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Abstract. The performance of higher-order masked implementations of lattice-based
based key encapsulation mechanisms (KEM) is currently limited by the costly con-
versions between arithmetic and Boolean masking. While bitslicing has been shown
to strongly speed up masked implementations of symmetric primitives, its use in
arithmetic-to-Boolean and Boolean-to-arithmetic masking conversion gadgets has
never been thoroughly investigated. In this paper, we first show that bitslicing
can indeed accelerate existing conversion gadgets. We then optimize these gadgets,
exploiting the degrees of freedom offered by bitsliced implementations. As a result,
we introduce new arbitrary-order Boolean masked addition, arithmetic-to-Boolean
and Boolean-to-arithmetic masking conversion gadgets, each in two variants: modulo
2k and modulo p (for any integers k and p). Practically, our new gadgets achieve a
speedup of up to 25x over the state of the art. Turning to the KEM application, we
develop the first open-source embedded (Cortex-M4) implementations of Kyber768
and Saber masked at arbitrary order. The implementations based on the new bit-
sliced gadgets achieve a speedup of 1.8x for Kyber and 3x for Saber, compared to
the implementation based on state-of-the-art gadgets. The bottleneck of the bitslice
implementations is the masked Keccak-f[1600] permutation.
Keywords: Masking · Lattice-based KEM · Kyber · Saber · Bitslice · PINI

1 Introduction
Quantum attacks against traditional asymmetric cryptography schemes (based on RSA,
discrete logarithm or elliptic curves) have been a growing concern. This led to the intro-
duction of post-quantum (PQ) schemes for signatures and key encapsulation mechanisms
(KEM), many of which are based on lattices. Their implementation raises new challenges, in
particular for embedded systems that require protection against side-channel attacks (SCA)
such as power or electro-magnetic analysis [KJJ99, QS01]. Such attacks are particularly
powerful against many state-of-the-art PQ KEMs due to their usage of the Fujisaki-
Okamoto (FO) transform [FO99]: an adversary can carefully forge ciphertexts to trigger
the re-encryption of a single bit whose value depends on a secret (sub-)key. The leakage
from this re-encryption depends only on this single secret bit, which is thus easily recovered
and from which information on the secret key can be retrieved [RRCB20, UXT+22]. Strong
protection against side-channel attacks is therefore a must for lattice-based cryptography
in embedded systems deployed on-the-field [ABH+22].

The most studied countermeasure against SCA is masking, whose core idea is to
randomize the intermediate computations while maintaining their correctness [CJRR99,
ISW03]. When using arithmetic masking, each intermediate variable x of the original
computation is replaced by a sharing (x0, . . . , xd−1) such that x = x0 + · · ·+ xd−1 mod p

mailto:{olivier.bronchain,gaetan.cassiers}@uclouvain.be


for some integer p, where the addition degenerates to the Boolean XOR in the particular
case p = 2, which is therefore named Boolean masking. Masked implementations are usually
analyzed in the t-probing model [ISW03], which formalizes the notion of t-order security by
requiring all tuples of t intermediate values in the computation to be independent of any
secret value. However, security in the t-probing model is not composable: the sequential
use of two t-probing secure gadgets (gadgets are algorithms computing on masked values)
is not necessarily probing secure [CPRR13]. To circumvent the t-probing security analysis
of a full masked cryptographic algorithm (which is impractical), composable security
properties have been introduced, such as (strong-)non-interference (NI/SNI) [BBD+16], or
probe-isolating non-interference (PINI) [CS20]. These properties are stronger than probing
security and gadgets that satisfy them can be securely composed.

The protection of masking does not come for free and sometimes leads to orders of
magnitudes larger costs than non-masked implementation [BGR+21]. A key question in
the design of masked implementation is therefore the minimization of computational cost,
which is particularly critical when considering embedded software PQ KEMs implemen-
tations. Indeed, unprotected implementations of PQ KEMs are already computationally
expensive [KRSS], and on top of this a high masking order is needed, due to the low
intrinsic noise level on commercial micro-controllers [BS20, BS21]. Masking overheads (in
randomness usage and runtime) generally grow quadratically with the number of shares,
except for masked linear operations modulo p, which incur only linear computational
overhead (and no randomness usage).

Lattice-based KEMs use many arithmetic operations in the field of integers modulo
p (e.g., p = 3329, 210 or 213). These operations are often linear with respect to the
secret values [ABD+19, BBMD+19], which leads to a very efficient implementation when
using arithmetic masking modulo p [RRVV15, OSPG18]. These KEMs also use symmetric
cryptography primitives to generate pseudo-randomness, which are often best implemented
using Boolean masking since they contain many bit-level operations [BDPA13, GR16,
BDM+20]. As a result, conversions between arithmetic and Boolean masking are key
components of masked implementations of lattice-based KEMs.

These conversions are a bottleneck of the current state-of-the-art implementations [BGR+21,
FBR+22] and they are an active field of research. Arbitrary-order arithmetic-to-Boolean
masking conversions (A2B) were first introduced in [CGV14] for fields of characteris-
tic two and a masking order equal to half of the number of shares. In a series of
works [CGTV15, BBE+18, SPOG19], the construction was generalized to arbitrary p and
optimal masking order (d− 1), along with optimizations to reach O

(
d2 log(log p)

)
CPU

instructions. Alternative table-based constructions have also been introduced, achieving
similar properties [CGMZ21a]. Boolean-to-arithmetic conversion (B2A) has also been
studied thoroughly. The original arbitrary-order B2A [CGV14] is based on A2B and
benefited from its improvements, as well as being proven secure at optimal security order
in [BBE+18]. Recently, efficient B2A algorithms for conversion of a single bit have been
introduced [SPOG19, CGMZ21a], from which a B2A algorithm for an arbitrary number
of bits can be derived. Finally, the compression modulo p is an operation which consists
in a linear scaling then a rounding, and is commonly found in Lattice-based KEMs. Its
masking can be performed thanks to A2B conversions and has been recently optimized
in [BPO+20, BDH+21, CGMZ21b].

In parallel over the last years, the bitslicing technique has brought significant speed
improvements to software implementations of symmetric cryptography, be it masked [GR16,
BDM+20] or not [Bih97, AP21]. In short, bitslicing leverages the intrinsic parallelism of
bitwise operations within processors. E.g., a processor that manipulates 32-bit integers can
perform 32 bitwise operations with a single instruction. Therefore, bitslicing only applies
to algorithms whose operations are bitwise, such as [GLSV14], but sometimes an algorithm
can be re-written to use bit-level operations (while preserving efficiency) [BMP13]. In
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particular, Boolean masking is very well suited to bitslicing since most Boolean masking
gadgets only use bit-level operations, whereas arithmetic masking gadgets use additions and
multiplications (whose equivalent bitwise circuits are large) and therefore do not benefit
from bitslicing. To the best of our knowledge, despite many works on A2B and B2A, no
efficient bitslice implementation of such conversion algorithm has ever been introduced.

Contributions We introduce the usage of bitslicing for the masked implementation of
lattice-based cryptography, and for this purpose, we design new masked gadgets for all
masking orders. Our new gadgets are A2B and B2A conversions. Additionally, we also
design a new addition gadget for Boolean masking which is used in the conversion gadgets.
These gadgets come in two variants: one for arithmetic modulo any integer p, and one for
the particular case of arithmetic modulo 2k, which is more efficient. All our gadgets are
PINI, and are therefore easily composed.

As a testbed for our new gadgets, we develop arbitrary-order masked Kyber and
Saber implementations on the Cortex-M4 platform. First, for each of them, we build a
non-bitsliced masked implementation (hereafter named respectively K1 and S1) based
on state-of-the-art components: the gadgets of Coron et al. [CGMZ21a], some gadgets
from [SPOG19] and some (non-masked) functions from the NIST PQ benchmarking
project (PQM4) [KRSS]. To the best of our knowledge, implementations K1 and S1 are
the first open-source 1 embedded masked at arbitrary order Kyber and Saber software
implementations. Next, we build new bitslice implementations (named K2 and S2) that
use our new gadgets and satisfy the PINI secure composition strategy. Implementation K2
achieves a speedup of up to 1.84x over K1, and up to 8.7x over the best reported performance
in the state-of-the-art on an embedded platform [BGR+21]. Similarly, S2 achieves a speedup
of 3x over S1. In both K2 and S2, the execution time is dominated by hashing respectively
by 50% for Kyber and 72% for Saber. Eventually, we also propose implementations K3 and
S3 which include assembly implementation of masked Boolean gates to avoid lower-order
leakages due to transitions.2

Related work We note that the noise sampling proposed in [SPOG19, BDK+21] leverages
bitslicing in order to perform the CBD with Boolean masking, but the conversion to arith-
metic masking is not bitsliced. Moreover, [DHP+22] mentions a bitsliced implementation
of the A2B conversion of [CGV14] but does not optimize the algorithm.3

Organization In Section 2, we introduce some preliminaries on masking and describe the
state-of-the-art gadgets for Boolean masked addition, A2B masking conversion, as well as
B2A. Next, we present our new gadgets and prove that they are PINI in Section 3, before
comparing their performance to the state-of-the-art in Section 4. We then perform leakage
assessment of the proposed gadgets in Section 5. Finally, we describe our Kyber768 and
Saber implementations and measure their performance in Section 6.

2 Background
In this Section, we first introduce our notations and the masking schemes we use, then
we describe state-of-the-art gadgets that operate on masked values to perform simple
operations, namely addition and conversion between masking schemes.

1The implementations K1/S1 are available at https://github.com/uclcrypto/pqm4_masked/files/
8048895/implems.zip.

2The implementations K2/K3/S2/S3 are available at https://github.com/uclcrypto/pqm4_masked.
3Another recent work [DBV22] (which appeared online after the original submission of this paper to

TCHES) implements with bitslicing the B2A algorithm of [CGV14].
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Notations We denote by Jx, yK the set [x, y] ∩ N and by Jx, yJ the set [x, y) ∩ N. For
non-negative integers x and y, x⊕ y is the (unsigned) integer whose binary representation
is the bitwise XOR of the binary representations of x and y.

2.1 Masking and elementary gadgets
In this paper, we consider two masking schemes: arithmetic and Boolean masking. A secret
variable x ∈ J0, pJ for some integer p is represented by the d-shares arithmetic sharing

xAp =
(

x
Ap

i

)
i=0,...,d−1

∈ J0, pJd such that x = x
Ap

0 + x
Ap

1 + · · ·+ x
Ap

d−1 mod p.

In order to achieve d− 1-order security for x, any set of d− 1 shares must be uniformly
distributed. Similarly, the k-bit Boolean sharing of a secret x ∈

q
0, 2k

q
is

xB,k =
(

xB,k
i

)
i=0,...,d−1

∈
q
0, 2k

qd such that x = xB,k
0 ⊕ xB,k

1 ⊕ . . .⊕ xB,k
d−1.

Computation on sharings is performed by algorithms named gadgets. The inputs
and outputs of a d-share gadget are d-shares sharings, which allows such gadgets to be
composed: the composition of multiple gadgets (which must all have the same number
of shares) results in a composite gadget. The input sharings of the composing gadgets
(named hereafter sub-gadgets) may be the input sharing of the composite gadget, or an
output sharing of another sub-gadget.

For both arithmetic and Boolean masking, the operations that are linear with respect
to the sharing operation are implemented by simple gadgets: the operation can be applied
share-wise, hence the computational cost is O (d). In particular, for arithmetic (respectively
Boolean) masking, one such operation is the addition modulo p (resp. bitwise XOR) of
two shared variables. We denote these algorithms as +A (resp. ⊕B).

