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Abstract. Nakamoto’s longest-chain consensus paradigm now powers the bulk of the world’s cryp-
tocurrencies and distributed finance infrastructure. An emblematic property of longest-chain consensus
is that it provides probabilistic settlement guarantees that strengthen over time. This makes the exact
relationship between settlement error and settlement latency a critical aspect of the protocol that both
users and system designers must understand to make informed decisions. A recent line of work has
finally provided a satisfactory rigorous accounting of this relationship for proof-of-work longest-chain
protocols, but those techniques do not appear to carry over to the proof-of-stake setting.
This article develops explicit, rigorous settlement bounds for proof-of-stake longest-chain protocols,
placing them on equal footing with their proof-of-work counterparts. Our techniques apply with some
adaptations also to the proof-of-work setting where they provide improvements to the state-of-the-art
settlement bounds for proof-of-work protocols.

1 Introduction

Satoshi Nakamoto introduced the longest-chain consensus paradigm in the 2008 Bitcoin whitepaper [Nak08].
Since its original proposal, the framework has been extended and generalized, and variants of longest-chain
protocols now support the bulk of the world’s cryptocurrencies and decentralized finance infrastructure.

The fundamental dynamics of the algorithm—in particular, the rate at which participants converge to
achieve consensus—depend primarily on three critical parameters: rh, the rate at which honest players are
elected to advance the system; ra, the rate at which adversarial players are elected to advance the system;
and ∆, the maximum network delay. Despite the visible prominence of the algorithm and over a decade
of concerted effort by the research community, the relationship between these critical parameters and the
resulting consensus guarantee is still not well understood.

The last few years have witnessed rapid progress on this question. In 2020, two independent arti-
cles [DKT+20, GKR20] precisely determined the region of triples (rh, ra, ∆) for which longest-chain con-
sensus eventually provides consistency, which is to say that participants in the system eventually converge
on a finite prefix of the ledger. These results apply to both proof-of-work and proof-of-stake longest-chain
protocols and, somewhat surprisingly, prove that their fundamental “regime of security” is the same.

Practice, however, demands explicit settlement guarantees, as blockchain users in the real world must be
able to determine when transactions in the ledger have in fact settled with known risk. Likewise, deployed
systems must explicitly calibrate block production rate against (estimated) network delays to yield reasonable
settlement latency. Such explicit settlement guarantees in the proof-of-work setting have been the subject of
an active thread of research [LG19, LGR21, GRR22]. These works have succeeded in providing satisfactory
results for proof-of-work systems with conservative parameters similar to those used in Bitcoin. But significant
gaps still remain for more aggressive parameters such as those used in Ethereum (before its switch to proof
of stake). Furthermore, very little is known about the proof-of-stake setting, where the only explicit result
makes the unrealistic assumption that the network has zero delay (∆ = 0) [KQR20]. This is particularly
concerning as it seems that in recent years we have been witnessing the sentiment of preference for PoS
over PoW due to the environmental impact of PoW, and longest-chain PoS represents a fair share of PoS
deployments.

The main purpose of this article is to develop more precise settlement bounds for proof-of-work and proof-
of-stake longest-chain protocols in the presence of network delay. Our new technique provides improvements



over the state-of-the-art settlement bounds for proof-of-work longest-chain protocols [GRR22]; but more
importantly, it also yields the first concrete settlement bound for proof-of-stake longest-chain, placing them
on equal footing with their proof-of-work counterparts. Finally, our analysis in both cases is the first to
apply to the entire security regime: in particular, if longest-chain consensus possesses eventual security for a
triple of parameters (rh, ra, ∆), our approach provides explicit bounds of security that converge exponentially
quickly.

Our techniques and results apply to a wide family of longest-chain protocols, including all proof-of-work
protocols following Nakamoto’s Bitcoin white paper [Nak08] and all proof-of-stake protocols axiomatized
in [KQR20] (such as variants of Ouroboros [KRDO17,DGKR18,BGK+18,BMRS20] and Snow White [DPS19]).
Deployed systems based on these protocols include Bitcoin [Nak08], Ethereum,4 Dogecoin, Cardano,5 Polka-
dot,6 and Mina.7

Our techniques. Our analysis provides a family of recurrence relations that determine, for a fixed transcript of
the leader-election lottery during the protocol’s execution, a sufficient condition for transaction settlement in
any execution with this lottery outcome. Coupling this with the stochastic process that governs leader election
yields an efficient procedure for computing explicit upper bounds on settlement failure probabilities. An
analogous procedure can provide lower bounds on settlement failure probabilities which we use to demonstrate
how tight the upper bounds are.

