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Abstract. The double boomerang connectivity table (DBCT) is a new table proposed
recently to capture the behavior of two consecutive S-boxes in boomerang attacks.
In this paper, we observe an interesting property of DBCT of S-box that the ladder
switch and the S-box switch happen in most cases for two continuous S-boxes, and for
some S-boxes only S-box switch and ladder switch are possible. This property implies
an additional criterion for S-boxes to resist the boomerang attacks and provides as
well a new evaluation direction for an S-box. Using an extension of the DBCT, we
verify that some boomerang distinguishers of TweAES and Deoxys are flawed. On
the other hand, inspired by the property, we put forward a formula for estimating
boomerang cluster probabilities. Furthermore, we introduce the first model to search
for boomerang distinguishers with good cluster probabilities. Applying the model
to CRAFT, we obtain 9-round and 10-round boomerang distinguishers with a higher
probability than that of previous works.
Keywords: boomerang attack · DBCT · cluster · CRAFT · TweAES · Deoxys-BC

1 Introduction
Differential cryptanalysis, proposed by Biham and Shamir [BS91], is one of the most
powerful techniques to assess the security of block ciphers. The main idea is to search
for non-random pairs of input and output differences of the cipher with high probability.
In many cases, it is hard to find long differentials. To overcome the restriction, Wagner
introduced the boomerang attack in [Wag99], which is a development of differential
cryptanalysis. The main idea of boomerang attacks is to combine two short differentials
with high probabilities to get a long one. In boomerang attacks, a cipher E is regarded as
the composition of two sub-ciphers, i.e., E = E1 ◦E0. Suppose there exists two differentials
∆1 → ∆2 for E0 and ∇2 → ∇3 for E1 with probabilities p and q. Then it is a boomerang
distinguisher of probability:

P(E−1(E(P )⊕∇3)⊕ E−1(E(P ⊕∆1)⊕∇3) = ∆1) = PE0 · PE1 = p2 · q2,

when the two differentials are independent.
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Later, researchers focused on the dependence and the connectivity of two differentials.
At Asiacrypt 2009, Biryukov et al. proposed three types of switches to evaluate the
transition between the differentials of E0 and E1 more exactly in [BK09]. Then Dunkelman
et al. proposed the sandwich attack [DKS10, DKS14], which divides the cipher into three
parts, i.e., E = E1 ◦Em ◦E0 where Em contains dependency. Further, Cid et al. gave a
new tool named Boomerang Connectivity Table (BCT) to calculate the probability of one
middle round theoretically [CHP+18]. Expanding one middle round to multiple middle
rounds, Song et al. gave a generalized framework for the BCT and introduced a method to
precisely calculate the probability of boomerang distinguishers [SQH19].

As shown in [SQH19], the clustering effect, which raises the probability of a boomerang
distinguisher of SKINNY block cipher from 2−103.84 to 2−77.83, is significant for word-oriented
block ciphers in boomerang attacks. In fact, the clustering effect of Em can be considered
only when dependency in Em is well handled. This encourages a line of research on
boomerang attacks that searches for good boomerang distinguishers with dependencies
being taken into account. In [CHP+18], Cid et al. used an MILP model to study the
ladder switch for boomerang attacks on Deoxys. In [LS19], Liu et al. proposed a generic
approach searching for boomerang distinguishers on GIFT, where there is one middle round.
Furthermore, Delaune et al. [DDV20] introduced a new approach to search for boomerang
distinguishers by carefully dealing with dependencies without the need of specifying the
middle rounds. Typically, these works search for good truncated boomerang characteristics
first and then instantiate them.

In the most recent work [DDV20, HBS21], we observe that to handle dependency
intermediate differences are treated as random for simplicity. However, this may be not
true in certain cases. Besides, the clustering effect of the two outer parts E0 and E1
are neglected in the search for a truncated boomerang. So there needs a more careful
treatment of dependency in Em and the cluster effect over two outer parts.

Contribution. In this paper, we look into the double boomerang connectivity table (DBCT)
which captures the properties of two continuous S-boxes in boomerang attacks and find
new properties of DBCT, showing that the relation between neighbouring rounds cannot be
ignored. We first observe that besides the common ladder switch and S-box switch, few
other cases exist for two continuous active S-boxes and even for certain S-boxes, no other
cases exist. When the cases besides the ladder switch and the S-box switch are rarer, it is
more desirable for a cipher against the boomerang attack. Thus, the uniformity of DBCT
for an S-box can be defined as an additional criterion for resisting the boomerang attack.
The DBCT uniformity matters, which can be confirmed by comparing probabilities of the
same boomerang distinguisher furnished with different S-boxes.

Further, we extend DBCT to the case of multiple active S-boxes in a row and the case
where there is a complex linear layer in between. Applying extensions of DBCT to TweAES
[CDJ+20] and Deoxys [JNPS16], we verify that a boomerang distinguisher of TweAES
proposed by the designers is flawed, as well as two boomerang distinguishers of Deoxys-BC
proposed in [BL22]. Once again, it demonstrates that the interactions between two S-box
layers matter and should be treated carefully.

On the other hand, the properties of DBCT remind us to count only once instead of twice
when there are two (or multiple) continuous active S-boxes. Based on this, we put forward
a formula for evaluating the probability of the full boomerang cluster. We divide the cipher
E into three sub-ciphers E = E1 ◦ Em ◦ E0. Inspired by the method for evaluating the
probability of truncated differentials, proposed by Moriai et al. in [MSAK99], we give the
cluster probability of E0 and E1 similarly. The same technique applies to Em due to the
property of DBCT. Furthermore, we propose the first MILP model for searching boomerang
clusters. What’s more, it keeps the feature that there is no need for specifying the middle
rounds. Applying our MILP model to CRAFT, we obtain good boomerang clusters for
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6–14 rounds of CRAFT. Among them, the probabilities of 9-round and 10-round boomerang
clusters are higher than those proposed in [HBS21].

Organization of the paper. The rest of the paper is organized as follows: in Section 2,
we present the preliminaries for the boomerang attack and sandwich attack, and recall the
previous definitions of tables used in boomerang attack. In Section 3, we propose some
new properties for double boomerang connectivity table (DBCT) of S-box and introduce
extensions of DBCT. In Section 4, we revisit some existing boomerang distinguishers of
CRAFT, TweAES and Deoxys, respectively, and verify that the boomerang distinguisher of
TweAES, and Deoxys are flawed. Using the property of DBCT, we give a new approach to
simplify the formula for the probability of boomerang clusters and propose an MILP model
to search for boomerangs with good cluster probability. Applying the model to CRAFT,
we obtain 9-round and 10-round boomerang distinguisher with higher probability than
previous works in Section 5. Finally, we conclude the paper in Section 6.

2 Preliminaries
2.1 Boomerang Attack
In [Wag99], Wagner proposed the boomerang attack which is grounded in the idea that
combining two short differentials may lead to a good long one. In the left of Fig. 1 where
a block cipher E is treated as the composition of two sub-ciphers E0 and E1, we suppose
there exist two short differentials ∆1 → ∆2 and ∇3 → ∇2 with high probability p and q.
Under the assumption that the two differentials are independent, the probability of the
boomerang distinguisher of E is

P(E−1(E(P )⊕∇3)⊕ E−1(E(P ⊕∆1)⊕∇3) = ∆1) = PE0 · PE1 = p2 · q2.

The sandwich attack, proposed by Dunkelman et al. in [DKS10, DKS14], is an
improvement to the boomerang attack. Instead of assuming the two trails are independent,
it takes into account the dependency between the two differentials and handles it in a
middle part Em, as shown in the right of Fig. 1. Thus, the sandwich attack regards cipher
E as the composition of three sub-ciphers E = E1 ◦ Em ◦ E0, where Em usually contains
a small number of rounds. If the probability of a boomerang coming back over Em for
random inputs x is P(E−1

m (Em(x)⊕∇2)⊕ E−1
m (Em(x⊕∆2)⊕∇2) = ∆2) = r, then the

probability of the whole boomerang distinguisher is

P(E−1(E(P )⊕∇3)⊕ E−1(E(P ⊕∆1)⊕∇3) = ∆1) = PE0 · PEm
· PE1 = p2 · r · q2.

2.2 Tables
First, let’s recall the definitions of some tables of an S-box.

Definition 1. Let S be a function from Fn2 to Fn2 . Given αi, βi ∈ Fn2 , i ∈ {1, 2}, the
difference distribution table (DDT) and the boomerang connectivity table (BCT [CHP+18])
are two-dimensional tables defined as

DDT(α1, α2) = #{x ∈ Fn2 |S(x)⊕ S(x⊕ α1) = α2}.

BCT(α1, β2) = #{x ∈ Fn2 |S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1}.

For DDT, we introduce two sets as follows.

XDDT(α, β) , {x ∈ Fn2 : S(x)⊕ S(x⊕ α) = β},
YDDT(α, β) , {S(x) ∈ Fn2 : x ∈ Fn2 , S(x)⊕ S(x⊕ α) = β}.
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Figure 1: Basic boomerang attack(left) and Sandwich attack(right)

Figure 2: Differences of an S-box on four facets

Definition 2 ([DR07]). Let S be a function from Fn2 to Fn2 . S is called planar if and only
if for all α, β ∈ Fn2 , both sets XDDT(α, β),YDDT(α, β) are affine subspaces.

Definition 3. Let S be a function from Fn2 to Fn2 . The Upper BCT (UBCT1 [WP19, DDV20])
and the Lower BCT (LBCT2 [SQH19, DDV20]) are three-dimensional tables defined as

UBCT(α1, α2, β2) = #
{
x ∈ Fn2

∣∣∣∣∣S(x)⊕ S(x⊕ α1) = α2

S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1

}
,

= #(YDDT(α1, α2) ∩ (YDDT(α1, α2)⊕ β2)),

LBCT(α1, β1, β2) = #
{
x ∈ Fn2

∣∣∣∣∣S(x)⊕ S(x⊕ β1) = β2

S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1

}
,

= #(XDDT(β1, β2) ∩ (XDDT(β1, β2)⊕ α1)).