The ISW multiplication gadget [ISW03], which we denote SecAnd allows computing
bitwise AND of Boolean-shared values at a randomness and computational cost O

(
d2)

.
This gadget may also be used to compute the product modulo p of two arithmetically
shared secrets.

A last commonly used gadget is the refresh gadget, which implements the identity
function, but re-randomizes the sharing. This gadget is sometimes used to ensure the
security of a computation that composes multiple simpler gadgets.

2.2 Composable probing security
In this paper, we target (d− 1)-probing security for our d-shares implementations. That
is, the statistical distribution of any d − 1 intermediate values (named probes) in our
computation should be independent of any secret. We build our masked gadgets by com-
posing multiple smaller gadgets. However, probing security is not composable [CPRR13]:
composing (d− 1)-probing secure gadgets is not enough to ensure (d− 1)-probing security.

As a result, we consider stronger security definitions that are composable. These
definitions rely on the notion of simulatability.

Definition 1 (Simulatability [BBP+16]). A set of t probes in a masked gadget G can be
simulated with a subset I of the input shares of G if there exists a randomized algorithm
S (named the simulator) such that for any value taken by the input shares of G, the joint
distribution of the probes is equal to the distribution of the output of S when the values
of the shares in I are given to it as inputs.

The two following composable security definitions were introduced in [BBD+16].
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Definition 2 (t-NI). A gadget is t-Non-Interfering (t-NI) if every set of t probes can be
simulated by using at most t shares of each input sharing.

Definition 3 (t-SNI). A gadget with one output sharing is t-Strong-Non-Interfering
(t-SNI) if every set of t1 probes on the internal values and t2 probes on the output shares,
with t1 + t2 ≤ t, can be simulated by using at most t1 shares of each input sharing.

The +A and ⊕B gadgets are (d − 1)-NI while the ISW multiplication is (d − 1)-SNI.
Furthermore, the refresh gadget obtained by setting one input sharing of the ISW multi-
plication to (1, 0, . . . , 0) is also SNI, and this set of gadgets enables to securely mask any
computation [BBD+16].

Composition based on the NI and SNI definitions requires the usage of refresh gadgets,
which may significantly increase the computational and randomness cost. More recently,
Cassiers and Standaert [CS20] introduced a new definition that allows to remove those
refresh gadgets.

Definition 4 (t-PINI). A gadget is t-Probe-Isolating-Non-Interfering (t-PINI) if, for every
set P of t1 probes on the internal values and set A ⊂ J0, dJ with t1 + |A| ≤ t, there exists a
set B ⊂ J0, dJ with |B| ≤ t1 such that the probes in P and the output shares whose index
(i.e., the position of the share in the sharing) belongs to A can be simulated by using the
input shares whose share index belongs to A ∪B.

Following [CGZ20], we say in the following that a gadget with d shares is PINI if
it is (d − 1)-PINI, since this implies that it is t-PINI for any t. The +A and ⊕B are
share-isolating: all the computation on the input and output shares with a given share
index is isolated from computations for any other share index. All share-isolating gadgets
are PINI [CS20], but the ISW multiplication is not PINI. There however exists a PINI
SecAnd gadget [CS20, Algorithm 2] with a cost similar to the ISW multiplication: same
amount of randomness and roughly double the number of arithmetic operations. Finally,
PINI gadgets are trivially composable: the composition of t-PINI gadgets is t-PINI [CS20],
which enables composition without the use of refresh gadgets.

2.3 Modular addition in Boolean masking
We first consider the addition modulo 2k of two k-bit Boolean shared operands, and denote
this gadget as SecAdd. It can be implemented by taking the Boolean circuit of a k-bit
binary adder, rewriting it to only use AND and XOR gates, and finally implementing this
circuit with 1-bit SecAnd and ⊕B gadgets. The 1-bit inputs of this circuit are obtained by
selecting single bit sharings in the k-bit input sharings. Using a chain of full-adders, this
technique yields a complexity of O

(
kd2)

operations (each on single-bit words).
This technique has been refined in [CGTV15] by using the Kogge-Stone (KS) adder

for the 2-shares case. This circuit allows to perform some Boolean operations in parallel,
that is, with multiple-bit SecAnd and ⊕B gadgets. This gives a complexity of O

(
log(k)d2)

operations (on up-to k-bit words). Barthe et al. then generalized the gadget to arbitrary
masking order and, by inserting refresh gadgets, proved it (d − 1)-NI (Algorithm 9
of [BBE+18]).

Next, we consider the SecAddModp gadget which performs the addition modulo p. The
construction of Algorithm 2 (from [BBE+18]) is based on the SecAdd gadget. Namely,
it first computes the sum s of the inputs x and y on k + 1 (to avoid overflow and thus
modulo 2k reduction), then adds 2k−p to obtain s′. The most significant bit of s′ indicates
whether x + y ≥ p. Based on this bit, either s or s′ is selected as the output, using a MUX
implemented with SecAnd and ⊕B gadgets. Finally, the most significant bit is dropped to
get the result on k bits. The complexity is still O

(
log(k)d2)

operations on up-to k-bit
words.
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Algorithm 1 BitCopyMaskd
k (share-isolating)

Input: Boolean sharing xB,1 and integer p < 2k.
Output: Boolean sharing yB,k.

1: for i = 0, . . . , k − 1 do
2: if

⌊
(p mod 2i)/2i

⌋
= 1 then ▷ Test if i-th bit of p is set.

3: yB,k[i]← xB,1

4: else
5: yB,k[i]← (0, . . . , 0)

Algorithm 2 SecAddModpd
k from [BBE+18] (NI)

Input: Boolean sharings xB,k and yB,k, integer p such that p < 2k and x, y ∈ J0, pJ.
Output: Boolean sharing zB,k such that z = x + y mod p.

1: pB,k+1 ←
(
2k − p, 0, . . . , 0

)
2: sB,k+1 ← SecAddd

k+1
(
xB,k, yB,k

)
▷ Algorithm 9 of [BBE+18].

3: s′B,k+1 ← SecAddd
k+1

(
sB,k+1, pB,k+1)

4: bB,1 ← s′B,k+1[k]
5: cB,1 ← RefreshSNId

1

(
bB,1

)
6: c′B,1 ← ¬RefreshSNId

1

(
bB,1

)
7: cB,k ← BitCopyMaskd

k

(
cB,1, 2k − 1

)
▷ Copy input sharing where bitmask (2k − 1) is set.

8: c′B,k ← BitCopyMaskd
k

(
c′B,1

, 2k − 1
)

9: zB,k ← SecAndd
k

(
sB,k+1[J0, kJ], cB,k

)
⊕B SecAndd

k

(
s′B,k+1[J0, kJ], c′B,1

)
▷ MUX
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2.4 Arithmetic-to-Boolean masking conversion
Coron et al. [CGV14] introduced a simple way to convert from arithmetic to Boolean
masking (SecA2BModp). This technique first masks each arithmetic share into a d-shares
Boolean sharing and then computes the addition modulo p of these Boolean shared values.
This removes the arithmetic masking, its result is therefore a Boolean masking of the
original value.

This can be optimized by remarking that the addition of d′ arithmetic shares can be
securely masked using d′-shares Boolean masking instead of d. Therefore, the optimized
technique (Algorithm 3 from [SPOG19]) proceeds recursively: it splits the arithmetic
sharing into two groups of d/2 arithmetic shares, converts each group separately into a
d/2-shares Boolean sharing, re-masks each Boolean sharing to d shares, computes their sum.
This algorithm has a complexity of O

(
log(k)d2)

on up-to k-bit words. As an alternative, a
table-based SecA2BModp implementation with the same complexity was recently introduced
in [CGMZ21a].

Algorithm 3 SecA2BModpd
k from [SPOG19] (SNI)

Input: d shares arithmetic sharing xAp , integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares Boolean sharing zB,k such that z = x.

1: if d = 1 then
2: zB,k ← xAp

3: else
4: yB,k ← SecA2BModp⌊d/2⌋

k

(
xAk

J0,⌊d/2⌋J

)
5: y′B,k ← SecA2BModpd−⌊d/2⌋

k

(
xAk

J⌊d/2⌋,dJ

)
6: yB,k ← RefreshSNId

k

((
yB,k

0 , yB,k
1 , . . . , yB,k

⌊d/2⌋−1, 0, . . . , 0
))

▷ Expand to d shares.

7: y′B,k ← RefreshSNId
k

((
0, . . . , 0, yB,k

⌊d/2⌋, . . . , yB,k
d−1

))
▷ Expand to d shares.

8: zB,k ← SecAddModpd
k

(
yB,k, y′B,k

)

2.5 Boolean-to-arithmetic masking conversion
Similarly to arithmetic-to-Boolean conversions, there are multiple efficient techniques for
Boolean-to-arithmetic conversion. First, one may generate d− 1 random arithmetic shares,
generate a d-share Boolean masking of the opposite of their sum (using SecA2BModp),
add this to the input sharing (with SecAddModp), and finally unmask (that is, XOR the
shares together) the result to get the last arithmetic share. This idea, originally introduced
in [CGTV15], has been adapted to the modulo p setting in [BBE+18] (see Algorithm 4).
This gadget is (d− 1)-SNI.4

Second, Schneider et al. [SPOG19] introduced a conversion based on the observation
that if x, y ∈ J0, 1K, x⊕ y = x + y − 2xy. The gist of the conversion algorithm is to start
from a 1-bit Boolean sharing xB,1, then arithmetically mask each share, and finally use
the previous equation to compute the XOR of these arithmetic sharings. This single-bit
conversion algorithm may then be applied to each of a multi-bit input, and the results
can be recombined sharewise (with sums and multiplications by 2). Thanks to various
optimizations of the algorithm [SPOG19], the complexity of this technique is O

(
kd2)

operations on k-bit words.
4The proof that SecB2AModp is SNI is not given explicitly, in [BBE+18], but it can be deduced from

the proof of Lemma 5, if SecA2BModp is SNI.
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Algorithm 4 SecB2AModpd
k from [BBE+18] (SNI)

Input: d shares Boolean sharing xB,k, integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares arithmetic sharing zAp such that z = x.

1: for i = 0 to d− 2 do
2: zAk

i
$← Zp

3: z′Ak

i ← p− zAk
i

4: z′Ak

d−1 ← 0
5: aB,k ← SecA2BModpd

k

(
z′Ap

)
6: bB,k ← SecAddModpd

k

(
aB,k, xB,k

)
7: zAk

d−1 ← UnMaskd−1
k

(
FullRefreshd−1

k

(
bB,k

))

Finally, Coron et al. [CGMZ21a] introduced recently another conversion algorithm.
This algorithm also performs k single-bit conversions, but the single-bit conversion is a
table-based gadget.

2.6 Bitslicing
When an algorithm computes a Boolean circuit (i.e., it operates on single-bit variables), it
can be bitsliced. That is, it can be implemented to perform w evaluations parallel on a
processor with w-bit words (e.g., w = 32) by using bitwise operations. While the bitslicing
technique can bring a large performance increase, it has some drawbacks. Since it does
work only on Boolean circuits, bitslicing a computation requires writing it as a Boolean
circuit. Moreover, it requires the availability of a significant amount of parallelism in
the operations to perform, otherwise it loses it performance benefits. Finally, bitslicing
requires representation changes: the data processed is often used in a canonical form in
which all the bits for one circuit evaluations are stored contiguously in memory words (we
model the memory as a sequence of w-bit words). However, bitslicing works with a bitslice
representation: each parallel evaluation contributes a single-bit to each word.

