 1.22461 1.03809 1.14941 1.02930 0.63198
32768 11706 1.25000 0.72910 1.20096 0.69708 0.60113

1048576 66450 1.22636 0.55642 1.19031 0.53552 0.59660
32 2048 1.25000 0.53125 1.25000 0.46875 0.00000

1024 65536 0.76465 1.08887 0.72949 1.03320 0.44197
32768 2097152 0.86414 0.83578 0.83987 0.81613 0.41523

1048576 67108864 0.89010 0.71349 0.87176 0.69796 0.40855

Table 5.1.1. The impact of changes in variance upon block size for various pairs (n, q),
according to the estimator used in [6]. The β0/n and κ0/n columns are for variance 8.
The β1/n and κ1/n columns are for variance 5511515/1048576. The “reldrop” column
is (β0 − β1)/(β0/ lg β0). The last five columns are rounded to 5 digits after the decimal
point.

Q0. Further motivations for considering Q0 = 0.501 and Q0 = 1 are mentioned
elsewhere in this paper. More to the point, these two values of Q0 are separated
by enough to easily see the impact on 1/(Q0 + 1/2).

Table 5.1.1 reports, for each of these pairs (n, q), what happens to β when
variance drops from 8 to 5511515/1048576, according to the estimator used in
[6], with κ allowed to be as large as 2n. The “reldrop” column in the table is
(lg β)/β times the drop in β. For comparison, the asymptotics say that “reldrop”
is asymptotically 0.605 . . . + o(1) for Q0 = 0.501, and about 2/3 as large,
asymptotically 0.403 . . . + o(1), for Q0 = 1. The concrete numbers in the table
are not far from this.

The numbers in the table are printed out by the Sage script in Figure 5.1.2.
As a check that it is using the estimator correctly, the script also prints out
(β, κ) for the original New Hope parameters (n, q, s) = (1024, 12289,

√
8) and

the revised new Hope parameters (n, q, s) = (1024, 12289, 2), namely (968, 1071)
and (886, 1019) respectively. This matches the (886, 1019) produced by the the
“LWE 2n samples” script provided by [6] for “NewHope” with n = 1024, and
the (968, 1071) produced if the script is modified to say sd = sqrt(8) instead
of sd = 2.

A slightly smaller β = 967 is claimed for the original New Hope in [13, Table 1]
(as mentioned in Section 2.1) and in [11, Table 12], but those attack parameters
do not satisfy the inequality stated in [13]. When asked about this error, the
New Hope authors reported that their software to find β was defining d as n + κ
rather than n + κ + 1. More broadly, readers attempting to verify calculations in
the literature should be alert for small variations. Consider, e.g., the (a, e, 3.14)
variant mentioned in Section 2.4; as another example, the literature sometimes
replaces δ with δd/(d−1).

5.2. Larger sizes. Table 5.1.1 also reports the values of β/n and κ/n from the
estimator used in [6]. For comparison, the asymptotics say that β/n and κ/n
converge to the aforementioned 1002000/1002001 and 1/1001 respectively for
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load('estimator.py')

def bkzmodel(beta,d,B):
  return (3/2)^RR(beta/2)

def betakappa(n,q,V):
  alpha = sqrt(2*pi*V)/RR(q)
  samplesavailable = 2*n # limiting kappa
  est = primal_usvp(n,alpha,q,m=samplesavailable,
                    success_probability=0.99,
                    secret_distribution='normal',
                    reduction_cost_model=bkzmodel)
  return est['beta'],est['m']

for n,q,V in (1024,12289,8),(1024,12289,4):
  beta,kappa = betakappa(n,q,V)
  print('n',n,'q',q,'V',V,'kappa',kappa,'beta',beta)
  sys.stdout.flush()

for j in 5,10,15,20:
  n = 2^j
  for q in floor(64*n^0.501),64*n:
    betas = []
    for V in 8,5511515/1048576:
      beta,kappa = betakappa(n,q,V)
      print('n',n,'q',q,'V',V,'kappa/n',RR(kappa/n),'beta/n',RR(beta/n))
      sys.stdout.flush()
      betas += [beta]
    reldrop = RR((betas[0]-betas[1])/(betas[0]/log(betas[0],2.0)))
    print('n',n,'q',q,'reldrop',reldrop)
    sys.stdout.flush()

Fig. 5.1.2. A Sage script that calculated the numbers in Table 5.1.1, using the same
estimator used in [6].

Q0 = 0.501, and to 8/9 and 1/3 respectively for Q0 = 1. The concrete numbers
in the table for both β/n and κ/n seem to be considerably above these limits
(except that β/n seems close for Q0 = 1), motivating the following investigation
of larger n.

The estimators in the literature become extremely slow as n increases.
However, for any particular (n, q, s), one can instead minimize β on the curve of
real pairs (κ, β) ∈ R×R for which StandardRatio(n, q, s, κ, β) = 1. Rewriting the
equation in the form ϕ(κ, β) = 0 and applying Lagrange multipliers converts this
minimization problem into the problem of solving the two equations ϕ(κ, β) = 0
and ϕx(κ, β) = 0 where ϕx is the derivative of ϕ with respect to its first input.
Figure 5.2.1 is a Sage script that finds, to reasonably high precision, a solution
at reasonable speed by well-known equation-solving techniques.
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x,y = var('x y')
for Q0 in 1,0.501:
  for V in 8,5511515/1048576:
    for j in 10,15,20,25,32,64,128,256,512,1024,2048:
      RR = RealField(2*j+50)
      n = 2^j
      q = floor(64*n^Q0)
      d = n+x+1
      delta = (y*(pi*y)^(1/y)/(2*pi*exp(1)))^(1/(2*(y-1)))
      rho = ((n+x)*V+1)^(1/2)
      rho /= (d/y)^(1/2)*delta^(2*y-d-1)*q^(x/d)
      g = log(rho)
      gx = g.derivative(x)
      gy = g.derivative(y)
      gxx = gx.derivative(x)
      gxy = gx.derivative(y)

      ok = False
      while not ok:
        a = RR.random_element(1/10,19/10)*n
        b = RR.random_element(n/10,9*n/10+a)

        for loop in range(30):
          gab = RR(g(x=a,y=b))
          gxab = RR(gx(x=a,y=b))
          if abs(gab) < 1/2^30 and abs(gxab) < 1/2^30:
            ok = True
            break
          gyab = RR(gy(x=a,y=b))
          gxxab = RR(gxx(x=a,y=b))
          gxyab = RR(gxy(x=a,y=b))
          J = matrix([[gxab,gyab],[gxxab,gxyab]])
          d,e = J.solve_right(vector([gab,gxab]))
          step = 1
          while True:
            a1,b1 = a-step*d,b-step*e
            if a1 > 0 and b1 > 0 and a1 < 2*n and b1 < a1+n:
              a,b = a1,b1
              break
            step *= RR(1/2)

      print('n 2^%d Q0 %.8f V %s beta/n %.8f kappa/n %.8f'
            % (j,Q0,V,b/n,a/n))

Fig. 5.2.1. A script that, for various (n, q, s), finds real numbers (β, κ) to approximately
locally minimize β subject to ((n + κ)s2 + 1)1/2 = (d/β)1/2δ2β−d−1qκ/d.



30 Daniel J. Bernstein

For, e.g., (n, q, s) = (1024, 65536,
√

8), the output of this script says that
β/n ≈ 0.76508 and κ/n ≈ 1.10203. This is a slightly larger value of β/n than
the 0.76465 (i.e., β = 783) reported in Table 5.1.1 from the estimator used in [6],
whereas a minimum over R × R cannot be larger than a minimum of the same
function over Z×Z. One possible explanation would be that the local minimum
found by Figure 5.2.1 is not a global minimum; a simpler explanation is the
small variations mentioned above in the inequalities considered in the literature.

For n = 22048, again with q = 64n and s =
√

8, the same script outputs
(β/n, κ/n) = (0.88945 . . . , 0.33709 . . .), much closer to the (8/9, 1/3) limit. For
n = 22048, q =

⌊
64n0.501⌋

, and s =
√

8, the script outputs (β/n, κ/n) =
(1.00343 . . . , 0.00665 . . .), almost as close to the (0.99999 . . . , 0.00099 . . .) limit.
Finally, the relative drops in β for n = 22048 are 0.40394 . . . for Q0 = 1 and
0.60513 . . . for Q0 = 0.501, very close to the limits.

References

[1] — (no editor), IEEE international symposium on information theory, ISIT 2007,
Nice, France, June 24–29, 2007, IEEE, 2007. URL: https://ieeexplore.ieee.
org/xpl/conhome/4497218/proceeding. See [96].

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella
Béguelin, Paul Zimmermann, Imperfect forward secrecy: how Diffie-Hellman fails
in practice, Communications of the ACM 62 (2019), 106–114. URL: https://
weakdh.org. Citations in this document: §1.

[3] Gorjan Alagic, FrodoKEM in the third round (2021). URL: https://nist.
pqcrypto.org/foia/20221107/Frodo-final.pptx. Citations in this document:
§B.5.

[4] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, Yi-Kai Liu, Status report on the third
round of the NIST Post-Quantum Cryptography Standardization Process (2022).
NISTIR 8413. URL: https://csrc.nist.gov/publications/detail/nistir/
8413/final. Citations in this document: §4, §4, §4, §B, §B.5, §B.5.

[5] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin
Tomlinson, Wen Wang, Classic McEliece: conservative code-based cryptography
(2020). URL: https://classic.mceliece.org/nist/mceliece-20201010.pdf.
Citations in this document: §1, §A.3.

[6] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel
Player, Eamonn W. Postlethwaite, Fernando Virdia, Thomas Wunderer,
Estimate all the {LWE, NTRU} Schemes!, in SCN 2018 [36] (2018), 351–367.
URL: https://eprint.iacr.org/2018/331. Citations in this document: §2,
§2.9, §2.9, §2.9, §5.1, §5.1, §5.1.1, §5.1.1, §5.1, §5.1.2, §5.1.2, §5.2, §5.2.

https://ieeexplore.ieee.org/xpl/conhome/4497218/proceeding
https://ieeexplore.ieee.org/xpl/conhome/4497218/proceeding
https://weakdh.org
https://weakdh.org
https://nist.pqcrypto.org/foia/20221107/Frodo-final.pptx
https://nist.pqcrypto.org/foia/20221107/Frodo-final.pptx
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://eprint.iacr.org/2018/331


Multi-ciphertext security degradation for lattices 31

[7] Martin R. Albrecht, Léo Ducas, Lattice attacks on NTRU and LWE: a history
of refinements (2021). URL: https://eprint.iacr.org/2021/799. Citations in
this document: §2, §4.4, §C.2.

[8] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, John M.
Schanck, Estimating quantum speedups for lattice sieves, in Asiacrypt 2020 [82]
(2020), 583–613. URL: https://eprint.iacr.org/2019/1161. Citations in this
document: §5.

[9] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, Thomas Wunderer,
Revisiting the expected cost of solving uSVP and applications to LWE,
in Asiacrypt 2017 [99] (2017). URL: https://eprint.iacr.org/2017/815.
Citations in this document: §2.5, §15.

