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Abstract

Secret-sharing allows splitting a piece of secret information among a group of shareholders,
so that it takes a large enough subset of them to recover it. In weighted secret-sharing, each
shareholder has an integer weight, and it takes a subset of large-enough weight to recover the
secret. Schemes in the literature for weighted threshold secret sharing either have share sizes that
grow linearly with the total weight, or ones that depend on huge public information (essentially
a garbled circuit) of size (quasi)polynomial in the number of parties.

To do better, we investigate a relaxation, (α, β)-ramp weighted secret sharing, where subsets
of weight βW can recover the secret (with W the total weight), but subsets of weight αW or
less cannot learn anything about it. These can be constructed from standard secret-sharing
schemes, but known constructions require long shares even for short secrets, achieving share

sizes of max
(
W, |secret|

ϵ

)
, where ϵ = β − α. In this note we first observe that simple rounding

let us replace the total weight W by N/ϵ, where N is the number of parties. Combined with
known constructions, this yields share sizes of O

(
max(N, |secret|)/ϵ

)
.

Our main contribution is a novel connection between weighted secret sharing and wiretap
channels, that improves or even eliminates the dependence on N , at a price of increased depen-
dence on 1/ϵ. We observe that for certain additive-noise (R,A) wiretap channels, any semanti-
cally secure scheme can be naturally transformed into an (α, β)-ramp weighted secret-sharing,
where α, β are essentially the respective capacities of the channels A,R. We present two instan-
tiations of this type of construction, one using Binary Symmetric wiretap Channels, and the
other using additive Gaussian Wiretap Channels. Depending on the parameters of the underly-
ing wiretap channels, this gives rise to (α, β)-ramp schemes with share sizes |secret|/poly(ϵ logN)
or even just |secret|/poly(ϵ).

1 Introduction

Secret sharing [Sha79, Bla79] allows a dealer to split some secret information among multiple
parties, giving each party an individual share, so that large enough subsets of shareholder can
recover the secret, but small subsets cannot learn any partial information about it. Such schemes
are typically parametrized by the number of parties N and a threshold T ≤ N , such that it takes
at least T parties to recover the secret.

Weighted secret sharing (WSS) is similar, except that each shareholder j has an integer weight wj ,
it takes a “heavy enough” subsets to recover the secret, while “light” subsets cannot learn any partial
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information about it. The threshold T ∈ [N ] is replaced by τ ∈ (0, 1), such that it takes shareholders
of aggregate weight τW to recover the secret (where W is the total weight, W =

∑
j∈[N ]wj).

One method of implementing WSS is to rely on standard secret-sharing with N ′ = W and
T ′ = τW , giving wj shares to a shareholder j with weight wj . While this solution can achieve
good rate for long secrets (see section 3.1), it is very wasteful for short ones, as its share sizes
grow linearly with the weight. Prior work on weighted secret sharing explored other solutions (e.g.,
using Chinese remaindering) or limited models (e.g., specific weight hierarchies). But they all still
feature either linear dependency of the share-size on W , severe restrictions to the access structures
that can be realized, or huge public information that must be broadcasted to everyone alongside
the individual shares. (See more discussion in section 1.2 below.)

In an attempt to do better, in this work we consider the relaxed model of ramp secret-sharing
[BM84], that has a fuzzy threshold. Specifically, an (α, β)-ramp weighted secret sharing scheme
allows any subset of aggregate weight at least βW to recover the secret, but subsets of weight αW
or less cannot learn any information about it. Such gaps were considered often in the literature for
standard secret-sharing schemes, but to our knowledge were not studied in the context of weighted
secret sharing.

It is not hard to see (and we describe it explicitly in section 3) that this relaxation enables
shorter secrets, just by keeping only a 1/ϵ precision for the weights, where ϵ = β − α. Rather than
linear dependence on the weights, we now get linear dependence on N/ϵ (where the dependence
on the number of parties N is due to the accumulation of rounding errors in this limited-precision
approximation).

Beyond this simple observation, the main technical meat in this work is a novel blueprint for
(α, β)-ramp WSS schemes, by exploring a surprising connection to secure transmission schemes for
wiretap channels. These constructions reduce or even eliminate the dependence on N , at the price
of potentially worse (but still polynomial) dependence on 1/ϵ. We note that the field of wiretap
coding is an ongoing line of research with an aim of decreasing dependence on 1/ϵ. Any advances
in wiretap coding can easily be applied to WSS with our construction.

1.1 Overview of Our Techniques

The starting point for our new blueprint is the following approach: On input s, the dealer gives
each shareholder j a noise vector ej , whose magnitude depends on their weight, and publishes the
value g = Enc(s) +

∑
j ej , where Enc(·) is some encoding function. Given the public g and their

individual ej ’s, the only information that a set T of shareholder has on the secret s is the value

gT = g −
∑
j∈T

ej = Enc(s) +
∑
j /∈T

ej .

We can therefore associate with each subset T an additive-noise channel CT : x 7→ x+
∑

j /∈T ej ,
such that the information that T learns about s is exactly the received value CT (Enc(s)). We are
seeking an encoding function Enc(·) so that:

� Any qualified set S can recover s from CS(Enc(s));

� For any unqualified set T , seeing CT (Enc(s)) yields no information on s.

Intuitively, the smaller (or “lighter”) the set is, the more error components it is missing, so the
more noisy its channel will be. Consider now R which is “the most noisy channel” for any qualified
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set, and A which is “the least noisy channel” for any unqualified set. We can hope that R is less
noisy than A, and use a good transmission scheme for the wiretap channel (R,A), with receiver
channel R and adversary channel A.

Trying to flesh out this approach, we need to associate an error distribution Dwj to every
weight wj ∈ N, so that whenever

∑
j∈Awj >

∑
j∈B wj it holds that

∑
j∈ADwj is “more error” than∑

j∈B Dwj . Then we need to find two concrete channels R,A such that

� R is at least as noisy as CQ for any qualified set Q with weight ≥ βW .

� A is at most as noisy as CU for any unqualified set U with weight ≤ αW .

If R is less noisy than A, then we can use a good transmission scheme for the wiretap channel
(R,A) to implement our (α, β)-ramp WSS scheme. The parameters of this WSS scheme can be
derived from those of the underlying wiretap scheme.

1.1.1 Binary Symmetric Channels

Trying to instantiate this approach with binary symmetric channels, we associate with each weight
wj an error probability pj and the corresponding Bernoulli random variable

Dj =

{
1 with probability pj

0 with probability 1− pj .

One problem that we face here is that the error probability does not add up linearly. If we set (say)
pj = wj/W , it is not hard to find instances where

∑
j∈Awj >

∑
j∈B wj and yet

∑
i∈ADj mod 2

has smaller error probability than
∑

j∈B Dj mod 2, as the following example shows.