Definition 4. Let S be a function from Fn2 to Fn2 . The Extended BCT (EBCT [BHL+20,

1UBCT is called Boomerang Difference Table BDT in [WP19], renamed as UBCT in [DDV20].
2LBCT is denoted by DBCT in [SQH19], renamed as LBCT in [DDV20].



4 New Properties of Double Boomerang Connectivity Table

DDV20])3 is a four-dimensional table defined as

EBCT(α1, β1, α2, β2) = #

x ∈ Fn2

∣∣∣∣∣∣∣
S(x)⊕ S(x⊕ α1) = α2

S(x)⊕ S(x⊕ β1) = β2

S−1(S(x)⊕ β2)⊕ S−1(S(x⊕ α1)⊕ β2) = α1

 .

Definition 5. Let S be a function from Fn2 to Fn2 . Given αi, βi ∈ Fn2 , i ∈ {1, 2}, we define
for each table the transition probability as

PDDT(α1, α2) = DDT(α1, α2)/2n, PUBCT(α1, α2, β2) = UBCT(α1, α2, β2)/2n,
PBCT(α1, β2) = BCT(α1, β2)/2n, PLBCT(α1, β1, β2) = LBCT(α1, β1, β2)/2n,
PEBCT(α1, β1, α2, β2) = EBCT(α1, β1, α2, β2)/2n.

2.3 Properties of the Tables
1. S-box switch: ∀αi, βi ∈ Fn2 , i ∈ {1, 2}

DDT(α1, α2) = UBCT(α1, α2, α2) = EBCT(α1, α1, α2, α2),
DDT(β1, β2) = LBCT(β1, β1, β2) = EBCT(β1, β1, β2, β2).

(1)

2. Ladder switch: ∀α1, β2 ∈ Fn2

BCT(0, β2) = UBCT(0, 0, β2) = 2n, BCT(α1, 0) = LBCT(α1, 0, 0) = 2n.

3. ∀αi, βi ∈ Fn2 , i ∈ {1, 2}

UBCT(α1, α2, β2) =
∑
β1∈Fn

2

EBCT(α1, β1, α2, β2),

LBCT(α1, β1, β2) =
∑
α2∈Fn

2

EBCT(α1, β1, α2, β2),

BCT(α1, β2) =
∑
α2∈Fn

2

UBCT(α1, α2, β2) =
∑
β1∈Fn

2

LBCT(α1, β1, β2)

=
∑

β1,α2∈Fn
2

EBCT(α1, β1, α2, β2).

2.4 Previous Methods to Search for Boomerang Distinguishers
To find boomerang distinguishers, the classical approach is to search for two short differential
characteristics with high probability and then combine them. In [CHP+17], Cid et al.
proposed an MILP model for searching boomerang distinguishers on Deoxys, which employs
the ladder switch in the combination. Later, Liu et al. gave a more generic MILP model
for the block cipher GIFT in [LS19]. Note that in these two works the target cipher is
divided into three parts E = E1 ◦Em ◦E0, where Em is restricted to a single round. Then
in [SQH19], Song et al. provided a new tool to compute the probability of boomerang
distinguishers and showed that the dependency may exist in multiple rounds. One limitation
of this work is that Em is determined when two trails are given. In [DDV20], Delaune
et al. proposed a new approach to search for boomerang characteristics with Em being
identified automatically.

3In [Nyb19], a three-dimensional table, also named EBCT, was defined as

EBCT(a; b, c) = #{(x, y) ∈ Fn
2 × Fn

2 |S(x)⊕ S(y) = b and S(x⊕ a)⊕ S(y ⊕ a) = c},

where the output difference is allowed to be different from the difference on the opposite face.
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Remark. All previous works search for boomerang distinguishers in two steps. The
first step finds good truncated characteristics and the second step searches for good
instantiations following the obtained truncated characteristics. The clustering effect is
significant especially for word-oriented block ciphers. At present, all previous works
consider the cluster effect when actual characteristics are obtained in the second step. As
far as we know, no method is available in the literature to reflect the clustering effect in
the first step.

3 New Properties of Double Boomerang Connectivity Table
In this section, we define the Double Boomerang Connectivity Table (DBCT) and present
new properties of it. Then we discuss the extensions of DBCT.

3.1 Double Boomerang Connectivity Table (DBCT)
DBCT as defined below captures the properties of two S-boxes in a row in boomerang
attacks, as depicted in Fig. 3 (left).

Figure 3: DBCT of general S-box (left) and DBCT of hard S-box in the sense of Definition 8
(right)

Definition 6. Let S be a function from Fn2 to Fn2 . The double boomerang connectivity
table (DBCT)4 is defined as

DBCT(α1, β3) =
∑
α2,β2

dbct(α1, α2, β2, β3),

where dbct(α1, α2, β2, β3) = UBCT(α1, α2, β2) · LBCT(α2, β2, β3).

Like the differential uniformity, a new uniformity can be defined similarly.

Definition 7 (Double Boomerang Uniformity). The double boomerang uniformity of S is
the largest value in the DBCT except for the first row and the first column:

U = max
α1,β3 6=0

DBCT(α1, β3).

Note we could represent DBCT(α1, β3) as the sum of two parts:

DBCT(α1, β3) =
∑
α2=β2

dbct(α1, α2, β2, β3) +
∑
α2 6=β2

dbct(α1, α2, β2, β3).

4DBCT was first introduced in [HBS21] and defined in an algorithmic way. In fact, the DBCT notation
used in this paper is the same as in [HBS21] but we use a more succinct definition.
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For several 4-bit S-boxes(CRAFT [BLMR19], QARMA [Ava17], PRESENT [BKL+07], LBlock-
s0 [WZ11], LBlock-s1 [WZ11], MIBS [ISSK09], and TWNIE [SMMK12]), we calculate their
dbcts. When α1, β3 6= 0, there are 704, 738, 620, 608, 608, 735, and 735 nonzero values in
total, respectively. Considering α2 6= β2, there are only 72, 36, 0, 0, 0, 0, and 0 nonzero
values, respectively. We observe that the nonzero dbct(α1, α2, β2, β3) occurs mainly when
α2 = β2. This means in most cases the UBCT and LBCT for computing DBCT degenerate to
DDT, as shown in Equation (1). Thus, the entries of DBCT can be lower-bounded by a value
computed from DDT entries, as formalized in Property 1.

Property 1. Let S be a function from Fn2 to Fn2 . For ∀α1, α2, β2, β3 ∈ Fn2\0, nonzero
dbct(α1, α2, β2, β3) occurs mainly when α2 = β2. Consequently,

DBCT(α1, β3) =
∑
α2,β2

dbct(α1, α2, β2, β3) =
∑
α2,β2

UBCT(α1, α2, β2) · LBCT(α2, β2, β3)

≥
∑
α2=β2

UBCT(α1, α2, β2) · LBCT(α2, β2, β3)

=
∑
α2

DDT(α1, α2) · DDT(α2, β3).

For α1 = 0 or β3 = 0, it corresponds to the ladder-switch [DKS10] and

DBCT(0, β3) =
∑
β2

UBCT(0, 0, β2) · LBCT(0, β2, β3) = 22n,

DBCT(α1, 0) =
∑
α2

UBCT(α1, α2, 0) · LBCT(α2, 0, 0) = 22n.

It is also observed that for certain S-boxes, the set of nonzero dbct(α1, α2, β2, β3)
always satisfies α2 = β2. This is an exciting property as it turns the “≥” in Property 1
into a more desirable “=”. If such a property holds for an S-box, we call it a hard S-box.

Definition 8 (Hard S-box). Let S be a function from Fn2 to Fn2 . S is hard if the following
holds. For ∀α1, β3 6= 0,

DBCT(α1, β3) =
∑
α2,β2

UBCT(α1, α2, β2) · LBCT(α2, β2, β3)

=
∑
α2=β2

UBCT(α1, α2, β2) · LBCT(α2, β2, β3)

=
∑
α2

DDT(α1, α2) · DDT(α2, β3).

Remark. For a cipher employing hard S-boxes, it only allows two typical switch effects in
two continuous S-boxes, i.e., the S-box switch and the ladder switch. In other words, a
right quartet (x1, x2, x3, x4) for the two continuous S-box is always composed of two pairs
of the same value, i.e., x1 = x4, x2 = x3, as illustrated in Fig. 3 (right).

Example 1. A good example of hard S-boxes is PRESENT’s S-box. Table 1 and Table 2
display PRESENT’s DBCT and DDT. It can be seen that for all i, j 6= 0, the entry at position
(i, j) in DBCT equals the dot products between the i-th row and the j-th column of DDT.



Yang et al. 7

Then under what circumstances is an S-box hard? According to Definition 3, for
α2, β2 ∈ Fn2 \ 0, a hard S-box requires∑

α2 6=β2

dbct(α1, α2, β2, β3) =
∑
α2 6=β2

UBCT(α1, α2, β2) · LBCT(α2, β2, β3)

=
∑
α2 6=β2

#(YDDT(α1, α2) ∩ (YDDT(α1, α2)⊕ β2)) ·#(XDDT(β2, β3) ∩ (XDDT(β2, β3)⊕ α2)) = 0.

Proposition 1. Let S be a planar S-box from Fn2 to Fn2 . For α2, β2 ∈ Fn2 \ 0, α2 6= β2, and
α1, β3 ∈ Fn2 , if {

span(α2, β2) ⊆ YDDT(α1, α2),
span(α2, β2) ⊆ XDDT(β2, β3)

never holds, then S is hard. If S has differential uniformity 4, then the S-box is hard when
DDT(α1, α2) = DDT(β2, β3) = 4, YDDT(α1, α2) = XDDT(β2, β3) never holds.