[10] Erdem Alkim, Roberto Avanzi, Joppe Bos, Leo Ducas, Antonio de la
Piedra, Thomas Poppelmann, Peter Schwabe, Douglas Stebila, NewHope:
algorithm specifications and supporting documentation (2017). URL: https://
web.archive.org/web/20190411045044/https://newhopecrypto.org/data/
NewHope_2017_12_21.pdf. Citations in this document: §A.2, §A.2.

[11] Erdem Alkim, Roberto Avanzi, Joppe Bos, Leo Ducas, Antonio de la
Piedra, Thomas Poppelmann, Peter Schwabe, Douglas Stebila, Martin R.
Albrecht, Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy
Peer, Nigel P. Smart, NewHope: algorithm specifications and supporting
documentation (2019). URL: https://web.archive.org/web/20191015124615/
https://newhopecrypto.org/data/NewHope_2019_04_10.pdf. Citations in this
document: §5.1, §A.2, §A.2.

[12] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov, Michael
Naehrig, Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, Douglas
Stebila, FrodoKEM: Learning With Errors key encapsulation: algorithm
specifications and supporting documentation (2021). URL: https://web.
archive.org/web/20220119174856/https://frodokem.org/files/FrodoKEM-
specification-20210604.pdf. Citations in this document: §1.2, §2, §B, §B.2,
§B.2, §B.3, §B.3, §B.3, §B.4, §B.5, §B.5, §B.5, §B.5.

[13] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, Peter Schwabe, Post-quantum
key exchange—a new hope, in USENIX Security 2016 [60] (2016), 327–343.
URL: https://eprint.iacr.org/2015/1092. Citations in this document: §2,
§2.1, §3.1, §5.1, §5.1, §A.1, §20, §A.2, §A.2, §A.2.

[14] Daniel Apon, Re: Looseness, security risks, and LWR vs. LWE (2021).
URL: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/
Yx0wZuZP6ag/m/CqxTSn3TCAAJ. Citations in this document: §B.5.

[15] Benny Applebaum, David Cash, Chris Peikert, Amit Sahai, Fast cryptographic
primitives and circular-secure encryption based on hard learning problems, in
Crypto 2009 [54] (2009), 595–618. URL: https://www.wisdom.weizmann.ac.
il/~/bennyap/pubs/kdm-learning.pdf. Citations in this document: §A.4, §A.4.

[16] Jean-Philippe Aumasson, Too much crypto (2019). URL: https://eprint.iacr.
org/2019/1492. Citations in this document: §1.3.

[17] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé,
CRYSTALS-Kyber: Algorithm specifications and supporting documentation
(2020). URL: https://web.archive.org/web/20211007045636/https://pq-
crystals.org/kyber/data/kyber-specification-round3.pdf. Citations in
this document: §1.1, §1.1, §1.1, §1.1, §2.9.

https://eprint.iacr.org/2021/799
https://eprint.iacr.org/2019/1161
https://eprint.iacr.org/2017/815
https://web.archive.org/web/20190411045044/https://newhopecrypto.org/data/NewHope_2017_12_21.pdf
https://web.archive.org/web/20190411045044/https://newhopecrypto.org/data/NewHope_2017_12_21.pdf
https://web.archive.org/web/20190411045044/https://newhopecrypto.org/data/NewHope_2017_12_21.pdf
https://web.archive.org/web/20191015124615/https://newhopecrypto.org/data/NewHope_2019_04_10.pdf
https://web.archive.org/web/20191015124615/https://newhopecrypto.org/data/NewHope_2019_04_10.pdf
https://web.archive.org/web/20220119174856/https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://web.archive.org/web/20220119174856/https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://web.archive.org/web/20220119174856/https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://eprint.iacr.org/2015/1092
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Yx0wZuZP6ag/m/CqxTSn3TCAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Yx0wZuZP6ag/m/CqxTSn3TCAAJ
https://www.wisdom.weizmann.ac.il/~/bennyap/pubs/kdm-learning.pdf
https://www.wisdom.weizmann.ac.il/~/bennyap/pubs/kdm-learning.pdf
https://eprint.iacr.org/2019/1492
https://eprint.iacr.org/2019/1492
https://web.archive.org/web/20211007045636/https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://web.archive.org/web/20211007045636/https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf


32 Daniel J. Bernstein

[18] Roberto Avanzi, Howard M. Heys (editors), Selected areas in cryptography—SAC
2016—23rd international conference, St. John’s, NL, Canada, August 10–12,
2016, revised selected papers, Lecture Notes in Computer Science, 10532,
Springer, 2017. ISBN 978-3-319-69452-8. See [72].

[19] László Babai, On Lovász’ lattice reduction and the nearest lattice point problem,
Combinatorica 6 (1986), 1–13. Citations in this document: §3.1.

[20] Razvan Barbulescu, Algorithms of discrete logarithm in finite fields
(2013). URL: https://tel.archives-ouvertes.fr/tel-00925228/file/
these%5Favec%5Fresume.pdf. Citations in this document: §1.

[21] Anja Becker, Léo Ducas, Nicolas Gama, Thijs Laarhoven, New directions in
nearest neighbor searching with applications to lattice sieving, in SODA 2016
[71] (2016), 10–24. URL: https://eprint.iacr.org/2015/1128. Citations in
this document: §2.2, §2.2, §2.2, §3.2.

[22] Mihir Bellare, Hannah Davis, Felix Günther, Separate your domains: NIST
PQC KEMs, oracle cloning and read-only indifferentiability, in Eurocrypt 2020
[35] (2020), 3–32. URL: https://eprint.iacr.org/2020/241. Citations in this
document: §2.9.

[23] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how
to sign with RSA and Rabin, in Eurocrypt 1996 [79] (1996), 399–416. URL:
https://cseweb.ucsd.edu/~mihir/papers/exactsigs.html. Citations in this
document: §B, §B.5, §24.

[24] Daniel J. Bernstein, Understanding brute force (2005). ECRYPT STVL
Workshop on Symmetric Key Encryption. URL: http://cr.yp.to/papers.
html#bruteforce. Citations in this document: §1.

[25] Daniel J. Bernstein, Break a dozen secret keys, get a million more for free (2015).
URL: https://blog.cr.yp.to/20151120-batchattacks.html. Citations in this
document: §1.

[26] Daniel J. Bernstein, OFFICIAL COMMENT: Frodo (2018). URL: https://
groups.google.com/a/list.nist.gov/g/pqc-forum/c/rJYnyTEi92E/m/
l5xBpeTpBQAJ. Citations in this document: §B.5.

[27] Daniel J. Bernstein, Comparing proofs of security for lattice-based encryption
(2019). Second PQC Standardization Conference. URL: https://cr.yp.to/
papers.html#latticeproofs. Citations in this document: §A.4.

[28] Daniel J. Bernstein, Cryptographic competitions (2020). URL: https://cr.yp.
to/papers.html#competitions. Citations in this document: §1.3.

[29] Daniel J. Bernstein, Re: Looseness, security risks, and LWR vs. LWE
(2021). URL: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/
Yx0wZuZP6ag/m/GXIwomNsCAAJ. Citations in this document: §B.5.

[30] Daniel J. Bernstein, Re: Was: eddsa (un)suited for mandatory to implement
ciphersuite? (2022). URL: https://mailarchive.ietf.org/arch/msg/cfrg/
GRigAYvZ8-Z8qmxJ1jOiKR8eLyQ/. Citations in this document: §23.

[31] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine van
Vredendaal, NTRU Prime: round 2 (2019). URL: https://ntruprime.cr.yp.
to/nist.html. Citations in this document: §2.3, §4.4, §4.5.

[32] Daniel J. Bernstein, Tanja Lange, Non-randomness of S-unit lattices (2021).
URL: https://cr.yp.to/papers.html#spherical. Citations in this document:
§1.3, §12.

[33] Joe P. Buhler (editor), Algorithmic number theory, third international
symposium, ANTS-III, Portland, Oregon, USA, June 21–25, 1998, proceedings,
Lecture Notes in Computer Science, 1423, Springer, 1998. ISBN 3-540-64657-4.
See [57].

https://tel.archives-ouvertes.fr/tel-00925228/file/these%5Favec%5Fresume.pdf
https://tel.archives-ouvertes.fr/tel-00925228/file/these%5Favec%5Fresume.pdf
https://eprint.iacr.org/2015/1128
https://eprint.iacr.org/2020/241
https://cseweb.ucsd.edu/~mihir/papers/exactsigs.html
http://cr.yp.to/papers.html#bruteforce
http://cr.yp.to/papers.html#bruteforce
https://blog.cr.yp.to/20151120-batchattacks.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/rJYnyTEi92E/m/l5xBpeTpBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/rJYnyTEi92E/m/l5xBpeTpBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/rJYnyTEi92E/m/l5xBpeTpBQAJ
https://cr.yp.to/papers.html#latticeproofs
https://cr.yp.to/papers.html#latticeproofs
https://cr.yp.to/papers.html#competitions
https://cr.yp.to/papers.html#competitions
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Yx0wZuZP6ag/m/GXIwomNsCAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Yx0wZuZP6ag/m/GXIwomNsCAAJ
https://mailarchive.ietf.org/arch/msg/cfrg/GRigAYvZ8-Z8qmxJ1jOiKR8eLyQ/
https://mailarchive.ietf.org/arch/msg/cfrg/GRigAYvZ8-Z8qmxJ1jOiKR8eLyQ/
https://ntruprime.cr.yp.to/nist.html
https://ntruprime.cr.yp.to/nist.html
https://cr.yp.to/papers.html#spherical


Multi-ciphertext security degradation for lattices 33

[34] Peter Campbell, Michael Groves, Dan Shepherd, Soliloquy: a cautionary
tale (2014). URL: https://web.archive.org/web/20211022132624/
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_
and_Attacks/S07_Groves_Annex.pdf. Citations in this document: §A.1.

[35] Anne Canteaut, Yuval Ishai (editors), Advances in cryptology—EUROCRYPT
2020—39th annual international conference on the theory and applications
of cryptographic techniques, Zagreb, Croatia, May 10–14, 2020, proceedings,
part II, Lecture Notes in Computer Science, 12106, Springer, 2020. ISBN
978-3-030-45723-5. See [22].

[36] Dario Catalano, Roberto De Prisco (editors), Security and cryptography for
networks—11th international conference, SCN 2018, Amalfi, Italy, September
5–7, 2018, proceedings, Lecture Notes in Computer Science, 11035, Springer,
2018. See [6].

[37] André Chailloux, Johanna Loyer, Lattice sieving via quantum random walks
(2021). URL: https://eprint.iacr.org/2021/570. Citations in this document:
§5.

[38] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, Peter
Schwabe, MQDSS specifications (2019). URL: https://web.archive.org/web/
20220120235746/https://mqdss.org/files/MQDSS_Ver2.pdf. Citations in this
document: §B.5.

[39] Cloudflare Research, Post-quantum key agreement (2022). URL: https://pq.
cloudflareresearch.com. Citations in this document: §1.3.

[40] Henri Cohen, Advanced topics in computational number theory, Springer, 2000.
ISBN 0-387-98727-4. Citations in this document: §12.