A problematic example. Consider three parties with w1 = w2 = 13 and w3 = 24, so W = 50
and we have Pr[D1 = 1] = Pr[D2 = 1] = 13/50 = 0.26 and Pr[D3 = 1] = 24/50 = 0.48. Let
A = {1, 2} and B = {3}, so the aggregate weight of A is 26, larger that the weight of B which is
24. On the other hand, we have

Pr[D1 ⊕D2 = 1] = 0.26 + 0.26− 0.262 = 0.4525 < 0.48 = Pr[D3 = 1],

so the error rate for A is lower that for B.
Clearly, the reason for this example is the cancellation due to the term 0.262. This cancellation

effect can be reduced by scaling down the probabilities. For example, if we set pj = wj/2W rather
than pj = wj/W , then we get Pr[D1 = 1] = Pr[D2 = 1] = 0.13 and Pr[D3 = 1] = 0.24, and
therefore

Pr[D1 ⊕D2 = 1] = 0.13 + 0.13− 0.132 = 0.2431 > 0.24 = Pr[D3 = 1].

Our construction. The BSC-based construction that we present in section 5 comes with a scaling
parameter γ (that depends on α, β) that controls the noise level. Namely, a weight w shareholder
gets an error vector in which every bit is one with probability γ · w/W . Setting γ small enough
ensures that any subset of weight ≤ (1 − β)W will have error rate smaller than every subset of
aggregate weight ≥ (1−α)W . This allows us find a good wiretap channel scheme for the resulting
channels, and therefore construct an (α, β)-ramp WSS scheme.
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A drawback of scaling down, however, is that the error rates of R and A become quite close, of
distance only O(ϵ2) (where ϵ = β −α). We therefore need to use codes of fairly large block-length,
making the share-size grow polynomially in 1/ϵ, for a large polynomial. The details are described
in section 5.

1.1.2 Additive Gaussian Channels

Trying to improve over the BSC-based construction, we turn our attention to additive white Gaus-
sian noise (AWGN) channels. These channels have the advantage that their noise is additive:
adding Gaussian variables with variance σ2

1 and σ2
2 yields another Gaussian with variance σ2

1 + σ2
2.

This lets us avoid the scaling-down issue, potentially yielding better parameters.
We thus associate each weight, w ∈ N with the Normal random variable N (0, w/W ), i.e. zero-

mean with variance w/W (stdev =
√
w/W ). Due to additivity, the aggregate random variable for

a set A is itself a Normal variable,∑
j∈A
N (0, wj/W ) = N (0,

∑
j∈A

wj/W ).

This implies that whenever S has higher weight than T , the channel CT has more error than the
channel CS .

For any β > α, we can therefore construct an (α, β)-rampWSS scheme from a good transmission
scheme for the AGWN wiretap channel (R,A), where

R : x 7→ x+N (0, 1− β) and A : x 7→ x+N (0, 1− α).

Indeed, since β > α then A is more noisy than R.

Quantization. Recall that in our approach the dealer draws the share for each party j as eg ←
N (0, wj/W ), and in addition it publishes g = Enc(s) +

∑
j∈[N ] ej . But the noise entries are

real random variables, so we need to quantize them in order to use them in the scheme, and the
required precision for this quantization factors into the share sizes. The channels that we deal with
are therefore not exactly AWGN but rather a finite-precision approximation, and we need to show
that the approximation is good enough to maintain correctness and secrecy.

It is easy to see that secrecy is maintained, no matter how these real variables are quantized.
Indeed, the underlying wiretap channel ensures secrecy even against adversaries that get an infi-
nite precision random variables, and any quantized version will just be a processing of those real
variables.

For correctness, we note that rounding cannot move the integers that the decoder sees by too
much. Therefore, the correct codeword cannot be too much farther away than in the infinite-
precision case, and the decoder will therefore succeed with almost the same probability.

1.2 Prior Work

Ramp secret-sharing (without weights) was introduced by Blakley and Meadows [BM84]. A text-
book construction for a ramp-scheme with good rate based on standard “packed secret sharing”
can be found, e.g., in [CDN15, 11.4.2] (and is described in section 3.1 below).

Some early work on weighted secret sharing was cast against the backdrop of general access
structures. Beimel et al. [BTW05] characterized the weighted (strict) thresholds access structures
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that admit ideal schemes, where the share size is equal to the secret size, proving that only few
specific threshold structures can be realized this way.

Beimel and Weinreb [BW06] showed that any threshold access structure can be realized using
shares of size quasiPoly(N logW ) times the secret size, or even just poly(N logW ) · λ if computa-
tional security is enough (λ is the security parameter). They did that by describing monotone cir-
cuits that compute every threshold function, and using known monotone-circuits-to-secret-sharing
compilers [BL88, VNS+03].1 Works such as [FP12] and [Tas07] propose an explicit scheme for
hierarchical threshold structures, those are solving a different (albeit somewhat related) problem
than ours.

Another notable prior work is due to Zou et al. [ZMB+11], they use the Chinese Remainder
Theorem to improve some efficiency parameters of weighted multi-secret sharing, but secret sizes
are still the same as in the simple scheme based on Shamir sharing.

Finally, the ideas underlying our blueprint were also used in some prior works in the context of
secure computation, e.g., [KMPS14, KMS16].

Organization

We present some background in section 2, then define (α, β)-ramp WSS and describe a simple
rounding-based protocol for realizing it in section 3. We formulate our blueprint for WSS schemes
from wiretap schemes in section 4, then describe instantiations of this blueprint from binary sym-
metric channels in section 5 and from additive white Gaussian noise channels in section 6.

2 Background

Notations. For an integer n, we denote [n] = {1, 2, . . . , n}. For two distributions D, E , we denote
by SD(D, E) their statistical distance. Namely SD(D, E) = 1

2

∑
x∈X |D(x)− E(x)|, where X is the

union of their support.
For a real number x and an integer η, we denote by ⌊x⌋2−η , ⌈x⌉2−η , ⌈x⌋2−η the rounding of x

down, up, or to the nearest number with precision 2−η, respectively. Namely, ⌊x⌋2−η is the largest
number of the form i/2η (with i an integer) which is not larger than x, and similarly ⌈x⌉2−η is the
smallest number of this form which is not smaller than x, and ⌈x⌋2−η is one of the above which is
closer to x (breaking ties arbitrarily). Omitting the 2−η parameter means rounding to an integer
(same as using 20).

2.1 Channels and Error Correcting Codes

A communication channel with input set X and output set Y is a transform that maps each input
symbol x ∈ X to a distribution over the output symbols Y. In this work we deal with additive-
noise channels where X = Y is an additive group, and the channel just adds to its input some
random noise, chosen from a known distribution D. Namely, Ch : x 7→ x + D. We assume a
memoryless channel: when sending a sequence of symbols, each symbol is transformed according
to the channel Ch independently of the others (and their order is maintained).

