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1 Introduction

This note specifies two instances of a hash function obtained from applying the Marvellous design
strategy [1] to a specific context. The context in question is native hashing in a STARK [2] Virtual
Machine such as Miden [9].

This context induces unique design constraints, which this specification addresses. The hash
function must be defined over the same field that the VM is defined over, which is the prime
field with p = 264 − 232 + 1 elements. One of the main use cases is Merkle tree hashing, and
so the hash function must support an interface for efficient two-to-one hashing. There are two
parameter sets, targeting security level 128 and 160, respectively.

2 Specification

The starting point is Rescue-Prime [8], and we assume the reader is familiar with this docment.
What is described here is the deviations from this standard. A complete reference implementation
in SageMath serves as a companion to this specification. It is available at https://github.com/
ASDiscreteMathematics/rpo.

2.1 Integer Parameters

Table 1 fixes some integer parameters. Additionally, this choice for p fixes α and α−1, which
are the exponents of the power maps in the forward and backward S-box layer, respectively (see
Fig. 1). Specifically, α = 7 and

α−1 = 10540996611094048183

= 10010010010010010010010010010001101101101101101101101101101101112 .
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Table 1: Integer parameters for the two instances of Rescue-Prime Optimized
prime field modulus p 264 − 232 + 1 264 − 232 + 1
security level λ 128 160
round number N 7 7
state size m 12 16
rate r 8 10
capacity c 4 6

2.2 Round Constants

The round constants are defined as follows:

• Start from the string RPO(%i,%i,%i,%i).

• Populate the wildcards “%i” with the ASCII decimal expansion of the integer parameters
p,m, c, λ, in that order.

• Use SHAKE256 to expand this ASCII string into 9 · 2 ·N ·m pseudorandom bytes.

• For every chunk of 9 bytes, compute the matching integer by interpreting the byte array
as as the integer’s base-256 expansion with least significant digit first.

• Reduce the obtained integer modulo p.

• Collect all such integers. The list of obtained field elements constitutes the list of round
constants.

The function get round constants of the reference implementation accomplishes this task.

2.3 MDS Matrix

The MDS matrix is circulant. Its first row is

[7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8]

for 128 bits of security, and

[256, 2, 1073741824, 2048, 16777216, 128, 8, 16, 524288, 4194304, 1, 268435456, 1, 1024, 2, 8192]

for 160.

2.4 Order of Operations within a Round

The operations within every half-round are reordered. The correct order is now:

1. MDS matrix

2. injection of constants

3. alpha or alpha-inverse S-box layer.

2



xα

xα

xα

x
1
α

x
1
α

x
1
α

M
D
S

M
D
S

old half-roundnew half-round

Figure 1: New versus old half-rounds.

2.5 Padding Rule

The padding rule makes a distinction depending on whether the length of the input is a multiple
of the rate r or not.

• The zero-length input is not allowed.

• If the input length is a multiple of the rate r, then

– Initialize all capacity elements to 0.

– No changes are made to the message.

• If the input length is not a multiple of the rate r, then

– Initialize the first capacity element to 1 and all others to 0.

– Append to the input a single 1 element followed by as many zeros as are necessary to
make the input length a multiple of the rate.

In either case the sponge methodology applies: absorb r elements from the input in between
applications of the permutation, until no input is left.

2.6 Overwrite Mode

In the absorb phase of the sponge construction, the state elements associated with the rate are
overwritten by the matching elements from the input chunk, rather than added into. Specifically,
if the state elements are s[0] through s[m− 1] and the input chunk is i[0] through i[r − 1] then
correct absorption is given by s[j] ← i[j] for all 0 ≤ j < r rather than s[j] ← s[j] + i[j] for all
0 ≤ j < r.

2.7 Indexation of State Elements

The state is divided into the capacity part, with indices 0 through c− 1, and the rate part, with
indices c through m − 1. After the last permutation is done, the digest is given by elements c
through c+ r/2− 1.