[41] Don Coppersmith, Adi Shamir, Lattice attacks on NTRU, in Eurocrypt 1997
[50] (1997), 52–61. URL: https://link.springer.com/content/pdf/10.1007/
3-540-69053-0_5.pdf. Citations in this document: §2.4.

[42] Jintai Ding, Rainer Steinwandt (editors), Post-quantum cryptography—10th
international conference, PQCrypto 2019, Chongqing, China, May 8–10, 2019,
revised selected papers, 11505, Springer, 2019. ISBN 978-3-030-25509-1. See [43].

[43] Emmanouil Doulgerakis, Thijs Laarhoven, Benne de Weger, Finding closest
lattice vectors using approximate Voronoi cells, in PQCrypto 2019 [42] (2019),
3–22. Citations in this document: §3.2.

[44] Emmanouil Doulgerakis, Thijs Laarhoven, Benne de Weger, Sieve, enumerate,
slice, and lift: hybrid lattice algorithms for SVP via CVPP, in Africacrypt 2020
[85] (2020), 301–320. URL: https://eprint.iacr.org/2020/487. Citations in
this document: §2.2, §4, §4, §4.5.

[45] Léo Ducas, Shortest vector from lattice sieving: A few dimensions for free, in
Eurocrypt 2018 [83] (2018), 125–145. URL: https://eprint.iacr.org/2017/
999. Citations in this document: §2.2, §2.2, §4, §4, §4.5.

[46] Léo Ducas, Thijs Laarhoven, Wessel P. J. van Woerden, The randomized slicer for
CVPP: sharper, faster, smaller, batchier, in PKC 2020 [67] (2020), 3–36. URL:
https://eprint.iacr.org/2020/120. Citations in this document: §3, §3.2, §13,
§13, §3.2, §3.3, §3.3, §3.3, §3.3, §4.4.

[47] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor
Seiler, Faster lattice-based KEMs via a generic Fujisaki-Okamoto transform using
prefix hashing, in CCS 2021 [68] (2021), 2722–2737. URL: https://eprint.
iacr.org/2021/1351. Citations in this document: §1.1, §1.1, §8, §A, §A.4, §A.4,
§A.4, §A.4, §A.4, §A.4, §A.4, §A.4, §A.4, §A.4, §A.4, §A.4, §A.4, §A.4, §A.4,
§A.4, §A.4, §A.4, §A.4.

https://web.archive.org/web/20211022132624/https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://web.archive.org/web/20211022132624/https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://web.archive.org/web/20211022132624/https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://eprint.iacr.org/2021/570
https://web.archive.org/web/20220120235746/https://mqdss.org/files/MQDSS_Ver2.pdf
https://web.archive.org/web/20220120235746/https://mqdss.org/files/MQDSS_Ver2.pdf
https://pq.cloudflareresearch.com
https://pq.cloudflareresearch.com
https://link.springer.com/content/pdf/10.1007/3-540-69053-0_5.pdf
https://link.springer.com/content/pdf/10.1007/3-540-69053-0_5.pdf
https://eprint.iacr.org/2020/487
https://eprint.iacr.org/2017/999
https://eprint.iacr.org/2017/999
https://eprint.iacr.org/2020/120
https://eprint.iacr.org/2021/1351
https://eprint.iacr.org/2021/1351


34 Daniel J. Bernstein

[48] Thomas Espitau, Paul Kirchner, The nearest-colattice algorithm:
time-approximation tradeoff for approx-CVP, in ANTS 2020 [51] (2020),
251–266. URL: https://eprint.iacr.org/2020/694. Citations in this
document: §3, §3.1, §3.1, §3.1, §3.1, §3.1, §3.1, §3.1, §3.1, §11, §3.1, §3.1, §13,
§3.3, §3.3, §3.3, §3.3.

[49] Philippe Flajolet, Robert Sedgewick, Analytic combinatorics, Cambridge
University Press, 2009. ISBN 978-0-521-89806-5. URL: https://ac.cs.
princeton.edu/home/. Citations in this document: §4.2.

[50] Walter Fumy (editor), Advances in cryptology—EUROCRYPT ’97, international
conference on the theory and application of cryptographic techniques, Konstanz,
Germany, May 11–15, 1997, Lecture Notes in Computer Science, 1233, Springer,
1997. See [41].

[51] Steven Galbraith (editor), ANTS XIV: proceedings of the fourteenth algorithmic
number theory symposium, Auckland 2020, Open Book Series, 4, Mathematical
Sciences Publishers, 2020. ISBN 978-1-935107-07-1. See [48].

[52] Michael T. Goodrich, Zig-zag sort: a simple deterministic data-oblivious sorting
algorithm running in O(n log n) time, in STOC 2014 [94] (2014), 684–693. URL:
https://arxiv.org/abs/1403.2777. Citations in this document: §1.3.

[53] Qian Guo, Thomas Johansson, Faster dual lattice attacks for solving LWE with
applications to CRYSTALS, in Asiacrypt 2021 [100] (2021), 33–62. Citations in
this document: §1.1.

[54] Shai Halevi (editor), Advances in cryptology—CRYPTO 2009, 29th annual
international cryptology conference, Santa Barbara, CA, USA, August 16–20,
2009. proceedings, 5677, Springer, 2009. ISBN 978-3-642-03355-1. See [15].

[55] John Harrison, HOL Light: A tutorial introduction, in FMCAD 1996~[97] (1996),
265–269. Citations in this document: §C.

[56] Max Heiser, Improved quantum hypercone locality sensitive filtering in lattice
sieving (2021). URL: https://eprint.iacr.org/2021/1295. Citations in this
document: §5.

[57] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, NTRU: a ring-based public
key cryptosystem, in ANTS 1998 [33] (1998), 267–288. URL: https://ntru.
org/f/hps98.pdf. Citations in this document: §2.4, §2.4, §2.4, §4.5.

[58] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, NTRU: a new high speed
public key cryptosystem (2016). Circulated at Crypto 1996, put online in 2016.
URL: https://ntru.org/f/hps96.pdf. Citations in this document: §2.4.

[59] Dennis Hofheinz, Kathrin Hövelmanns, Eike Kiltz, A modular analysis of the
Fujisaki-Okamoto transformation, in TCC 2017-1 [64] (2017), 341–371. URL:
https://eprint.iacr.org/2017/604. Citations in this document: §B.1.

[60] Thorsten Holz, Stefan Savage (editors), 25th USENIX security symposium,
USENIX Security 16, Austin, TX, USA, August 10–12, 2016,
USENIX Association, 2016. URL: https://www.usenix.org/conference/
usenixsecurity16. See [13].

[61] Nick Howgrave-Graham, A hybrid lattice-reduction amd meet-in-the-middle
attack against NTRU, in Crypto 2007 [81] (2007), 150–169. URL: https://
www.iacr.org/archive/crypto2007/46220150/46220150.pdf. Citations in this
document: §3.1, §3.1, §9, §3.1, §10.

[62] Yuval Ishai, Vincent Rijmen (editors), Advances in cryptology—EUROCRYPT
2019—38th annual international conference on the theory and applications of
cryptographic techniques, Darmstadt, Germany, May 19–23, 2019, proceedings,
part II, Springer, 2019. ISBN 978-3-030-17655-6. See [87].

https://eprint.iacr.org/2020/694
https://ac.cs.princeton.edu/home/
https://ac.cs.princeton.edu/home/
https://arxiv.org/abs/1403.2777
https://eprint.iacr.org/2021/1295
https://ntru.org/f/hps98.pdf
https://ntru.org/f/hps98.pdf
https://ntru.org/f/hps96.pdf
https://eprint.iacr.org/2017/604
https://www.usenix.org/conference/usenixsecurity16
https://www.usenix.org/conference/usenixsecurity16
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf


Multi-ciphertext security degradation for lattices 35

[63] Thomas Johansson, Fredrik Jönsson, On the complexity of some cryptographic
problems based on the general decoding problem, IEEE Transactions on
Information Theory 48 (2002), 2669–2678. Citations in this document: §A.3.

[64] Yael Kalai, Leonid Reyzin (editors), Theory of cryptography—15th international
conference, TCC 2017, Baltimore, MD, USA, November 12–15, 2017,
proceedings, part I, Lecture Notes in Computer Science, 10677, Springer, 2017.
ISBN 978-3-319-70499-9. See [59].

[65] Daniel Kales, Greg Zaverucha, Forgery attacks on MQDSSv2.0 (2019).
URL: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-2/official-comments/MQDSS-round2-
official-comment.pdf. Citations in this document: §B.5.

[66] Aggelos Kiayias (editor), Topics in cryptology—CT-RSA 2011—the
cryptographers’ track at the RSA Conference 2011, San Francisco, CA,
USA, February 14–18, 2011, proceedings, Lecture Notes in Computer Science,
6558, Springer, 2011. ISBN 978-3-642-19073-5. See [74].

[67] Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, Vassilis Zikas (editors),
Public-key cryptography—PKC 2020—23rd IACR international conference on
practice and theory of public-key cryptography, Edinburgh, UK, May 4–7, 2020,
proceedings, part II, 12111, Springer, 2020. ISBN 978-3-030-45387-9. See [46].

[68] Yongdae Kim, Jong Kim, Giovanni Vigna, Elaine Shi (editors), CCS ’21:
2021 ACM SIGSAC conference on computer and communications security,
virtual event, Republic of Korea, November 15–19, 2021, ACM, 2021. ISBN
978-1-4503-8454-4. See [47].

[69] Neal Koblitz, Alfred Menezes, Critical perspectives on provable security: fifteen
years of “another look” papers, Advances in Mathematics of Communications 13
(2019), 517–558. URL: https://eprint.iacr.org/2019/1336. Citations in this
document: §B.5, §24.

[70] Neal Koblitz, Subhabrata Samajder, Palash Sarkar, Subhadip Singha, Concrete
analysis of approximate Ideal-SIVP to decision Ring-LWE reduction (2022).
URL: https://eprint.iacr.org/2022/275. Citations in this document: §4.5.

[71] Robert Krauthgamer (editor), Proceedings of the twenty-seventh annual
ACM-SIAM symposium on discrete algorithms, SODA 2016, Arlington, VA,
USA, January 10–12, 2016, SIAM, 2016. ISBN 978-1-61197-433-1. See [21].

[72] Thijs Laarhoven, Sieving for closest lattice vectors (with preprocessing), in SAC
2016 [18] (2016), 523–542. Citations in this document: §3.2, §3.2.

[73] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., László Lovász, Factoring polynomials
with rational coefficients, Mathematische Annalen 261 (1982), 515–534.
ISSN 0025-5831. MR 84a:12002. URL: https://openaccess.leidenuniv.nl/
bitstream/handle/1887/3810/346_050.pdf. Citations in this document: §3.1.

[74] Richard Lindner, Chris Peikert, Better key sizes (and attacks) for LWE-based
encryption, in CT-RSA [66] (2011), 319–339. URL: https://eprint.iacr.org/
2010/613. Citations in this document: §2, §9, §9.