An error-correction scheme is meant to facilitate reliable transmission of a sequence of symbols
m ∈ X k (for some k) over the channel Ch. For any input length k it consists of encoding Enc : X k →

1Those compilers essentially construct a garbled circuit for the threshold function, with the secret being the output
label. Hence, they require a very large public information, namely the garbled circuit itself.
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X n that adds redundancy, mapping the information sequence m to a longer code-word w ∈ X n

that will be sent over the channel, and a matching decoding routine Dec : X n → X k that attempts
to recover the original information from the received sequence Ch(w). An error-correction scheme
is a sequence of codes for increasing k.

The rate of a code is k/n, and the channel capacity is the highest possible rate (asymptotically
as k → ∞) of any scheme that achieves vanishing decoding error probability. For additive noise
channels with noise distribution D, the channel capacity is 1−h(D) where h is the Shannon entropy
function. In particular, for any channel Ch and any ν > 0, there exist schemes with rate ν away from
capacity, in which the decoding error probability (for large enough n) is bounded below 2−n·poly(ν).

In this work we will be concerned with Binary Symmetric Channels (BSC, see section 5) and
Additive White Gaussian Noise channels (AWGN, see section 6). For those channels, there exist
schemes with efficient encoding/decoding procedures that approach capacity and achieve vanishing
error probability. (The dependence on the slackness parameter ν = capacity-minus-rate, affects the
parameters that our blueprint can achieve, and will be discussed in the sequel.)

The “more noisy” relation.

We say that a channel Ch′ is more noisy than another channel Ch (or Ch is less noisy than Ch′),
and denote Ch ⪯ Ch′ or Ch′ ⪰ Ch, if there is some transform T such that Ch′ = T (Ch). An
example is when Ch′ is obtained from Ch by adding more noise, Ch′(x) = Ch(x)+D for some noise
distribution D. It is easy to see that the capacity of Ch is at least as high as that of Ch′. Moreover,
any error-correction scheme for Ch′ also works for Ch.2

2.2 Wiretap Channel Transmission Schemes

A wiretap channel is a pair of communication channels (R,A) with the same input and output sets
X ,Y, where R is a channel from the sender to an intended receiver and A is the wiretap that goes
to the adversary. Given a message m that the sender wants to send to the receiver, the goal is to
encode it as w = Enc(m), so that m can be recovered (whp) from R(w), but not from A(w).

Bellare et al. defined in [BTV12] the notion of semantically secure encryption scheme for a
wiretap channel (that we prefer to call a transmission scheme3). The following is essentially their
definition of distinguishing security. In our setting, it is sufficient to work with what they call a
“seeded” scheme, where encoding and decoding depend on a public random seed.

Definition 1 (Secure Wiretap Transmission Schemes). Let (R,A) be a wiretap channel (for mes-
sage space M), a secure transmission scheme for it consists of (seed-dependent4) encoding and
decoding procedures Encsd,Decsd such that

Correctness. For all m ∈M, Pr[Decsd(R(Encsd(m))) = m] ≥ 1− negl(|sd|),

Secrecy. For all m,m′ ∈M, SD ((sd,A(Encsd(m))), (sd,A(Encsd(m′)))) ≤ negl(|sd|),

where the probability is over the channel randomness as well as the random selection of the seed sd,
and negl is some negligible function.

2In theory, to use a decoder for Ch′ we may need to apply T to the output of Ch(w) before we can decode it. In
practice, decoders for the high-noise Ch′ always work as-is also for the low-noise Ch.

3This is a keyless scheme, so it differs from cryptographic encryption.
4We use the seed length as the security parameter for this definition.
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The literature contains many constructions of wiretap channel schemes from error-correcting
schemes, some of which we will be using in sections 5 and 6. For the abstract blueprint that we
present in section 4, we need the “obvious” property of all the schemes in the literature, where if
they work for one wiretap channel then they also work for all “easier channels.” Namely, they are
monotone in terms of the more-noisy relation:

Definition 2 (Monotone Schemes). A secure transmission scheme (Enc,Dec) for a channel (R,A)
is noise-monotone if it is also a secure transmission scheme for any channel (R′,A′) such that
R′ ⪯ R and A ⪯ A′.

Clearly, the secrecy condition of a transmission scheme is always monotone. The correctness
condition is monotone as long as the decoding error of the underlying code is not increased by
reducing the noise level of the channel (which is true for all coding schemes that we know of).

3 Weighted Secret Sharing

A secret-sharing scheme is a two-phase multi-party protocol for N + 1 parties, a dealer and N
shareholders. In the dealing phase, the dealer has a secret input s, and it outputs a share for
each shareholder, and optionally also a public share. In the reconstruction phase, a subset of the
shareholders collect all their shares (and the public share if any) and attempt to use them in order
to reconstruct the secret.

Each secret-sharing schemes comes with an access structure, consisting of a collection of qualified
subsets Γ ⊂ 2[N ] that should be able to reconstruct the secret, and a collection of unqualified subsets
Ψ ⊂ 2[N ] that should not be able to learn anything about the secret.5 Non-perfect realizations of
secret sharing come with a security parameter λ that is given as input to all the parties, and we
require that the imperfections are negligible in λ.

Below we denote by ViewS(s) the view of a subset of the shareholders S ⊂ [N ] when the secret
s is shared, consisting of their own shares and the public share (if any). For a qualified set S we
also denote by Recover(ViewS(s)) the value that these shareholders compute when trying to recover
the secret.

Definition 3 (Secret Sharing). A secret-sharing scheme for the access structure (Γ,Ψ) and the
space of secrets S, satisfies the following (for some negligible function negl(·)):

Correctness. For any qualified subset S ∈ Γ and any secret s ∈ S,

Pr[Recover(ViewS(s)) = s] ≥ 1− negl(λ).

Secrecy. For any unqualified subset T ∈ Ψ and any two secrets s, s′ ∈ S, the views of T when
sharing s, s′ are statistically close,

SD
(
ViewT (s),ViewT (s

′)
)
≤ negl(λ).

In this work we study a relaxation of threshold weighted secret sharing, (α, β)-ramp weighted
secret sharing.

5Sometimes, but not always, we have Ψ = Γ.
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Parameters: Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1. Let W :=
∑

i∈[N ]wi.

Sharing a secret s ∈ {0, 1}k: Let r = ⌈(β − α)W ⌉ and k′ = ⌈k/r⌉.

1. Break the secret into r chunks of length ≤ k′, let s⃗ ∈ ({0, 1}k′)r be the resulting vector;

2. Share s⃗ using (αW, βW ; r,W ) multi-secret sharing, party, j ∈ [N ], gets wj shares.

Reconstructing the secret by a qualified set S:

3. Use multi-secret reconstruction with all revealed shares to recover s⃗;

4. Concatenate the entries of s⃗ to get s.

Figure 1: A rate-efficient (α, β)-ramp WSS from multi-secret sharing.