Proof. If the S-box is planar, for α, β ∈ Fn2 , we can write XDDT(α, β) and YDDT(α, β) as

XDDT(α, β) = x0 +XDDT(α, β),
YDDT(α, β) = y0 + YDDT(α, β),

whereXDDT(α, β) and YDDT(α, β) are linear subspaces and x0 and y0 are elements of XDDT(α, β)
and YDDT(α, β), respectively. Consider the cardinality of the intersection YDDT(α1, α2) ∩
(YDDT(α1, α2)⊕ β2). There are two possible cases.

• β2 ∈ YDDT(α1, α2), which equivalently means that YDDT(α1, α2) = YDDT(α1, α2)⊕ β2.

• β2 /∈ YDDT(α1, α2), which means that YDDT(α1, α2) ⊕ β2 is a coset of YDDT(α1, α2)
different from YDDT(α1, α2). In this case, the intersection between the two cosets is
empty.

The same applies to the cardinality of the intersection XDDT(β2, β3) ∩ (XDDT(β2, β3)⊕ α2).
Then, a planar S-box is hard if∑

α2 6=β2

dbct(α1, α2, β2, β3) =
∑

α2 6=β2,β2∈YDDT(α1,α2),
α2∈XDDT(β2,β3)

#YDDT(α1, α2) ·#XDDT(β2, β3) = 0.

Example 2. The S-box of CRAFT, whose DDT is displayed in Table 12, is not hard as
YDDT(10, 5) = XDDT(15, 10) = {0, 5, 10, 15} and DBCT(10, 10) =

∑
α2=β2

dbct(10, α2, β2, 10)+∑
α2 6=β2

dbct(10, α2, β2, 10) = 64 + 64 = 128. The DBCT of CRAFT is displayed in Table 13.

3.2 Extensions
One may wonder under what circumstances the DBCT is applicable, i.e., there are two
active S-boxes in a row. Basically, the linear layer of the round function needs to be
simple so that the output difference of one S-box may exactly be the input difference of
another S-box. Indeed, this may happen when the linear layer can be represented with a
binary matrix. A natural question would be: what if the linear layer is extremely simple
or complex?

In this subsection, we first discuss extensions of DBCT in the case where the linear layer
is extremely simple. In this case, multiple active S-boxes in a row are possible. Then we
discuss the extension in the case where the linear layer is relatively complex.
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Table 1: DBCT of PRESENT’s 4-bit S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
1 256 32 32 16 32 - 32 16 16 - 16 16 16 - 16 16
2 256 16 24 16 16 16 16 16 16 16 24 24 24 16 8 8
3 256 16 16 16 8 16 24 16 24 16 16 24 16 16 8 24
4 256 16 24 8 16 16 16 8 24 16 16 16 32 16 16 16
5 256 8 24 16 16 32 8 24 24 24 24 8 8 16 24 -
6 256 24 8 8 24 16 8 8 24 16 16 24 8 16 24 32
7 256 16 8 24 16 16 8 24 8 24 8 16 8 24 24 32
8 256 40 16 8 40 - 16 8 24 8 16 16 8 8 24 24
9 256 - 16 16 - 32 24 24 16 24 16 16 24 16 16 16
a 256 16 16 24 16 16 16 16 8 16 24 24 24 24 8 8
b 256 8 16 24 16 16 8 24 16 24 16 24 8 24 16 16
c 256 16 16 16 16 16 16 8 16 16 16 16 32 24 16 16
d 256 16 8 24 8 32 24 16 16 16 24 8 16 24 16 8
e 256 16 24 16 16 16 24 16 16 8 16 24 16 8 16 24
f 256 16 8 24 16 16 16 32 8 32 8 - 16 24 24 16

Table 2: DDT of PRESENT’s 4-bit S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 - - - - - - - - - - - - - - -
1 - - - 4 - - - 4 - 4 - - - 4 - -
2 - - - 2 - 4 2 - - - 2 - 2 2 2 -
3 - 2 - 2 2 - 4 2 - - 2 2 - - - -
4 - - - - - 4 2 2 - 2 2 - 2 - 2 -
5 - 2 - - 2 - - - - 2 2 2 4 2 - -
6 - - 2 - - - 2 - 2 - - 4 2 - - 4
7 - 4 2 - - - 2 - 2 - - - 2 - - 4
8 - - - 2 - - - 2 - 2 - 4 - 2 - 4
9 - - 2 - 4 - 2 - 2 - - - 2 - 4 -
a - - 2 2 - 4 - - 2 - 2 - - 2 2 -
b - 2 - - 2 - - - 4 2 2 2 - 2 - -
c - - 2 - - 4 - 2 2 2 2 - - - 2 -
d - 2 4 2 2 - - 2 - - 2 2 - - - -
e - - 2 2 - - 2 2 2 2 - - 2 2 - -
f - 4 - - 4 - - - - - - - - - 4 4

Multiple S-boxes. In the case of t > 2 consecutive S-boxes, we could define as well
a similar table which is called t-BCT. If the S-box is hard, then we have the following
proposition for t-BCT.

Proposition 2. Let S be a function from Fn2 to Fn2 . If S is hard, then for ∀α, β ∈ Fn2\0
and t > 2,
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3-BCT(α, β) =
∑

α2,β2,α3,β3

UBCT(α, α2, β2) · EBCT(α2, β2, α3, β3) · LBCT(α3, β3, β)

=
∑
α2,α3

DDT(α, α2) · DDT(α2, α3) · DDT(α3, β),

t-BCT(α, β) =
∑

α2,β2,...,αt,βt

UBCT(α, α2, β2) · EBCT(α2, β2, α3, β3) · ... · LBCT(αt, βt, β)

=
∑

α2,...,αt

DDT(α, α2) · DDT(α2, α3) · ... · DDT(αt, β).

The proof of Proposition 2 is postponed to Appendix A.1.

Complex linear layer. Suppose the the output differences of the first S-box is α2, β2
and input differences of the second S-box is α′2, β′2, as depicted in Fig. 4. Unlike the case
α2 = α′2, β2 = β′2 captured by the original DBCT, there is a complex linear mapping M
between α2, β2 and α′2, β′2. As long as α′2 (resp. β2) can be computed from α2 (resp. β′2)
through M , a DBCT can be defined similarly as follows.

DBCT(α1, β3) =
∑
α2,β2

dbct(α1, α2, β2, β3) =
∑
α2,β2

UBCT(α1, α2, β2) · LBCT(α′2, β′2, β3).

Figure 4: General DBCT with a complex linear layer in between

Example 3. Consider four bytes passing through SB◦MC◦SB where SB and MC are the same
as defined in AES. Without loss of generality, we consider DBCT0,j(0 ≤ j ≤ 3) for the first
input byte and the j-th output byte. Let’s assume that the input difference state for upper
characteristic is ∆ = [α1, 0, 0, 0]T and consider four situations for the output difference
state for lower characteristic as shown in Fig. 5. For case 1 where ∇ = [β3, 0, 0, 0]T, for
∀α1, β3 ∈ F28 :

α′2 = (MC · [α2, 0, 0, 0]T)[0], β2 = (MC−1 · [β′2, 0, 0, 0]T)[0]

DBCT0,0(α1, β3) =
∑
α2,β2

dbct(α1, α2, β2, β3) =
∑
α2,β2

UBCT(α1, α2, β2) · LBCT(α′2, β′2, β3).

The AES S-box is an 8-bit S-box, and thus the size of its DBCT is 256 × 256. In the
DBCT0,0 of the AES S-box, all entries for zero input difference (the first row) and zero output
difference (the first column) are 65536 owing to the ladder switch effect. For the other
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Figure 5: Four cases of DBCT of AES block cipher: DBCT0,0, DBCT0,1, DBCT0,2 and DBCT0,3

Table 3: Number of entries for each value for the DBCTi,j and the basic DBCT for the AES
S-box

M Table 65536 16 8 0 192-332

MC

DBCT0,0, DBCT1,1, DBCT2,2, DBCT3,3 511 8 882 64135 -
DBCT0,1, DBCT1,2, DBCT2,3, DBCT3,0 511 3 252 64770 -
DBCT0,2, DBCT1,3, DBCT2,0, DBCT3,1 511 1 - 65024 -
DBCT0,3, DBCT1,0, DBCT2,1, DBCT3,2 511 3 126 64896 -

XOR basic DBCT 511 - - - 65025

entries, the maximum value is 16. The number of entries with 65536, 16, 8, and 0 are
511, 8, 882, and 64135. For the all 16 DBCTi,j(0 ≤ i, j ≤ 3), there are four cases of the
number of entries, the details are shown in Table 3. We also list the basic DBCT for the
AES S-box in Table 3. Note that, the DBCT is related to the linear layer and the S-box. For
the basic DBCT with simple XOR operations, the AES S-box is hard without zero entries.
For DBCTi,j(0 ≤ i, j ≤ 3) with complex linear layer, most entries are zero.

4 Revisiting Boomerang Attacks on CRAFT, TweAES and
Deoxys-BC

In this section, we revisit some existing boomerang distinguishers of CRAFT, TweAES and
Deoxys-BC, respectively. Through the boomerang distinguisher of CRAFT, we demonstrate
how DBCT uniformity and hard S-box matter. For the boomerang distinguishers of TweAES
and Deoxys-BC, inspired by the property of AES S-boxes with a complex linear layer in
between, we verify that two published boomerang distinguishers are flawed using extended
DBCT.

4.1 Effect of Different S-boxes for Boomerang Distinguishers
CRAFT is a lightweight tweakable block cipher introduced by Beierle et al. [BLMR19] at
FSE 2019. For more details of the cipher, please refer to Appendix B.1 and [BLMR19]. In
[HBS21], a 13-round boomerang distinguisher of CRAFT is presented and there are 7 rounds
in the middle to handle the dependency. We redraw the 7-round middle part Em in Fig. 6,
where White cells are zero differences, Yellow cells are nonzero differences and Green
cells are unknown differences. The input difference of the upper characteristics is ∆ =
[0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] and the output difference of the lower characteristics
is ∇ = [0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Note that {A, ...,H} are the states for upper
characteristics and {a, ..., h} are the states rounds for lower characteristics. The symbols
follow those in the original work, details can be referred to [HBS21]. A detailed analysis
in [HBS21] showed that the boomerang distinguisher of the 7-round Em involves four
DBCTs and its probability is 2−10.39.
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Figure 6: 7-Round Em of CRAFT

For a boomerang distinguisher, its probability is closely related to the S-box being
used. Specifically, the probability of the 7-round distinguisher is related to the DBCT,
BCT and DDT of the S-box. To demonstrate the effect of the S-box on the probability of
the boomerang distinguisher, we replace CRAFT’s S-box with different S-boxes and then
compute the probability under all possible values for the active cells in the input and
output differences (∆,∇). The results are summarized in Table 4.