[75] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, Bao Li, LAC: practical Ring-LWE based public-key encryption with byte-level
modulus (2018). URL: https://eprint.iacr.org/2018/1009. Citations in this
document: §5.1.

[76] Vadim Lyubashevsky, Chris Peikert, Oded Regev, On ideal lattices and learning
with errors over rings, Journal of the ACM 60 (2013), Article 43, 35 pages.
URL: https://eprint.iacr.org/2012/230. Citations in this document: §2, §6,
§6, §2.3, §2.3, §2.4, §2.4, §4.5.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/official-comments/MQDSS-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/official-comments/MQDSS-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/official-comments/MQDSS-round2-official-comment.pdf
https://eprint.iacr.org/2019/1336
https://eprint.iacr.org/2022/275
https://openaccess.leidenuniv.nl/bitstream/handle/1887/3810/346_050.pdf
https://openaccess.leidenuniv.nl/bitstream/handle/1887/3810/346_050.pdf
https://eprint.iacr.org/2010/613
https://eprint.iacr.org/2010/613
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2012/230


36 Daniel J. Bernstein

[77] Mitsuru Matsui (editor), Advances in cryptology—ASIACRYPT 2009, 15th
international conference on the theory and application of cryptology and
information security, Tokyo, Japan, December 6–10, 2009. proceedings, 5912,
Springer, 2009. ISBN 978-3-642-10365-0. See [98].

[78] MATZOV, Report on the security of LWE: improved dual lattice attack (2022).
URL: https://doi.org/10.5281/zenodo.6412487. Citations in this document:
§1.1, §1.3, §10, §10.

[79] Ueli M. Maurer (editor), Advances in cryptology—EUROCRYPT ’96:
proceedings of the fifteenth international conference on the theory and application
of cryptographic techniques held in Saragossa, May 12–16, 1996, Lecture Notes
in Computer Science, 1070, Springer, 1996. ISBN 3-540-61186-X. MR 97g:94002.
See [23].

[80] Alexander May, Joseph H. Silverman, Dimension reduction methods for
convolution modular lattices, in [95] (2001), 110–15. URL: https://
www.cits.ruhr-uni-bochum.de/personen/may/publications.html. Citations
in this document: §2.4.

[81] Alfred Menezes (editor), Advances in cryptology—CRYPTO 2007, 27th annual
international cryptology conference, Santa Barbara, CA, USA, August 19–23,
2007, proceedings, Lecture Notes in Computer Science, 4622, Springer, 2007.
ISBN 978-3-540-74142-8. See [61].

[82] Shiho Moriai, Huaxiong Wang (editors), Advances in cryptology—ASIACRYPT
2020—26th international conference on the theory and application of cryptology
and information security, Daejeon, South Korea, December 7–11, 2020,
proceedings, part II, 12492, Springer, 2020. ISBN 978-3-030-64833-6. See [8].

[83] Jesper Buus Nielsen, Vincent Rijmen (editors), Advances in
cryptology—EUROCRYPT 2018—37th annual international conference on
the theory and applications of cryptographic techniques, Tel Aviv, Israel,
April 29–May 3, 2018 proceedings, part I, 10820, Springer, 2018. ISBN
978-3-319-78380-2. See [45].

[84] NIST PQC team, Announcement: The end of the 3rd round - the first
PQC algorithms to be standardized (2022). URL: https://groups.google.com/
a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk/m/f3Hl0sh3AgAJ. Citations in
this document: §3.

[85] Abderrahmane Nitaj, Amr M. Youssef (editors), Progress in
cryptology—AFRICACRYPT 2020—12th international conference on cryptology
in Africa, Cairo, Egypt, July 20–22, 2020, proceedings, 12174, Springer, 2020.
ISBN 978-3-030-51937-7. See [44].

[86] NTRU Prime Risk-Management Team, Risks of lattice KEMs (2021). URL:
https://ntruprime.cr.yp.to/warnings.html. Citations in this document: §8.

[87] Alice Pellet-Mary, Guillaume Hanrot, Damien Stehlé, Approx-SVP in ideal
lattices with pre-processing, in Eurocrypt 2019 [62] (2019), 685–716. URL:
https://eprint.iacr.org/2019/215. Citations in this document: §A.1.

[88] Ray Perlner, Re: post-quantum benchmarking and RNGs (2017). URL:
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/PW6GF-
wHGFE/m/nnAnuUAUAAAJ. Citations in this document: §B.4.

[89] Ray Perlner, Requirements for security against multi-target attacks, for
McEliece and other code-based cryptosystems? (2021). URL: https://web.
archive.org/web/20210717065041/https://crypto.stackexchange.com/
questions/92073/requirements-for-security-against-multi-target-
attacks-for-mceliece-and-other-c. Citations in this document: §A.3.

https://doi.org/10.5281/zenodo.6412487
https://www.cits.ruhr-uni-bochum.de/personen/may/publications.html
https://www.cits.ruhr-uni-bochum.de/personen/may/publications.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk/m/f3Hl0sh3AgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/G0DoD7lkGPk/m/f3Hl0sh3AgAJ
https://ntruprime.cr.yp.to/warnings.html
https://eprint.iacr.org/2019/215
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/PW6GF-wHGFE/m/nnAnuUAUAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/PW6GF-wHGFE/m/nnAnuUAUAAAJ
https://web.archive.org/web/20210717065041/https://crypto.stackexchange.com/questions/92073/requirements-for-security-against-multi-target-attacks-for-mceliece-and-other-c
https://web.archive.org/web/20210717065041/https://crypto.stackexchange.com/questions/92073/requirements-for-security-against-multi-target-attacks-for-mceliece-and-other-c
https://web.archive.org/web/20210717065041/https://crypto.stackexchange.com/questions/92073/requirements-for-security-against-multi-target-attacks-for-mceliece-and-other-c
https://web.archive.org/web/20210717065041/https://crypto.stackexchange.com/questions/92073/requirements-for-security-against-multi-target-attacks-for-mceliece-and-other-c


Multi-ciphertext security degradation for lattices 37

[90] Ray Perlner, Re: Parameter selection for the selected algorithms (2022).
URL: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/
4MBurXr58Rs/m/xHojUDCaBAAJ. Citations in this document: §3.

[91] Herbert Robbins, A remark on Stirling’s formula, The American Mathematical
Monthly 62 (1955), 26–29. Citations in this document: §4.2.

[92] The Sage Developers (editor), SageMath, the Sage Mathematics Software
System (Version 9.5), 2022. URL: https://www.sagemath.org. Citations in this
document: §4.2.

[93] Nicolas Sendrier, Decoding one out of many, in PQCrypto 2011 [102] (2011),
51–67. URL: https://eprint.iacr.org/2011/367. Citations in this document:
§14, §A.3.

[94] David B. Shmoys (editor), Symposium on theory of computing, STOC 2014, New
York, NY, USA, May 31–June 03, 2014, ACM, 2014. ISBN 978-1-4503-2710-7.
See [52].

[95] Joseph H. Silverman (editor), Cryptography and lattices: proceedings of the
1st International Conference (CaLC 2001) held in Providence, RI, March
29–30, 2001, Lecture Notes in Computer Science, 2146, Springer, 2001. ISBN
3-540-42488-1. MR 2002m:11002. See [80].

[96] Naftali Sommer, Meir Feder, Ofir Shalvi, Finding the closest lattice point by
iterative slicing, in [1] (2007), 206–210. Citations in this document: §12, §3.2.

[97] Mandayam K. Srivas, Albert John Camilleri (editors), Formal methods in
computer-aided design, first international conference, FMCAD ’96, Palo Alto,
California, USA, November 6–8, 1996, proceedings, Lecture Notes in Computer
Science, 1166, Springer, 1996. ISBN 3-540-61937-2. See [55].

[98] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, Keita Xagawa, Efficient public
key encryption based on ideal lattices, in Asiacrypt 2009 [77] (2009), 617–635.
URL: https://eprint.iacr.org/2009/285. Citations in this document: §2.4,
§2.4.

[99] Tsuyoshi Takagi, Thomas Peyrin (editors), Advances in
cryptology—ASIACRYPT 2017—23rd international conference on the theory
and applications of cryptology and information security, Hong Kong, China,
December 3–7, 2017, proceedings, part II, Lecture Notes in Computer Science,
10625, Springer, 2017. ISBN 978-3-319-70696-2. See [9].

[100] Mehdi Tibouchi, Huaxiong Wang (editors), Advances in
cryptology—ASIACRYPT 2021—27th international conference on the theory
and application of cryptology and information security, Singapore, December
6–10, 2021, proceedings, part IV, 13093, Springer, 2021. ISBN 978-3-030-92067-8.
See [53].

[101] Herbert S. Wilf, generatingfunctionology, Academic Press, 1994. URL: https://
www2.math.upenn.edu/~wilf/DownldGF.html. Citations in this document: §4.2.

[102] Bo-Yin Yang (editor), Post-quantum cryptography—4th international workshop,
PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. proceedings,
7071, Springer, 2011. ISBN 978-3-642-25404-8. See [93].

A Reconciliation with previous work

This appendix traces various quotes from the literature that seem likely to have
led many readers to believe that multi-target attacks against lattice KEMs are no
more efficient than single-target attacks. To the extent that the sources appear

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/xHojUDCaBAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/xHojUDCaBAAJ
https://www.sagemath.org
https://eprint.iacr.org/2011/367
https://eprint.iacr.org/2009/285
https://www2.math.upenn.edu/~wilf/DownldGF.html
https://www2.math.upenn.edu/~wilf/DownldGF.html


38 Daniel J. Bernstein

to be stating arguments for this belief, this appendix explains how this paper’s
analysis exploits gaps in those arguments. The deepest part of this appendix
is identifying flaws in a provable-security argument in [47]; the other gaps are
easier to see.

A.1. New Hope 2015. A subsection labeled “all-for-the-price-of-one attacks”
in the New Hope paper [13] expressed concern about the possibility20 of attacks
that break T targets (“compromise all communications”) for the cost of breaking
1 target. The paper continued by saying that “all those pitfalls can be avoided
by having the communicating parties generate a fresh a at each instance of the
protocol (as we propose)”.

The argument that there are no all-for-the-price-of-one attacks was not stated
explicitly, but appears to be the following:

• Multi-target attacks exploit the fact that multiple ciphertexts share one
lattice.

• An instance of the 2015 New Hope protocol, by definition, involves just one
ciphertext. Generating a fresh a means generating a fresh public key—a fresh
lattice—to be used for a single ciphertext. Ergo, multiple ciphertexts do not
share one lattice.

This paper’s attack fits the first part of the argument, but straightforwardly
dodges the second part by attacking KEMs that are designed for IND-CCA2
security, KEMs that allow many ciphertexts for a single public key; the second
part of the argument would fail if it were applied to those KEMs.

Note that the first part of the argument is merely a prediction, not a proof,
so it could fail too. For example, multiple New Hope public keys share a ring,
and thus share an S-unit lattice. There are some other lattice problems that
appear to be vulnerable to S-unit precomputations (see, e.g., [34] and [87]);
perhaps there are similar vulnerabilities in New Hope. However, this possibility
is not what this paper’s attack exploits. This paper is not attacking KEMs that
support only one ciphertext per public key, such as the 2015 version of New
Hope.