It is most convenient to discuss our approach in the context of recent related works, viz. [DKT+20,
GKR20, GRR22]. The main difficulty in the analysis accounting for network delay is that honest players
may fail to see each other’s latest messages (blocks) and end up undermining each other’s contributions to
security. Tackling it requires the analysis of the complex sequencing of honest and adversarial blocks when
a sequence of elected leaders repeatedly fall within ∆ time of a previous leader. The analysis is particularly
difficult during “close races”, i.e., when the adversary may possess a private chain that is about as long as
the public chain. In such circumstances, honest leaders may be manipulated to contribute to the adversary’s
(now revealed) chain. Roughly speaking, the articles that settled the security regime [DKT+20, GKR20]
did so by focusing on the more tractable case where the protocol is not in a close race, which is sufficient
to characterize the asymptotic behavior of the protocol. During close races, they are content with giving
excessive advantages to the adversary, which spoils any chance of concretely obtaining tight and practical
bounds.

The recent article [GRR22] that achieved practical settlement estimates for the proof-of-work setting
made progress on exactly this issue with a new method of “deferrals.” Intuitively, time is divided into
periods of ∆ and message delivery is restricted to occur at the end of each ∆ period. The adversary is
allowed to either deliver a message at the end of a period or “defer” its delivery to the end of the next
period. This significantly simplifies the analysis as it reduces the large space of adversarial strategies to a
single choice per block: whether or not to defer it. Unfortunately, this method of deferrals is not applicable
in the proof-of-stake setting because a proof-of-stake adversary can produce as many blocks as it wishes from
a single leadership election success. In particular, an optimal deferral strategy may choose to defer a part of
same-success adversarial blocks, leading again to an unmanageably large strategy space and rendering the
previous simplified accounting impossible.

Our approach in this paper is, in some sense, the opposite of this previous work. Conceptually, our key
idea is to divide time into judiciously defined periods—called phases in the rest of the paper—that are
separated by ∆-long intervals of honest silence. This way, all honest players, when they execute the protocol
in the current phase, are aware of all honest messages (blocks) from all previous phases. As a result, the

4 https://ethereum.org/, prior to its shift to PoS in September 2022. The analysis also applies to currently deployed
Ethereum Classic (ETC) and PoW Ethereum (ETHW) blockchains. In the rest of the paper, we refer to all these
three instances together as “PoW-based Ethereum,” or simply Ethereum if no confusion can arise.

5 https://cardano.org/
6 https://polkadot.network/
7 https://minaprotocol.com/
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Fig. 1. Left: Cardano (PoS) block-based settlement failure for a 10% adversary and 2 seconds delay. Right: Ethereum
(PoW) block-based settlement failure for a 10% adversary and 2 seconds delay, and results from [GRR22] for com-
parison.

protocol can now be cleanly analyzed one phase at a time, without complicated interactions between phases
and without any need for deferrals. We show that the analysis for a phase can be handled by a careful
treatment of the “minimal honest depth,” corresponding to the minimal possible maximal-chain growth in
the phase. These techniques significantly simplify the combinatorial treatment of longest chain rules, and
aside from providing the first practical settlement bounds for the proof-of-stake setting, they also deliver
improved guarantees in the proof-of-work case.

Example results. Figure 1 shows some example results for both PoW-based Ethereum and Cardano (the
largest longest-chain PoS blockchain at the time of writing). We assume an adversary that controls 10% of
the total mining power or stake, and a network with maximum 2 seconds delay. Ethereum’s block interval
is around 13 seconds and Cardano’s block interval is 20 seconds. Our results for Cardano are within two
confirmation blocks of optimality. Specifically, with a confirmation depth of 15 blocks, we can bound the
settlement error probability at within 4.811 × 10−6 and 1.943 × 10−5. Furthermore, the settlement error
probability with 13 blocks is at least 2.143 × 10−5 (the lower bound), which is larger than the settlement
error upper bound at 15 blocks. Similarly, our results for PoW-based Ethereum are within three or four
confirmation blocks of optimality.

Additionally, our results allow us to compare for the first time the settlement speed of longest-chain
protocols based on PoW versus PoS. We provide such comparison in Figure 5 for Cardano’s parametrization,
quantifing the tradeoff between these two approaches.

2 Preliminaries and Model

Basic Notation. We use N to denote the set of natural numbers with zero, i.e., N = {0, 1, 2, . . .}. Throughout
this paper, we use the symbol ∆ ∈ N to denote the maximum delay of a message, expressed in slots. Most of
the notions defined below depend on ∆, but we keep this dependence implicit for the sake of lighter notation.
When we want to refer to maximum delay expressed in seconds rather than slots, in line with previous work
we use the symbol ∆r, where “r” stands for “real”.