Definition 4 ((α, β)-ramp weighted secret sharing). A (α, β)-ramp weighted secret sharing for
0 < α < β < 1, N shareholders, and weights w1, . . . , wN ∈ N, is a secret-sharing scheme for the
access structure

Γ = {S ⊆ [N ] :
∑
i∈S

wi ≥ βW} and Ψ = {T ⊆ [N ] :
∑
i∈T

wi < αW},

where W =
∑

i∈[N ]wi.

Below we often use the notation ϵ = β − α when discussing the parameters of ramp WSS
schemes.

3.1 Ramp WSS from Multi-Secret Sharing

A (T1, T2; r,N) multi-secret sharing scheme shares r secrets (from some domain) among N share-
holders, with secrecy when T1 or less of the shares are revealed and recovery when T2 or more shares
are revealed. A packed Shamir sharing, where multiple secrets are encoded in different evaluation
points of a degree-(T −1) polynomial, yields a (T − r, T ; r,N) multi-secret sharing scheme over any
field of size ≥ N + r, where each share is only a single field element. Hence it achieves a “rate” of
|secret|/|share| = r.

This can be converted to a ramp WSS scheme using the obvious approach of giving w shares
to a weight-w shareholder. This construction is described in fig. 1. To get an (α, β)-ramp WSS we
need a multi-secret scheme with N := W , T1 := αW , and T2 := βW . Using the above construction,
we can pack r = T2 − T1 = ϵW field elements while each underlying share is a single element.

Each shareholder in the resulting WSS scheme holds at mostW shares of the underlying scheme,
so we get a WSS scheme with share size ≤ W element that can handle secrets of size upto ϵW
elements. This yields encoding rate of

|secret|/|share| = ϵW

W
= ϵ,

as long as the secret is long enough (i.e., at least ϵW field elements). This scheme is not very useful
for short secrets, however, as its efficiency depends on breaking the secret into many chunks. In
particular, the size of shares is still W (or more) in the worst case, regardless of how small is the
secret. 6

6In other contexts it is sometimes helpful to use algebraic-geometric codes instead of the Reed-Solomon codes of
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Parameters: Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1. Let W :=
∑

i∈[N ]wi.

1. Let η :=
⌈
log 5N

β−α

⌉
. For all j ∈ [N ], set w′

j := 2η ·
⌈wj

W

⌉
2−η .

2. Use the RampWSS from fig. 1 with the w′
j ’s and thresholds α′ = α+ β−α

5 and β′ = β− β−α
4 .

Figure 2: A rounded (α, β)-ramp weighted secret sharing

3.2 A Rounding-Based (α, β)-ramp WSS Protocol

We note that simple rounding can be used to roughly replace the dependence on W in the above
scheme by dependent on N/ϵ. Specifically, we use the construction from fig. 1 to implement a
modified version of the system, with weights that are rounded to precision of only about (β−α)/N .
Due to rounding errors, the modified version has a smaller gap ϵ′ < β − α, but the increase can be
controlled by setting the precision appropriately. Specifically, with precision of (β −α)/5N we can
get ϵ′ ≥ ϵ/2. This simple protocol is described in fig. 2.

Lemma 1. The protocol outline in fig. 2 is an (α, β)-ramp weighted secret sharing scheme.

Proof. By our choice of η we get N/2η ≤ (β − α)/5, and for every set J ⊆ [N ] we have

2η
∑
j∈J

wj/W ≤
∑
j∈J

w′
j < |J |+ 2η

∑
j∈J

wj/W.

In particular for J = [N ] we have W ′ =
∑

j∈[N ]w
′
j ∈ [2η, 2η+N ]. For any non-qualified set J ⊆ [N ]

with
∑

j∈J wj ≤ αW we therefore have

∑
j∈J

w′
j/W

′ ≤
N + 2η

∑
j∈J wj/W

2η
≤ N + 2η · α

2η
≤ (β − α)/5 + α = α′.

Similarly, for any qualified set J ⊆ [N ] with
∑

j∈J wj ≥ βW we have

∑
j∈J

w′
j/W

′ ≥
2η

∑
j∈J wj/W

N + 2η
≥ β

1 + (N/2η)
≥ β

1 + (β − α)/5

(∗)
≥ β − (β − α)/4 = β′.

To see why inequality (∗) holds, note that

β

1 + (β − α)/5
=

β(1 + (β − α)/5)

1 + (β − α)/5
− β(β − α)/5

1 + (β − α)/5
= β − β(β − α)

5− (β − α)
≥ β − β − α

4
.

In terms of performance for the protocol of fig. 2, the number of shares a party can receive is
upper-bounded by W ′ < N +2η ≤ N

(
1+ 10

β−α

)
. Hence, the size of shares in this scheme grows with

O(N/ϵ) instead of the total weight W .

Shamir sharing, as it enables the use of smaller fields. In our case this does not seem to help, since the inefficiency
comes from the number of field elements and not their size.
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Sharing a secret s ∈ {0, 1}k, with security parameter λ:

1. If the wiretap scheme is seeded, choose a random seed sd of length λ;

2. ∀j ∈ [N ], draw ej ← Dwj and send to party j;

3. Publish sd and g = Encsd(s) +
∑

j∈[N ] ej .

Reconstructing the secret by a qualified set S:

Set g′ = g −
∑

j∈S ej and output Decsd(g
′).

Figure 3: The generic framework for ramp weighted secret sharing from wiretap channels.

4 A Blueprint for WSS from Wiretap Channels

Let w1, . . . , wN be the concrete weights that we want to implement and 0 < α < β < 1 be the
parameters that we want to achieve. Denote W =

∑
i∈[N ]wi. An instance of our blueprint operates

in some additive group X , and consists of two components:

� A mapping from weights w ∈ N to noise distributions Dw over X .

� A (seeded) noise-monotone secure transmission scheme (Enc,Dec) for a wiretap channel
(R,A), such that:

– For any qualified subset S ⊆ [N ] with
∑

i∈S wi ≥ βW , the channel R is more noisy
than adding all the noise distributions outside S. Namely, CS ⪯ R where CS : x 7→
x+

∑
i/∈S Dwi .

– For any unqualified subset T ⊆ [N ] with
∑

i∈S wi ≤ αW , the channel A is less noisy
than adding all the noise distributions outside T . Namely, CT ⪰ A where CT : x 7→
x+

∑
i/∈T Dwi .

Given these components, our WSS scheme is described in fig. 3.

Lemma 2. If (Enc,Dec) is a noise-monotone secure transmission scheme for a wiretap channel
(R,A) that satisfy the conditions above, then the scheme from fig. 3 is a secure (α, β)-ramp weighted
secret-sharing scheme.