Table 4: Probability of the 7-round distinguisher with different S-boxes

S-box DDT BCT DBCT Hard Probability
uni. uni. uni. Max Min Average

CRAFT [BLMR19] 4 16 128 % 2−10.39 2−14.97 2−13.37

QARMA [Ava17] 4 10 48 % 2−13.99 2−15.18 2−14.65

PRESENT [BKL+07] 4 16 40 ! 2−15.47 2−15.63 2−15.57

LBlock-s0 [WZ11] 4 16 40 ! 2−15.51 2−15.62 2−15.56

LBlock-s1 [WZ11] 4 16 40 ! 2−15.41 2−15.63 2−15.56

MIBS [ISSK09] 4 6 32 ! 2−15.59 2−15.62 2−15.60

TWNIE [SMMK12] 4 6 28 ! 2−15.58 2−15.62 2−15.60

Table 4 compares the uniformity of DDT, BCT and DBCT for different S-boxes, lists whether
these S-boxes are hard or not, and gives the probabilities for the 7-round distinguisher
under different S-boxes. From Table 4, We have the following observations.

• Even though CRAFT’s S-box and PRESENT’s S-box share the same DDT and BCT
uniformity, the probability of the 7-round distinguisher differs for these two S-boxes.
A possible reason for this is that they have different DBCT uniformity.

• Although QARMA’s S-box has better BCT uniformity than PRESENT’s S-box, it results
in a higher probability. We note QARMA’s S-box has a higher DBCT uniformity.

• PRESENT’s S-box, LBlock-s0 and LBlock-s1 share the same DDT, BCT, and DBCT
uniformity; they also lead to almost the same probability for the 7-round distinguisher.
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• The S-boxes of MIBS and TWNIE have small BCT and small DBCT uniformity; at the
same time, the probabilities of the 7-round distinguisher are low and stable for
different input and output differences (∆,∇).

These observations indicate that, apart from the uniformity of BCT and DDT, the
uniformity of DBCT is a new measure criterion to evaluate the performance of S-box for
resisting boomerang attacks. Therefore, the DBCT uniformity should be used together with
the BCT uniformity to have a better evaluation of the S-box against the boomerang attack.

As the DBCT is equivalent to the S-box switch in most cases, i.e., a quartet is formed
by two pairs of the same value, it is interesting to see what happens when we force the
ciphertexts to form such quartets. It is expected that the probability will increase. An
experiment on the 7-round boomerang distinguisher of CRAFT confirm this, as shown in
Appendix C.1.

4.2 Flawed Boomerang Distinguisher of TweAES and Deoxys-BC

For the S-box of AES, the DBCT with complexity linear layer has too many zero values. It
will easily invalidate boomerang characteristics. Inspired by this, we focus on TweAES and
Deoxys-BC and revisit some boomerang distinguishers, finding them flawed.

4.2.1 Recompute the Probability of the Boomerang Distinguisher in [CDJ+20] with
DBCT

The tweakable block cipher TweAES is one of the underlying primitives of Authenticated
Encryption with Associated Data (AEAD) scheme ESTATE [CDJ+20], which is a second-
round candidate of the NIST Lightweight Cryptography Standardization project. For more
details of the cipher, please refer to Appendix B.2 and [CDJ+20].

In [CDJ+20], Chakraborti et al. introduced a 7-round boomerang distinguisher with
probability 2−123, as illustrated in Fig 7. It can be seen that only the third, the fourth and
the last rounds are critical to the probability of the distinguisher. Since the differential
propagation of the last round is simple, we mainly detail the first six rounds and Table
11 gives their setting. We recompute the probability of the two middle rounds and find
it 0 rather than 2−75 as reported in [CDJ+20]. This means the probability of the full
distinguisher is not 2−75 multiplied by the probability of the last round 2−48.

To compute the probability PEm
of the two middle rounds, we divide the state into

four columns and calculate them separately. So

PEm = P0 · P1 · P2 · P3.

Without loss of generality, we compute the probability P1 of the second column in detail.
As shown in Fig. 7, [∗, ∗, α′1, α′2]T = MC× [α, 0, 0, 0]T and [β, ∗, ∗, ∗]T = MC−1× [0, 0, β′1, β′2]T,

P1 = 1
28·3 ·

∑
α,β′1,β

′
2 6=0

UBCT(1, α, β) · LBCT(α′1, β′1, 4) · LBCT(α′2, β′2, 6).

It is easy to compute P1 by trying all possible α, β′1, and β′2. We then obtain P1 = 0.
Hence, the differential propagation for the two middle rounds is impossible, i.e.,

PEm(∆1 � ∇7) = P0 · P1 · P2 · P3 = 0.

Our computation shows that the probability of the 7-round boomerang distinguisher
proposed in [CDJ+20] is not correct.
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Figure 7: The 7-round boomerang distinguisher of TweAES

4.2.2 Recompute the Probability of the Boomerang Distinguishers of Deoxys-BC in
[BL22] with DBCT

Deoxys-BC is an AES-based tweakable block cipher [JNPS16], based on the tweakey frame-
work [JNP14]. For more details of the cipher, please refer to Appendix B.3 and [JNP14].

In [BL22], Bariant et al. proposed some boomerang attacks on Deoxys-BC, as illustrated
in Fig. 14 and Fig. 15 which are taken from [BL22]. Fig. 14 is an 8-round boomerang
attack on Deoxys-BC in the model RTK1 and Fig. 15 is a 10-round boomerang attack on
Deoxys-BC in the model RTK2, where RTK1 denotes single-key attacks on any variant
with at least 128 bits of tweak and RTK2 denotes single-key attacks on Deoxys-BC-384
with 256 bits of tweak, or related-key attacks on Deoxys-BC-256. For more details of the
attack, please refer to [BL22]. We recompute the probability for the middle part of the
cipher in the two boomerang attacks and find it 0 rather than high probabilities.

8-round boomerang attack in the model RTK1. We compute the probability for the
differential transition over the red boxes in the three middle rounds, as illustrated in Fig. 8.
The detailed formula for computing the probability is

P = 1
23·8 ·

∑
α1,β′1,α2,β′2

UBCT(01, α1, β1) · EBCT(α′1, β′1, α2, β2) · LBCT(α′2, β′2, c8),

where [∗, α′1, ∗, ∗] = MC × [0, α1, 0, 0], [∗, α′2, ∗, ∗] = MC × [0, α2, 0, 0], [∗, β2, ∗, ∗] = MC−1 ×
[0, β′2, 0, 0] and [∗, β1, ∗, ∗] = MC−1 × [0, β′1, 0, 0]. We verify that no matter what β2 is, the
differential transition from 01 to β2 over two S-box layers is incompatible as ∀β2 ∈ F8

2 \ 0

P′ = 1
22·8 ·

∑
α1,β′1

UBCT(01, α1, β1) · LBCT(α′1, β′1, β2) = 0.
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So the probability of P must be 0, which means the characteristic over the three middle
rounds is incompatible.
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Figure 8: The three middle rounds of the 8-round boomerang attack in the model RTK1

10-round boomerang attack in the model RTK2. We compute the probability for the
differential transition over the red boxes in the two middle rounds, as depicted in Fig. 9.
For ∀α ∈ F8

2 \ 0, the probability is
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Figure 9: The two middle rounds of the 10-round boomerang attack in the model RTK2

P = 1
22·8 ·

∑
α1,β′1

UBCT(α, α1, β1) · LBCT(α′1, β′1, 7f) = 0,

where [∗, ∗, α′1, ∗] = MC × [0, 0, 0, α1] and [∗, ∗, ∗, β1] = MC−1 × [0, 0, β′1, 0]. By trying all
possible α, α1 and β′1, we get a zero probability. Therefore, the middle part of the 10-round
attack is also incompatible.

4.2.3 Discussion

Even though the basic DBCT cannot be directly applied to the boomerang distinguisher
of TweAES and Deoxys-BC, employing the extensions, we do confirm that the interactions
between two S-box layers matter and should be treated carefully. The source codes for
computing the probabilities in subsection 4.2 are available via the link https://www.
jianguoyun.com/p/DTV20E4QiPTMChiVlNQEIAA.

https://www.jianguoyun.com/p/DTV20E4QiPTMChiVlNQEIAA
https://www.jianguoyun.com/p/DTV20E4QiPTMChiVlNQEIAA
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5 MILP Model to Search for Boomerangs with Cluster
Probability

It is shown in [SQH19] the probability of a boomerang disginuisher of SKINNY is significantly
increased from 2−103.84 to 2−77.83 when the clustering effect is considered. Later, better
boomerang distinguishers of SKINNY were proposed by exploiting the clustering effect in
[DDV20, HBS21]. Generally, the search for boomerang distinguishers proceeds in two
steps. The first one is to search for good truncated boomerang characteristics with the
least active S-boxes, and the second one is to search for the best instantiations. Although
the cluster effect is very significant for word-oriented block ciphers, it is hard to be well
considered in the above two steps. In fact, in the previous works [DDV20, HBS21] multiple
boomerang characteristics are counted only when a good boomerang characteristic is given.
In other words, multiple characteristics are searched under the fixed input and the output
difference of a given boomerang characteristic. Due to the limitation of computing and
storage capacity, there is no guarantee that the search will lead to boomerang clusters
with sufficiently good probability.