3 Test Vectors

The test vectors are generated by the method print test vectors from the reference imple-
mentation. For the sake of completeness, they are repeated here.
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3.1 128 Bits Instance

[ 0 ] −>
[1502364727743950833 5880949717274681448 162790463902224431 6901340476773664264]

[ 0 1 ] −>
[ 7478710183745780580 3308077307559720969 3383561985796182409 17205078494700259815]

[ 0 1 2 ] −>
[17439912364295172999 17979156346142712171 8280795511427637894 9349844417834368814]

[ 0 1 2 3 ] −>
[ 5105868198472766874 13090564195691924742 1058904296915798891 18379501748825152268]

[ 0 1 2 3 4 ] −>
[ 9133662113608941286 12096627591905525991 14963426595993304047 13290205840019973377]

[ 0 1 2 3 4 5 ] −>
[ 3134262397541159485 10106105871979362399 138768814855329459 15044809212457404677]

[ 0 1 2 3 4 5 6 ] −>
[ 162696376578462826 4991300494838863586 660346084748120605 13179389528641752698]

[ 0 1 2 3 4 5 6 7 ] −>
[ 2242391899857912644 12689382052053305418 235236990017815546 5046143039268215739]

[ 0 1 2 3 4 5 6 7 8 ] −>
[9585630502158073976 1310051013427303477 7491921222636097758 9417501558995216762]

[ 0 1 2 3 4 5 6 7 8 9 ] −>
[ 1994394001720334744 10866209900885216467 13836092831163031683 10814636682252756697]

[ 0 1 2 3 4 5 6 7 8 9 10 ] −>
[17486854790732826405 17376549265955727562 2371059831956435003 17585704935858006533]

[ 0 1 2 3 4 5 6 7 8 9 10 11 ] −>
[11368277489137713825 3906270146963049287 10236262408213059745 78552867005814007]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 ] −>
[17899847381280262181 14717912805498651446 10769146203951775298 2774289833490417856]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ] −>
[3794717687462954368 4386865643074822822 8854162840275334305 7129983987107225269]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ] −>
[ 7244773535611633983 19359923075859320 10898655967774994333 9319339563065736480]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ] −>
[ 4935426252518736883 12584230452580950419 8762518969632303998 18159875708229758073]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] −>
[14871230873837295931 11225255908868362971 18100987641405432308 1559244340089644233]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ] −>
[ 8348203744950016968 4041411241960726733 17584743399305468057 16836952610803537051]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ] −>
[16139797453633030050 1090233424040889412 10770255347785669036 16982398877290254028]

3.2 160 Bits Instance

[ 0 ] −>
[ 4766737105427868572 7538777753317835226 13644171984579649606 6748107971891460622 3480072938342119934]

[ 0 1 ] −>
[6277287777617382937 5688033921803605355 1104978478612014217 973672476085279574 7883652116413797779]

[ 0 1 2 ] −>
[ 3071553803427093579 12239501990998925662 14411295652479845526 5735407824213194294 6714816738691504270]

[ 0 1 2 3 ] −>
[ 4455998568145007624 18218360213084301612 8963555484142424669 13451196299356019287 660967320761434775]

[ 0 1 2 3 4 ] −>
[ 7894041400531553560 3138084719322472990 15017675162298246509 12340633143623038238 3710158928968726190]

[ 0 1 2 3 4 5 ] −>
[18345924309197503617 6448668044176965096 5891298758878861437 18404292940273103487 399715742058360811]

[ 0 1 2 3 4 5 6 ] −>
[ 4293522863608749708 11352999694211746044 15850245073570756600 1206950096837096206 6945598368659615878]

[ 0 1 2 3 4 5 6 7 ] −>
[ 1339949574743034442 5967452101017112419 824612579975542151 3327557828938393394 14113149399665697150]

[ 0 1 2 3 4 5 6 7 8 ] −>
[ 3540904694808418824 5951416386790014715 13859113410786779774 17205554479494520251 7359323608260195110]

[ 0 1 2 3 4 5 6 7 8 9 ] −>
[ 7504301802792161339 12879743137663115497 17245986604042562042 8175050867418132561 1063965910664731268]

[ 0 1 2 3 4 5 6 7 8 9 10 ] −>
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[18267475461736255602 4481864641736940956 11260039501101148638 7529970948767692955 4177810888704753150]

[ 0 1 2 3 4 5 6 7 8 9 10 11 ] −>
[16604116128892623566 1520851983040290492 9361704524730297620 7447748879766268839 10834422028571028806]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 ] −>
[ 243957224918814907 9966149007214472697 18130816682404489504 3814760895598122151 862573500652233787]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ] −>
[13414343823130474877 1002887112060795246 16685735965176892618 16172309857128312555 5158081519803147178]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ] −>
[14614132925482133961 7618082792229868740 1881720834768448253 11508391877383996679 5348386073072413261]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ] −>
[ 6268111131988518030 17920308297240232909 17719152474870950965 14857432101092580778 5708937553833180778]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ] −>
[11597726741964198121 1568026444559423552 3233218961458461983 9700509409081014876 7989061413164577390]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ] −>
[11180580619692834182 16871004730930134181 17810700669516829599 13679692060051982328 10386085719330760064]

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ] −>
[ 6222872143719551583 3842704143974291265 18311432727968603639 12278517700025439333 7011953052853282225]

4 Motivation

4.1 Circulant MDS Matrix

Rescue-Prime is secure when instantiated with any MDS matrix. Therefore, a circulant MDS
matrix such as the one proposed by Polygon Zero may be chosen instead of the one defined by
the specification. The obvious questions are

1) Is the proposed matrix really MDS?