Proof. This holds more or less by definition. Consider an arbitrary qualified set S and an arbitrary
unqualified set T . Then by construction we have CS ⪯ R and A ⪯ CT , and since (Enc,Dec) is
noise-monotone then it is also a secure transmission scheme for the wiretap channel (CS , CT ). This
means on one hand that for the qualified set S, seeing w = CS(Enc(s)), we have Dec(w) = s with
all but negligible probability. On the other hand, the unqualified set T , seeing only CT (Enc(s)),
cannot distinguish it from CT (Enc(s

′)) except with a negligible advantage.

The public share. Our solutions, as well as some solutions from the literature (such as [BW06]),
use a public share, which is known to everyone, in addition to the individual shares of the share-
holders. While it is possible to eliminate the public share by adding it to each individual share,
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this could significantly increase the share size.7 Instead, we chose to account for the public share
separately and only count it once (rather than once per shareholder).

5 Constructions from Binary Symmetric Channels

5.1 Background

5.1.1 Binary Symmetric Channels

A binary symmetric channel (BSC) is used for sending bits. It is associated with a “crossover
probability” p ≤ 1/2, which is the probability that the received bit differs from the one that was
sent. Namely, we have a Bernoulli error variable Bp with Pr[Bp = 1] = p and Pr[Bp = 0] = 1− p,
and the channel is defined on message space {0, 1} as BSCp : x 7→ x+Bp mod 2.

The capacity of BSCp is h(p), where h is the binary entropy function. If we are not concerned
with efficient decoding, then random linear codes (with ML/MAP decoding) have rates that ap-
proach the channel capacity with exponentially small error probability. Capacity-approaching con-
structions with efficient decoding are known using concatenated codes [GR08] or polar codes [Ari09,
GX15], with somewhat weaker bounds on the decoding error. For example, [AT09, HMTU13] show
that the error probability for block-length n and rate 1− h(p)− ν is at most exp(−Θ(

√
n)), where

the constant in the exponent depends on p and ν. Later results feature stronger bounds in terms
of the block-length n with polynomial dependence on the slackness ν. In particular, we have

Lemma 3. (Corollary of [BGS18, Thm 17]) For any p < 1/2, ν < 1 − h(p), and µ < 1, there
exists a code for BSCp with rate 1 − h(p) − ν, block length n = polyµ(1/ν) (for some polynomial
that depends on µ), error probability exp(−nµ), and decoding complexity O(n log n).

It is known that the polynomial dependence on 1/ν is at least quadratic for BSC, while for
some efficient constructions there is evidence that poly1/2(x) ≤ x4.7 [MHU16].

5.1.2 Wiretap Schemes for Binary Symmetric Channels

Bellare et al. also described in [BTV12] a construction called ItE (Invert-then-Encode) for discrete
wiretap channels, building on error-correction. The construction realizes definition 1 for the chan-
nels (R,A), using a code with low decoding error probability for R, at a rate noticeably larger
than the capacity of A. (In particular, if the code rate approaches the capacity of R then this
construction approaches the secrecy capacity of the wiretap channel.)

The ItE construction has integer parameters b < k < n (with values as set later in this section).
Identifying {0, 1}k with the finite field F2k , this is a seeded construction with seed space the multi-
plicative group F2k \ {0k} and message space {0, 1}b. In addition, it uses error-correction encoding
Enc : {0, 1}k → {0, 1}n and the corresponding decoding Dec : {0, 1}n → {0, 1}k. The encoding
and decoding routines of the ItE construction (denoted Enc′sd,Dec

′
sd) are described in fig. 4. The

following is a re-phrasing of Lemma 5.3 and Lemmas 5.5-5.6 from [BT12]:

Lemma 4. ([BT12, Lemma 5.3]) If (Enc,Dec) is an error-correction scheme with decoding-error
probability at most ϵ for the channel R, then the ItE scheme (Encsd,Decsd) from fig. 4 is correct for
(R,A) with correction holding with probability ≥ 1− ϵ.

7In our solutions it will only double the share size, but in some solutions in the literature the public share is much
larger than the individual shares.
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Encoding: Enc′sd(M ∈ {0, 1}b) with seed sd ∈ F2k \ {0k}:

1. Choose a random R← {0, 1}k−b, let Y = (M |R) ∈ F2k be the concatenation;

2. Set X := Y/sd ∈ F2k ;

3. Send the message W := Enc(X) ∈ {0, 1}n.

Decoding: Dec′sd(W
′ ∈ {0, 1}n):

1. Use error-correction to get X ′ = Dec(W ′);

2. Compute Y ′ := X ′ · sd ;

3. Output M ′, the first b bits of Y ′.

Figure 4: The ItE construction from [BTV12].

Lemma 5. (Corollary of [BT12, Lemmas 5.5-5.6]) Let A be a symmetric memoryless channel
with capacity c(A). Assume that k

n (the rate of Enc) is larger than c(A), denote the slackness

by ρ = k
n − c(A), and let λ be the security parameter. Then for any 0 < δ < ρ − 2λ

n , setting
b := ⌊n(ρ− δ)− 2λ⌋ in the ItE construction yields a wiretap transmission scheme with secrecy upto
statistical distance 4 · 2−δ2n/11 + 2 · 2−λ.

Plugging the coding parameter from above, we get the following instantiation:

Corollary 6. For a binary symmetric wiretap channel (BSCpR , BSCpA) with 0 ≤ pR < pA < 1/2,
denote ξ := h(pA)− h(pR). There exists an instance of the ItE scheme (Encsd,Decsd) with security
parameter λ and

� Encoding size n = max
(
poly 1

2
(4ξ ), λ

2, 44λ
ξ2

)
; 8

� Seed space F2k \ {0k} with k = (1− h(pA) +
3ξ
4 )n = (1− h(pR)− ξ

4)n; and

� Message space {0, 1}b, b ≥ ( ξ4 −
2
λ)n;

such that

� For all m ∈ {0, 1}b, Pr[Decsd(BSCpR(Encsd(m))) = m] ≥ 1− 2−λ;

� For all m,m′ ∈ {0, 1}b,

SD
(
(sd, BSCpA(Encsd(m))), (sd, BSCpA(Encsd(m

′)))
)
≤ 6 · 2−λ.

Proof. Recall that k determines both the seed space of the ItE construction and the input space
for the underlying error-correcting code. The rate of the underlying code is therefore k/n =
1 − h(pR) − ξ

4 , and by lemma 3 we can find such codes as soon as the encoding-length exceeds

8poly 1
2
is the polynomial from lemma 3 for µ = 1

2
.
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Parameters:
Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1, security parameter λ.

� Let W :=
∑

i∈[N ]wi and γ := β−α
2(1−α)2

. We assume that γ ≤ 1
2 .

a

� Let pR := γ(1− β) and pA := γ(1− α)− γ2(1− α)2.
(In section 5.3 below we show that 1

4 ≥ pA ≥ pR + (β − α)2/4.)

� Let (Enc,Dec) (with parameters n, k, b) be as in the ItE construction from corollary 6 for
the wiretap channel (BSCpR , BSCpA).