To partially overcome the drawbacks, we propose a new strategy to search for boomerang
distinguishers. Note that, for a boomerang distinguisher, only the input difference of
the upper characteristic and the output difference of the lower characteristics are fixed
while the difference of the intermediate state can vary. This motivates us to borrow the
methods for calculating the probability of truncated differentials and provide a formula for
estimating the probability of a boomerang cluster. In particular, Property 1 is used to
simplify the computation of the probability of the middle part Em. In this section, this
formula is presented by taking a boomerang distinguisher of the block cipher CRAFT as an
example. With this formula, we then propose a new MILP model to search for truncated
characteristics with good cluster probability as the objective. The efficiency of the formula
and the new model is demonstrated by its application to CRAFT, where better 9-round and
10-round boomerang distinguishers are obtained.

5.1 Formula for the Probability of Boomerang Clusters
The existing strategy for searching for good boomerang distinguishers is to search for a
single boomerang characteristic with minimal active S-boxes as the objective at first. Our
basic idea is that if we could replace the objective function with the cluster probability, it
is more likely to obtain good boomerang clusters.

In the following, we formulate the boomerang cluster probability for SPN ciphers via an
example of CRAFT under a common assumption used in truncated differential cryptanalysis
and then show how to model the probability of clusters with MILP. Note that we consider
SPN ciphers with n parallel S-boxes of s bits each in the nonlinear layer.

5.1.1 The previous formula for the probability of boomerang clusters

Suppose we have a boomerang distinguisher of E = E1 ◦Em ◦E0. Following the work of
Song et al. from [SQH19] and Delaune from [DDV20], the probability of the distinguisher
is

PE(∆� ∇) =
∑

∆1,∇1

PE0(∆� ∆1) · PEm(∆1 � ∇1) · PE1(∇1 � ∇).

We assume Em contains dependency, i.e., the differential probability of its active S-boxes
cannot be evaluated only by DDT. We denote two DDTs by UDDT2 and LDDT2, where L and
U denote whether the two DDTs belong to lower path or upper path, and the probability
transition formulas are PUDDT2(α1, α2) = (PDDT(α1, α2))2 and PLDDT2(β1, β2) = (PDDT(β1, β2))2

where (α1, α2) is the input difference and output difference of the S-box in upper path
and (β1, β2) is the input difference and output difference of the S-box in lower path.
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Figure 10: Example: a boomerang distinguisher for 13 rounds of CRAFT

Definition 9 (Upper Boundary/Lower Boundary of Em [SQH19]). The upper boundary
(Bu) of Em is delineated by the round, which only has UDDT2. The lower boundary (Bl)
of Em is delineated by the round which only has LDDT2.

Taking CRAFT as an example, we give the previous formula for the probability of
boomerang clusters.

Example 4. Fig. 10 shows a 13-round boomerang characteristic from [HBS21], which is
obtained by extending the 7-round boomerang distinguisher as in Fig. 6, by three rounds on
both sides. The input difference of the upper characteristics is ∆ = [0, 0, a, a, 0, 0, 0, a, 0, a,
a, 0, 0, 0, 0, a] and the output difference of the lower characteristics is ∇ = [0, a, 0, 0, 0, 0, 0, 0,
0, a, a, 0, 0, 0, 0, a]. The symbols follow those in the original work, details can be referred
to [HBS21].

• E0/E1: There are 3 rounds for E0 and E1, respectively. The probability is

PE0(∆� ∆1) = (PE0(∆→ ∆1))2 = p2,

PE1(∇1 � ∇) = (PE1(∇1 ← ∇))2 = q2,

where ∆1 = [0, 0, 0, 0, 0, A5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],∇1 = [0, 0, 0, 0, 0, h5, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0]. Given A5 6= 0, h5 6= 0, the probability p and q can be computed as
follows

p =
∑
x12,y9

(PDDT(a, x12))3 · PDDT(x12, y9) · PDDT(y9, A5) · Pr(a 2 DDT−→ y9),

q =
∑
z9,w12

PDDT(h5, z9) · PDDT(z9, w12) · (PDDT(w12, a))3 · Pr(z9
2 DDT←− a).

where x12, y9, z9, w12 are intermediate differences.

• Em: There are 7 rounds, consisting of 4 DBCTs, the probability is PEm(A5 � h5) = r,

r =
∑

B9,b9,c5,C12,c12,d1,
E′1,F

′
5,F12,f12,G9,g9

PUBCT(A5, B9, b9) · PLBCT(B9, b9, c5) · PUBCT(B9, C12, c12) · PLBCT(C12, c12, d1)

· Pr(d1
2 DDT←− f12) · Pr(c5

3 DDT←− f12) · Pr(C12
2 DDT−→ E′1) · Pr(C12

3 DDT−→ F ′5)· (2)
PUBCT(E′1, F12, f12) · PLBCT(F12, f12, g9) · PUBCT(F ′5, G9, g9) · PLBCT(G9, g9, h5).
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Considering the clusters, the final formula of the probability for E is

Pr =
∑

∆1,∇1 6=0

p2 · q2 · r.

5.1.2 Our new formula for the probability of boomerang clusters

Next, taking CRAFT as an example, we propose a high-level procedure to generate a formula
that approximates the probability of its best boomerang cluster without focusing on a
single characteristic.

In [MSAK99], Moriai et al. proposed a method to calculate the truncated differential
probability for word-oriented SPN block ciphers. Typically, for two s-bit cells a and b
which are independently uniformly distributed on F2s \ 0, the probability distribution of
a⊕ b is: 

1
2s − 1 a⊕ b = 0,

1− 1
2s − 1 a⊕ b 6= 0.

In the boomerang clusters, the intermediate differences can take many possible values
as in the truncated differentials, so the above probability distribution also applies here. For
E0 (resp. E1), only UDDT2 (resp. LDDT2) is used for computing the probability. Actually,
the probability for E0 (resp. E1) is equivalent to the differential probability given fixed
input (resp. output) difference. Thus we could directly compute the probability using the
method common to the one used in the truncated differential analysis.

1. Inspired by the idea of truncated differential, we transform the computation of p and
q into counting the equality conditions of XOR operations by p̂ and q̂. As shown
on the left of Fig. 11, there are 3 cells need to be 0 and the last cell need to be the
fixed value, thus the probability is p̂ = 1

154 = 2−15.63 on average if each difference
distributed uniformly on F2s \ 0. Given a specific ∆ as above, the probability p̂
can be further adjusted to p̂ = 1

22·152 = 2−11.81 on average by taking into account
DDT(0xa, ∗) = 4. Similarly, the probability q̂ is 2−11.81 on average, for ∀h5 6= 0.

2. Computing r is complex. For example, in Equation 2, there are 12 variables to
be traversed, which is very computationally intensive. We try to convert r to the
case containing only DDT, further simplifying the evaluation by the idea of truncated
differentials. We obtain its lower bound by simplifying the computation using
Property 1,

r̂ =
∑

B9,C12,f12,g9

PDDT(A5, B9) · Pr(B9
4 DDT←− f12) · PDDT(B9, C12) · Pr(C12

3 DDT←− f12)·

Pr(C12
3 DDT−→ f12) · PDDT(f12, g9) · Pr(C12

4 DDT−→ g9) · PDDT(g9, h5)

where B9 = b9, C12 = c12. Because of the nature of DBCT, the formula is simplified
to the model only with DDT, and the probability can be calculated by using the
technique of truncated differential evaluation. As shown in the middle of Fig. 11,
there are 2 cell-wise conditions consumed in f12, 1 cell condition consumed in g9
and 1 cell condition consumed in h5. Essentially because there are 4 UBCT · LBCTs, 4
connections are established and 4 cells condition consumed are created. Therefore,
the probability of Em is r̂ = 1

154 = 2−15.63 on average for any A5, h5 6= 0 ∈ F24 .

3. With the above techniques, the calculation of the probability of E will become very
simple:

P̂r =
∑

∆1,∇1 6=0

p̂2 · q̂2 · r̂ = 152 · 2−11.81∗2 · 2−11.81∗2 · 2−15.63 = 2−55.06.
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Figure 11: The difference propagation of E0(left), the difference propagation of Em(middle)
and the difference propagation of E1(right)

It can be inferred from DBCT and the borrowed technique from truncated differential
analysis, that the stronger the S-box is, the better our computation approximates. We
then replace CRAFT’s S-box with other S-boxes and then compute the probability under all
possible input and output differences (∆,∇). The results are summarized in Table 5. It
can be seen that the probability by our formula is closer to the actual optimal probability
when a stronger S-box is used.

Table 5: The probability of 13-round boomerang distinguishers for different S-boxes

S-box The maximum probability by formula Pr Our result by formula P̂r
CRAFT 2−45.59 2−55.06

QARMA 2−52.79 2−58.39

PRESENT 2−52.99 2−55.06

TWNIE 2−58.49 2−59.84

MIBS 2−58.44 2−59.84

Remark 1. Note that our formula is valid only if the characteristics are the same in both
faces at Em of the boomerang. Actually, the two faces of the boomerang could have
completely different differential characteristics. Because we study the property of DBCT for
the same in both faces, we do not take this into account.

Now we will give the general formula for estimating the probability of the best
boomerang cluster under certain active patterns.

Probability in E0/E1. Suppose E0 covers the first r0 rounds, E1 consists of the last r1
rounds. For ∀∆,∆1,∇1,∇ 6= 0, the probability are PE0(∆ � ∆1) = p̂2 and PE1(∇1 �
∇) = q̂2 on average, i.e.,

p̂ = 2−s·c0 · 1
|∆1|

,

q̂ = 2−s·c1 · 1
|∇1|

,

where c0 and c1 are the number of cells which need to be zero from uniformity and s is
the cell size. For the sake of simplicity, we substitute 2−s for 1

2s−1 .

