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Abstract—Using a novel circuit design, we investigate if the
modeling-resistance of delay-based, CMOS-compatible strong
PUFs can be increased by the usage of multiple delay lines.
Studying a circuit inspired by the Arbiter PUF, but using four
instead of merely two delay lines, we obtain evidence showing
that the usage of many delay lines does not significantly increase
the security of the strong PUF circuit. Based on our findings, we
suggest future research directions.

I. INTRODUCTION

Since the introduction of delay-based strong Physical
Unclonable Functions (PUFs), several generalizations of the
original design [1] have been considered to increase security
against modeling attacks. In this work, we add to this line of
research by considering delay-based strong PUFs composed
of multiple delay lines.

Our results extend the literature on the question if the
machine learning resilience of delay based PUFs can be
increased. The design [2] and attack [3], [4] of the Interpose
PUF as well as recent attacks on other ad-hoc composite PUF
designs [5] have demonstrated that composition of building
blocks (alone) may not be sufficient to stop modeling attacks.
In follow-up work, the PUF-G Framework [6] and attacks
based on neural networks [3] were proposed to assess the
security of composite designs. This work, on the other hand,
takes a different approach and studies if the machine learning
resilience of delay-based PUFs can be increased by modifying
the building block, as opposed to embedding it in a larger
design. We answer this question to the negative for the novel
concept of delay-based PUFs based on multiple delay lines
and give some insight in the modeling of delay-based PUFs.

In more detail, our contributions are as follows. First, we
present an extension of the Arbiter PUF design inherently
different from other Arbiter PUF variants present in the
literature. Second, we apply the Arbiter PUF’s additive
delay model to our design and demonstrate an exponential
blowup in required modeling parameters, which mitigates
modeling attacks based on this mathematical model. Third,
we empirically show that naive modeling attacks based on
general-purpose neural networks also cannot be used to model
our novel PUF design. Fourth, we extend our analysis to obtain
a model that circumvents the exponential blowup in parameter
count and demonstrate successful modeling attacks. We further
argue that this attack can be used as evidence that PUFs built

from multiple delay lines cannot mitigate modeling attacks
reliably. We conclude with suggestions for future research for
which we do not have evidence that our attack strategy will
work.

II. DESIGN

We consider Multiple Permuted Delay Line PUFs (MPDL
PUFs), a generalization of the Arbiter PUF to a circuit that
uses more than two delay lines. An MPDL PUF that has m
delay lines can have [log, m]| output bits o, ... 0[16g, m]—1
encoding the index of the fastest delay line. The fastest signal
is detected using a circuit similar to the arbiter element of the
Arbiter PUF. Alternatively, an MPDL PUF can have exactly
one output bit os which is defined as the XOR of above
output bits, i.e. 0, = ZEOgQ m1=1 .. In an MPDL PUF, the
delay lines can be switched by 2-to-2 multiplexer elements
controlled by challenge bits as well as by a fixed permutation
that is given by the design specification.

We first restrict our attention to a specific instance of
the MPDL PUF, the Beli PUF: It uses four delay lines,
i.e. two output bits op, o; and one output bits oy =
01 @ 02, respectively. To achieve a symmetric structure
on n input bits, we arrange Beli PUF into /2 blocks of
four delay lines, using two challenge bits each. For filling
in the permutations Pi,...,P, /s, we opt to use P =
(i0,11,%2,13) — (d0,%2,71,13). By exchanging the top two
lines with the bottom two lines, this permutation guarantees
that our design does not degenerate into a design reminiscent
of two Arbiter PUFs. Using the same permutation in all places
simplifies the analysis, but is without loss of generality. The
detailed response behavior of the Beli PUF is shown in Table I,
where we denote the delays on the four delay lines with
do, - . ., ds. The schematics of Beli PUF are shown in Figure II.

As we will see, none of the specifics of Beli PUF are
essential to our security analysis and results can be applied
to MPDL PUFs in general with little restriction.

For Beli PUF, and for MPDL PUFs in general, XOR-
versions similar to XOR Arbiter PUFs are conceivable, where
the same design is instantiated multiple times and the outputs
are defined as the XOR of output bits across the individual
instances. We denote such Beli PUFs with £ individual
instances 1-bit k-XOR Beli PUF and 2-bit £-XOR Beli PUF,
respectively.