Let us take the example of computations on a k-bit variable ai: the Boolean circuit
takes k input bits (the bits of ai), and outputs the k bits of bi = f(ai). Moreover, let us
assume that there are N computations to perform: i = 0, . . . , N − 1 (and, for simplicity,
we assume that N is a multiple of w). Let ai[k− 1] · · · ai[0] be the bit representation of ai,
the canonical5 representation would be (assuming that w ≥ k) a0[0] · · · a0[k − 1] 0 · · · 0

...
...

...
...

aN−1[0] · · · aN−1[k − 1] 0 · · · 0


where each row contains w bits and represents a word of the memory. In the same case,
and using the same notation, a bitslice representation would be

a0[0] · · · aw−1[0]
...

...
aN/w−k[0] · · · aN/w−1[0]

a0[1] · · · aw−1[1]
...

...
aN/w−k[k − 1] · · · aN/w−1[k − 1])

 .

5The order of the words in memory usually does not matter much, compared to the way the bits are
grouped into words.
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Therefore, the inputs bits have to be mapped from canonical to bitslice with CToBs before
the bitslice computation, and the result bits have to be mapped again to canonical with
BsToC after it. Since the changes of representation can be expensive it is important to
implement these efficiently (and to minimize their number, by avoiding unnecessary CToBs
/ BsToC ). A naive implementation of representation changes requires a number of CPU
instructions proportional to the number of bits manipulated.

However, in some cases, this can be made more efficiently, such as when k = w. Then,
the change of representation can be grouped in N/w parts, each handling the words
awj , . . . , aw(j+1)−1 for 0 ≤ j < N/w, and both CToBs and BsToC can be represented as
the transposition of the following square matrix awj [0] · · · awj [w − 1]

...
...

aw(j+1)−1[0] · · · aw(j+1)−1[w − 1]


where each row represents a memory word. This transposition can be computed more
efficiently than the naive algorithm: O (w log w) instead of O

(
w2)

[Jr.13].6
Furthermore, the technique can be adapted to k < w. For example, let us assume that

w/4 < k ≤ w/2 (this matches our implementation for Kyber768: k = 12 and we work on a
w = 32-bit processor). In that case, a2i and a2i+1 are typically stored in a single processor
word (to save memory), hence the canonical form can be represented as

a2wj [0] · · · a2wj [k − 1] 0 · · · 0 a2wj+1[0] · · · a2wj+1[k − 1] 0 · · · 0
a2wj+2[0] · · · a2wj+2[k − 1] 0 · · · 0 a2wj+3[0] · · · a2wj+3[k − 1] 0 · · · 0

...
...

...
...

...
...

...
...

a2wj+2(w−1)[0] · · · a2wj+2(w−1)[k − 1] 0 · · · 0 a2wj+2(w−1)+1[0] · · · a2wj+2(w−1)+1[k − 1] 0 · · · 0


where both chunks of “0” columns are equally large. This matrix can then be transposed,
and the resulting “0” lines can be removed (by copying only the useful rows), giving the
bitslice representation:

a2wj [0] a2wj+2[0] · · · a2wj+2(w−1)[0]
...

...
...

...
a2wj [k − 1] a2wj+2[k − 1] · · · a2wj+2(w−1)[k − 1]
a2wj+1[0] a2wj+3[0] · · · a2wj+2(w−1)+1[0]

...
...

...
...

a2wj+1[k − 1] a2wj+3[k − 1] · · · a2wj+2(w−1)+1[k − 1]


Regarding security, the use of the CToBs and BsToC algorithms has no impact on

the t-probing security since they only copy bits and therefore to not give new choices of
probes to the adversary. Practically for masking, the changes of representation can be
implemented as a masked CToBs or BsToC share-isolating gadget.

We next introduce our new gadgets, which are all (except SecB2AModp) Boolean
circuits, hence are trivially implemented using the bitslice technique (fully working in
bitslice representation, with no CToBs or BsToC needed). We describe them as Boolean
circuits and give their complexity in Boolean operations. This complexity should be divided
by w to obtain the complexity in CPU instructions for bitslice implementations.

3 New gadgets
As we already mentioned in the introduction, our starting point is the observation that
high-level cryptographic algorithms such as Kyber have large data parallelism, hence

6While this algorithm is well-known, and used in at least one bitsliced cryptographic implementation
(https://github.com/Ko-/aes-armcortexm/blob/public/aes128ctrbs/aes_128_ctr_bs.s, from [SS16]),
we have not found any discussion of its use in the bitslicing literature.
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they may benefit from bitsliced implementations for the Boolean sharings (while staying
non-bitsliced for the arithmetic sharings). We therefore introduce algorithms that represent
Boolean circuits, and which are therefore well-suited to bitslicing. As main elementary
gadgets, we use ⊕B and PINI SecAnd from [CS20], where the SecAnd is more expensive
than ⊕B (O

(
d2)

vs. O (d)).

3.1 SecAdd: Bitslice Boolean masked addition modulo 2k

Our first algorithm is a new SecAdd implementation (Algorithm 6). Thanks to bitslicing,
we do not have any structure constraint and simply aim to minimize the number of
SecAnd. Therefore, we use a simple chain of full-adders, where the addition of x, y and z
computes a := x⊕ y, then outputs (a⊕ z, x⊕ a · (x⊕ z)). This requires only one SecAnd
per full-adder, hence k − 1 in total (since the carry-out does not have to be computed
for the addition of the most significant bits), which is the minimum achievable (we prove
this in Appendix A). The total complexity of Algorithm 6 is O

(
kd2)

bit operations. We
finally prove the security of this gadget.

Proposition 1. Algorithm 6 and Algorithm 5 are PINI.

Proof. These two gadgets are the composition of PINI gadgets, therefore they are PINI.

Algorithm 5 SecFullAdderd New (PINI)

Input: Boolean sharings xB,1, yB,1 and zB,1.
Output: Boolean sharing wB,2 such that w = x + y + z.

1: aB,1 ← xB,1 ⊕B yB,1

2: wB,2[0]← zB,1 ⊕B aB,1

3: wB,2[1]← xB,1 ⊕B SecAndd
1

(
aB,1, xB,1 ⊕B zB,1)

▷ PINI SecAnd

Algorithm 6 SecAddd
k New (PINI)

Input: Boolean sharings xB,k and yB,k, such that x, y ∈
q
0, 2k

q
.

Output: Boolean sharing zB,k such that z = x + y mod 2k.

1: cB,1 ← (0, 0, . . . , 0)
2: for i = 0 to k − 2 do
3: tB,2 ← SecFullAdderd

(
xB,k[i], yB,k[i], cB,1)

▷ Algorithm 5
4:

(
zB,k[i], cB,1)

←
(
tB,2[0], tB,2[1]

)
5: zB,k[k − 1]← xB,k[k − 1]⊕B yB,k[k − 1]⊕B cB,1

3.2 SecAddModp: Bitslice Boolean masked addition modulo p

Next, we consider addition modulo p. A simple approach is to adapt Algorithm 2 to use
Algorithm 6 as SecAdd. On top of this adaptation, we remark that the MUX in Algorithm 2
costs 2k 1-bit SecAnd gadgets, and that we can replace it with the computation of s′ + p · b
mod 2k, which costs one SecAddd

k (i.e., k − 1 single-bit SecAnd). This replacement is
correct: if b = 0, the result is s′, and if b = 1 the result is s′ + p mod 2k = s. Overall,
our new addition modulo p requires two k + 1-bit adders and one k-bit adder, totaling to
3k − 1 1-bit PINI SecAnd, hence O

(
kd2)

bit operations and randomness.

Proposition 2. Algorithm 7 is PINI.
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Proof. All the sub-gadgets are PINI (BitCopyMask only replicates a sharing, hence it is
share-isolating, which implies that it is PINI).

Algorithm 7 SecAddModpd
k New (PINI)

Input: Boolean sharings xB,k and yB,k, integer p such that p < 2k and x, y ∈ J0, pJ.
Output: Boolean sharing zB,k such that z = x + y mod p.

1: pB,k+1 ←
(
2k+1 − p, 0, . . . , 0

)
2: sB,k+1 ← SecAddd

k+1
(
xB,k, yB,k

)
▷ Use Algorithm 6.

3: s′B,k+1 ← SecAddd
k+1

(
sB,k+1, pB,k+1)

▷ Use Algorithm 6.
4: bB,1 ← s′B,k+1[k]
5: aB,k ← BitCopyMaskd

k

(
bB,1, p

)
▷ Copy sharing b where bitmask p is set (computes a = p · b).

6: zB,k ← SecAddd
k

(
aB,k, s′B,k+1

)
▷ Use Algorithm 6.

3.3 SecA2B: Bitslice arithmetic-to-Boolean conversion modulo 2k

For arithmetic modulo 2k to Boolean conversion (SecA2B), we take inspiration from the
conversion algorithm of [SPOG19] (Algorithm 3). Namely, we also use a recursive structure
where two halves of the arithmetic sharing are first converted to Boolean, then the two
resulting sharing are added together. We use our new SecAdd (Algorithm 6) for this
purpose, which, thanks to PINI composition, allows us to remove the refresh gadget, giving
Algorithm 8 whose complexity is O

(
kd2)

random bits and single-bit operations.

Algorithm 8 SecA2Bd
k New (PINI)

Input: d shares arithmetic sharing xA2k , such that x ∈
q
0, 2k

q
.

Output: d shares Boolean sharing zB,k such that z = x.

1: if d = 1 then
2: zB,k ← xA2k

3: else
4: yB,k ← SecA2B⌊d/2⌋

k

(
xA2k [J0, ⌊d/2⌋J]

)
▷ ⌊d/2⌋ sharing.

5: y′B,k ← SecA2Bd−⌊d/2⌋
k

(
xA2k [J⌊d/2⌋, dJ]

)
▷ d − ⌊d/2⌋ sharing.

6: sB,k ←
(

yB,k
0 , yB,k

1 , . . . , yB,k
⌊d/2⌋−1, 0, . . . , 0

)
▷ Expand to d shares.

7: s′B,k ←
(

0, . . . , 0, y′B,k
⌊d/2⌋, . . . , y′B,k

d−1,
)

▷ Expand to d shares.

8: zB,k ← SecAddd
k

(
sB,k, s′B,k

)
▷ Use Algorithm 6.

To prove that Algorithm 8 is PINI, we will use the PINI composition theorem
from [CS20], and introduce a new technique to deal with the composition of PINI gadget
with various numbers of shares. The core idea is to embed gadgets that use a lower number
of shares into “virtual gadgets” that use more shares, with a mapping from the share
indexes of the embedded gadgets to the indexes of the embedding gadgets. The embedding
gadget discards the input shares that are not used, and sets to 0 the output shares that
are not generated by the embedded gadgets, as illustrated in Figure 1.

Definition 5 (Gadget embedding). Let G be a d′-share gadget with n (resp. n′) input
(resp. output) sharings, and let m ∈ J0, dJd′

(with d ≥ d′) have unique components

11



Figure 1: Example of 2-share to 4-share gadget embedding.