Sharing a secret s ∈ {0, 1}k:

1. ∀j ∈ [N ], set pj := γ · wj

W , draw ej ← (Bernoullipi)
n and send to party j;

2. Draw a random sd ∈ F2k \ {0k}, publish sd and g := Encsd(s) +
∑

j∈[N ] ej mod 2.

Reconstructing the secret by a qualified set S:
Set g′ = g +

∑
j∈S ej mod 2 and output Decsd(g

′).

aThis holds if α, β are not too big. For example if α ≤ 1
2
and β ≤ 1+α

2
.

Figure 5: Weighted secret sharing from symmetric binary wiretap channels.

poly1/2(4/ξ), with decoding error probability at most exp(−n1/2) < 2−
√
n. If n ≥ λ2 then this is

bounded below 2−λ, and due to lemma 4 the same holds for correctness of the ItE construction.
For the secrecy part, we have rate k/n = 1 − h(pA) +

3ξ
4 , and we use δ = ξ

2 in lemma 5.

This yields b = ξ
4n − 2λ, and since n ≥ λ2 then b ≥ ( ξ4 −

2
λ)n. If we also have n ≥ 44λ

ξ2
, then

δ2n/11 ≥ (ξ/2)2 · (44λ/ξ2)/11 = λ, and therefore the statistical distance is bounded by

4 · 2−δ2n/11 + 2 · 2−λ ≤ 4 · 2−λ + 2 · 2−λ = 6 · 2−λ.

Remark. Different from most works in the literature, in the setting above we do not aim at
achieving the secrecy capacity in the limit. Rather, we try to maintain a small encoding size n
relative not just the message size b, but also the security parameter λ and the parameters pR, pA.

9

5.2 Our Construction

In fig. 5 we show how to use the ItE instance from corollary 6 to get an (α, β)-ramp WSS for given
weights w1, w2, . . . , wN and thresholds 0 < α < β. (The parameters below are chosen for α, β that
are not very close to one, but they can be modified to handle larger α, β at a small performance
loss.)

Clearly, this construction is an instance of the blueprint from fig. 3, instantiated over the
additive group F2k , using the noise distributions Dw = Bernoulliγw/W and the ItE construction from

9In particular, we opted for losing a constant factor in the ratio b/n in return for better dependency on λ and ξ.
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corollary 6 for the wiretap channel (CSBpR , CSBpA). It is also clear that the ItE construction is
noise-monotone (since the underlying error-correction codes are).

The only thing left to prove in order to use lemma 2, is that for any qualified S and unqualified
T , the corresponding channels satisfy CS ⪯ BSCpR and CT ⪰ BSCpA . To that end, we use the
following technical lemma (whose proof is in the appendix)

Lemma 7. Let B1,B2, ...,Bt be independent Bernoulli random variables, and denote S :=
∑

j∈[t] Bj
and ϵ :=

∑
j∈[t] Pr[Bj = 1]. Then Pr[S is odd] ∈ [ϵ− ϵ2, ϵ].

We can now complete the proof that the ItE-based construction above satisfies all the conditions
of lemma 2.

Lemma 8. With the parameters as set in fig. 5:

(A) For every subset S ⊆ [N ] with
∑

j∈S wj ≥ βW , we have CS ⪯ BSCpR where CS : x 7→
x+

∑
j /∈S Bernoullipj .

(B) For every subset T ⊆ [N ] with
∑

j∈S wj ≤ αW , we have CT ⪰ BSCpA where CT : x 7→
x+

∑
j /∈T Bernoullipj .

Proof. Clearly CS , CT are memoryless binary symmetric channels, so all we need to show is that
the crossover probability of CS is at most pR and the that of CT is at least pA (and they are less
than 1

2). For any bit position ℓ ∈ [n], the ej [ℓ]’s are independent Bernoulli random variables, with
success probabilities pj := Pr[ej [ℓ] = 1] = γwj/W .

For the channel CS , denote PS :=
∑

j /∈S pj = γ(
∑

j /∈S wj)/W . The crossover probability of
CS is exactly the probability that an odd number of these variables ej [ℓ] are set to one, which
by lemma 7 is at most PS . Since S is a qualified set then we know that PS = γ(

∑
j /∈S wj)/W ≤

γ(1− β) = pR < 1
2 , as needed. This implies that CS ⪯ BSCpR .

Similarly, for the channel CT , denote PT :=
∑

j /∈T pj = γ(
∑

j /∈T wj)/W . The crossover prob-
ability of CT is exactly the probability that an odd number of these variables ej [ℓ] are set to
one, which by lemma 7 is at least PT − P 2

T
. Since T is an unqualified set then we know that

PT = γ(
∑

j /∈T wj)/W ≥ γ(1 − α). Moreover, since we assume that γ ≤ 1
2 then also PT ≤ γ ≤ 1

2 ,

and since f(x) = x − x2 is monotonically increasing in the range (0, 12), then from PT ≤ γ(1 − α)
we conclude that PT − P 2

T
≥ γ(1− α)− γ2(1− α)2 = pA. This implies that CT ⪰ BSCpA .

5.3 Performance Characteristics of This Construction

Recall that we set the scaling parameter γ and the probabilities pR, pA as

γ :=
β − α

2(1− α)2
, pR = γ(1− β), and pA = γ(1− α)− γ2(1− α)2.

We can bound the gap pA − pR by

pA − pR = γ
(
(1− α)− γ(1− α)2 − (1− β)

)
= γ

(
β − α− γ(1− α)2

)
=

β − α

2(1− α)2
·
(
β − α− β − α

2(1− α)2
(1− α)2

)
=

β − α

2(1− α)2
· β − α

2

=
(β − α)2

4(1− α)2
>

(β − α)2

4
. (1)
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Below it will be convenient to denote ϵ = β−α, and by equation (1) above we have pA−pR ≥ ϵ2/4.
Moreover, we know that pA ≤ 1

4 (since x−x2 ≤ 1
4 for every x ∈ R). We thus have 0 < pR < pA ≤ 1

4 ,
and the binary entropy function h(·) has derivative greater than one in the region (0, 14 ], we get

ξ := h(pA)− h(pR) > pA − pR > ϵ2/4.

By corollary 6, there is a transmission scheme (Encsd,Decsd) for the wiretap channel (BSCpR , BSCpA)
with correctness/secrecy upto O(2−λ) and parameters

� Encoding length: n ≤ max
(
poly 1

2
(16
ϵ2
), λ2, 704λ

ϵ4

)
;

� Message length: b ≥ ( ϵ
2

16 −
2
λ)n;

� Seed length: k = (1− h(pA) +
3ξ
4 )n.

Recall that for this scheme, we have secrets of length b, each shareholder gets a share of length n,
and the public share is of size n + k. Note also that n, k, b depend only the thresholds α, β and
not on the weights themselves. Thus, we get a scheme where the share sizes are independent of the
weights.