2) Does the structure enable faster computation of matrix-vector products?

4.1.1 MDS Test

As for question (1), we were granted access to Polygon Zero’s MDS test procedure and were able
to verify the correctness of this function. As a result, we are confident that the circulant matrices
specified above are in fact MDS.

In the interest of disseminating science, we present a self-contained description of this al-
gorithm here. Credit for this function goes to Hamish Ivey-Law from Polygon Zero [7].

The key insight is that the standard cofactor expansion method for computing determinants
induces a dependency relation on intermediate computation results. The resulting graph is
directed and acyclic. As a consequence, it allows for a dynamic programming approach.

Specifically, the dependency relation is this: to compute the determinant of a (k + 1) ×
(k + 1) matrix, you need to select a row or column and combine it with the (k + 1)-many
k × k determinants of minors that do not cover that row or column. Therefore, if you have
the determinants of all k × k submatrices, computing the determinants of all (k + 1) × (k + 1)
submatrices is straightforward.

This observation suggests the following strategy: Compute the determinants of all 2 × 2
submatrices. Use those values to compute the determinants of all 3 × 3 submatrices. And so
on until the final dimension has been reached. For every computed determinant, verify that its
value is nonzero.

This method tests a matrix for hyperinvertibility, which is the property that every square
submatrix is invertible. Hyperinvertibility is equivalent to MDS. The next lemma and proof are
folklore knowledge.

Lemma 1. A matrix is hyperinvertible iff it is MDS.
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Proof. Hyperinvertibility ⇒ MDS. Let M be an m × m hyperinvertible matrix. If there
is nonzero a codeword (x|xM) whose Hamming weight is less than m + 1, then HW(xM) <
m+1−HW(x). Let x̄ denote x after dropping the zeros, and M̄ the HW(x)×m matrix whose
corresponding rows are dropped. Clearly, x̄M̄ = xM and so HW(x̄M̄) < m + 1 − HW(x).
Equivalently, x̄M̄ has to contain at least HW(x) zeros. Therefore, some HW(x) × HW(x)
submatrix of M̄ and of M sends x̄ to 0, which can only happen if it is singular, contradicting
the assumption that M is hyperinvertible.

MDS ⇒ hyperinvertibility. Let C ⊂ F2m be an MDS code of dimension m and (I|M) its
systematic generator matrix. Then C = {(x|xM) |x ∈ Fm}. If M is not hyperinvertible, then
some square k× k submatrix M̃ is singular. Then build a codeword as follows. Set x to a (left-)
kernel vector of M̃ in those coordinates that correspond to M̃ , and to 0 in other coordinates.
The codeword (x|xM) ∈ C has at least m − k zeros in the first half and at least k zeros in the
second half, so its Hamming weight is at most m, contradicting the assumption of C being MDS.
□

To find a suitable circulant MDS matrix, it suffices to sample the first row from a suitable
distribution, test the resulting circulant matrix for hyperinvertibility, and repeat if it does not
pass the test.

4.1.2 Fast Multiplication

As for question (2), the answer is in the affirmative. Let Rp =
Zp[X]

⟨Xm−1⟩ be the ring of polynomials

with multiplication modulo Xm − 1. There is an isomorphism between the elements of Rp and
circulant m×m matrices over Zp given by

a0 + a1X + a2X
2 + · · ·+ am−1X

m−1 ↔


a0 am−1 · · · a1
a1 a0 a2
...

. . .
...

am−1 am−2 · · · a0

 . (1)

A fast way to multiply polynomials moduloXm−1 translates to a fast circulant matrix times vec-
tor multiplication procedure. We describe below two methods for fast polynomial multiplication
modulo Xm − 1.

Note that the coefficient vector of the polynomial corresponds to the first column of the
matrix, and not the first row. To translate between row and column, one needs to reverse the
entire vector except for the element at the first position.

4.1.3 Karatsuba-based

Karatsuba multiplication [6] splits the multiplication of two polynomials of degree at most n− 1
up into three multiplications of polynomials of degree n/2− 1, and applies that split recursively.
In the limit the procedure requires only O(n1.58) multiplications, compared to the n2 for the
schoolbook algorithm. While the number of multiplications is reduced, the number of additions
is increased. However, additions generally do not need to be followed up with modular reduction.