Algorithm 9 EG
d,m: embedding of the d′-shares gadget G to d shares with mapping m

with d′ ≤ d.
Input: n d-shares input sharings x0, . . . xn−1;
Output: n′ d-shares output sharings y0, . . . , yn′−1

1: for j = 0, . . . , n− 1 do
2: for i = 0, . . . , d′ − 1 do
3: x′j

i ← xj
mi

4:
(

y′0
, . . . , y′n′)

← G
(

x′0
, . . . , x′n

)
5: for j = 0, . . . , n′ − 1 do
6: for i = 0, . . . , d− 1 do
7: yj

i ← 0 ▷ Initialize all shares to 0.

8: for i = 0, . . . , d′ − 1 do
9: yj

mi
← y′j

i ▷ Override some output shares with outputs of G.

(mi ̸= mj for all i, j). The d-share embedding of G with mapping m is the d-share gadget
denoted EG

d,m described in Algorithm 9.

Lemma 1 (PINI embedding). If G is a PINI gadget, its embedding EG
d,m is PINI for any

d and m.

Proof. We describe the (d − 1)-PINI simulator for EG
d,m that has to simulate a set of

internal probes P and the output shares with index in B. First, P can be partitioned in a
set PG of probes in G and a set Pi of probes on the input shares. Next, B is partitioned
as B0 (the elements of B that appear in m), and B1 (the remaining elements).

Let B′
0 = {i ∈ J0, d′J s.t. mi ∈ B0}, we have |B′

0| = |B0|. We use the PINI simulator of
G to simulate the probes PG and its output shares with index in B′

0 (which are the outputs
of EG

d,m with index in B0). This simulator requires knowledge of its input shares with index
in A′ ∪ B′, for some A′

0 such that |A′
0| ≤ |PG|. Let us define A0 = {mi for all i ∈ A′

0},
such that knowing the input shares of EG

d,m with index in A0 ∪ B0 allows sending the
inputs required to the simulator of G, that simulates the probes PG and the output shares
with index in B0.

Finally, the probes in Pi can be simulated with the input shares with index in A1, for
some A1 such that |A1| ≤ |Pi|, and all the output shares with index in B1 can be trivially
simulated (their value is always 0). As a result, all the required values can be simulated
with the input shares of EG

d,m with index in (A0 ∪A1) ∪B, and |A0 ∪A1| ≤ |P |.

Proposition 3. Algorithm 8 is PINI.

Proof. In the case d = 1, this is trivial. In the other cases, we decompose the gadget in
three parts, which are then embedded: wires carrying the constant “0” value are added
such that all sharings have d shares (this has no impact on the security). This gives a
decomposition of the gadget into three sub-gadgets: E

SecA2B⌊d/2⌋
k

d,(0,...,⌊d/2⌋−1) (which computes

12



sB,k from xA2k ), E
SecA2Bd−⌊d/2⌋

k

d,(⌊d/2⌋,...,d−1) (which computes s′B,k from xA2k ) and SecAddd
k (which

computes zB,k from sB,k and s′B,k). Since SecA2B⌊d/2⌋
k and SecA2Bd−⌊d/2⌋

k are PINI (by
induction on d), their embeddings are PINI (by Lemma 1). Furthermore, SecAddd

k is PINI
(Proposition 1). Therefore, Algorithm 8 is a composition of PINI gadgets.

3.4 SecA2BModp: Bitslice arithmetic-to-Boolean conversion modulo p

A simple way to implement arithmetic modulo p to Boolean masking conversion is to
adapt Algorithm 8 (SecA2B) to use addition modulo p (SecAddModp, Algorithm 7) instead
of addition modulo 2k (SecAdd, Algorithm 6).7 On top of this adaptation, we can perform
a small optimization inspired by the first-order A2B conversion from [FBR+22]: the first
operation of our addition modulo p (Algorithm 7) is to subtract p from one of the two
operands which can be done before double the number of shares in the A2B algorithm.
This has no impact on the final result, but the cost of this subtraction is divided by about 4
(since this operation is in O

(
kd2)

).
These changes do not impact the asymptotic complexity of the algorithm, which is still

O
(
kd2)

random bits and single-bit operations.

Algorithm 10 SecA2BModpd
k New (PINI)

Input: d shares arithmetic sharing xAp , integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares Boolean sharing zB,k such that z = x.

1: if d = 1 then
2: zB,k ← xAp

3: else
4: yB,k ← SecA2BModp⌊d/2⌋

k

(
xAp [J0, ⌊d/2⌋J]

)
▷ ⌊d/2⌋ sharing.

5: y′B,k ← SecA2BModpd−⌊d/2⌋
k

(
xAp [J⌊d/2⌋, dJ]

)
▷ d − ⌊d/2⌋ sharing.

6: pB,k+1 ←
(
2k − p, 0, . . . , 0

)
▷ ⌊d/2⌋ sharing.

7: sB,k+1 ← SecAdd⌊d/2⌋
k+1

(
pB,k+1, yB,k

)
▷ Use Algorithm 6.

8: sB,k+1 ←
(

yB,k+1
0 , yB,k+1

1 , . . . , yB,k+1
⌊d/2⌋−1, 0, . . . , 0

)
▷ Expand to d shares.

9: s′B,k ←
(

0, . . . , 0, y′B,k
⌊d/2⌋, . . . , y′B,k

d−1,
)

▷ Expand to d shares.

10: uB,k+1 ← SecAddd
k+1

(
sB,k+1, s′B,k

)
▷ Use Algorithm 6.

11: bB,1 ← uB,k+1[k]
12: aB,k ← BitCopyMaskd

k

(
bB,1, p

)
▷ Copy sharing b where bitmask p is set (a := p · b).

13: zB,k ← SecAddd
k

(
aB,k, uB,k+1)

▷ Use Algorithm 6.

Proposition 4. Algorithm 10 is PINI.

Proof. The proof is almost identical to the proof of Algorithm 10. The case d = 1 is
trivial, and in the other cases, we exhibit a decomposition into PINI sub-gadgets. We
first consider the d-share embedding of the ⌊d/2⌋-share composite gadget whose input is
xAp [J0, ⌊d/2⌋J] and whose output is sB,k+1. This gadget is the composition of two PINI
gadgets (SecA2BModp⌊d/2⌋

k and SecAdd⌊d/2⌋
k+1 ), hence it is PINI, and the embedding is PINI.

Next, the d-share embedding of SecA2BModpd−⌊d/2⌋
k is PINI, as well as the other d-share

sub-gadgets (SecAdd, BitCopyMask).
7Another solution would be to use the compression algorithm (HOCompress) from [CGMZ21b] which it

has a worse asymptotic complexity of O
(

kd2 log(d)
)

, but which might be an interesting alternative if we
care only about small enough d.
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3.5 SecB2AModp: Bitslice Boolean-to-arithmetic conversion modulo p

We now adapt in Algorithm 11 the SecB2AModp from [BBE+18] (Algorithm 4) to use our
new SecA2BModp and SecAddModp algorithms. Furthermore, we replace the refresh gadget
to reduce its cost (from O

(
d2)

to O (d log d)). The new refresh gadget is the input-output
separative (IOS) refresh gadget from [GPRV21]. We generalize this gadget to any value of d
in Algorithm 18 (Appendix B), since only the power of 2 cases were handled in [GPRV21].

Algorithm 11 combines arithmetic operations (lines 1 to 4) which are best implemented
using a canonical representation (see Subsection 2.6) and bit-level operations (starting at
line 5), which are best implemented bitsliced, hence with a bitslice representation. As a
result, Algorithm 11 takes as input a Boolean sharing in canonical representation, applies
CToBs to the sharing z′Ap before its conversion to Boolean masking, and finally applies
BsToC the share z

Ap

d−1 to output a canonical representation of the sharing.

Algorithm 11 SecB2AModpd
k New (PINI)

Input: d shares Boolean sharing xB,k, integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares arithmetic sharing zAp such that z = x.

1: for i = 0 to d− 2 do
2: z

Ap

i
$← Zp

3: z′Ap

i ← p− z
Ap

i

4: z′Ap

d−1 ← 0
5: aB,k ← SecA2BModpd

k

(
z′Ap

)
▷ Applies CToBs to z′Ap and use Algorithm 10.

6: bB,k ← SecAddModpd
k

(
aB,k, xB,k

)
▷ Use Algorithm 7.

7: cB,k ← RefreshIOSd
k

(
bB,k

)
▷ Use algorithm 1 of [GPRV21], generalized in Algorithm 18.

8: z
Ap

d−1 ← UnMaskd
k

(
cB,k

)
▷ XOR all shares together, and applies BsToC z

Ap

d−1.

Let us introduce two definitions relating to the properties of the IOS refresh gadget
before proving the security of Algorithm 11.

Definition 6 (Uniformity ([GPRV21], adapted)). A refresh gadget G is uniform if its
output is a uniformly distributed sharing of x for any fixed input sharing x.8

Definition 7 (IOS ([GPRV21], adapted)). A refresh gadget G is t-IOS if it is uniform
and if for every pair of sharings (x, y) that represent the same value (i.e., such that x = y)
and for every set of probes P with |P | ≤ t, there exists a simulator that can perfectly
simulate the probes (i.e., output values with the same distribution) by knowing only |P |
input shares and |P | output shares. A refresh gadget with d shares is said to be IOS if it
is (d− 1)-IOS.

Proposition 5. Algorithm 11 is PINI.

Proof. We build a PINI simulator: given a set of probes P and share indexes B. We
distinguish two cases: either (i) d− 1 ∈ B or there is a probe of P in the UnMask gadget,
or (ii) there is no such probe.

In case (ii), we remark that the gadgets SecA2BModp and SecAddModp are PINI, as well
as RefreshIOS (it is sharewise after application of the random-zero transform of [Cor18]).
The probes in these gadgets can thus be simulated by knowing at most |P | shares of xB,k

8This is not the same notion as the uniformity used in threshold implementations [NRR06], where the
sharing x is assumed to be uniform. Here, the distribution of the output sharing y must be independent
of x, conditioned on x.
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and some z
Ap

i for i ∈ J0, d− 2K. Such z
Ap

i , which also are the possible output shares to
simulate, can be perfectly simulated since they are randomly generated by the gadget.

In case (i), we consider the (d − 1)-PINI simulator that has to simulate the output
shares with index in B and the internal probes P . Let (P0, Pr, Pu) be a partition of P
such that the probes of P0 are in SecA2BModp and SecAddModp, the ones of Pr are in
RefreshIOS, and the ones of Pu are in UnMask. We first describe the simulator, then prove
that it is correct.