When the gap ϵ = β−α is a constant, the share sizes are just a constant factor larger than the
secret size b. As the gap gets smaller, the share sizes grow as a polynomial in 1/ϵ, but it is a rather
large polynomial (at least quartic, with coefficients in the hundreds). To do better, we explore in
the next section a different instantiation of our blueprint, using (quantized) additive Gaussian noise
channels.

6 WSS from AWGN Wiretap Channels

6.1 Background

6.1.1 Additive White Gaussian Noise Channels

Additive white Gaussian noise channels (AWGN) communicate real numbers rather than bits. For
each symbol x ∈ R transmitted over the channel, the received symbol is y = x + e (addition over
the reals), where e is a zero-mean Normal random variable. The variance σ2 of e is the noise level
of the channel.

Symbols transmitted over the channel are chosen subject to some power constraint, specifically
their (expected) square is bounded by the power parameter P of the sender. (For example we could
use ±

√
P to encode bits.) The quality of the channel is determined by the ratio between the power

and the noise, called the signal-to-noise ratio: SNR = P/σ2. 10 Below it will be convenient to fix
the power to P = 1 and set the variance accordingly. We denote the AWGN channel with variance
σ2 (and power P = 1) by AWGNσ2 : x 7→ x+N (0, σ2). The capacity of this channel (denoted c(σ)
below) is

c(σ) := capacity(AWGNσ2) = ln

(
1 +

1

σ2

)
.

(The general formula is ln
(
1 + P

σ2

)
but we are fixing P = 1.) There are known constructions

of error-correcting codes with efficient decoding for the AWGN that approach capacity, see for

10Clearly, scaling P and σ2 by the same factor has no effect on the channel quality.
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example [EZ04, LYLW19]. AWGN codes can achieve somewhat better performance than BSC
codes, since they use “soft decoding” vs. the “hard decoding” that’s inherent in BSC code. To the
best of our knowledge, however, this improvement has little effect on their asymptotic behavior.11

For our purposes, we therefore only assume the following parameters, which are the same as we
have for the BSC case:

Assumption 9. For any σ ∈ R and slackness parameter ν < c(σ), there exists a code for AWGNσ2

with rate c(σ)− ν, block length n = poly(1/ν) (for some polynomial), error probability exp(−
√
n),

and decoding complexity polynomial in n.

6.1.2 AWGN Wiretap Channels

Tyagi and Vardy described in [TV14] a modular construction (in the same spirit as [BTV12]) that
combines AWGN codes with randomness extractors. If the underlying code approaches the receiver
channel capacity, then the Tyagi-Vardy scheme can be made to approach the secrecy capacity of
the wiretap channel. A different approach for a secrecy-capacity-approaching schemes was provided
by Liu et al. [LYL18].

These AWGN constructions may be practically more efficient than their BSC counterparts, but
as far as we know the improvement has little effect on their asymptotic behavior. We therefore
assume the following (which is a counterpart of corollary 6):

Assumption 10. For an AWGN wiretap channel (AWGNσ2
r
, AWGNσ2

a
) with 0 ≤ σr < σa, denote

ξ := c(σr)− c(σa). There exists a seeded wiretap transmission scheme (Encsd,Decsd) with security
parameter λ and

� Encoding size n = max
(
poly(1ξ ), λ

2, O( λ
ξ2
)
)
;

� Seed size k = (c(σa) + Θ(ξ))n = (c(σr)−Θ(ξ))n; and

� Message space {0, 1}b, b ≥ (Θ(ξ)− 2
λ)n;

such that

� For all m ∈ {0, 1}b, Pr[Decsd(AWGNσ2
r
(Encsd(m))) = m] ≥ 1− 2−λ;

� For all m,m′ ∈ {0, 1}b,

SD
(
(sd, AWGNσ2

a
(Encsd(m))), (sd, AWGNσ2

a
(Encsd(m

′)))
)
≤ 2−λ.

6.2 Our Construction

In fig. 6 we show how to use the wiretap scheme from assumption 10 to get an (α, β)-ramp WSS
for given weights w1, w2, . . . , wN and thresholds 0 < α < β < 1. This is more or less a direct
application of our blueprint, except that we need to describe how to quantize the various real
numbers to finite precision.

This construction is essentially an instance of the blueprint from fig. 3, instantiated over the real
numbers, using the noise distributions Dw = N (0, wj/W ) and the wiretap scheme from corollary 6

11It may mean smaller required block-length for the same gap-to-capacity, but the dependence on the gap is still
polynomial.
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Parameters:
Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1, security parameter λ.

� Let W :=
∑

i∈[N ]wi, σr =
√
1− β, and σa =

√
1− α.

� Let (Enc,Dec) be as in assumption 10 for the wiretap channel (AWGNσ2
r
, AWGNσ2

a
), with

parameters n, k, b.

� Let η ∈ N be a quantization parameter, to be determined below.

Sharing a secret s ∈ {0, 1}k:

1. ∀j ∈ [N ], set σj :=
√
wj/W , draw e′j ← N (0, σ2

j )
n. If ∥e′j∥∞ > λ then abort.

Else round it to precision 2−η to get ej := ⌈e′j⌋2−η and send to party j;

2. Draw sd← {0, 1}k \ {0k} and set g :=
⌈
Encsd(s)−

∑
j∈[N ] e

′
j

⌋
2−η

. (Note that the summa-

tion is done on the original e′j ’s, and only the result is rounded.)

Abort if ∥g∥∞ > λ, else publish g and the seed sd.

Reconstructing the secret by a qualified set S:
Set g′ = g +

∑
j∈S ej and output Decsd(g

′).

Figure 6: Weighted secret sharing from additive white Gaussian noise wiretap channels.

for (AWGNσ2
r
, AWGNσ2

a
). (As before it is clear the construction is noise-monotone since the

underlying error-correction codes are).
The slight deviations from the blueprint, is that the dealer aborts if the errors are too big, and

that the various quantities are rounded. For the first aspect, we note that σj ≤ 1 for all j (and
even their sum is less than one), therefore the abort probability is exponentially small in λ. The
effects of rounding are analyzed in section 6.3 below, but first we prove that otherwise we would
get all the conditions that we need.

That is, we consider an idealized protocol (that cannot be implemented) where we remove
the rounding steps and use all the quantities with infinite precision We prove that in that case,
for any qualified S and unqualified T , the corresponding channels satisfy CS ⪯ AWGNσ2

r
and

CT ⪰ AWGNσ2
a
.

Lemma 11. With the parameters as set in fig. 6, but excluding the rounding steps, we have:

(A) For every subset S ⊆ [N ] with
∑

j∈S wj ≥ βW , we have CS ⪯ AWGNσ2
r
where CS : x 7→

x+
∑

j /∈S N (0, σ2
j ).