A.2. New Hope 2017. A revised version [10] of New Hope was submitted
to the NIST Post-Quantum Cryptography Standardization Project in 2017. In
particular, this revision included two cryptosystems: NewHope-CPA for one
ciphertext per key, and NewHope-CCA claiming IND-CCA2 security.

The text “all those pitfalls can be avoided by having the communicating
parties generate a fresh a at each instance of the protocol (as we propose)”
was copied from [13], where it was correct, into [10], where it was incorrect:
NewHope-CCA was not limited to a single ciphertext per key.

The erroneous description was eliminated in the 2019 version of the New
Hope submission [11, page 18], which instead made the following claim: “all
those pitfalls can be avoided by having the communicating parties generate a
20 See Section 3.1 regarding questions left open by the specific multi-target attack

strategy outlined in [13].
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fresh a for each public key (as we propose)”. It is not clear that the consequences
of this change were ever considered.

“All those pitfalls” in [11] appears to be referring to “all-for-the-price-of-one
attacks”, as in [13]. Saying that the pitfalls “can be avoided” appears to be
saying that there are no all-for-the-price-of-one attacks. But the argument that
there are no all-for-the-price-of-one attacks is again not stated explicitly.

The argument stated in Appendix A.1 relies on each public key having only
one ciphertext. This argument is broken by the subsequent change from “each
instance of the protocol” (i.e., each ciphertext) to “each public key”. Each public
key has its own lattice, but that lattice is shared by all of the ciphertexts for
that public key.

New Hope has similar heuristic security levels for key-recovery attacks
and message-recovery attacks. This opened up key recovery as an obvious
“all-for-the-price-of-one attack” against multiple ciphertexts, given that New
Hope was modified to allow multiple ciphertexts per key. Similar comments
apply to many other lattice proposals that claim IND-CCA2 security and that
do not try to make the usual key-recovery attacks more difficult than the usual
message-recovery attacks.

One could try to argue that, quantitatively, attacks against many ciphertexts
for one public key are a smaller problem than attacks against many ciphertexts
for many public keys. This is abandoning the claim that the pitfalls are avoided,
and is instead arguing that the pitfalls are quantitatively reduced. This begs
further questions, such as the following:

• How many ciphertexts are sent to the most popular public keys?
• What security level is achieved by that number of ciphertexts?
• If Kyber-512 is not simply discarded, should users deploying Kyber-512

be told that Kyber-512 keys are not safe to use for more than, say, 210

ciphertexts per key?

The New Hope documentation already stated in 2015 [13, page 5] that it is
“rather uncomfortable to have the security of all connections rely on a single
instance of a lattice problem”. Reusing a lattice for all connections for one public
key is quantitatively different from reusing a lattice for all connections for all
public keys, but still creates the same basic issue of multi-target attacks being
more efficient than single-target attacks.

A.3. NIST 2021. A 2021 NIST posting “Requirements for security against
multi-target attacks, for McEliece and other code-based cryptosystems?” [89]
said “it seems reasonable to be worried about 264 target ciphertexts” and
criticized code-based cryptosystems for allowing “decoding one out of many”
attacks.

As background, the Classic McEliece submission [5, Section 8.3] had cited
examples of multi-ciphertext attacks from 2002 [63] and 2011 [93] giving roughly
a T 1/2 speedup for breaking one out of T ciphertexts, and had handled those
attacks as follows:
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Rather than analyzing multi-message security in detail, we rely on the
general fact that attacking T targets cannot gain more than a factor T .
For example, with our recommended 6688/6960/8192 parameter sets,
one ciphertext is expected to be secure against an attacker without the
resources to find an AES-256 key, and 264 ciphertexts are expected to all
be secure against an attacker without the resources to find an AES-192
key.

Taking a very high single-target security level straightforwardly protects against
multi-target attacks, whether all-for-the-price-of-one attacks or one-out-of-many
attacks or something intermediate.

Instead of acknowledging the submission for this protection against
multi-target attacks, NIST criticized the submission for the fact that multi-target
attacks existed in the first place. Meanwhile NIST did not criticize lattice
submissions that (1) did not recommend such high security levels and (2) did
not cite any multi-target cryptanalysis. In essence, one area of cryptography
was punished for having investigated and proactively eliminated a threat, while
another area of cryptography was rewarded for not even being aware of the
threat, never mind protecting against it.

Readers who know the context of NIST comparing submissions to a
competition, and who see NIST arguing that one-out-of-many attacks are of
concern for code-based cryptography, can easily leap to the conclusion that there
are no one-out-of-many attacks against lattice-based cryptography. It is easy to
conflate lack of knowledge of such lattice attacks with lack of existence of those
attacks; however, until a problem has survived extensive cryptanalysis, there is
little reason to believe that the problem is hard to break.

A.4. ACM CCS 2021. A typical statement that cryptosystem X is “provably
secure” communicates two ideas to the informed reader. The first idea is that
there is a proof saying that there cannot be an attack against X unless there is
an attack against some underlying problem P . The second idea is that there are
good reasons to think that there are no attacks against P .

If a cryptanalysis paper then claims attacks against X, obviously the
inconsistency requires explanation. Here are three possibilities to consider:

• Perhaps the attack analysis is incorrect. This is a cryptanalysis failure.
• Perhaps the proof is incorrect. This is a provable-security failure.
• Perhaps the attack is correct and the proof is correct—so the idea that

there are no attacks against P has to be wrong; the proof is actually an
attack tool, converting the attack against X into an attack against P . This
is a different type of provable-security failure, where a problem P without
sufficient cryptanalysis was being used to portray X as safe.

The case considered below is that X is one-out-of-many-ciphertext lattice
security and P is many-sample Module-LWE.

Here is the context. Duman–Hövelmanns–Kiltz–Lyubashevsky–Seiler [47]
gave a proof, not the proof at issue here, relating multi-target ROM IND-CCA2
security of a KEM to multi-target IND-CPA security of an underlying PKE.
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They described this proof as “tighter” than previous proofs. However, a closer
look shows a potentially very important exception: for PKEs that suffer a T×
loss from one-out-of-T attacks, the quantitative results of [47] are no better than
simpler, older proofs. To quantitatively compare [47] to previous work, one has
to quantify the amount of damage that one-out-of-T attacks do to commonly
considered PKEs.

The same paper gave a provable-security argument that for “lattice-based
schemes” there is no loss from one-out-of-T attacks. Specifically, the paper said
for these systems that “we can show that AdvIND-CPA

PKE ≈ Adv(n,qC )-IND-CPA
PKE ”.

This is not an unconditional statement: it assumes “the hardness of MLWE as
originally defined for the purpose of worst-case to average-case reductions [28,
30, 32] where the number of samples (using the same secret) is unlimited”.

The quantity Adv(n,q)-IND-CPA
PKE is defined in [47, Figure 2] as the attacker’s

advantage at guessing a bit r in the following scenario. There are n legitimately
generated public keys. The attacker carries out at most q queries (j, M0, M1).
The response to query (j, M0, M1) is a legitimately generated ciphertext for Mr

under the jth public key. The quantity AdvIND-CPA
PKE is defined the same way for

the single-target case n = q = 1.
The class of “lattice-based schemes” is not defined in [47], but presumably

includes LPR, New Hope, Kyber, and further noisy-ElGamal schemes surveyed
in [27, Section 8]. The features of these schemes that matter for the following
analysis are as follows: key generation generates G uniformly at random,
generates small a, e at random, computes A = aG + e, and outputs public key
(G, A); encryption of message M generates small b, c, d at random, computes
B = Gb + d, computes C = M + Ab + c, and outputs ciphertext (B, C).

The conventional single-target “security proof” for such a scheme is as follows.
Assume that (G, aG+e) is indistinguishable from a uniform random pair (G, A′);
this is an example of a 1-sample small-secret Module-LWE indistinguishability
assumption.21 Also assume that (G, A′, Gb + d, A′b + c) is indistinguishable
from a uniform random tuple (G, A′, B′, X ′); this is an example of a 2-sample
small-secret Module-LWE indistinguishability assumption. Then (G, A, B, C) is
indistinguishable from (G, A′, B, M + A′b + c), which is indistinguishable from
(G, A′, B′, M +X ′). Finally, one cannot distinguish M0 +X ′ from M1 +X ′ when
X ′ is chosen uniformly at random.

Sometimes s-sample Module-LWE is defined only for large secrets a. One
might think that an attack against, e.g., 3-sample small-secret Module-LWE can
be trivially converted into an attack against 4-sample large-secret Module-LWE
as follows:

• We are given 4 Module-LWE samples for a uniform random secret r (or
a secret r from any distribution; the distribution will not matter). In other
words, we are given uniform random G0, G1, G2, G3, and given A0, A1, A2, A3
where Aj = rGj + ej for small secrets e0, e1, e2, e3.

21 It can also be an example of a small-secret LWE indistinguishability assumption,
and an example of a small-secret Ring-LWE indistinguishability assumption. The
naming depends on details of the algebraic structures containing G, A, etc.
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• Compute G′
j = −G−1

0 Gj and A′
j = A0G′

j +Aj . The point of this computation
is that A′

j = e0G′
j + ej .

• We now have uniform random G′
1, G′

2, G′
3, along with A′

1, A′
2, A′

3 where A′
j =

e0G′
j + ej . These are 3 Module-LWE samples for the small secret e0. Apply

the 3-sample small-secret Module-LWE attack.

Caution is required here: what happens if G0 is not invertible? One can try to
dodge this difficulty by searching for an invertible Gj , but in general this can use
more samples, possibly many more if invertibility is infrequent. For the case of
LWE, [15, Lemma 2] takes as many samples as necessary to build an invertible
matrix.

Now consider what happens if one replaces the ratios G−1
0 G1, G−1

0 G2, G−1
0 G3

with the ratios G−1
0 G1, G−1

2 G3, and adjusts the Aj calculations analogously,
assuming invertibility of G0 and G2. Instead of obtaining 3 samples with a small
secret e0, one obtains a batch of 2 independent problems with small secrets e0
and e2, each with 1 sample. More generally, aside from the invertibility issue,
2s samples reduce to a batch of s independent 1-sample problems; 3s samples
reduce to a batch of s independent 2-sample problems; etc.

This generalized reduction appears to be the point of the brief proof outline
in [47, page 3, bottom of second column]. However, the conclusions drawn in
[47] go beyond this in three ways that are not justified in [47]:

• The many-sample Module-LWE problem is claimed to be difficult: “we
believe that in practice the MLWE problem with k samples is no easier than
with 1 sample”. However, the Arora–Ge attack cited in [47, footnote 2] is
already known to break the Module-LWE problem for (e.g.) the Kyber error
distribution with a feasible number of samples, showing that a proof based
on that problem would be vacuous for attacks against a feasible number of
Kyber targets.

• Single-target and multi-target IND-CPA advantages are claimed to be
proven to be close. However, this does not logically follow from a one-way
conversion of IND-CPA attacks into Module-LWE attacks. The obvious way
to close this gap would be to prove a conversion the other way (presumably
also breaking the many-ciphertext case via the Arora–Ge attack)—but the
words “plausibly much harder problem” in [47, footnote 2] indicate that a
conversion is not known the other way.