The PINI simulator for SecB2AModp first selects randomly z
Ap

d−1, then it generates a
uniformly random sharing cB,k of z

Ap

d−1, from which it can simulate any probe in Pu. Next,
using the IOS simulator, it determines the set of share indexes Br of bB,k required to
simulate Pr, with |Br| ≤ |Pr| (some shares from cB,k are also needed for this simulation,
but they are already simulated). We then consider the PINI simulation of the composition
of SecA2BModp and SecAddModp (since these two gadgets are PINI): the shares of bB,k

with index in Br and the probes P0 can be simulated with the shares of xB,k and z′Ap

whose index belongs to Br ∪B0, for some B0 such that |B0| ≤ |P0|. Finally, the simulator
completes the simulation by requesting the shares of xB,k with index in Br ∪B0 and draws
randomly all shares z

Ap

i with i ∈ (Br ∪B0 ∪B) \ {d− 1}, which enables the simulation of
the required z′Ap

i .
Let us first observe that the number of inputs required for the simulation is admissible:

|Br ∪B0| ≤ |P |. Further, let us denote by B∗ ⊂ J0, d− 2K the set of i such that z
Ap

i is used
in the simulation (we exclude z

Ap

d−1 for now). We remark B∗ = Br ∪B0 ∪ (B \ {d− 1}),
and therefore that |B∗| ≤ |Pr ∪ P0| + |B \ {d− 1}| ≤ d − 2 where the latter inequality
comes from the hypothesis that either |Pu| ≥ 1 (hence |P0 ∪ Pr| + |B| ≤ d − 2), or
d−1 ∈ B (hence |P |+ |B \ {d− 1}| ≤ d−2). As a result |J0, d− 2K \B∗| ≥ 1, and, taking
i∗ ∈ J0, d− 2K \B∗, we observe that z

Ap

i∗ is never used in the simulation.
We now show that the simulation is correct: for each value that is simulated, we show

that its distribution matches the true distribution, and furthermore we prove that the
simulation is consistent with (i.e., the simulated joint distribution is equal to the true
distribution) the simulation of the values for which we already proved the correctness.
First, the simulated shares z

Ap

i (except z
Ap

d−1) and z′Ap

i follow the same distribution as
in Algorithm 11. Next, since z

Ap

d−1 = z −
∑d−2

i=0 z
Ap

i mod p and since one of the terms of
the sum (zAp

i∗ ) is not used in the simulation and is uniformly distributed, z
Ap

d−1 appears
to the adversary as a fresh uniform value, and its simulation is correct. We continue
with the correct simulation of the probes in P0 and the shares bB,k

i : it follows from the
PINI simulators of SecA2BModp and SecAddModp. Since RefreshIOS is uniform, its output
sharing cB,k is a uniform sharing of z

Ap

d−1 which is independent of bB,k. The simulation of
the probes in Pr by the RefreshIOS simulator ensures that the simulation of these probes
and of cB,k are correct. Finally, the simulation of the probes Pu is trivially correct.

We finally remark that the conversion modulo 2k SecB2Ad
k can be implemented by

following Algorithm 11, using the new SecA2B and SecAdd instead of SecA2BModp and
SecAddModp. The security proof is not changed.

4 Gadgets performance
In this section, we compare the performance of each of our new gadgets to the state-of-the-
art gadgets implementing the same feature (ignoring the differences in security property).
We first describe the benchmark setup and the general implementation strategy, then we
report the performance of state-of-the-art gadgets compared to the new gadgets.
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4.1 Benchmarking setup
We implemented all the gadgets of Section 3 in the C programming language9 and measured
their performance on a ARM Cortex-M4 32-bit micro-controller. The recursive gadgets
were naively implemented, only forcing inlining at a few places where the control flow
overhead was identified as a bottleneck. The benchmarks were run on the NUCLEO-
L4R5ZI development board, which is used by the PQM4 benchmarking project [KRSS].10

We used the default clock configuration of PQM4: the system clock and the AHB bus are
clocked to 16 MHz and the TRNG peripheral is clocked at 48 MHz as recommended by
the manufacturer. The performance measurements are based on the DWT_CCYCNT cycle
accurate counter (hence also clocked at 16 MHz).

The randomness used in the gadget is taken on-the-fly from the on-chip TRNG, with
no buffering, hence the time needed to generate randomness is included in the gadget’s
execution time. Concretely, the TRNG outputs 32-bit words, which are used as-is when
randomness is needed in a bitsliced gadget. When uniform randomness in Zp is needed,
we extract two k-bit blocks in a 32-bit word from the TRNG (k = ⌈log2 p⌉ ≤ 16) and
apply rejection sampling: each block whose value is lower than p is accepted as a fresh Zp

random element while the other blocks are discarded. When uniform randomness in Fk
2

with k < 32 is needed (e.g., in the Kyber implementation, k = 13 for the KS adder), we
generate ⌊32/k⌋ k-bit words from 32 bits of randomness, dropping the remaining bits. The
bottleneck in the randomness generation is the TRNG, which outputs four fresh random
32-bit words every 213 cycles with the previously described clock configuration11, resulting
in a throughput of 32 random bits every 53.25 cycles.

In the rest of this Section, we report the performance of concrete implementations,
for which we have to fix the value of p. We take the prime of Kyber: p = 3329, which
implies that most of the gadgets will be benchmarked for k = ⌈log2(p)⌉ = 12. All the cycle
counts reported in this Section are for 256 independent calls to a given gadget since it is
the polynomial size of Kyber. Since 256 is a multiple of the register width (32 bits), we
fully exploit the bitslicing potential of the processor.

4.2 Performance of SecAddd
k

We first analyze masked adders on k bits. We compare in Figure 2 the Kogge-Stone
adder from [BBE+18], which has a complexity of O(log(k)d2) CPU instructions, and
the Algorithm 6 which has a complexity of O(kd2) bit operations. First, we observe
that Algorithm 6 requires fewer cycles than the KS adder. For k = 13, Algorithm 6 is
about 23 times faster and for k = 32, the speedup is about 9x. As expected form the
complexities, the gain of Algorithm 6 decreases as k increases. Yet for relevant parameters
for lattice-based cryptography, it provides a significant improvement.

4.3 Performance of SecAddModpd
k

Next, we compare in Figure 3 the execution time for various SecAddModpk
d gadgets. Con-

cretely, we compare (i) Algorithm 2 when using the KS adder (not bitsliced), (ii) Algorithm 2
with the Algorithm 6 as underlying SecAdd (hence leveraging bitslicing), and (iii) Algo-
rithm 7 (also using Algorithm 6). We observe that (ii) has a speedup of about 12x over

9The need for assembly implementations is discussed in Section 5 (as well as their performance
characteristics). We focus on C implementations in this section to ease the comparison with state-of-the-art
gadgets, which were implemented in C.

10Our benchmarks are compiled with options -O2 -flto, and we note that speedup figures for the -O3
and -Os optimization levels are very similar. The GCC version is 9.4.0.

11As written in Section 3.2 of the datasheet (https://www.st.com/resource/en/reference_manual/
rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf), and confirmed by
our experiments.

16

https://www.st.com/resource/en/reference_manual/rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf


2 4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc

le
s

KS add, k = 32

KS add, k = 13

Alg. 6, k = 32

Alg. 6, k = 13

(a) Cycle count.

2 4 6 8 10 12 14 16

0

10

20

Number of shares

Sp
ee

du
p

KS add, k = 32

KS add, k = 13

Alg. 6, k = 32

Alg. 6, k = 13

(b) Speedup w.r.t. KS adder, k = 13.

Figure 2: Performance comparison of SecAdd implementations.
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Figure 3: Performance comparison of SecAddModpd
12 implementations.

(i), which is smaller than the improvement of 21x on the adder (SecAdd) itself. Indeed,
the execution time of (ii) is dominated by the SecAdd calls and the MUX (Line 9) since
both require in total 2(13− 1) SecAnd executions, and while the speedup for the SecAdd
part is 21x, the one for the MUX part is only the bitslicing gain of 32/12 = 2.7x. Finally,
in case (iii), the dedicated gadget allows to roughly half the cost of the MUX by replacing
it with a SecAdd, which gives a speedup of about 1.3x over (ii).

4.4 Performance of arithmetic-to-Boolean conversions
SecA2BModpd

k. Similarly, we compare the performance of SecA2BModpd
k implementations

in Figure 4. The reference implementation (i) is Algorithm 3 (with KS adder). We compare
it to (ii) a modified Algorithm 3 using the bitsliced adder (Algorithm 7), and to (iii) the
new Algorithm 10. We note that the speedup of (ii) over (i) is similar to the one we
got for the corresponding SecAddModp gadgets (albeit a bit lower due to the presence of
RefreshSNI whose bitslicing speedup is only 32/12). The new gadget (iii) has a speedup
of 2x over (ii), thanks to the removal of refresh gadgets and the execution of one SecAdd
with the number of shares halved.

SecA2Bd
k. We compare the performances of SecA2Bd

k gadgets in Figure 5 for k = 16. The
reference implementation (i) corresponds to the conversion from [CGV14, Alg. 4] with
a KS adder. It is equivalent to Algorithm 3 by replacing the SecAddModp with SecAdd.
It is compared to (ii) the new Algorithm 8 for SecA2Bd

k leveraging the bitsliced adder
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16 implementations.

(Algorithm 7). The performance gain is around 18.8x by moving from (i) to (ii). This is
expected from the improvements on the underlying SecAddd

k (see Figure 2).

4.5 Performance of Boolean-to-arithmetic conversions
SecB2AModpd

k. We next compare in Figure 6 the performance of various implementa-
tions of SecB2AModp. We consider as state-of-the-art the algorithms from [SPOG19]
and [CGMZ21a] which both implement SecB2AModpd

k from single-bit conversions. As a
result, their computational cost is proportional to k, and we observe that they have
comparable cost, with a small advantage for [SPOG19] (which agree with the results on
Intel x86 processors of [CGMZ21a], Table 4).

Our bitsliced conversion gadget (Algorithm 11) always operates on ⌈log2(p)⌉ bits (here,
12). Concretely, for 16 shares, the bitsliced conversion of any x ∈ Zp is only twice as slow as
the state-of-the-art single-bit conversions, and is therefore on par with state-of-the-art 2-bit
conversions. For larger k-bit conversions, the advantage of Algorithm 11 grows linearly
with k.

SecB2Ad
k. Finally, we compare in Figure 7 the performance of various implementations of

SecB2A. To do so, instantiate the 2k variant of the gadgets in the previous experiment.
The conclusions are similar: for a single bit (k = 1) to convert from Boolean to arithmetic
masking, both [SPOG19] and [CGMZ21a] are more efficient than the new gadget. For
k > 1, our gadget is more efficient.
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5 Side-channel leakage assessment of implementations
The previous section demonstrates that using a Boolean representation (hence using
bitslicing for micro-controllers) for masking conversion leads to performance gains. In
order to ensure that the proposed gadgets meet their goal of providing concrete d− 1-order
security, we perform leakage assessment. As hinted by the literature [BGG+14, BWG+22],
the gadgets from the previous section, which are written in C to ease comparisons, lead to
unintended leakage recombination.

In the following section, we first recall the Test Vector Leakage Assessment (TVLA) [GJJ+11,
CMG+, SM16] and introduce our side-channel measurement setup. We then show that
TVLA confirms the presence of unintended leakage in the gadgets written in C. Next, we
present hardened implementations of the new conversion gadgets which, using a mix C
and assembly, remove these problematic leakages. Finally, we discuss the overhead of this
hardening, answering an open question from [BWG+22].

5.1 Test vector leakage assessment
TVLA. Student’s t-test performs hypothesis testing to highlight difference in the i-th
order moment of two distributions. In the context of side-channel leakage assessment,
these two sets are traces corresponding to two distinct values for the secret input of a
cryptographic implementation. This methodology is known as the (fixed-versus-fixed)
TVLA, and the commonly adopted threshold for declaring the presence of leakage at a
given order is a p-value smaller than 10−5. This p-value is translated to a threshold on the t
statistic, taking into account the number of independent tests performed [DZD+17, WO19]
(otherwise there is a high risk of false positive).

Concretely, we instantiate the SecA2BModpp
k and SecB2AModpp

k gadgets with d = 2,
p = 3329 and k = 12 (to match Kyber parameters in the next section). We analyze the
difference in the means (first-order moment), and in the variance (second-order centered
moment) following the algorithm from [SM16].12 In both cases, we collect 100,000 traces
to compute the t statistic. In the following plots, the threshold is denoted with a red
horizontal line.