Probability in Em. Suppose Em is composed of the middle rm rounds. For ∀∆1,∇1 6= 0
the probability is PEm(∆1 � ∇1) = r̂ on average and

r̂ = 2−s·cm ,

where cm is the condition consumed in Em. Usually, the characteristic of Em is complex
and cm could not be determined easily. We make simplifications using Property 1 and
then directly evaluate the probability by counting the number of conditions consumed. In
the following, we discuss the computation of cm in different situations.
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• → : As with E0 and E1, the difference of Em is not constrained to propagate
with probability 1. When there is one cell needed to be zero (White) from uniformity
(Green) in the upper or lower path, the probability has to be multiplied by 2−s.
Equivalently, it consumes 1 condition.

• UDDT2 and LDDT2: UDDT2 is independent of the lower path. When we process an S-box
where UDDT2 applies, the probability has to be multiplied by

∑
β∈F2s

PDDT(α, β)2 ≥ 2−s

for ∀α ∈ F2s . Equally, there is 1 cell condition consumption for one UDDT2. Similarly,
LDDT2 is independent of the upper path. When there is a LDDT2, it consumes 1
condition.

• UBCT · EBCTm · LBCT: While EBCT may exist or not, UBCT and LBCT must appear in
pairs (otherwise, it will degenerate into BCT). Due to Property 1 and Definition 8,
for UBCT · EBCTm · LBCT,m ≥ 0 the effect is almost an S-box switch. Thus to satisfy
an S-box switch, the probability is 2−s on average. It is the same as the truncated
differential processing technique and equivalent to 1 condition consumption for one
pair UBCT and LBCT.

• BCT: Similar to UBCT, when we add one BCT, building a BCT table from α to β, the
probability has to be multiplied by BCT(α, β) > DDT(α, β) > 2−s. Thus, it consumes
1 condition.

Thus, the condition consumed in Em is the sum of the number of cells which need to be
zero from uniformity, the number of UDDT2 and LDDT2, the number of UBCT · EBCTm · LBCT
and the number of BCT.

Probability in E. The probability of a boomerang distinguisher of E is:

PE(∆� ∇) =
∑

∆1,∇1 6=0

p̂2 · q̂2 · r̂ = 2−2s·c0−2s·c1−s·cm−s·c′0−s·c
′
1 , (3)

where c′0 is the number of UDDT2 in the upper boundary round and c′1 is the number of
LDDT2 in the lower boundary round.
Remark 2. In the above formula, all tables consume the same number of conditions.
However, given an exact S-box, the consumption of condition for different tables may differ
from 1 and a proper coefficient can be used to have a more accurate estimation.

5.2 MILP Mode to Search for Boomerangs with Good Cluster Proba-
bilities

In this subsection, we give our MILP model for searching boomerangs, which takes the
number of conditions consumed as the objective function. This model can be used alone to
obtain good truncated boomerangs. Particularly, good boomerang clusters can be found if
we instantiate the input and output differences for the obtained truncated ones.

Notions. We consider E, a classical SPN cipher with the round function composed of
cell-level operations. Let E be a cipher with Nr rounds and n cells state.

1. We use two bit variables to encode whether the difference of a cell will be free or
controlled and whether its difference value will be known or unknown. A free
difference can take any (nonzero) value uniformly while a controlled difference can
not. Notably, a White cell is controlled, a Green cell is free and a Yellow cell is
indeterminate. More specifically,
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(x, y) =


(0, 0) : the difference is 0 and controlled;
(0, 1) : the difference is nonzero and controlled;
(1, 0) : the difference is nonzero and free;
(1, 1) : the difference is unknown and free.

2. For different tables, the definitions are:
(0,0)→ (0,0)→
(0,1)← (0,1)←

LDDT

(0,1)→ (0,1)→
(0,0)← (0,0)←

UDDT

(0,1)→ (1,0)→
(1,0)← (0,1)←

BCT

(0,1)→ (0,1)→
(1,0)← (0,1)←

UBCT

(0,1)→ (0,1)→
(0,1)← (0,1)←

EBCT

(0,1)→ (1,0)→
(0,1)← (0,1)←

LBCT

(0,1)→ (0,1)→
(1,1)← (1,1)←

UDDT2

(1,1)→ (1,1)→
(0,1)← (0,1)←

LDDT2

Modeling of the Attribute Propagation through SubBytes(S-RULE). The SubBytes
operation does not change the activeness of a cell, but would change its difference from
free to controlled, i.e.,

(0, 0) S→ (0, 0), (0, 1) S→ (0, 1)/(1, 0), (1, 0) S→ (1, 0), (1, 1) S→ (1, 1).

For the modeling point set, we use the convex hull computation method [SHW+14] to
generate the set of inequalities.

Modeling of the Attribute Propagation through XOR Operation with the Condition
Consuming(XOR-RULE).

- a White cell XOR-ed with a cell of any attribute results in the cell of the same attribute
, i.e., ⊕ → , ⊕ → .

- a Green cell XOR-ed with a cell of any attribute results in a Green cell, i.e., ⊕ → .

- a couple of Yellow cells results in a White cell with 1-cell condition consuming or a
Green cell, i.e., ⊕ 1−cell−→ , ⊕ → .

Table 6: Attribute propagation through XOR.

⊕ → / ⊕ → ⊕ →
(0, 1)⊕ (0, 1)→ (0, 0) (0, 0)⊕ (0, 0)→ (0, 0) (1, 1)⊕ (0, 0)→ (1, 1)
(0, 1)⊕ (0, 1)→ (1, 1) (0, 0)⊕ (0, 1)→ (0, 1) (1, 1)⊕ (0, 1)→ (1, 1)
(0, 1)⊕ (1, 0)→ (1, 1) (0, 0)⊕ (1, 0)→ (1, 0) (1, 1)⊕ (1, 0)→ (1, 1)
(1, 0)⊕ (0, 1)→ (1, 1) (0, 0)⊕ (1, 1)→ (1, 1) (1, 1)⊕ (1, 1)→ (1, 1)
(1, 0)⊕ (1, 0)→ (1, 1)
⊕ → ⊕ →

(0, 1)⊕ (0, 0)→ (0, 1) (0, 0)⊕ (1, 1)→ (1, 1)
(1, 0)⊕ (0, 0)→ (1, 0) (0, 1)⊕ (1, 1)→ (1, 1)
(1, 1)⊕ (0, 0)→ (1, 1) (1, 0)⊕ (1, 1)→ (1, 1)

A free difference can take any (nonzero) value uniformly while a controlled difference
can not. (0, 1)⊕ (0, 1) is (1, 1) and not (0, 1) because in boomerang attacks, the difference
value after XOR is related to at least two input operands and is closer to the random case, so
it is free. So we use (0, 1)⊕ (0, 1) = (0, 0) with one cell condition, or (0, 1)⊕ (0, 1) = (1, 1)
to denote the XOR case.
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Modeling of the Tables. To synthesize the upper characteristic and the lower character-
istic, we use different 8 variables to model the different tables for one S-box. According to
the definitions of tables, the modeling point set is given in Table 7:

Table 7: Constraints of tables

(x0, x1, x2, x3, x4, x5, x6, x7) Table (x0, x1, x2, x3, x4, x5, x6, x7) Table
(0, 0, 0, 0, 0, 1, 0, 1) LDDT = 1 (0, 1, 0, 1, 0, 1, 0, 1) EBCT = 1
(0, 1, 0, 1, 0, 0, 0, 0) UDDT = 1 (0, 1, 1, 0, 0, 1, 0, 1) LDDT = 1
(0, 1, 1, 0, 1, 0, 0, 1) BCT = 1 (0, 1, 0, 1, 1, 1, 1, 1) UDDT2 = 1
(0, 1, 0, 1, 1, 0, 0, 1) UBCT = 1 (1, 1, 1, 1, 0, 1, 0, 1) LDDT2 = 1

where UDDT + LDDT + BCT + UBCT + EBCT + LBCT + UDDT2 + LDDT2 <= 1, x0, x1 are the input
variables for S-box in upper path, x2, x3 are the output variables for S-box in upper path,
x4, x5 are the input variables for S-box in lower path and x6, x7 are the output variables
for S-box in lower path. For example, the upper path of UBCT is (0,1)→ (0,1)→ and the lower
path of UBCT is (1,0)← (0,1)← , so we use (0, 1, 0, 1, 1, 0, 0, 1) to indicate UBCT = 1.

Modeling of the Upper Boundary and Lower Boundary. The target cipher E is segmented
into three parts automatically, such that the overall probability is maximized. We use two
sets of variables {tagu[rx], 0 ≤ rx ≤ Nr − 1} and {tagl[rx], 0 ≤ rx ≤ Nr − 1} to identify
the upper boundary and the lower boundary of the middle part. Each tagu[rx] or tagl[rx]
needs to satisfy the condition in Table 8. In the upper path, when tagu[i] = 1, tagu[i+ 1]
must be 1. When tagu[i] = 0, the table type of each cell needs to be considered. If there is
a cell with the table type in Table 8, tagu[i+ 1] = 1. Otherwise, tagu[i+ 1] = 0. The lower
path is a similar case. For instance, in Example 2, because the first three rounds have
only UDDT2, tagu[0] = tagu[1] = tagu[2] = 0. And since the fourth round has one UBCT,
tagu[3] = 1 and tagu[i] = 1, i > 3. Consequently, the upper boundary of Em is marked
by the layer of S-boxes where tagu[rx] turns to 1 in the forward direction and the lower
boundary is the layer of S-boxes where tagl[rx] turns to 1 in the backward direction. Thus
S-boxes with tagu[rx] = tagl[rx] = 1 all belong to Em.

Table 8: Constraints of the upper/lower boundary: Sum[rx] =
∑

0≤i≤n−1(UDDT[rx][i] +
LDDT[rx][i] + BCT[rx][i] + UBCT[rx][i] + EBCT[rx][i] + LBCT[rx][i]),∀0 ≤ rx ≤ Nr − 1.

tagu[rx − 1]/tagl[rx + 1] + Sum[rx] tagu[rx]/tagl[rx]
0 0
> 0 1

Remark 3. For the upper characteristic, the S-RULE, the upper boundary tagu, and
XOR-RULE are forward propagation from i-th round to i + 1-th round. For the lower
characteristic, in turn, the S-RULE, the lower boundary tagl, and XOR-RULE are reverse
propagation from i+ 1-th round to i-th round.