• The type of multi-target attack for which [47] claims provable security is
not merely an attack against many independent keys, but an attack against
many ciphertexts per key. However, if one wants to convert an attack against
s ciphertexts for one key (with many ciphertexts multiplied by the same
public G, making G a natural target for precomputation) into an attack
against Θ(s) Module-LWE samples, it is not obviously sufficient to convert an
attack against s independent keys into an attack against Θ(s) Module-LWE
samples.

Perhaps the second and third items have been addressed by a full proof, but
the proof outline in [47] does not seem to have been written as a summary of a
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full proof. For example, the stated number of samples, “max(n, qC)”, does not
account for losing at least n samples as denominators, and for the possibility of
needing more samples for the necessary invertibility. What is cited here in [47],
namely the transformation from [15], does not count the number of samples,
and does not handle Ring-LWE or Module-LWE.

The set of T for which this paper gives heuristic one-out-of-T -ciphertext
speedups is not covered by the set of T for which there is a Θ(T )-sample
Arora–Ge attack, so the fact that the proof outlined in [47] is vacuous for the
number of samples covered by the Arora–Ge attack is not logically sufficient
to reconcile [47] with this paper. However, if there is a conversion from a
multi-ciphertext attack into a multi-sample Module-LWE attack, the simplest
explanation is not “these attacks do not exist, except that the Arora–Ge attack
suddenly breaks Module-LWE with enough samples”, but rather “Module-LWE
security degrades with the number of samples”.

More fundamentally, it is not clear that such a conversion exists. There is a
proof gap at this point in [47]. It is clear how the proof techniques mentioned
in [47] apply to multiple keys, but it is not clear how those techniques justify
claiming multi-ciphertext security for a single key.

These flaws were disclosed privately (in considerable detail) on 4 November
2022, and publicly (in more detail, in the first version of this paper) on
14 November 2022. At the time of this writing, there has been no response
from the authors of [47]; the claim that “we can show that AdvIND-CPA

PKE ≈
Adv(n,qC )-IND-CPA

PKE ” assuming “the hardness of MLWE” still appears in the latest
version of [47].

B The curious case of FrodoKEM

We reiterate the crucial point: if the reduction proving
security is “loose,” like the one above, the efficiency of
the scheme is impacted, because we must move to a larger
security parameter. —1996 Bellare–Rogaway [23]

In terms of security, Frodo’s conservative design choices
are laudable. —2022 NIST [4, Section 4.3.1]

This appendix focuses specifically on FrodoKEM. Unusual features of the
FrodoKEM design might at first seem to make FrodoKEM quantitatively more
resistant to one-out-of-many-ciphertext attacks than many lattice systems are
(although perhaps not quite as resistant as fixed-weight ternary systems; see
Section 4.5). However, it turns out that the same design approach opens up
FrodoKEM to a trivial, well-known attack strategy.

The current version of FrodoKEM includes three proposed parameter sets:22

FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344, targeting the security
22 Actually six, since each parameter set has an AES-based version and a SHAKE-based

version. The difference has a marginal effect on the performance of the attack here.
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levels of brute-force single-key search for AES-128, AES-192, and AES-256
respectively. For each parameter set, the attack highlighted in this appendix
is almost below the target security level. This disproves the claim in [12, page
44] that “the FrodoKEM parameter sets comfortably match their target security
levels with a large margin”.

When T ciphertexts are sent to one FrodoKEM public key, the same
well-known attack strategy immediately produces an all-for-the-price-of-one
attack, and a one-out-of-many attack that is approximately T× faster. These
attacks against FrodoKEM are valid even if the existing lattice heuristics are
incorrect.

B.1. Multiple independent ciphertexts. Say E is a PKE with message
space X. Write Ej for the PKE with message space Xj that encrypts
(M1, . . . , Mj) by using E to independently encrypt each of M1, . . . , Mj .

An attack that completely decrypts jT ciphertexts for E is also an attack
that completely decrypts T ciphertexts for Ej . But decrypting some of the jT
ciphertexts for E is, as j increases, less and less effective as an attack against T
ciphertexts for Ej .

Quantitatively, if each of the jT ciphertexts for E is decrypted with
probability p, then each ciphertext for Ej is decrypted with probability just
pj . For essentially the same reason, as j increases, ROM IND-CPA for a tweak
of Ej becomes provably almost as hard to break as OW-CPA for E; see [59,
Section 3.4].

It is hard to imagine how this could be the best way to defend against
one-out-of-many attacks (or against IND-CPA attacks). The problem is that
E2 is twice as expensive as E. Normally, for the same cost as E2, one can
instead take E with larger parameters, aiming at a much higher security target,
presumably making all attacks more difficult. On the other hand, perhaps one
is forced to use E2 for other reasons, as in Appendix B.2.

B.2. PKEs with small message spaces. Say one is trying to build an
IND-CCA2 KEM out of a limited PKE E that sends only 32-bit messages.

The limited message space does not stop E from achieving IND-CPA security:
the encryption procedure can generate many more bits of randomness. However,
if one builds a KEM by applying any common variant of the Fujisaki–Okamoto
transform to E, then the FO derandomization step eliminates the additional
randomness. Ciphertexts and session keys for any particular public key have
just 32 bits of entropy and are easily breakable.

A straightforward fix, at the cost of making everything 8× less efficient, is to
instead apply the FO transform to E8. Ciphertexts and session keys then have
256 bits of entropy.

This is essentially how FrodoKEM and its underlying PKE, FrodoPKE, are
built. See, e.g., [12, page 17] saying “Several (m) ciphertexts are generated at
once”. The “m” parameter could be chosen as 1, but is instead chosen as 8 for
performance reasons derived from a design goal of minimizing “the sum of the
bit lengths of FrodoPKE’s ciphertext and its public key”; see [12, page 23].
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Concretely, FrodoKEM-1344 can be viewed as sending 8 independent
ciphertexts. Each ciphertext, in turn, communicates just 4 message bits at each
position in a C vector of length 8 (while B is much larger), for a total of 32
message bits in each ciphertext, or 256 bits across the 8 ciphertexts.

B.3. Multi-ciphertext attacks on FrodoKEM. One might think that this
8-ciphertext structure reduces the quantitative impact of attacks trying to
decrypt one out of many FrodoKEM ciphertexts for the same public key.

Concretely, to exploit the shared lattice to break one of 240 ciphertexts, one
would want to break 1/25 of the underlying length-8 ciphertexts. This factor
25 is much less concerning than the original 240, especially since FrodoKEM
is a “conservative” lattice design claiming that its lattice problems have even
more security than needed. However, the same performance pressure that drove
FrodoKEM to use 8 ciphertexts turns out to create an even bigger security
problem for FrodoKEM.

Consider FrodoKEM-640, for which [12, Table 11] estimates “LWE hardness”
of 2175.1 “gates” and 2110.4 “memory in bits”. This appears to be the basis of the
claim in [12, page 44] that “the FrodoKEM parameter sets comfortably match
their target security levels with a large margin”—but FrodoKEM has an even
larger attack surface than the underlying LWE problem does. It is an error to
conflate LWE hardness with FrodoKEM security.

Like FrodoKEM-1344, FrodoKEM-640 sends 8 ciphertexts, each having 8
positions, but—again, because of performance pressure—FrodoKEM-640 has
just 2 message bits per position, a total of 128 message bits.

This limited message space, combined with FO derandomization, means that
there are only 2128 possible FrodoKEM-640 ciphertexts for any particular public
key. Consequently, FrodoKEM-640 is vulnerable to a trivial brute-force search
through messages.

A full search through all 2128 messages is much more efficient than the
2175.1 “gates” and 2110.4 “memory in bits” estimated in [12] for FrodoKEM’s
“LWE hardness”.23 An attacker faced with 240 ciphertexts for a FrodoKEM-640
public key will successfully decrypt one of the ciphertexts after trying about 288

messages, a feasible computation.
There is nothing new about this attack: it is an example of one of the

workhorses of symmetric cryptanalysis, namely “guess possibilities for secret
x, checking each guess against published F (x) values”. But the literature does
not seem to have pointed out that FrodoKEM-640 opens up this attack with
23 FrodoKEM encryption is slow, but not that slow. Also, computing well under 1%

of each ciphertext, using well under 1% of the multiplications in Z/q, is sufficient
for the attack. Readers interested in more detailed optimization should note that
the IND-CCA2 definition provides a session key to the attacker, so one can skip all
the multiplications and simply check the session-key hash. Furthermore, most of the
hash computation for the session key can be precomputed, since FrodoKEM’s hash
input puts the secret message after the public ciphertext. For comparison, one rule
of thumb for the order of hash inputs—see, e.g., [30]—is that whatever is least likely
to be predictable by the attacker should come first.
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a 128-bit x; that this contradicts the claim that “the FrodoKEM parameter
sets comfortably match their target security levels with a large margin”; and
that F depends only on the public key, allowing a 2128/T attack against T
FrodoKEM-640 ciphertexts for that key.

The performance of this FrodoKEM attack was announced on 31 October
2022. A request for an erratum regarding the claim quoted above was sent to
the FrodoKEM team on 1 November 2022. Full attack details were provided in
the first public version of this paper on 14 November 2022. At the time of this
writing, there has been no response from the FrodoKEM team; the claim still
appears in the latest FrodoKEM documentation.

B.4. Broader impacts. It is interesting to compare this FrodoKEM-640
attack to Appendix A.3. Recall that, in 2021, NIST criticized code-based
proposals on the basis of known one-out-of-T -ciphertext attacks that save
roughly

√
T from the starting cost 2b of decoding—even when the code-based

proposals cited the attacks, presumed that 2b/T is possible, and recommended
large b as a defense. The presumed 2b/T is far beyond the 2128/T cost
of the one-out-of-T -ciphertext attack against FrodoKEM-640, because b has
intentionally been chosen much larger than 128.

It is also interesting to compare this FrodoKEM-640 attack to NIST’s
stated reason [88] for continuing to recommend AES-128 in the context of
post-quantum KEMs:

Finally, you seem to be advocating that NIST respond to the possibility
of multikey attacks by withdrawing AES128, rather than by advocating
for modes of operation that have built-in multi-key security. Given that
1) AES-128 is the most widely used block cipher at present, and it

has never come even close to being practically attacked based on an
insufficiently large key size.

2) Most widely-used high-volume protocols, where multi-key security
is actually a concern (e.g. TLS and IPSec) already have built-in
protections against multi-key attacks.

It seems premature to pull AES128.

The protections mentioned here are randomizing the inputs to various protocols
using AES so that any specific input is not encrypted under many AES keys.
This fails to protect a broader system that uses FrodoKEM-640 to communicate
AES-128 keys in the first place: the attack directly breaks FrodoKEM-640
ciphertexts, independently of how the resulting session keys are used.