TABLE I
OUTPUT OF BELI PUF WHERE 6; ; = sgn (d; — d;) AND * DENOTES “ANY
VALUE”, MEANING THAT THE OUTPUT VALUES IN THAT ROW ARE
INDEPENDENT OF THE VALUE IN THE STARRED COLUMN.

fastest outputs individual signals
o9 o1 os Bo1 6o OG0z 612 013 623
do 1 1 1 -1 1 -1 * * *
dy 1 -1 -1 1 * * -1 1 *
da -1 1 -1 * 1 * 1 * -1
ds -1 -1 1 * * 1 * 1 1
L a b b ¢y g
o [P i P P
0 ST : T
(0)_3 | B : Sl B
d ' :
1 3 d(ll)§
‘ O — —
dy'— I o <ot
(0) RN : s S
% STy 1 By
, A 1 1
B cy i B cy B [
Fig. 1. Beli PUF structure. Permutation network of the Beli PUF. TODO

change from 0-index to 1-index

III. MODEL BASED ON ADDITIVE DELAY MODEL

For MPDL PUFs, models based on the additive delay model
similar to the Arbiter PUF [7] can be derived. We do so
concretely for the Beli PUF.

Let dl(j ) denote the delay after the j-th stage (1 < j < 7/2)
on line [. Let ¢ € {—1,1}" be the challenge given to Beli PUF.
In the j-th stage, we use co;_1 for the top switch and cy; for
the bottom switch. We denote the internal delays of the switch
box that receives challenge bit ¢; with dT*,d2" dBB, dTB for
the delay introduced by a signal traveling from top input to
top output, bottom input to top output, bottom input to bottom
output, and top input to bottom output, respectively.
déj -1

As the top switch receives the input delays and

d(j _1) the challenge bit co;_; and has the internal delays
d2T]T 1s d]23] 1 dszB_l, dng_l, we obtain for the output delays of

the top switch that

1
déj) _ dOJ ) + d2] 1 (C2J—1 = _1)’
dgj 1) + d2] 1 <C2J*1 = 1)7
1
dgj) _ d17 ) + d?] 1 (egjm1=-1),
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Similar formulae can be derived for the bottom switch in the
j-th stage. By using the fact that for ¢; € {—1,1}, we have
¢ =-1 <= Y2+4+1lc; =0and ¢; =1 <= 12—
1/2¢; = 0, we can write the output delays of the j-th stage,

d(j ) d(j ) d(j ), dgj ) without case distinction as

d(]) (dj 1 dzj 1) IJ;Ci <d71 1, d2] 1)
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To obtain expressions for the delay in each line, we
iteratively replace dgj D in dgn). However, in contrast to the
similar procedure on the Arbiter PUF circuit, in the Beli PUF
model this leads to expressions of exponential length in n for
d,E") — dg»n). This behavior is caused by the introduction of the
permutation P. (If choosing P as the identity permutation, we
obtain two Arbiter PUFs, and the Arbiter PUF additive delay
model with a linear number of terms applies.)

To obtain a complete model of the Beli PUF from the
expressions for dy, d;, d2, ds, we define the delay differences
0;; = sgn(d; —d;) and observe that 6; ; = 1 if and
only if d; > d;. The output bits oy and o; can be
computed as a Boolean function of 02,00 3,01 2,013,023
and 01,003,01,2,013,023, respectively, based on the
observations on ¢;; given in Table 1. For output bit oo,
we find that dy has the lowest delay if and only if
max {—0p 2, —01 2,023} = —1 (“2 faster than 0 and 2 faster
than 1 and 2 faster than 3”). d3 has the lowest delay if and
only if max {—6p 3, —61,3, —02,3} = —1 (“3 faster than O and
3 faster than 1 and 3 faster than 2”). As og is —1 if and only
if either ds or ds has the lowest delay, we obtain 0; =

Lta (" +agr),

min { max {—6g,2, —01 2,023} ,max {—0g 3, —01 3, —023} }

A similar formulae can be derived for o1, as o1 is —1 if and
only if either d; or ds have the lowest delay. Finally, in the case
of 1-bit Beli PUF, the output can be modeled as o; = 0q - 01.

We empirically evaluated the length of the model
expressions using Sage for n < 18, generating expressions for
Beli PUF’s dy, dq, and dg — dy. (By symmetry, these findings
extend to other delay lines in Beli PUF as well.) In Figure 2,
a comparison of length of expressions with the Arbiter PUF
model and the algebraic maximum length is given.

Due to the exponential size, it is infeasible for an attacker to
recover all coefficients of this model and thus bars them from
using the Beli PUF additive delay model for modeling attacks,
which seemingly gives rise to hope that Beli PUF could resist
modeling attacks.

IV. IMPLEMENTATION AND METRICS

Beli PUFs can be implemented on FPGAs in a way similar
to the Arbiter PUF. However, to obtain the final response bit(s)
of the Beli PUF, a variant of the arbiter element is needed. One
option is to implement six arbiter elements, as motivated by
the model equations for oy and o; given above, where each
arbiter element determines the value of one of the involved
6;.;. Due to noise, it is possible that the determined 0; ; values
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do — di, as well as for the Arbiter PUF delay model, when written as
multivariate polynomial of the challenge.
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Fig. 3. Distribution of the bias of 1-Bit Beli PUF, 2-Bit Beli PUF, and Arbiter
PUF for 1000 instanes each. Each bias has been estimated by querying 1000
uniform random, noise-free challenges.

are contradicting, in which case the final response of Beli PUF
also may be noisy.