SCA measurement setup. The side-channel evaluation is performed on the STM32F415
target board of the CW308 Chipswhisperer.13 The target is running at a clock frequency
of 80 MHz which is derived from an 8 MHz external crystal. The side-channel traces are
captured thanks to a Picoscope5244D with a 250 MSamples/sec attached to a CT1 current
probe from Tektronix. As a result, the signal-to-noise ratio on a canonical representation
of a word over Zp within the implementation is around 0.4, showing that the setup provides
clean measurements.

Disclaimer. TVLA is a good tool to detect the presence of unintended lower-order
leakage and to perform root cause analysis of weaknesses [GOP21]. It does however not
guarantee the security of the implementation [Sta18], especially in the case of low-noise
targets [BS20, BS21].

5.2 Leakage assessment of C implementations
Figure 8 shows the TVLA analysis of the (pure) C implementation of the SecB2AModp and
SecA2BModp gadgets with two shares. Namely, Figure 8b highlights evidence of second-
order leakage, as expected. However, Figure 8a highlights evidence of first-order leakage,

12Using the implementation of the SCALib library (https://scalib.readthedocs.io/en/latest/source/
scalib.metrics.html).

13https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F/
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(a) First order TVLA. (b) Second order TVLA.

(c) Mean trace.

Figure 8: TVLA results with 100,000 traces for SecB2AModp followed by a SecA2BModp on
both distinct sets of inputs (fixed vs. fixed). Implementation is in plain C.

which should not happen in a proper first-order secure implementation. This is due to
so-called “transition leakage” phenomenon, where the leakage depends (for example) on
the Hamming distance between the two consecutive values stored in a register [BGG+14].
When these two values are the two shares of a Boolean sharing, this produces first-order
leakage, since the Hamming distance of the two shares is equal to the Hamming weight of
the shared value.

5.3 Implementing masking conversions with C & assembly
Avoiding Hamming distance leakage between the shares of a sharing requires an accurate
control of the (micro-)architectural state of a processor. Since the C programming language
does not give this level of control, we implement the manipulations of the shares in assembly.
However, we keep C implementations for gadgets that compose other gadgets and do not
touch the shares directly.14 This eases the writing and improves the readability of the
implementations without degrading its security.

Heuristics for secure assembly gadgets. Based on an abstract understanding of the
architecture of a small micro-controller15, we anticipate transition leakage to appear in the
registers, on the ALU inputs and outputs, and in the memory read and write paths. Each
assembly gadget (SecAndd, ⊕d and BitCopyMaskd

k) therefore takes as input a pointer to
the shares (avoiding the presence of the shares in the registers when C code is executed)
and uses dummy operations to avoid damaging transition leakage. We use a defensive
approach: a dummy load (resp. store) of a non-sensitive variable (e.g., a constant) is

14We also kept the C implementations for gadgets that manipulate shares but do not exhibit lower-order
leakage. This is admittedly not robust to compilation toolchain changes, but we do not see it as an issue
since the compiler-generated code can be used as new assembly source. Moreover, our evaluations are
specific to a single MCU, hence our code offers anyway to portable security guarantees.

15We do not have access to the detailed architecture of the Cortex-M4 MCU.
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(a) First order TVLA. (b) Second order TVLA.

(c) Mean trace.

Figure 9: TVLA results with 100,000 traces for SecB2AModp followed by a SecA2BModp on
both distinct sets of inputs (fixed vs. fixed). Implementation is a mix of C and assembly.

Table 1: Gadget hardening overhead: number of execution cycles of the hardened C
& assembly implementation divided by the number of execution cycles for the pure C
implementation.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SecAdd12 1.45 1.57 1.61 1.67 1.69 1.73 1.71 1.71 1.69 1.69 1.68 1.68 1.67 1.66 1.65
SecAddModp12 1.36 1.49 1.56 1.63 1.66 1.70 1.69 1.69 1.68 1.67 1.67 1.67 1.66 1.65 1.65
SecB2AModp12 1.29 1.36 1.39 1.43 1.46 1.48 1.48 1.50 1.51 1.52 1.52 1.53 1.53 1.53 1.53
SecA2BModp12 1.35 1.42 1.42 1.47 1.50 1.51 1.51 1.53 1.54 1.55 1.56 1.57 1.57 1.57 1.57

executed between the loads (resp. stores) of shares. Moreover, we keep a minimum number
of shares in the register file at any moment (there are at most three shares in the register
file at the same time), erasing any register containing a share as soon as possible.

Leakage assessment. We first applied TVLA to SecAndd and ⊕d in order to ensure that
our defensive approach is effectively preventing lower-order leakage. Then, the masked
conversions SecA2BModp and SecB2AModp are evaluated, and the results are reported
in Figure 9, showing no first-order leakage with up to 100,000 traces on the evaluated
micro-controller (showing that the remaining C code does not cause lower-order leakage).

Performance. The defensive implementation approach has a significant performance
overhead (between 1.29x and 1.71x) over the pure C implementation (see Table 1).16

Formal verification tools that leverage detailed knowledge of the processor’s micro-
architecture [GHP+21, BGG+21] could be used to improve the performance of these
implementations by allowing a less defensive implementation strategy. It would also
increase the confidence in the security of these implementations (as well as formally vali-
dating the security of the code generated by the C compiler), providing a complementary
evaluation to the TVLA.

16The benchmarking setup is the same as the one used in Section 4.
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Algorithm 12 Kyber.CCAKEM.Dec (c, sk)
Input: Ciphertext c = (cu, cv), secret key

sk := (ŝ, pk, H(pk), z).
Output: Decapsulated secret K.

1: m′ := Kyber.CPAPKE.Dec(ŝ, c)
2: (K̄′, σ′) := Gd(m′||H(pk))
3: (c′

u, c′
v) := Kyber.CPAPKE.Enc(pk, m′, σ′)

4: if (cu = c′
u) & (cv = c′

v) then
5: K := KDF(K̄′||H(c))
6: else
7: K := KDF(z||H(c))

Algorithm 13 Kyber.CPAPKE.Dec (ŝ,c)

Input: Secret key ŝ ∈ Rl
p, ciphertext c =

(cu, cv).
Output: Plaintext m.

1: u := Decompressd
p,du

(cu) ▷ u ∈ Rl
p, du = 10

2: v := Decompressd
p,dv

(cv) ▷ v ∈ Rp, dv = 4
3: ẑ = ŝT ◦ NTT(u) ▷ ẑ ∈ Rp

4: w := v − NTT−1(ẑ) ▷ w ∈ Rp

5: m := Compressd
p,1(w) ▷ m is a 256-bit string

6 Application to lattice-based KEMs
In this section, we put our new gadgets together into an implementation of Kyber. We
focus on Kyber768 to maximize to comparability with the recent works of Coron et
al. [CGMZ21a, CGMZ21b]. Eventually, we apply the same methodology to Saber and
report the results.17

6.1 Overview of masked Kyber
Kyber leverages the Fujisaki-Okamoto (FO) transform to transform a chosen-plaintext
attack (CPA) secure public encryption scheme (PKE) intro a chosen-ciphertext attack
(CCA) secure KEM [FO99, ABD+19]. Kyber decapsulation is described Algorithm 12
where the ciphertext c is decrypted with CPAPKE.Dec(·) to obtain the message m′. This
message is then re-encrypted with CPAPKE.Enc(·) to derive the ciphertext c′ using some
pseudo-randomness σ′ derived from m′ and the public key. The encapsulated secret K is
then returned only if c and c′ are identical, which ensures that the c has been derived from
the public key. We focus on the masked implementation of Kyber.CCAKEM.Dec since it is
the most sensitive to SCA [RRCB20, UXT+22]. In the following algorithms, green means
that no masking is required18, blue that masking is required and has linear complexity
with d (when implemented with arithmetic masking), and red that masking with quadratic
complexity is required, which means that bitsliced Boolean masking may be beneficial.

Kyber.CPAPKE manipulates polynomial ring Zp[X]/(Xn + 1) that we denote as Rp.
Vectors of size l of polynomials are next denoted with bold such that x ∈ Rl

p. Kyber
makes also use of NTT representation that we denote x̂ := NTT(x). The first step (Line 1-2)
in decryption is to map the ciphertext c into the corresponding (vector of) polynomial(s).
Then, the secret key ŝ is multiplied with u and subtracted to v (Line 3-4). Concretely, these
operations (addition, multiplications and NTT) are performed with arithmetic masking and
can be applied share-by-share, hence with linear complexity. Finally, each coefficient (in
Zp) of the resulting polynomial is compressed to a single bit, which represents the rounding
to ⌈p/2⌉ or 0. We detail the masked implementation of Compressd

p,c in Algorithm 15.
Finally, Kyber.CPAPKE.Enc is described in Algorithm 14. This algorithm starts by

generating 2l + 1 noise polynomials (Line 2-4) whose coefficients follow a central binomial
distribution (CBD, see Algorithm 17) with parameter η, such that they belong to J−η, ηK.
The CBD takes as input a pseudo-random string of bits which is computed as the hash PRF
of the random seed σ and a nonce. Next, the noise (e1 and e2) is added to the product

17We implemented the NIST level 2 version of the Saber family, which is called Saber.
18We focus on long-term security of the Kyber private key, and assume that the exchanged key K can

be leaked to a side-channel adversary. Otherwise, the derivation of K should also be protected.
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of the public key and the vector of noise polynomials r (Line 5-7). The message m is
decompressed to a polynomial with Decompressd

q,1 (see Algorithm 16) and added to the
sum. The last step is to compress (i.e., rounding then divide) both u to du bits and v to
dv bits, which gives the ciphertext (Lines 8-9).

Algorithm 14 Kyber.CPAPKE.Enc (pk,m,σ)

Input: pk = (t̂, Â) with t̂ ∈ Rl
p, Â ∈ Rl×l

p ; message m ∈ {0, 1}n, randomness σ ∈ {0, 1}256.
Output: Ciphertext c = (cu, cv).

1: for i = 0 to l − 1 do ▷ Noise sampling
2: r[i] := CBDd

η1 (PRFd(σ, i)) ▷ r ∈ Rl
p, η1 = 2

3: e1[i] := CBDd
η2 (PRFd(σ, i + l)) ▷ e1 ∈ Rl

p, η2 = 2

4: e2 := CBDd
η2 (PRFd(σ, 2 · l)) ▷ e2 ∈ Rp, η2 = 2

5: r̂ := NTT(r)
6: u := NTT−1(ÂT ◦ r̂) + e1 ▷ u ∈ Rl

p

7: v := NTT−1(t̂T ◦ r̂) + e2 + Decompressd
p,1(m) ▷ v ∈ Rp

8: cu := Compressd
p,du

(u) ▷ du = 10
9: cv := Compressd

p,dv
(v) ▷ dv = 4

6.2 Kyber768 implementations
Next, we detail our implementation of Kyber768, whose parameters are du = 10, dv = 4,
η1 = η2 = 2, l = 3 and p = 3329.19 For each of the algorithms Compressd

p,c, Decompressd
p,c

and CBDd
η, we will describe our new construction together with the previous state-of-the-art

solution.
The implementations K1, K2 and K3 are derived from the PQM4 [KRSS] optimized

Kyber implementation for the Cortex-M4: the linear operations (such as the NTT) are kept
(and applied to all the shares), while the non-linear operations are replaced by masked
gadgets. We keep a single noise polynomial in memory at any time in Algorithm 14 to
reduce the stack usage. Implementation K1 relies on the C implementation provided by
Coron et al. of their gadgets [CGMZ21b] and on new C implementations of the single-bit
B2A conversion of [SPOG19]. Implementation K2 is based on a C-only implementation
of the new bitsliced gadgets while K3 uses a mix of C and assembly to avoid lower-order
leakage (see details in Subsection 5.3).