(B) For every subset T ⊆ [N ] with
∑

j∈S wj ≤ αW , we have CT ⪰ AWGNσ2
a
where CT : x 7→

x+
∑

j /∈T N (0, σ2
j ).

Proof. These properties follow by definition, due to the additive nature of Normal random variables.

Indeed, for every set J ⊆ [N ] (qualified or not), denote σJ :=
√∑

j /∈J σ
2
j . Then

∑
j /∈J N (0, σ2

j ) =

N
(
0, σ2

J), and the corresponding channel is CJ : x 7→ x+N (0, σ2
J).
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For a qualified set S we have
∑

j∈S wj/W ≥ β and therefore σ2
S ≤ 1 − β = σ2

r and CS ⪯
AWGNσ2

r
. Similarly, for an unqualified set T we have

∑
j∈T wj/W ≤ α and therefore σ2

T ≥ 1−α =

σ2
a and CT ⪰ AWGNσ2

a
.

6.3 The Effect of Quantization

As seen in fig. 6, a dealer must round all e′j to precision 2−η. The security of the protocol outlined
in fig. 6 still holds with rounding though.

Lemma 12. If an adversary can break the protocol outlined in fig. 6, an adversary can break the
Gaussian Wiretap Channel.

Proof. If an adversary could break the security of the protocol with attack A, then an adversary
could recover the secret from an unqualified set, J ⊆ [N ], when the dealer does not round. This
can be done by the adversary trivially rounding all e′j , for all j ∈ J , and then use A to recover the
secret. By lemma 11, we can see that the security of the protocol without rounding is equal to that
of the Gaussian wiretap channel.

Lemma 13. Correctness can be unaffected when η = λ+ logN .

Proof. Rounding one share e′j may induce an error of up to 2−η. So, for any set S ⊆ [N ] there is at

most N2−η error. Thus, we have at most N · 1
N · 2

−λ = 2−λ error. Then, we note that the variance
of noise increases by at most 2−2λ. Let Y be the random variable associated with the summed
quantization error and X be the random variable associated with a sample of N (0, σ2).

Then,

V [X + Y ] = E
[
(X + Y )2

]
+E [X + Y ]2

= E
[
(X + Y )2

]
= σ2 + 2E[XY ] +E[Y ]2

≤ σ2 + 2
∑
x,y

xyPr[X = x] + 2−2λ

≤ σ2 + 2 · 2−λ
∑
x,y

xPr[x] + 2−2λ = σ2 + 2−2λ.

Thus, if the decoder works with 2−2λ higher noise variance, the decoder should still be able to
decode the quantized shares.

6.4 Performance Characteristics of This Construction

As described in fig. 6, the real numbers used in this scheme are all smaller than λ and use η
bits of precision to the right of the binary point. Hence, the total size of the individual shares is
n(η+log λ), and the public share is of size k+n(η+log λ). Setting η = λ+logN as in section 6.3,
we therefore get share sizes O(n(λ + logN)) for secrets of size b = Ω(n) bits, regardless of the
weights.

The code-length n depends polynomially on the security parameter λ and on 1/ϵ (where ϵ :=
β − α). For AWGN we can get ξ = c(pr) − c(pa) = Θ(ϵ) (vs ξ = Θ((β − α)2) for BSC), since do
not need the scale-down factor γ. Hence, we get better polynomial dependence on β − α, even if
we don’t take into account the better rates of AWGN codes as compared to BSC codes with the
same power. On the other hand, the presence of rounding errors means that the share sizes have
some dependence on N , to the tune of a logN multiplicative factor.
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6.5 Discussion: An Alternative Realization Using Discrete Gaussians

An Alternative to rounding Normal variables to finite precision would be to draw everything from
discrete Gaussian distribution of various parameters. This has an advantage of eliminating rounding
errors (and therefore the dependence on N). But to keep accuracy the parameters must be set
so that even the smallest Gaussian parameter weight is sufficiently larger than the smoothing
parameter of the underlying lattice (i.e. the precision), bringing in at least a logarithmic dependence
on the actual weights wi. This can be handled by pre-scaling all the weights to accuracy of (slightly
more than) 1/ϵ, but that will induce rounding errors again, and a (logarithmic) dependence on the
number of parties.

7 Conclusions

In this work, we study a relaxation for weighted secret sharing with a gap between the qualified
and unqualified sets, and described two different types of constructions, one based on rounding and
the other using a new connection to wiretap schemes. Both types have share size independent of
total weight, and dependent only the gap between qualified and unqualified sets. We expect that
our wiretap-based constructions can perhaps be improved, maybe using better codes. In particular
there is no reason that we know of why the AWGN construction cannot achieve linear dependence
on the gap, namely shares of size O(1/(β − α)).
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dependent analysis of the asymptotic behavior of channel polarization. IEEE Transac-
tions on Information Theory, 59(4):2267–2276, 2013.

[KMPS14] Daniel Kraschewski, Hemanta K. Maji, Manoj Prabhakaran, and Amit Sahai. A full
characterization of completeness for two-party randomized function evaluation. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 659–676. Springer, 2014.

[KMS16] Dakshita Khurana, Hemanta K. Maji, and Amit Sahai. Secure computation from
elastic noisy channels. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
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A Bound on Odd Number of Heads

Lemma 7. Let B1,B2, ...,Bt be independent Bernoulli random variables, and denote S :=
∑

j∈[t] Bj
and ϵ :=

∑
j∈[t] Pr[Bj = 1]. Then

Pr[S is odd] ∈ [ϵ− ϵ2, ϵ].

Proof. The upper bound follows immediately from the union bound:

Pr[S is odd] ≤ Pr[S ≥ 1] ≤
∑
j∈[t]

Pr[Bj = 1] = ϵ.

Once we have the upper bound, we can prove the lower bound by induction on t. For the base
case t = 1, we have S = B1 and therefore Pr[S is odd] = Pr[Bj = 1] = ϵ ≥ ϵ− ϵ2.

For the induction step, assume that both the upper and lower bounds hold upto t− 1 variables.
Let pt := Pr[Bt = 1] and also denote the (t− 1)-sum by S ′ =

∑t−1
j=1 Bj . Then we have

Pr [S is odd] = Pr
[
S ′ is even and Bt = 1

]
+ Pr

[
S ′ is odd and Bt = 0

]
≥ (1− (ϵ− pt))pt + ((ϵ− pt)− (ϵ− pt)

2)(1− pt) (By the inductive hypothesis)

= pt − ϵpt + p2t +
(
ϵ− pt − ϵ2 + 2ϵpt − p2t

)
−
(
(ϵ− pt)− (ϵ− pt)

2
)
pt

= ϵ− ϵ2 +
(
1− ϵ− 1 + 2ϵ− ϵ+ (ϵ− pt)

2
)
pt + (1− 1 + 1)p2t

= ϵ− ϵ2 + (ϵ− pt)
2pt + p2t ≥ ϵ− ϵ2.

Hence, the lower bound holds also for t.
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