We compare the bias and bit sensitivity of Beli PUF
simulations with metrics obtained for the Arbiter PUF
simulation. As shown in Figure 3, the distribution of the bias
of Beli PUF and Arbiter PUF is close to unbiased with only
some variance. However, observe that the Arbiter PUF has a
little smaller bias variance. For both designs, the bias can be
further reduced by using an XOR-variant.

The bit sensitivity of Beli PUF is generally reduced and
below the desirable value of 1/2, which can be explained by
the “minimum” operation on the four delay lines, as changed
delay values in lines that do not involve the shortest delay
do not affect the PUF’s output. However, the bit sensitivity
shows less variance across the bit position on the challenge
than it is the case for the Arbiter PUF. The distributions of bit
sensitivities for different challenge bit positions is displayed
in Figure 4.

To measure the reliability of the Beli PUF, we first created
several FPGA-implementations and then chose the candidate
that showed the least bias across 100 tested chips. The
reliability has then been measured by generating 1 million
uniform random challenges and querying each FPGA on this
challenge set 11 times. The selected Beli PUF implementation
enjoys a high reliability of 98% on average, with little
variance.

V. GENERIC NEURAL NETWORK ATTACK

One way to avoid the exponential number of parameters in
the additive delay model of the Beli PUF is to use general-
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Fig. 4. Probability that flipping the input bit at the given index will change
the PUF’s output bit, as empirically estimated for 1-Bit Beli PUF and Arbiter
PUEF. Estimations are based on 100 simulated instances instances, where the
probability for each index was approximated using 1000 uniform random
noise-free challenges. The shaded area indicates the standard deviation interval
of the bit sensitivity.
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Fig. 5. Prediction accuracy of a general-purpose MLP modeling attack

on 1-bit Beli PUF, simulated with various challenge sizes for 10 instances
using noise-free CRP data sets of size IN. The shaded area indicates a 95%
confidence interval across attacked PUF instances.

purpose neural networks for modeling. Such networks have
been successfully used in the modeling attacks on XOR
Arbiter PUFs and on the Interpose PUF [7].

For attacking Beli PUF, we employed a Multilayer-
Perceptron (MLP) Model which uses the ReLU activation
function on its four hidden layers. Each hidden layer uses
256 neurons.

The resulting model accuracy indicates that, while Beli
PUFs of smaller challenge lengths such as 16 bit can be
modeled with high accuracy, the prediction accuracy of the
modeling attack for 24 bit Beli PUFs stays below 80%, as
shown in Figure 5. Increasing the training set size does not
improve the result, which indicates that the used generic model
is not suitable to efficiently model the Beli PUF.

For comparison, similar neural network attacks on 4-XOR
64-bit Arbiter PUFs require merely 150,000 CRPs to achieve
near-perfect prediction accuracy.

VI. EFFICIENT MODELING ATTACK

In contrast to the generic attack, here we motivate an attack
based on a variant of the physically inspired Beli PUF model
(Section §IV). While we demonstrate the attack specifically
for the Beli PUF design, the idea is applicable to all MPDL
PUFs.

In any MPDL PUF, the paths the signals take through the
circuit are fully defined by a given challenge. For a given path
P;, the total signal delay can be computed from the physical
parameters d; *,d; >, dPT, dPP as d; = > (x.5)ep ax.
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Fig. 6. Accuracy obtained when attacking the 1-bit Beli PUF, 2-bit Beli
PUF, and XOR APUF. For each combination of challenge length n, number
of CRPs N, number of XORs k, and PUF type, we ran at least 10 attacks
with individual PUF simulation and attack initialization each. The accuracy
shown is evaluated on an independent 1,000 CRPs test set. The shaded area
indicates a 95% confidence interval across attacked PUF instances.

This computation can be formalized as a dot product of
a delay-indicator vector z; € {0,1}4", derived from the
challenge c using the design specification of the circuit, as
d; = {(d,z;), where d is a list of all 4n physical parameters,
d= (leT,drer, e, d3 T ,dEB). This enables us to write
all signal delays of the MPDL PUF as a function linear in the
space of the the physical parameters. Using this observation,
we can avoid the exponentially long model equations of
Section §III. To model the Beli PUF response, we then use

0o = sgn (min {ds, d3} — min {dy,d; }),

01 = sgn (min {dy, ds} — min {dy,d2}),
0s = sgn (min {dy, d2} — min {do, ds}) .

and

These equations allow us to define a neural network that
is able to model Beli PUF. Given the delay-indicator vectors
derived from the challenges, this network can be trained to
closely model Beli PUF responses.