BsToC & CToBs . In all implementations, the top-level algorithms (Kyber.CCAKEM.Dec,
Kyber.CPAPKE.Dec and Kyber.CPAPKE.Enc) use a canonical (i.e., non-bitslice) represen-
tation for all their variables. Therefore, BsToC / CToBs is executed in the lower-level
algorithms (Decompress, Compress and CBD) when needed, that is, for every sharing that is
an input or output of a gadget introduced in Section 3 (except the output of Algorithm 11,
which is already in canonical representation), while avoiding unnecessary representation
changes in CBD (i.e., the only representation change is CToBs for aB,η and bB,η). Since the
masked CBD, Compress and Decompress are applied to vectors whose length is n = 256,
the parallelism offered by bitslicing the Boolean parts of these algorithms is used to paral-
lelize the operations inside a single vector (this is therefore transparent to the top-level
algorithms). Finally, the internal structure of Keccak can be exploited such that a single
masked computation of Keccak-f[1600] is internally trivially bitsliced [BDPA13].

19Note that the proposed construction also applies to both Kyber512 (with l = 2, η1 = 3) and Kyber1024
(with l = 4, du = 11, dv = 5).
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Algorithm 15 Compressd
p,c, from [CGMZ21b]

Input: d shares arithmetic sharing xAp such that p < 2k

and x ∈ J0, pJ. Compression factor c ∈ J1, kJ.
Output: d shares Boolean sharing zB,c such that z =
⌊(2c/p) · x⌉ mod 2c.

1: α← ⌈log2(p · d)⌉
2: y

A2c+α

d−1 ← ⌊(xAp

d−1 ·2
c+α+1+p)/(2p)⌋+2α−1 mod 2c+α

3: for i = 0 to d− 2 do
4: y

A2c+α

i ← ⌊(xAp

i · 2c+α+1 + p)/(2p)⌋ mod 2c+α

5: zB,c+α ← SecA2Bd
c+α

(
yA2c+α

)
▷ Algorithm 8

6: zB,c ← zB,c+α[Jα, α + cJ]

Algorithm 16 Decompressd
p,1

Input: d shares Boolean sharing
xB,1, integer p such that p < 2k

and x ∈ {0, 1}.
Output: d shares arithmetic shar-

ing zAp such that z = x · ⌈p/2⌉
mod p.

1: yAp ← SecB2AModpd
1

(
xB,1)

2: xAp ← ⌈p/2⌉ · yAp mod p

Compressd
p,c. The Compress allows to map an element in Zp to z = ⌊(2c/p) · x⌉ mod 2c.

We leverage the masked compression algorithm from [CGMZ21b] (Algorithm 15) for the
implementation of Compressd

k in all Kyber768 implementations (see below details for K1).
Our Compressd

p,c algorithm takes as input an arithmetic sharing xAp and transforms it
into an arithmetic sharing mod 2c+α (where α = ⌈log2(p ·d)⌉) using sharewise operations.
The result is then converted into a (c + α)-bit Boolean sharing with the bitsliced SecA2B
(Algorithm 8). Finally, the c most significant bits of the Boolean sharing are taken as
output.

For K2 and K3, the polynomial comparison is fully based on Compress. That is, we
test the joint equality to the ciphertext of all the compressed polynomial coefficients (c′

u

and c′
v) using bitsliced Boolean ⊕B (for individual bit equality testing) then SecAnd (to

summarize all equality test results in a single bit).
For K1, each of the polynomial comparison are detailed in [CGMZ21b]. More precisely,

we consider as reference for their hybrid-method. For the test of cu, Coron et al. compare
(in arithmetic masking) u′ with all the possible candidates u that could lead to the
compression cu. For the test of cv, Coron et al. uses Algorithm 15 without bitslicing.
Eventually, the Compressd

p,1 in K1 is performed with the table-based conversion from
[CGMZ21a].

Decompressd
p,1. Decompress is mapping a single bit to ⌈p/2⌉ or 0, and we implement it

with Algorithm 16, in which single-bit Boolean sharing xB,1 is converted to arithmetic
sharing yAp with the single-bit dedicated conversion from [SPOG19]. We do not use our
generic SecB2AModpd

k for this purpose since, as shown in Figure 6, it is slower by a factor
2 for single-bit conversions.

CBDd
2. The CBD takes as input two random strings a and b of η bits and outputs HW(a)−HW(b)

mod p. For K1, we use the implementation from [SPOG19] which computes HW(a)−HW(b)+η
in Boolean masking (using their SecAddd

k), then converts it to arithmetic masking using
their SecB2AModpd

k, and finally subtracts η. For K2 and K3, we use Algorithm 17, which is
close to the gadget of [SPOG19], but uses an optimal full adder composition for the addition
of the bits of a and ¬b, and furthermore uses our new SecFullAdder and SecB2AModp
bitslice gadgets. The new CBDd

η uses ⌊2η/2⌋+ ⌊2η/4⌋+ ⌊2η/8⌋+ . . . full-adders to compute
HW(a) − HW(b) + η, which amounts to 3 SecAnd when η = 2, instead of 8 SecAnd for the
implementation of [SPOG19].

G, H and PRF. All the hash functions used are based on SHA-3 and therefore all use
the Keccak-f[1600] permutation. Concretely, we developed a masked Keccak-f[1600]
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Algorithm 17 CBDd
η New (PINI, by composition)

Input: d shares Boolean sharing aB,η and bB,η, integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares arithmetic sharing zAp such that z = HW(a)− HW(b) mod p.

1:
(
sB,2η[J0, ηJ], sB,2η[Jη, 2ηJ]

)
←

(
aB,η,¬bB,η

)
▷ HW(s) = HW(a) − HW(b) + η

2: ℓ← 2η
3: k ← ⌈log2(ℓ + 1)⌉
4: for i = 0 to k − 1 do ▷ Iterate from output LSB to MSB.
5: xB,1 ← if ℓ mod 2 = 1 then sB,2η[ℓ− 1] else (0, 0, . . . , 0)
6: ℓ← ⌊ℓ/2⌋
7: for j = 0 to ℓ− 1 do ▷ Accumulate all bits of weight i.
8: tB,2 ← SecFullAdderd

(
sB,2η[2j], sB,2η[2j + 1], xB,1)

▷ Algorithm 5
9:

(
xB,1, sB,2η[j]

)
←

(
tB,2[0], tB,2[1]

)
▷ Sum bit goes to xB,1 and carry to sB,2η [j].

10: yB,k[i]← xB,1

11: zAp ← SecB2AModpp
d

(
yB,k

)
▷ Algorithm 11, y = HW(a) − HW(b) + η

12: z
Ap

0 ← z
Ap

0 − η mod p
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Figure 10: Comparison of the performance of various components of C-only implementations
of Kyber768: K1 (state-of-the-art gadgets) and K2 (new).

implementation based on the PINI SecAnd.

Probing security The Kyber implementations K2 and K3 are a composition of PINI
gadgets, hence they are PINI, and therefore probing secure.

6.3 Kyber performance
We show in Figure 10 the performance20 of the top-level masked components of the
Kyber K1 (based on state-of-the-art gadgets) and K2 (new), both written only C to ease
comparison.

First, we remark that Compressd
p,1 in K2 achieves a speedup of more than 10x over K1,

showing that Algorithm 15 (bitsliced) is faster than the table-based approach by Coron et
al. For Compressd

p,4, the speedup (about 20x) is exactly the one of our new SecA2Bd
k since

both implementations implement the same algorithm and SecA2B is the bottleneck. Next,
the speedup for the compressed comparison of cu and c′

u is smaller. Indeed, Coron et al.
have already vastly improved this polynomial comparison in [CGMZ21b], which limits the
speedup of K2 to 1.8x. Finally, regarding the CBD (which includes the Boolean to arithmetic

20The benchmarking setup is the same as the one described in Subsection 4.1.
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Figure 11: Performance comparison of Kyber768 implementations: K1 (state-of-the-art
gadgets, C-only, left) and K2 (new, C-only, middle) and K3 (new, C and assembly, right).
Performance is normalized w.r.t. K1. For better performance and small d, users should
swap SecB2AModpd

k conversions.

masking conversion of the noise), the gain in performance is directly dependent on the
gain for SecB2AModpd

k that we discussed in Figure 6, since this gadget is the bottleneck.
For number of shares up to 6, the CBD based only on gadgets from [SPOG19] is faster,
while for a larger number of shares, the gain is around 1.5.

Overall, our new gadgets lead to a speedup of about 1.8x for the entire Kyber768. As
shown in the decomposition of Figure 11, the speedup mostly comes from the improvement
on polynomial compressions and comparisons (reduced from 45% to about 10% of the
total execution time). This leaves the implementation K2, dominated by the masked
Keccak-f[1600] (for 50% of the cycles) whose implementation is already efficiently bitsliced
in the state-of-the-art, and by the SecB2AModpd

k conversion of the noise polynomials (in
Algorithm 17) for about 30% of the cycles.

The K3 implementation, which is hardened to avoid lower-order leakages, implies
overheads compared to K2 as expected from Subsection 5.3. Eventually, we report the
exact cycle count for K3 and each of its top-level components in Table 2. In that table, we
note that the total number of cycles spent in representation changes (CToBs and BsToC )
takes 4.9% of the total execution of a d = 2 Kyber.CCAKEM.Dec while it is only 1.8% for
d = 16. This confirms the interest of changing the data representation to take advantage
of new gadgets in their application to lattice-based KEMs.

6.4 Saber performance
We implement and benchmark Saber [BBMD+19] with the methodology we used for Kyber.
Indeed, the structure of Saber is very similar to the one of Kyber, the main difference
being the use of a field of characteristic two instead of a prime order field. We developed
all the implementations starting from the unprotected implementation provided by PQM4
and integrating the masked gadgets. That is for S1, we use the gadgets proposed by Coron
et al. [CGMZ21b], except for the SecB2A in CBD which is more efficient by leveraging the
algorithms from [SPOG19] (see Figure 7). For the implementation S2, we make use of a C-
only implementations of the bitsliced gadgets SecA2B, SecB2A and CBD. Implementation S2
is trivially probing secure thanks to PINI composition.