Let a(X) = al(X) +Xn/2 · ar(X) and b(X) = bl(X) +Xn/2 · br(X) with all of al(X), ar(X),
bl(X), and br(X) having degree at most n/2− 1. Let

• c0(X) = al(X)× al(X),

• c2(X) = ar(X)× br(X),

• c1(X) = (al(X) + ar(X))× (bl(X) + br(X))− c0(X)− c2(X);
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then c(X) = a(X)×b(X) = c0(X)+Xn/2 ·c1(X)+Xn ·c2(X). Note that c(X) can be calculated
with only 3 multiplications of polynomials of half the number of coefficients. Applying this
reduction recursively is what generates Karatsuba’s multiplication algorithm.

After using Karatsuba to find the product of two polynomials t(X) and s(X) that represent
the MDS matrix and state vector respectively, the next step is the reduction modulo Xm − 1.
This step is straightforward: just iterate over the coefficients of monomials Xm/2 through Xm−1

and add them to the coefficients of monomials X0 through Xm/2−1.

4.1.4 NTT-based

Using the same isomorphism as in the previous section and the fact that multiplication in the
ring Rp can be done efficiently using the Number Theory Transform (NTT) and its inverse, we
can get a O(n · log(n)) algorithm for circulant matrix times vector multiplication procedure.
More precisely, let ω be a primitive n-th root of unity and define the following Zp[X]-linear map:

NTTω :

{
Rp −→ (Zp)

n

a(X) 7→
(
a(ω0), a(ω1), · · · , a(ωn)

) (2)

which is just the evaluation of the polynomial a at the powers of ω, i.e. the n-th roots of
unity. This is called the Number Theory Transform (NTT ), and is a special case of the Discrete
Fourier Transform. Then, using the Chinese Remainder Theorem, one can show that NTTω is
an isomorphism of algebras. This means that, in particular, the following holds:

NTTω (a(X)× b(X)) = NTTω(a(X))⊙NTTω(b(X))

or equivalently
a(X)× b(X) = NTT−1

ω

(
NTTω(a(X))⊙NTTω(b(X))

)
where is ⊙ is the Hadamard product. This in particular yields the following algorithm:

Algorithm 1 Circulant matrix times vector multiplication using NTT

Require: n ≥ 1, a(X), b(X) ∈ Rp and ω is a primitive n-th root of unity.
Ensure: C(X) = a(X)× b(X)
α← NTTω(a(X))
β ← NTTω(b(X))
γ ← α⊙ β
C(X)← NTT−1

ω

(
γ
)

Given that in our current context the matrix we are multiplying with is fixed once and for
all, the previous algorithm can be optimized by pre-computing the NTT of the MDS matrix such
that in the end it will be necessary to compute only one NTT and one inverse NTT per input
vector b. Since the NTT and the inverse NTT can be computed in O(n · log(n)) using the Fast
Fourier Transform (FFT), the complexity of Alg. 1 is also O(n · log(n)).

4.2 Reduced Round Number

According to the specification [8], the Gröbner basis attack dominates for the range in which the
given parameters lie. Moreover, the number of rounds should be set to N = ⌈1.5 · min(l1, 5)⌉,
where l1 is the minimal number required to guarantee that the Gröbner basis attack has com-
plexity at least as large as the security parameter, and where the factor 1.5 is a security margin.
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For both the 128-bit variant and the 160-bit variant, the estimate for the complexity of the
Gröbner basis attack exceeds the security level as soon as N ≥ 3. Plugging this data point into
the formula gives rise to a recommended number of rounds of N = ⌈1.5 · 5⌉ = 8. Setting instead
N = 7 constitutes a 12.5% reduction in the number of rounds.

The reason why we feel confident recommending N = 7 is threefold:

• The relative reduction is still less than the relative security margin induced by the factor
1.5.

• The estimate of the Gröbner basis attack complexity according to the specification is still
more than double the security level. The estimate according to experiments run in the
course of this research project were lower, but still indicate that the security target is met
with margin.

• Since the publication of the original Marvellous paper [1], the first version of which appeared
online in 2019, there has been little progress in attacking either Rescue or Rescue-Prime.

4.3 Order of Operations for Better Folding

One of the costly steps in both the prover and the verifier of a STARK is the computation of the
vector of values of AIR transition constraint polynomials for two consecutive rows of the algebraic
execution trace (AET). The AIR constraints are evaluated point by point on the codewords that
represent the trace. The generated codewords are different from zero except in locations that
correspond to a row in the AET and its successor.