Like done in attacks on the XOR Arbiter PUF, attacks on
XOR Beli PUFs can be applied by adjusting the model to
compute the product of the individual model output bits.

To confirm the validity of this Beli PUF model, we collected
100,000 CRPs from a FPGA implementation of a 1- and
2-bit Beli PUF with 64 challenge bits and trained models
as outlined above, using 99,000 CRPs. The resulting models
showed correct prediction in roughly 88% of cases on a test
set of 1,000 CRPs. This provides practical evidence that our
model and implementation behave similarly.

Using Beli PUF simulations, we ran attacks on 1-bit and 2-
bit Beli PUFs as well as their XORed variants. As a baseline
for comparison, we run the state-of-the-art attacks on XOR

Arbiter PUFs, implemented using the same software stack. All
attacks were conducted for 32, 64, 128, and 256-bit challenges.

The detailed results of our attacks are shown in Figure 6.
Compared to the XOR Arbiter PUF baseline, our attacks on
1-bit and 2-bit Beli PUF generally show an increased data
complexity. As expected, the results also indicate that slightly
more data is required to train a model for the 1-bit Beli PUF,
compared to its 2-bit version. Nevertheless, while differences
in the data complexity exist, our results show that the Beli
PUF cannot be expected to achieve a significant advantage
over the attacker in terms of modeling attacks.

Reviewing our modeling and attack methodology, there is
no indication that this kind of modeling attack strategy cannot
be applied to other MPDL PUFs. Our results thus show that
PUFs based on multiple delay lines cannot be expected to
significantly increase security compared to XOR Arbiter PUFs.

VII. FUTURE WORK

The successful modeling attack in this paper demonstrates
that adding multiple delay lines to a delay-based strong PUF
design alone cannot increase security against modeling attacks.
Hence, exploring other variations is necessary. In this work,
we did not consider adding delay line switches which are
controlled by internally generated bits, as done in the Feed-
Forward version of the Arbiter PUF [1]. Seeing if Feed-
Forward bits together with multiple delay lines can increase
modeling attack resilience remains an open question.

We also did not consider composite PUF designs that use
MPDL PUFs as building blocks and may benefit from the
adapted bit sensitivity or high reliability. To facilitate future
work, all source code used in this paper will be published
under a free license.

REFERENCES

[1] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas,
“Identification and authentication of integrated circuits,” Concurrency
and Computation: Practice and Experience, vol. 16, no. 11, pp.
1077-1098, Sep. 2004. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.805

[2] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Riihrmair, and
M. van Dijk, “The Interpose PUF: Secure PUF Design against State-of-
the-art Machine Learning Attacks,” JACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 243-290, Aug. 2019. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8351

[3] N. Wisiol, C. Mihl, N. Pirnay, P. H. Nguyen, M. Margraf, J.-P.
Seifert, M. van Dijk, and U. Riithrmair, “Splitting the Interpose PUF: A
Novel Modeling Attack Strategy,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 97-120, Jun. 2020. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8584

[4] J. Tobisch, A. Aghaie, and G. T. Becker, “Combining Optimization
Objectives: New Modeling Attacks on Strong PUFs,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, pp. 357-389, Feb.
2021. [Online]. Available: https://tches.iacr.org/index.php/TCHES/article/
view/8798

[5] J. Delvaux, “Machine-Learning Attacks on PolyPUFs, OB-PUFs,
RPUFs, LHS-PUFs, and PUF-FSMs,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 8, pp. 2043-2058, Aug. 2019.

[6] D. Chatterjee, D. Mukhopadhyay, and A. Hazra, “PUF-G: A CAD
Framework for Automated Assessment of Provable Learnability from
Formal PUF Representations,” in 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), Nov. 2020, pp. 1-9.

[7]1 N. Wisiol, K. T. Mursi, J.-P. Seifert, and Y. Zhuang, “Neural-Network-
Based Modeling Attacks on XOR Arbiter PUFs Revisited,” Tech. Rep.
555, 2021. [Online]. Available: https://eprint.iacr.org/2021/555


https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.805
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.805
https://tches.iacr.org/index.php/TCHES/article/view/8351
https://tches.iacr.org/index.php/TCHES/article/view/8584
https://tches.iacr.org/index.php/TCHES/article/view/8798
https://tches.iacr.org/index.php/TCHES/article/view/8798
https://eprint.iacr.org/2021/555

	Introduction
	Design 
	Model Based on Additive Delay Model
	Implementation and Metrics 
	Generic Neural Network Attack
	Efficient Modeling Attack  
	Future Work
	References