Trying to review multi-target security of every aspect of a cryptographic
system, and trying to patch every multi-target attack that is found, is much more
complicated and much less robust than systematically requiring higher security
levels. This particular attack is very easy, but it still appears to have been missed
in the FrodoKEM design. Note that multi-target security was within scope for
the FrodoKEM proposal: see, e.g., [12, page 33], claiming that a tweak elsewhere
in FrodoKEM “has the potential to provide stronger multi-target security”.
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Moving up to FrodoKEM-976 makes these multi-target attacks infeasible
today. But this is not the end of the story: FrodoKEM-976 claims a
correspondingly higher security level, and claims to have “a large margin”
beyond that security level. The claim of a large margin is false: FrodoKEM-976’s
performance-driven choice to use just 192-bit messages exposes FrodoKEM-976
to a straightforward 2192-guess single-target brute-force attack, and to
correspondingly more efficient multi-ciphertext attacks.

Most other noisy-DH lattice proposals (e.g., Kyber) have less performance
pressure on the size of the message space and simply take 256-bit messages for
all security levels. When the target security level is AES-256, the same easy
attack of searching through messages means that none of these proposals have
large security margins; and this attack becomes T× faster for decrypting one
out of T ciphertexts to the same public key. Of course, 2256/T is of vastly less
real-world concern than 2128/T .

B.5. The importance of accounting for looseness. FrodoKEM was not
the only submission to the NIST Post-Quantum Cryptography Standardization
Project putting heavy emphasis on proofs. See, e.g., [38, Section 14]: “MQDSS
is the first multivariate signature scheme that is provably secure, and whose
security relies solely on the MQ problem.”

The MQDSS proofs said that a ROM attack against MQDSS could be
converted into an attack against the MQ problem, a simpler problem that had
already attracted cryptanalysis. However, these proofs were loose. The proofs
did not say that the cost of the resulting MQ attack was close to the cost of
the MQDSS attack; the proofs merely put some sort of quantitative limit on the
change in attack costs. The proofs thus allowed MQDSS to be much easier to
break than the underlying MQ problem.

As Bellare and Rogaway noted in [23], applying a loose proof means that,
logically, one “must move to a larger security parameter” to compensate for the
looseness. But MQDSS chose cryptosystem parameters without regard to the
looseness. MQDSS then had its security claims disproven by an attack [65] that
exploited the looseness of the proofs. See also [69] for a survey of many more
provable-security failures, including failures directly attributable to looseness.

Similarly, various loose theorems are falsely advertised in [12, Section 5] as
“supporting the security of FrodoKEM”. To the extent that the security of the
underlying problems has been studied, these theorems would support the security
of a hypothetical CarefulFrodoKEM with parameters chosen to systematically
account for looseness; but it is an error to conflate the security of FrodoKEM with
the security of CarefulFrodoKEM. This error has been remarkably persistent:

• I had, in [26], already pointed out this error in an earlier version of [12], and
yet the same error remained in [12].

• In [29], I recommended that NIST add “procedural protections against loose
proofs”. In [14], a NIST team member replied “Stop propagandizing”.

• Secret NIST discussions included, e.g., slides [3] from another NIST team
member repeating the false advertising of FrodoKEM’s proofs, categorically
dismissing objections as “a lot of DJBFUD about the relevance of asymptotic
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security reductions to security”,24 and not rationally addressing the
objections. What makes this particularly bizarre is that the same slides also
admit, regarding the advertising, that “not all of this applies for practically
relevant parameters”.

• A public NIST report [4] also admitted that “these theorems do not hold
for the concrete parameter choices used in Frodo” but tried to defend the
false advertising as follows: (1) labeling this as “typical”; (2) claiming that
the theorems “do indicate some fundamental soundness in the core idea
underlying the Frodo approach”—which is not the question at hand.

NIST was supposed to be asking whether FrodoKEM is secure. Merely asking
whether there is “some fundamental soundness in the core idea” is a poor
substitute for this; the history of cryptography is littered with the corpses of
cryptosystems that have “some fundamental soundness in the core idea”. NIST
was also supposed to be evaluating “the quality of the analysis provided by the
submitter”; having loose theorems incorrectly labeled as “supporting the security
of FrodoKEM” should have been treated negatively, not positively.

To see the relevance of this error to the sudden collapse of FrodoKEM’s “large
margin”, consider the fact that CarefulFrodoKEM would be forced to account
for, among other things,

• 2q + 1 divided by the size of the message space in [12, Lemma 5.3], where q
is the number of hash calls in an attack; and

• the looseness factor T in the generic proof that a T -target attack implies a
1-target attack.

The trivial FrodoKEM attack highlighted in this appendix exploits exactly these
two looseness issues. For a single ciphertext, the attack searches the message
space (which is dangerously small for FrodoKEM-640, and does not have a “large
margin” for any of the parameter sets), checking message guesses via hash calls;
for T ciphertexts, the attack gains a factor T . The success of this attack in
disproving one of FrodoKEM’s security claims is thus directly attributable to
FrodoKEM’s failure to account for proof looseness, a failure endorsed by NIST.
CarefulFrodoKEM would be bigger and slower than FrodoKEM, but it would
not have this type of security failure.

According to [4, page 38], the only reason that NIST did not select FrodoKEM
was performance. Other organizations are continuing to consider FrodoKEM on
the basis of its “conservative” design. It is deeply concerning to see that the
evaluations of FrodoKEM are based primarily upon the volume of allegedly
related proofs, with no insistence upon investigating what—if anything—those
proofs actually say about FrodoKEM. Much more work needs to be done to
systematically study the FrodoKEM attack surface.
24 One might wonder why there is no credit to, e.g., [23] for the BRFUD and [69] for

the KMFUD.
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C Proofs

As a supplement to this paper, https://cr.yp.to/2023/lprrr-20230317.ml
presents computer-verified proofs for a generalization of Theorem 2.7.1. These
proofs are written in the HOL Light [55] language and have been verified by the
HOL Light verifier.

This appendix reports how the proofs were developed, compares the
computer-verified theorem statement to the statement of Theorem 2.7.1, and
explains how to re-run the verifier.

C.1. Proof development. The first public version of this paper contained
2.5 pages with a theorem and proof—at a normal mathematical level of
formality, not computer-verified—determining the second-order asymptotics of
StandardRatio for any particular growth of (n, q, s, κ, β). It also contained 1.5
pages informally optimizing (κ, β) and sketching how this optimization could be
proven; and a separate sanity check on the optimizations.

The theorem, proof, informal optimization, and optimization-proof sketch
were then upgraded to a total of 13 pages of theorems and proofs, culminating
in a formal statement of the asymptotics of the optimal (κ, β).

The 13 pages of theorems and proofs were then upgraded to computer-verified
proofs in the HOL Light language—along with proofs of many necessary lemmas.
For example, the proofs in the 13 pages (and in the original 2.5 pages) had
commented that “1/(A0 + (A1 + o(1))/ lg n) is 1/A0 + (−A1/A2

0 + o(1))/ lg n
if A0 6= 0”, where the o(1) is as n → ∞. Inside lprrr-20230317.ml, the
computer-verified proof of this comment

• starts from the mean-value theorem (which is already proven in the HOL
Light library);

• spends 25 lines stating and proving a more suitable two-sided version of the
mean-value theorem;

• spends 74 lines stating and proving that if f is continuously differentiable at
A0 then anything in f(A0+(A1+o(1))/X) is in f(A0)+(A1f ′(A0)+o(1))/X
where the o(1) is as X → ∞;

• spends 39 lines specializing the statement and proof to inversion; and
• spends 17 lines specializing the statement and proof to X = lg n.

Overall lprrr-20230317.ml occupies 345KB, nearly 10000 lines. Some of
the proofs were generated by ad-hoc scripts. There are a few comments,
partly for tracking the internal organization of lprrr-20230317.ml and partly
about proofs of one of the lemmas (Bolzano’s theorem). The time for writing
lprrr-20230317.ml was an unrecorded fraction of a 3.5-week period. No claims
of optimality are made for the numbers 345, 10000, and 3.5.

In this version of the paper, the formal theorem statement is Theorem 2.7.1,
the computer-verified proofs are supplied separately, and the separate sanity
check is Section 5.

https://cr.yp.to/2023/lprrr-20230317.ml
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C.2. The value of computer verification. Given that the literature presents
merely heuristic arguments that the standard block size scales similarly to the
actual block size required for attacks, the reader might be wondering why this
paper puts so much effort into eliminating risks of error in this paper’s statements
about the standard block size.

One answer is that the literature often describes the standard block size as an
accurate approximation to the actual block size. Consider, e.g., [7] saying that
the existing heuristics were “empirically investigated and confirmed” and that
various discrepancies disappear as problem sizes increase. Readers who trust the
existing heuristics, on the basis of current evidence or evidence collected in the
future, can—thanks to the computer-verified proofs—place the same trust in
conclusions obtained by combining the heuristics with Theorem 2.7.1.

Another answer is as follows. Consider a reader faced with papers saying
(1) that the existing heuristics are accurate, (2) that multi-target security
matches single-target security, and (3) that #1 contradicts #2. A reader who
sees that there is just one paper saying #3, and that the paper relies on pages of
calculations, can easily hypothesize that #3 was spoiled by a mistake somewhere
in those calculations, while #1 and #2 are fine. This concern is directly addressed
by computer-verified proofs.

Note that computer-verified proofs do not remove the value of the sanity check
in Section 5. The sanity check provides information regarding the behavior of
concrete block sizes, and tools for scalable numerical optimization of block sizes.

C.3. The statement of the computer-verified theorem. There are two
main theorems in lprrr-20230317.ml: forward_main is a generalization of
Theorem 2.7.1(1), and converse_main is a generalization of Theorem 2.7.1(2).

A reader checking that Theorem 2.7.1 has been computer-verified must check
the statements of forward_main and converse_main, along with the underlying
definitions. The following paragraphs review the definitions and the theorem
statements, without assuming familiarity with HOL Light.

let log2 = new_definition `
  log2 x = (ln x) / (ln (&2))
`;;

The HOL Light library already defines a function ln; these lines define a function
log2. In the HOL Light language, natural numbers such as 2 are distinguished
from real numbers such as &2. Parentheses can often be omitted but are included
here for clarity.

let ceil = new_definition `
  ceil x = -- floor(--x)
`;;

This defines ceil on top of the function floor defined in the HOL Light library:
dxe = −b−xc. In the HOL Light language, -- is negation.
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let o1_seq = new_definition `
  o1_seq (f:num->real) <=>
    !e:real. &0 < e ==>
      ?m:num.
        !i:num. m <= i ==> abs(f(i)) <= e
`;;

Let f be a function from {0, 1, 2, . . .} to R. This definition says that o1_seq f is
the following statement: for every e ∈ R with 0 < e, there exists m ∈ {0, 1, 2, . . .}
such that every i ∈ {0, 1, 2, . . .} with m ≤ i has |f(i)| ≤ e. This is one of the
traditional ways to say that f converges to 0, i.e., that f ∈ o(1).

This is equivalent to a special case of a concept tends_num_real in the
HOL Light library. There is only a small overlap between o1_seq theorems in
lprrr-20230317.ml and tends_num_real theorems already in the library.