Overall, implementation S2 achieves a speedup of about 3x over S1 for the entire
Saber as reported in Figure 12. Concretely, our new gadgets reduce the execution time of
the conversions by a large factor such that the fraction of runtime dedicated to them is
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Table 2: Performance of the K3 Kyber768 implementation: number of clock cycles when running on a STM32L4R5 and using the TRNG for masking
randomness (32-bit randomness every 53 cycles). Reported numbers are in kCycles. The cost of the CToBs and BsToC operations is included in
the gadgets that perform it, and the total time of their execution is also given separately.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Kyber.CCAKEM.Dec 10018 16747 24709 34683 45950 58473 72512 88203 106040 124598 144757 166094 189034 213064 238865

Keccak-f[1600] 4579 7225 10664 14897 19923 25752 32384 39816 48032 57042 66871 77500 88915 101111 114108
Gen Â 537 588 619 667 718 758 804 853 902 949 996 1041 1088 1135 1181
NTT 132 187 243 298 354 409 465 520 575 631 686 742 797 853 908
Decompressd

p,1 97 168 278 442 652 834 1086 1379 1685 2032 2403 2818 3243 3612 4097
Compressd

p,1 214 414 616 909 1184 1479 1784 2151 2660 3078 3508 3972 4444 4938 5444
CBD: Alg.17 L1-1 167 229 306 396 497 619 751 896 1056 1228 1415 1615 1831 2059 2302
SecB2A: Alg. 17 L-11 2687 5052 7822 11123 14903 18992 23609 28572 34135 39948 46401 52927 60124 67524 75678
Compressd

p,10 941 1858 2822 4169 5502 6949 8466 10298 12593 14672 16826 19154 21550 24062 26647
Compressd

p,4 255 492 735 1082 1416 1776 2151 2603 3202 3716 4247 4820 5408 6023 6654
CToBs /BsToC 490 773 1056 1341 1624 1907 2190 2474 2760 3043 3327 3610 3894 4177 4461

Table 3: Performance of the S3 Saber implementation: number of clock cycles when running on a STM32L4R5 and using the TRNG for masking
randomness (32-bit randomness every 53 cycles). Reported numbers are in kCycles. The cost of the CToBs and BsToC operations is included in
the gadgets that perform it, and the total time of their execution is also given separately.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Saber.CCAKEM.Dec 5947 9324 13409 18395 24115 30653 37895 46086 54978 64685 75085 86379 98350 111141 124649

Keccak-f[1600] 3432 5412 7986 11155 14933 19298 24266 29837 35998 42756 50119 58095 66648 75801 85528
Gen Â 313 313 313 313 313 313 313 313 313 313 313 313 313 313 313
NTT 704 971 1238 1506 1773 2040 2307 2574 2841 3109 3376 3643 3910 4177 4444
Compressd

210,21 93 177 270 385 507 642 785 954 1130 1321 1514 1730 1946 2181 2420
CBD: Alg.17 L1-10 148 207 282 369 470 589 719 861 1019 1190 1374 1573 1786 2013 2254
SecB2A: Alg. 17 L-11 534 1012 1541 2196 2903 3695 4534 5510 6539 7649 8796 10056 11360 12756 14185
Compressd

213,210 340 677 1066 1565 2111 2729 3400 4194 5039 5957 6913 7970 9062 10232 11456
Compressd

210,24 86 167 259 377 502 645 798 980 1171 1379 1593 1832 2076 2338 2610
CToBs /BsToC 269 407 546 684 822 960 1098 1237 1375 1513 1651 1790 1928 2066 2204
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Figure 12: Performance comparison of Saber implementations: S1 (state-of-the-art gadgets,
C-only, left) and S2 (new, C-only, middle) and S3 (new, C and assembly, right). Performance
is normalized w.r.t. S1.

reduced from 78% down to 20%. In implementation S2 (for d = 16), 72% of the execution
is spent in masked Keccak-f[1600], 12% in SecB2Ad

k and around 10% in SecA2Bd
k to

perform polynomial compression. Similarly to K3, we also propose a hardened Saber
implementation called S3 using C and assembly. We report the cycle count of the S3
implementation in Table 3.

7 Conclusion

We begin our conclusion with the performance improvements. Thanks to very large perfor-
mance improvement (about 20x) on arithmetic-to-Boolean masking conversion gadgets
and to various smaller improvements (notably on Boolean-to-arithmetic conversions), our
Kyber768 implementation K2 based on new gadgets achieves a speedup of 1.8x over the
implementation K1 based on state-of-the-art gadgets (see Figure 11). Similarly, we improve
the performance of Saber by a factor 3x. The bottleneck of both new implementations of
Kyber and Saber is the computation of masked Keccak, meaning that without improvement
on the masked hash function, further speedup opportunities are limited. Eventually, we
apply a best-effort methodology, using gadgets implemented in assembly language to
harden our implementations against lower-order attacks: it induces an ≈ 1.6x overheads.

Next, we remark that in addition to improving performance in software by 1.3x to 25x,
our bitsliced gadgets are very amenable to simple and efficient hardware implementations
thanks to their bit-level structure, compared to tabled-based gadget or to other non-
bitsliced gadgets. Additionally, we expect that the use of PINI as security property will
help with security against glitches and transitions [CGLS21, CS21].

Finally, we note that most of the security proofs of this paper are simple: their
sole argument is that a gadget is a composition of PINI sub-gadgets. We next discuss
the takeaways of the more interesting security proofs. The proofs of Propositions 3
and 4 (arithmetic-to-Boolean conversion) rely on the new definition of gadget embedding
(Definition 5 and Lemma 1), which can be viewed as an extension of trivial PINI composition
to the composition of sub-gadgets with a mixed number of shares. Further, the proof of
Proposition 5 (SecB2AModp) shows that one may securely “unmask” a sharing using only
a RefreshIOS, instead of the FullRefresh which was used in previous works.
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A Minimum number of AND gates for a k-bit adder
In the following, we name k-bit adder the Boolean function with 2k inputs and k coordinates
that implements addition modulo 2k when its inputs and outputs are viewed as k-bit
binary representations of integers.

Proposition 6. A Boolean circuit implementing a k-bit adder, When implemented with
only 2-input AND, XOR and NOT gates, uses at least k − 1 AND gates.

Proof. We next prove the lower bound of k − 1 AND gates for the addition of two k-bit
integers. Let B0 be the set of all linear and affine Boolean functions whose inputs are the
2k adder input bits, then by induction, ci be the product of two elements ai and bi of Bi,
and Bi+1 be the span (in the vector space of Boolean functions) of Bi ∪ {ci}. We remark
that for any (vectorial) Boolean function f that can be implemented with i 2-input AND
gates and any number of XOR and NOT gates, there exists (aj)j=0,...,i−1 and (bj)j=0,...,i−1
such that f has all its coordinates in Bi.

Let Di be the set of all the degrees of the functions in Bi. We have D0 = {0, 1}, and
for any i, |Di+1| ≤ |Di| + 1, thus |Di| ≤ i + 2. The induction inequality can be proven
as follows: by construction, any function in Bi+1 can be written as α0ci ⊕

⊕k
j=1 αjfi

where all coefficients α belong to F2 and all fj belong to Bi. Since Bi is a vector subspace,
there exists f ∈ Bi such that f =

⊕k
j=1 αjfj . Therefore, all elements of Bi+1 \ Bi can

be written as ci ⊕ f for some f ∈ Bi. If the degree of ci (denoted deg (ci)) does not
belong to Di, then deg (ci ⊕ f) is either deg (ci) or deg (f), thus Di+1 ⊂ Di ∪ {deg (ci)}
and the inequality follows. Let us now assume that deg (ci) ∈ Di. Let f, f ′ ∈ Bi such
that deg (ci ⊕ f) ̸= deg (ci ⊕ f ′), let d = max (deg (ci ⊕ f) , deg (ci ⊕ f ′)) and assume by
contradiction that both degrees do not belong do Di. Therefore, deg (ci ⊕ f) ≤ deg (ci)
and the sets of terms in the algebraic normal forms (ANF) of ci and f whose degree belong
to Jdeg (ci ⊕ f) , deg (ci)K are equal. The same goes for f ′, and furthermore the sets of
terms of degree d of f and f ′ are distinct. As a result, deg (f ⊕ f ′) = d ∈ Di, which
contradicts the hypothesis.

Numbering from 0 to k − 1 (from least to most significant) the output bits of the
adder, the bit i is a function of degree i + 1 of the input bits. Therefore, the k-bit adder
vectorial Boolean function has coordinates of all degrees in J1, kK. Hence, the adder does
not belong to any Bk−2: since 0 ∈ Dk−2, |Dk−2 \ {0}| ≤ k − 1 < |J1, kK|, and therefore
Dk−2 ̸⊂ J1, kK. We conclude that the k-bit adder cannot be implemented with k − 2 AND
gates (or less).

B Generalized IOS refresh gadget
In this Section, we generalize the IOS refresh algorithm of [GPRV21] to deal with any
number of shares (instead of only power-of-2). In a nutshell, we take the SNI refresh
of [BCPZ16] and apply the same changes as [GPRV21] applied to the power-of-2 special
case, resulting in Algorithm 18. The main difference with [GPRV21] is that the recursive
call do not necessarily have the same number of shares, and that the last share is not
re-randomized in the final layer when d is odd. For the sake of simplicity and consistency
of notations, we specialize the gadget to Boolean masking, but the generalization of the
gadget and the proofs to linear masking are trivial.

Security proof We now prove that Algorithm 18 is input-output separative for d ≥ 2.
Since the proof is very similar to the original proof of [GPRV21], we only mention the few
significant differences. Throughout the proof we denote L = J0, ⌊d/2⌋J and H = J⌊d/2⌋, dJ.
Furthermore, we replace d/2 by ⌊d/2⌋ everywhere and adapt the indices (from 0 to d− 1
instead of 1 to n).
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Algorithm 18 RefreshIOSd
k

Input: Boolean sharing xB,k.
Output: Boolean sharing yB,k such that x = y.

1: if d = 1 then
2: yB,k ← xB,k

3: else if d = 2 then
4: r

$← Fk
2

5: yB,k
0 ← xB,k

0 ⊕ r

6: yB,k
1 ← xB,k

1 ⊕ r
7: else
8: zB,k

J0,⌊d/2⌋J ← RefreshIOS⌊d/2⌋
k

(
xB,k

J0,⌊d/2⌋J

)
9: zB,k

J⌊d/2⌋,dJ ← RefreshIOSd−⌊d/2⌋
k

(
xB,k

J⌊d/2⌋,dJ

)
10: for i ∈ J0, ⌊d/2⌋J do
11: ri

$← Fk
2

12: yB,k
i ← zB,k

i ⊕ ri

13: yB,k
⌊d/2⌋+i ← zB,k

⌊d/2⌋+i ⊕ ri

14: if d mod 2 = 1 then
15: yB,k

d−1 ← zB,k
d−1

Uniformity The proof is still by induction, and the base cases are d = 1 and d = 2.
The proof for d = 2 is unchanged, while the case d = 1 is trivial since there is only one
admissible output sharing for a fixed input. Next, for d ≥ 3, the original induction proof
still holds.

IOS The case d = 1 is trivial: the full input and output sharings are known if there
is at least one probe. The case d = 2 is not changed. The induction case only requires
changes when d is odd, in order to handle the share zB,k

d−1 (wlog we assume that yB,k
d−1 is

not probed): we define Vd−1 as {zB,k
d−1} and add d− 1 for J if Vd−1 is not empty, and in

that case the simulator sets zB,k
d−1 = yB,k

d−1. The simulation then proceeds as in the original
proof.

Re-ordering operations The execution of Algorithm 18 can be re-written in the following
manner. Let first Ld be well a well-chosen list of pairs (xi, yi) (formally, Ld ∈

(
J0, dJ2

)∗
).

Then, for each (xi, yi) in Ld, generate ri ∈ Fk
2 and update the shares with index xi and yi

by XORing ri to them. We remark that Ld may be shuffled without impacting the set of
internal variables if we preserve the relative order of any pairs (xi, yi) and (xj , yj) such
that {xi, yi} ∩ {xj , yj} ≠ ∅. This gives freedom in the implementation to choose the order
that minimizes control flow and spilling (i.e., copies from registers to the RAM) overheads.
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