Objective Function. According to equation 3, the objective to minimize is the number of
conditions consuming for E:

obj = 2c0 + 2c1 + c′0 + c′1 + cm.

We use the boundary tags tagu and tagl to automatically segment E into E0, Em and E1,
and use the variable cu and cl to identify the condition consumed in XOR operation. Then
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the objective function is unified

obj =
∑

0≤i≤Nr−1
0≤j≤n−1

{(2− tagu[i]) · cu[i][j] + (2− tagl[i]) · cl[i][j]+

(tagu[i+ 1]− tagu[i]) · UDDT2[i][j] + (tagl[i− 1]− tagl[i]) · LDDT2[i][j]+
tagu[i] · UDDT2[i][j] + tagl[i] · LDDT2[i][j] + UBCT[i][j] + BCT[i][j]}.

to i-th round. Let tagu[−1] = 0, tagu[Nr] = 1 and tagl[−1] = 1, tagl[Nr] = 0. A detailed
proof of the equivalence of the two formulas above is given in Appendix A.2.

5.3 Discussion
Similar to [DDV20], our model has the advantage of handling dependencies in the middle
rounds automatically without specifying Em in advance. Besides, our model has two
remarkable features as follows.

1. It incorporates Property 1 and Proposition 1 of DBCT so as to evaluate the probability
of Em more accurately. Specifically, UBCT · EBCTt · LBCT which involves t+ 2 active
S-boxes actually consumes only about one condition, i.e., contributes a probability
about 2−s. Therefore, our model reflects the probability of Em more accurately
than just counting the number of active S-boxes of Em as has been done in previous
works [DDV20, HBS21].

2. The clustering effect in both E0 and E1 are also well considered. We use variables
tagu/tagl to mark the boundaries of Em so that the technique borrowed from the
truncated differential analysis can be applied to take into account the clustering
effect in E0 and E1.

As a result, our model is more likely to offer a good boomerang cluster when the input
and output differences are instantiated, which will be exemplified in the next subsection.

The basic idea of modelling clusters’ probability, which transforms calculating the
probability to simply recording the condition consumed, can be generalized to other
attacks for word-oriented block ciphers, such as the boomeyong attack [RSP21], the
mixture differential cryptanalysis [Gra18], and the retracing boomerang attack [DKRS20],
which embedded yoyo within a boomerang.

5.4 Boomerang Clusters by Applying the New Modeling
For a specific block cipher, the first step is to use our model to get a good boomerang cluster
with truncated input and output differences together with the corresponding approximate
probability. The second step is to instantiate the input and output differences and obtain
the exact probability by experiments or computations if possible.

We apply the new model to CRAFT and obtain boomerang distinguishers of 6-14
rounds, including new 9-round and a new 10-round boomerang distinguishers with higher
probability than the ones presented in [HBS21]. Fig. 12 depicts the 9-round and the 10-
round boomerang distinguishers, where the 10-round boomerang distinguisher is obtained
by appending one round to the 9-round boomerang distinguisher. They have the same
6-round Em, which is divided automatically by the MILP model. The input and output
differences in the 9-round distinguisher are chosen as follows:

∆ = 0x000a00aa0000000a,∇ = 0x0000000000a00000.

The estimated probability by our method is:

PE(∆
9r
� ∇) =

∑
∆1,∇1

PE0(∆
2r
� ∆1) · PEm(∆1

6r
� ∇1) · PE1(∇1

1r
� ∇) = 2−14.65.
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Figure 12: A Boomerang Distinguisher for 9/10 rounds of CRAFT

The experimental probability is about 2−12.95 which is higher than the probability 2−14.50

of the 9-round boomerang distinguisher in [HBS21].
The input and output differences of the 10-round boomerang distinguisher are as

follows:
∆ = 0x000a00aa0000000a,∇ = 0x0000a00000000a00.

And the estimated probability by our method is:

PE(∆
10r
� ∇) =

∑
∆1,∇1

PE0(∆
2r
� ∆1) · PEm

(∆1
6r
� ∇1) · PE1(∇1

2r
� O) = 2−19.60.

The experimental probability is approximately 2−16.40 which is higher than the probability
2−18.17 of the 10-round boomerang distinguisher in [HBS21]. Our sourse code is pro-
vided in https://drive.google.com/file/d/1DIExHZpL0rbv9h1Ma0JrCXC0b3QpQMqR/
view?usp=sharing.

6 Conclusion
In this paper, we observe an exciting property of DBCT that the ladder switch and S-box
switch constitute most cases for two continuous S-box and all cases for certain S-boxes in
boomerang attacks. The meaning of this observation is at least twofold. From the point
of view of cryptanalysis, when there is strong dependency between the two differential
trails (this is the case for many lightweight ciphers, such as CRAFT), DBCT helps to capture
dependency easily, and when the S-box is hard, the treatment of dependency can be

https://drive.google.com/file/d/1DIExHZpL0rbv9h1Ma0JrCXC0b3QpQMqR/view?usp=sharing
https://drive.google.com/file/d/1DIExHZpL0rbv9h1Ma0JrCXC0b3QpQMqR/view?usp=sharing
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simplified further, while this is not unveiled in previous works. For hard S-boxes with a
complex linear layer, the property of the extension of DBCT also shows that the interactions
between two S-box layers matter and should be treated carefully to avoid proposing flawed
boomerang distinguishers. From the point of view of designers, for a cipher using a
lightweight linear layer, one needs to pay more attention to the DBCT uniformity when
choosing the S-box.
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A Proofs
A.1 Proof of Proposition 2
Proof. If S is hard, there is only the S-box switch in two continuous S-boxes for α1, β3 6= 0,
i.e.,

DBCT(α1, β3) =
∑
α2,β2

UBCT(α1, α2, β2) · LBCT(α2, β2, β3)

=
∑

β1,α2,β2,α3

EBCT(α1, β1, α2, β2) · EBCT(α2, β2, α3, β3)

=
∑

β1,α2=β2,α3

EBCT(α1, β1, α2, β2) · EBCT(α2, β2, α3, β3)

=
∑
α2=β2

EBCT(α1, α1, α2, α2) · EBCT(β2, β2, β3, β3)

=
∑
α2

DDT(α1, α2) · DDT(α2, β3).

In other words, the product is non-zero only with α2 = β2. Thus for three continuous
S-boxes, a necessary condition for the product to be nonzero is α2 = β2, which further
leads to α3 = β3. Consequently,

3-BCT(α, β) =
∑

α2,β2,α3,β3

UBCT(α, α2, β2) · EBCT(α2, β2, α3, β3) · LBCT(α3, β3, β)

=
∑
α3,β3

(
∑
α2,β2

UBCT(α, α2, β2) · EBCT(α2, β2, α3, β3)) · LBCT(α3, β3, β)

=
∑
α3,β3

(
∑

β′,α2,β2

EBCT(α, β′, α2, β2) · EBCT(α2, β2, α3, β3)) · LBCT(α3, β3, β)

=
∑
α3,β3

(
∑

β′,α2=β2

EBCT(α, β′, α2, β2) · EBCT(α2, β2, α3, β3)) · LBCT(α3, β3, β)
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Due to α2 = β2, we get α = β′ and α3 = β3. Thus

3-BCT(α, β) =
∑
α3=β3

(
∑
α2=β2

EBCT(α, α, α2, β2) · EBCT(α2, β2, α3, β3)) · LBCT(α3, β3, β)

=
∑
α2,α3

EBCT(α, α, α2, α2) · EBCT(α2, α2, α3, α3) · EBCT(α3, α3, β, β)

=
∑
α2,α3

DDT(α, α2) · DDT(α2, α3) · DDT(α3, β).

Similarly, it can go straight to the case with more continuous S-boxes, i.e.,

t-BCT(α, β) =
∑

α2,...,αt

DDT(α, α2) · DDT(α2, α3) · ... · DDT(αt, β).

A.2 Proof of objective function
Proof. Let obj = 1© + 2© + 3©. Due to the facts tagu[Bu] = 0, tagu[Bu + 1] = 1 and
tagl[Bl] = 0, tagl[Bl − 1] = 1,

1© =
∑

1≤i≤Nr
0≤j≤n−1

(2− tagu[i]) · cu[i][j] + (2− tagl[i]) · cl[i][j])

=
∑

1≤i≤r0
0≤j≤n−1

2 · cu[i][j] +
∑

r−r0≤i≤Nr
0≤j≤n−1

2 · cl[i][j] +
∑

r0+1≤i≤r0+rm
0≤j≤n−1

cu[i][j] + cl[i][j]

= 2c0 + 2c1 +X.

2© =
∑

0≤i≤Nr−1
0≤j≤n−1

(tagu[i+ 1]− tagu[i]) · UDDT2[i][j] + (tagl[i− 1]− tagl[i]) · LDDT2[i][j]

=
∑

0≤j≤n−1
UDDT2[Bu][j] + LDDT2[Bl][j])

= c′0 + c′1.

3© =
∑

1≤i≤Nr
0≤j≤n−1

tagu[i] · UDDT2[i][j] + tagl[i] · LDDT2[i][j] + UBCT[i][j] + BCT[i][j]

=
∑

r0+1≤i≤r0+rm
0≤j≤n−1

UDDT2[i][j] + LDDT2[i][j] + UBCT[i][j] + BCT[i][j]

= cm −X.

Thus obj = 2c0 + 2c1 + c′0 + c′1 + cm.

B Specification of CRAFT, TweAES, and Deoxys-BC

B.1 Specification of CRAFT
CRAFT is a lightweight tweakable block cipher which introduced by Beierle et al. [BLMR19]
at FSE 2019. CRAFT supports 64-bit message, 128-bit key and 64-bit tweak, and its round
function is composed of involutory operations. The round function is shown in Fig. 13 and
its operations are listed as follows:
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• MixColumns(MC): The MC layer is the multiplication of internal state by the following
binary matrix:

MC =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 .

• AddRoundConstants(ARC): The state XOR-ed constant in cells 4 and 5.