Rescue and Rescue-Prime have S-boxes that send x to x
1
α , where α is the smallest invertible

non-trivial power map degree. To avoid a very high degree AIR, the Marvellous paper [1]
introduced folding. This technique involves arithmetizing the evolution of the state forwards in
time for a part of the time step, and backwards in time for the remaining part. By traversing
over the x 7→ x

1
α map backwards, the degree of the resulting AIR drops to α. The equation is

found by equating two distinct expressions for the value of the same wire in the middle. The
corresponding polynomial is found by moving all terms to the left hand side.

xα

xα

xα

M
D
S

x
1
α

x
1
α

x
1
α

M
D
S

M
D
S

old folding strategy

new folding strategy

Figure 2: New versus old folding strategy.

The original folding strategy makes no distinction between the cost of multiplying a vector
by a matrix or by its inverse. The AIR polynomials have the same number of terms. However,
considerable effort was spent making the MDS matrix-vector multiplication fast, and it seems
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difficult to simultaneously make multiplication by the matrix’s inverse fast. This problem mo-
tivates an alternative folding strategy, namely one that avoids using the inverse MDS matrix
altogether.

The new folding strategy in forwards direction: one MDS, one injection of constants, one
x 7→ xα S-box layer, another MDS, and another injection of constants. Only the map x 7→ 1

α is
computed in backwards direction.

To argue why this re-arrangement does not affect security, consider moving the MDS matrix
and injection of constants of the very last step to the front. This move does not degrade security
according to the following heuristic argument. An attack that meaningfully distinguishes the
new permutation (that is, after the move) from a permutation selected uniformly at random, can
be translated to an attack on the old permutation (that is, before rearrangement) with a linear
overhead. Note that the round constants are sampled independently from those of Rescue-Prime.

4.4 Usability in a Stack-Based Virtual Machine

4.4.1 Indexation

As per § 2.7, the capacity elements are indexed 0 through c− 1 and the rate elements c through
m − 1. This choice stands in contrast to traditional indexing choices, which puts the rate part
first. While the choice of indexation is irrelevant from a security point of view (see below), this
present choice benefits usability in the context of a stack machine.

The unorthodox indexing scheme corresponds to putting the capacity part deep into the
stack, and the rate part in the shallow end. As a result, squeezing and absorbing corresponds to
operations that affect only the top of the stack. The capacity part of the sponge state does not
need to be touched except when the hasher is initialized and after hashing is finished.

To see why any choice of indexation is arbitrary from the point of view of security, observe
that any permutation can be absorbed into one or even all MDS matrices without changing the
fact that they are MDS. The end result is a permutation with an identical security argument.

4.4.2 Overwrite Mode

In many stack-based VMs, at most one element can be pushed onto the stack per clock cycle.
Therefore, first pushing elements onto the stack and then adding them into the sponge state
would require a large number of operations: in addition to push and add operations, stack
manipulation operations are also necessary to arrange the stack correctly. In the overwrite
mode, we can drop rate elements from the stack and then simply push the new rate elements
onto the stack. This procedure is strictly more efficient than the procedure when elements are
absorbed through addition as it requires no additional stack manipulation operations.

The security of overwrite mode has been analyzed e.g. in § 4.3 of the Sponge SoK [3].

4.5 Padding Rule

A sponge function is defined to absorb r elements from the input in between applications of the
permutation. When the message cannot be split into an integral number of r-element blocks,
a padding rule is used to determine how to handle the last block. To avoid trivial collisions, a
padding rule must be sponge compliant (see [3, Def. 1]). The Marvellous paper [1] extended “the
simplest padding rule” (see [3, Def. 2]) suggesting to append a single 1 element at the end of
the message, followed by the necessary amount of zeros to make the length a multiple of r. As
a result, the padded message is always longer than the message before padding.
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We are interested in an efficient two-to-one hashing as a primary optimization goal. Therefore,
we would like to avoid the costly overhead of an additional permutation call to accomodate the
padding. Inspired by [5] and similar to [4] we abuse the notion of domain separation.

We consider messages with length a multiple of r as belonging to the 0-domain, and all
other message as belonging to the 1-domain. As messages in the 0-domain have a predetermined
length that is already a multiple of r elements, no further padding is required. For messages in
the 1-domain, we apply “the simplest padding rule”. The domain is encoded in the first capacity
element which results in a 1-bit security loss because now the attacker has two domains in which
to search for “valid” preimages.

Acknowledgments This project was made possible through the financial support of Poly-
gon, for which the authors would like to express gratitude.
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