As this definition illustrates, in the HOL Light language, “!x.” means “for
every x we have”; “?x.” means “there exists x such that”; “:num”, “:real”, and
“:num->real” specify types. Often HOL Light can deduce types automatically,
but including the types can still add clarity.

parse_as_infix("powreal",(24,"left"));;
let powreal = new_definition `
  x powreal y = exp(y * ln x)
`;;

This defines x powreal y as exp(y ln x), i.e., xy.

let bkzdelta = new_definition `
  bkzdelta x =
    (x * ((pi*x) powreal (&1 / x))/(&2 * pi * exp(&1)))
    powreal (&1 / (&2 * (x - &1)))
`;;

For comparison, δ = (β(πβ)1/β/(2π exp 1))1/2(β−1) inside Definition 2.5.1.

let standardratio = new_definition `
  standardratio n q s k x =
     ( ((n + k)*(s pow 2) + &1) powreal (&1 / &2)
     ) / ( (((n + k + &1)/x) powreal (&1 / &2))
           * ((bkzdelta x) powreal (&2 * x - (n + k + &1) - &1))
           * (q powreal (k/(n + k + &1)))
         )
`;;

Compare StandardRatio(n, q, s, κ, β) = ((n + κ)s2 + 1)1/2/(d/β)1/2δ2β−d−1qκ/d

in Definition 2.5.1, with d = n+κ+1 and δ as above. In the HOL Light language,
pow is exponentiation with a natural-number exponent; there is also a sqrt(...)
that could be used in place of (...) powreal (&1 / &2).
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let forward_main = prove(`
  !n:num->real q:num->real s:num->real
   Q0:real Q1:real S0:real S1:real
   x0:real z0:real z1:real.

This is the start of the first main theorem statement. In general, the statement
looks like “!X. A /\ B ==> ?Y. C /\ D”, meaning that, for every X where the
hypotheses A and B hold, there exists Y where the conclusions C and D hold. In
the HOL Light language, ==> is implication, and /\ is conjunction.

In Theorem 2.7.1, n runs through a specified infinite subset N of {2, 3, . . .}.
To match this up to the more general n:num->real allowed in forward_main,
define n0 as the smallest element of N , define n1 as the next element of N , etc.

In Theorem 2.7.1, q and s are determined by n. The setting of forward_main
is more general, allowing ni = nj with qi 6= qj or si 6= sj .

  (!i. &1 < n(i))
  /\ (!i. &1 < q(i))
  /\ (!i. &0 < s(i))
  /\ o1_seq (\i. &1 / n(i))
  /\ o1_seq (\i. (log2(q(i))/log2(n(i)) - Q0) * log2(n(i)) - Q1)
  /\ o1_seq (\i. (log2(s(i))/log2(n(i)) - S0) * log2(n(i)) - S1)

These hypotheses say that each ni is larger than 1; each qi is larger than 1; each
si is larger than 0; 1/ni ∈ o(1) as i → ∞; ((lg qi)/ lg ni − Q0) lg ni − Q1 ∈ o(1),
i.e., lg qi ∈ Q0 lg ni + Q1 + o(1); and lg si ∈ S0 lg ni + S1 + o(1).

If ni runs through the elements of N in order, with N as in Theorem 2.7.1,
then ni → ∞ as i → ∞, and 1/ni ∈ o(1). Also, Theorem 2.7.1 assumes lg q ∈
Q0 lg n + Q1 + o(1) and lg s ∈ S0 lg n + S1 + o(1).

  /\ -- &1 / &2 < S0
  /\ S0 <= &1 / &2
  /\ &1 / &2 < Q0 - S0
  /\ &1 / &2 < Q0 + S0

These hypotheses say −1/2 < S0 ≤ 1/2, 1/2 < Q0 − S0, and 1/2 < Q0 + S0. All
of these are satisfied in Theorem 2.7.1, which requires 0 ≤ S0 ≤ 1/2 < Q0 − S0.

  /\ x0 = (Q0 + S0 - &1 / &2)/(Q0 - S0 + &1 / &2)
  /\ z0 = &2 * Q0/((Q0 - S0 + &1 / &2) pow 2)
  /\ z1 = (&2 * S1 + log2(z0)
             - (S0 - Q0 + &3 / &2) * (log2(z0) - log2(&2 * pi * exp(&1)))
             - Q1 * (Q0 + S0 - &1 / &2)/Q0
            )
          * (&2 * Q0) / ((Q0 - S0 + &1 / &2) pow 3)

For comparison, Theorem 2.7.1 says x0 = (Q0 + S0 − 1/2)/(Q0 − S0 + 1/2);
z0 = 2Q0/(Q0 − S0 + 1/2)2; and

z1 =
(

2S1+ lg z0−
(

S0−Q0+3
2

)
lg z0

2π exp 1−
Q1(Q0+S0− 1

2 )
Q0

)
2Q0

(Q0−S0+ 1
2 )3 .
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The constant pi is provided by the HOL Light library.

  ==> ?k:num->real b:num->real.

This says that, if the above hypotheses are satisfied, then there exist functions
k, b from {0, 1, 2, . . .} to R satisfying the conclusions that follow.

If n is an injective function on {0, 1, 2, . . .} then the functions i 7→ ki and
i 7→ bi are determined by functions n 7→ k and n 7→ b; Theorem 2.7.1 is phrased
in terms of the latter functions.

    (!i. integer(k(i)))
    /\ (!i. &0 < k(i))
    /\ (!i. k(i) <= ceil(n(i)))
    /\ o1_seq (\i. (k(i)/n(i) - x0) * log2(n(i)) - &0)

This says that each ki is an integer, that 0 < ki ≤ dnie, and that ki/ni ∈
x0 +o(1)/ lg ni. In particular, 1 ≤ ki, and ki ≤ ni if ni is an integer, the situation
of Theorem 2.7.1.

    /\ (!i. integer(b(i)))
    /\ (!i. &1 < b(i))
    /\ (!i. b(i) <= ceil(n(i) + k(i) + &1))
    /\ o1_seq (\i. (b(i)/n(i) - z0) * log2(n(i)) - z1)

This says that each bi is an integer, that 1 < bi ≤ dni + ki + 1e, and that
bi/ni ∈ z0 + (z1 + o(1))/ lg ni. In particular, 2 ≤ bi, and bi ≤ ni + ki + 1 if ni is
an integer (since ki is also an integer).

    /\ ?m. !i. m <= i ==>
       standardratio (n(i)) (q(i)) (s(i)) (k(i)) (b(i)) < &1
  `,
  ...

This covers the last conclusion of Theorem 2.7.1(1): there is some m such that
every i ≥ m has StandardRatio(ni, qi, si, ki, bi) < 1.

A proof in lprrr-20230317.ml has been replaced with ... here. The main
point of computer verification is that the reader does not need to check the proof.

let converse_main = prove(`
  !n:num->real q:num->real s:num->real
   k:num->real b:num->real
   Q0:real Q1:real S0:real S1:real
   x0:real z0:real z1:real.

This starts the other main theorem statement, generalizing Theorem 2.7.1(2).
Note the extra k and b here.
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  (!i. &1 < n(i))
  /\ (!i. &1 < q(i))
  /\ (!i. &0 < s(i))
  /\ o1_seq (\i. &1 / n(i))
  /\ o1_seq (\i. (log2(q(i))/log2(n(i)) - Q0) * log2(n(i)) - Q1)
  /\ o1_seq (\i. (log2(s(i))/log2(n(i)) - S0) * log2(n(i)) - S1)

This is exactly the same as in the first main theorem statement.

  /\ -- &1 / &2 < S0
  /\ S0 <= &1 / &2
  /\ -- &1 / &2 < Q0 - S0
  /\ &1 / &2 < Q0 + S0

This is more generous than in the first main theorem statement: this requires
merely −1/2 < Q0 − S0, not 1/2 < Q0 − S0.

  /\ x0 = (Q0 + S0 - &1 / &2)/(Q0 - S0 + &1 / &2)
  /\ z0 = &2 * Q0/((Q0 - S0 + &1 / &2) pow 2)
  /\ z1 = (&2 * S1 + log2(z0)
             - (S0 - Q0 + &3 / &2) * (log2(z0) - log2(&2 * pi * exp(&1)))
             - Q1 * (Q0 + S0 - &1 / &2)/Q0
            )
          * (&2 * Q0) / ((Q0 - S0 + &1 / &2) pow 3)

This is again exactly the same as in the first main theorem statement.

  /\ (!i. &0 < k(i))
  /\ (!i. k(i) <= &100 * n(i))
  /\ (!i. &60 <= b(i))
  /\ (!i. b(i) <= ceil(n(i) + k(i) + &1))
  /\ (?m. !i. m <= i ==>
      standardratio (n(i)) (q(i)) (s(i)) (k(i)) (b(i)) <= &1)

This says 0 < ki ≤ 100ni and 60 ≤ bi ≤ dni + ki + 1e. These inequalities are
satisfied if 1 ≤ ki ≤ 100ni and 60 ≤ bi ≤ ni + ki + 1, as in Theorem 2.7.1(2).

This also says that, for all suficiently large i, StandardRatio(ni, qi, si, ki, bi) ≤
1. This is assumed by Theorem 2.7.1(2).

  ==>
  ?L. (!i. L(i) <= b(i))
  /\ o1_seq (\i. (L(i)/n(i) - z0) * log2(n(i)) - z1)
  `,
  ...

For comparison, the conclusion of Theorem 2.7.1(2) is that β ≥ ` for some
function n 7→ ` with `/n ∈ z0 + (z1 + o(1))/ lg n.
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C.4. Redoing the computer verification. Readers are cautioned that,
beyond the portion of HOL Light responsible for verifying theorems, there are
many more lines of code in the HOL Light library providing proof tools and
specific proofs—and perhaps doing something else, since all of this is written
in a general-purpose programming language. Malicious code in HOL Light or in
this paper’s lprrr-20230317.ml could exfiltrate secret files, install ransomware,
or, perhaps most terrifyingly, output a “thm” that has not, in fact, been proven.

The following commands have been tested on an Ubuntu 22.04 system (which
requires the --disable-sandboxing) and on a Debian Bookworm system. These
commands download the HOL Light development package (rather than using the
HOL Light package built into Bookworm), and should work on a wider range of
Linux distributions, as long as the apt line is adapted appropriately.

sudo apt install opam wget -y

time opam init -a --disable-sandboxing
time opam switch create 4.05.0
eval `opam env`
time opam pin add camlp5 7.10 -y
time opam install num camlp-streams ocamlfind -y

git clone https://github.com/jrh13/hol-light
cd hol-light
git checkout 1a1de6ce7a6e9f60bec8bc501c426836d0e6b231
make

wget https://cr.yp.to/2023/lprrr-20230317.ml
time ocaml -I `camlp5 -where` camlp5o.cma -init hol.ml \
< lprrr-20230317.ml > lprrr-20230317.out

On the Ubuntu 22.04 system (with an AMD FX-8350 CPU), the timed
commands were observed to take 39 seconds, 314 seconds, 72 seconds, 187
seconds, and 365 seconds respectively. The reader can check that the resulting
lprrr-20230317.out file includes the definitions and theorems shown above,
each certified by HOL Light to be a thm.
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