• AddTweaKey(ATK): A 64-bit round tweakey is XOR-ed with state.

• PermuteNibbles(PN): The PN is an involutory permutation over nibbles of state:

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0].

• Sbox(SB): CRAFT uses a 4-bit involutory S-box, the detail is given in Table 9.

Table 9: The S-box used in CRAFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

MC PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

Figure 13: A round function of CRAFT

B.2 Specification of TweAES

The tweakable block cipher TweAES is one of the underlying primitives of Authenticated
Encryption with Associated Data (AEAD) scheme ESTATE [CDJ+20], which is a second-
round candidate of the NIST Lightweight Cryptography Standardization project. It is
tweaked from AES-128 [DR02] and takes in as input a 4-bit tweak, a 128-bit key and a
128-bit block. Its round function has five operations, which are identical to that of AES
except AddTweak. Next, we briefly describe the round function of TweAES.

• SubBytes: TweAES uses the same 8-bit S-box as AES.

• ShiftRows: The bytes in the i-th row are cyclically shifted by i places to the left.

• MixColumns: Multiply each column with an invertible MDS matrix.

• AddKey: XORed 128-bit round key.



30 New Properties of Double Boomerang Connectivity Table

• AddTweak: The 8-bit tweak, which is expanded from 4-bit tweak, is added to the
least significant bit of each byte in top two rows of the state at an interval of 2
rounds.

In more detail, MixColumns mixes every column by multiplication of a 4 × 4 MDS
matrix

MC =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


over the finite field F28 , where the irreducible polynomial is x8 + x4 + x3 + x+ 1.

B.3 Specification of Deoxys-BC

Deoxys-BC is an AES-based tweakable block cipher [JNPS16], based on the tweakey frame-
work [JNP14]. The Deoxys authenticated encryption scheme makes use of two versions of
the cipher as its internal primitive: Deoxys-BC-256 and Deoxys-BC-384. Both versions are
ad-hoc 128-bit tweakable block ciphers which besides the two standard inputs, a plaintext
P (or a ciphertext C) and a key K, also take an additional input called a tweak T . The
concatenation of the key and tweak states is called the tweakey state. For Deoxys-BC-256
the tweakey size is 256 bits.

Deoxys-BC is an AES-like design, i.e., it is an iterative substitution-permutation network
(SPN) that transforms the initial plaintext (viewed as a 4× 4 matrix of bytes) using the
AES round function, with the main differences with AES being the number of rounds and
the round subkeys that are used every round. Deoxys-BC-256 has 14 rounds.

Similarly to the AES, one round of Deoxys-BC has the following four transformations
applied to the internal state in the order specified below:

• AddRoundTweakey – XOR the 128-bit round subtweakey to the internal state.

• SubBytes – Apply the 8-bit AES S-box to each of the 16 bytes of the internal state.

• ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ = (0, 1, 2, 3).

• MixColumns – Multiply the internal state by the 4× 4 constant MDS matrix of AES.

After the last round, a final AddRoundTweakey operation is performed to produce the
ciphertext.

We denote the concatenation of the key K and the tweak T as KT , i.e. KT = K||T .
The tweakey state is then divided into 128-bit words. More precisely, in Deoxys-BC-256
the size of KT is 256 bits with the first (most significant) 128 bits of KT being denoted
W2; the second word is denoted byW1. Finally, we denote by STKi the 128-bit subtweakey
that is added to the state at round i during the AddRoundTweakey operation. For
Deoxys-BC-256, a subtweakey is defined as STKi = TK1

i ⊕ TK2
i ⊕ RCi. The 128-bit

words TK1
i , TK

2
i are outputs produced by a special tweakey schedule algorithm, initialised

with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-256. The tweakey schedule algorithm is
defined as TK1

i+1 = h(TK1
i ), TK2

i+1 = h(LFSR2(TK2
i )), where the byte permutation h

is defined as(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

with the 16 bytes of a 128-bit tweakey word numbered by the usual AES byte ordering.
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C Supplementary Materials for Boomerang Attacks
C.1 A Note on the Boomerang Attack with Swapped Ciphertexts
Recall that the probability of the 7-round boomerang distinguisher of CRAFT involves four
DBCT. As the DBCT is equivalent to the S-box switch in most cases, i.e., a quartet is formed
by two pairs of the same value, we check how the probability changes when new pairs of
ciphertexts are generated by swapping certain cells of obtained pairs of ciphertexts, as the
attacker does in the yoyo attack.

We reuse the 7-round boomerang distinguisher of CRAFT and test three kind of S-boxes,
namely the S-box of CRAFT, PRESENT and TWNIE. Note the latter two are hard S-boxes. We
then consider three pairs of boomerang attacks as follows.

Case A: Standard boomerang distinguisher with exact input difference and output
difference (∆in,∆out) allowing the highest probability.

Case B: With the same difference as in Case A, but only check if the difference of the
returned pair follows the truncated pattern of ∆in.

Case C: Truncated boomerang distinguisher where the input and output difference are
random for active cells.

Case A’, B’, C’: Respective variants of Case A, B and C where the output cells are
swapped if the cells of ∆out at the same position are active.

Note that Case B is a variant of the standard boomerang attack which allows a higher
probability at the cost of a lower signal to noise ratio. Case B has been used in attacks
against AES and Deoxys-BC [Sas18]. And Case C’ is actually the yoyo attack.

Table 10: The experimental probability of the 7-round boomerang distinguisher in different
cases

S-box A B C A’ B’ C’
CRAFT 2−10.11 2−9.77 2−12.40 2−8.70 2−8.36 2−9.16

PRESENT 2−15.14 2−13.74 2−14.04 2−11.49 2−10.01 2−10.19

TWNIE 2−15.53 2−14.59 2−14.54 2−11.64 2−10.69 2−10.68

Random case 2−64 2−60 2−60 2−64 2−60 2−60

We conduct an experiment and the probabilities are summarized in Table 10. From
Table 10 we have two observations.

• For each pair of cases like (A, A’), the probability is increased with swapped cipher-
texts and the increase in probability is more significant for PRESENT’s S-box and
TWNIE’s S-box. This is reasonable as these two kind of S-boxes are hard and thus
only allow the S-box switch for the for DBCT.

• The probabilities in Case B and C (or B’ and C’) are very close for S-boxes PRESENT’s
S-box and TWNIE’s S-box which have both good BCT and DBCT uniformity. That is,
there is no special input difference ∆in leading to much higher probability than
others and truncated ones are good enough. This reminds us that searching for
truncated boomerang distinguishers with good probability might be a good idea that
is worth trying. We try this idea in Section 5.

C.2 Tables and Distinguishers
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Table 11: Setting of the first six rounds of the boomerang distinguisher of TweAES

Round State difference before SubBytes Tweakey difference
1 ∆1 = 0x1100110000000000 ∆TK1 = 0x1100110000000000
7 ∇7 = 0x0000000000000000 ∇TK7 = 0x0011001100000000

Table 12: DDT of CRAFT’s 4-bit S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 - - - - - - - - - - - - - - -
1 - 2 4 - 2 2 2 - 2 - - - - - 2 -
2 - 4 - - 4 - - - - 4 - - 4 - - -
3 - - - - 2 - 4 2 2 2 - - - 2 - 2
4 - 2 4 2 2 2 - - 2 - - 2 - - - -
5 - 2 - - 2 - - 4 - 2 4 - 2 - - -
6 - 2 - 4 - - - 2 2 - - - 2 2 - 2
7 - - - 2 - 4 2 - - - - 2 - 4 2 -
8 - 2 - 2 2 - 2 - - 2 - 2 2 - 2 -
9 - - 4 2 - 2 - - 2 2 - 2 2 - - -
a - - - - - 4 - - - - 4 - - 4 - 4
b - - - - 2 - - 2 2 2 - 4 - 2 - 2
c - - 4 - - 2 2 - 2 2 - - 2 - 2 -
d - - - 2 - - 2 4 - - 4 2 - - 2 -
e - 2 - - - - - 2 2 - - - 2 2 4 2
f - - - 2 - - 2 - - - 4 2 - - 2 4

Table 13: DBCT of CRAFT’s 4-bit S-box

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
1 256 40 32 32 32 8 8 16 16 24 8 8 32 8 16 8
2 256 32 64 32 32 32 32 - 32 32 - 32 32 - 32 -
3 256 32 32 40 8 16 16 16 16 8 16 24 16 16 16 16
4 256 32 32 8 40 8 32 16 16 32 8 16 24 8 8 8
5 256 8 32 16 8 48 16 32 16 8 80 16 8 32 16 48
6 256 8 32 16 32 16 40 16 16 16 16 16 8 16 24 16
7 256 16 - 16 16 32 16 48 16 16 64 16 16 48 16 48
8 256 16 32 16 16 16 16 16 32 16 - 16 16 16 16 16
9 256 24 32 8 32 8 16 16 16 40 8 32 32 8 8 8
a 256 8 - 16 8 80 16 64 - 8 128 16 8 80 16 64
b 256 8 32 24 16 16 16 16 16 32 16 40 8 16 16 16
c 256 32 32 16 24 8 8 16 16 32 8 8 40 8 32 8
d 256 8 - 16 8 32 16 48 16 8 80 16 8 48 16 64
e 256 16 32 16 8 16 24 16 16 8 16 16 32 16 40 16
f 256 8 - 16 8 48 16 48 16 8 64 16 8 64 16 48
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Fig. 7. Truncated boomerang attack on 8-round Deoxys-BC in the RTK1 model, start-
ing from the ciphertext side. This attack succeeds with probability 1/2.
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Figure 14: Truncated boomerang attack on 8-round Deoxys-BC in the RTK1 model, which
is taken from [BL22]
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Fig. 11. Truncated boomerang attack on 10-round Deoxys-BC in the RTK2 model,
starting from the ciphertext side. This attack succeeds with probability 1/2.
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Figure 15: Truncated boomerang attack on 10-round Deoxys-BC in the RTK2 model,
which is taken from [BL22]
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