2.1 Modeling Blockchains with Network Delay

Our modeling of the protocol and its execution environment adopts and extends the model from [GKR20,
GRR22] and applies to both PoW and PoS. We summarize the model here for completeness.
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A longest-chain protocol is carried out by a set of parties of two types: honest parties follow the protocol
and adversarial parties may deviate arbitrarily. The execution timeline is divided into consecutive discrete
short time intervals called slots. In each slot, each party evaluates a private lottery (implemented for example
using a cryptographic hash function for PoW or a verifiable random function [CM16] for PoS) to determine
whether she is eligible to act as a slot leader for that slot, which affords her the right to contribute to the
ledger by creating block(s). We use a characteristic string to indicate a summary of the outcomes of the
lottery in each slot.

More concretely, given an alphabet Σ = N×N, a characteristic string w = w1 . . . wn ∈ Σn is a sequence
of symbols over Σ. Intuitively, each symbol wi = (hi, ai) ∈ Σ indicates that hi honest parties and ai
adversarial parties were eligible slot leaders for slot i, based on their private lotteries. For a characteristic
string w = w1 . . . wn ∈ Σn where each wi = (hi, ai) ∈ N × N, we define #h(w) :=

∑n
i=1 hi and similarly

#a(w) :=
∑n
i=1 ai, i.e., the total number of honest and adversarial slot leaders over a sequence of slots

corresponding to w. Moreover, we sometimes make use of a similar quantity #[a](w) that denotes the number
of symbols in w with positive second coordinate, i.e.,

#[a](w) := |{i ∈ {1, . . . , n} | wi 6∈ N× {0}}| .

A longest-chain protocol calls for parties to exchange blockchains, each of which is an ordered sequence of
blocks beginning with a distinguished “genesis block,” known to all parties. When an honest party becomes a
slot leader, she always creates a single block, and follows the longest-chain rule which dictates that she adds
her block to the longest blockchain she has observed thus far; she also broadcasts the new block(-chain) to
all other parties. When an adversarial party becomes a slot leader, what he is allowed to do differs between
PoW and PoS. Intuitively, in PoW an adversarial success allows for creating a single block that extends
an arbitrary chain chosen by the adversary, while in PoS an adversarial success can be used to create any
number of blocks and hence extend any number of previously existing chains by one block. Naturally, the
adversary is not forced to immediately propagate his blocks, and can distribute them strategically.

More formally, let Ct denote the collection of all blockchains created by the end of slot t and let H(Ct)
denote the subset of all chains in Ct whose last block was created by an honest party. Set C0 = {G}, where
G denotes the unique chain consisting solely of the genesis block. The genesis block is considered “honest”;
thus H(C0) = C0. It is convenient to adopt the convention that C−t = H(C−t) = {G} for any negative integer
−t < 0. Then the protocol execution proceeds as follows. For each slot t = 1, 2, . . .:

– Initiate Ct := Ct−1 and H(Ct) := H(Ct−1).
– Given wt = (h, a) the following modifications are applied:
• The adversary must perform the following honest iteration exactly h times: select any collection of

chains V for which H(Ct−1−∆) ⊆ V ⊆ Ct. This is the “view” of the honest slot leader, who applies
the longest chain rule to V, selects the longest chain L ∈ V (resp. L ∈ V ∪ Ct−1 in PoS) where ties
are broken by the adversary, and adds a new block to create a new chain L′, which is added to Ct
and also H(Ct).

• If a > 0, the adversary may perform the following adversarial iteration exactly a times for PoW or
an arbitrary number of times for PoS: select a single blockchain C from Ct (in PoS, it must be from
Ct−1) and add a block to create a new chain C ′, which is added to Ct. H(Ct) remains unchanged.

Note that the synchrony assumption is reflected in the description of the honest iteration: the adversary
is obligated to deliver all chains produced by honest parties that are ∆ slots old, i.e., the set of chains in
H(Ct−1−∆).

Also note that the model grants the adversary to power to break ties in the longest-chain rule. Considering
that the adversary selects both the view V of each honest party and is empowered to break ties, the structure
of the resulting sequence of chains (that is, the directed acyclic graph naturally formed by the blocks) is
determined entirely by the adversary and the characteristic string.

We make several additional remarks. First, we permit the adversary to have full view of the characteristic
string during this process. In reality, a PoS adversary can only predict its own lottery successes, not those
of honest parties, while in PoW, neither successes are predictable. Hence our modeling here only makes
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the adversary stronger. Second, we have placed an implicit constraint on the adversary: the only means of
producing a new chain is to append a block (containing a proof of a slot leadership) to an existing chain.
In practice, this constraint is guaranteed with cryptographic hash functions. Third, we assume that the
distribution of slot leaders is impervious to adversarial tampering and, as in previous treatments, is fixed
throughout the analysis. This is motivated by the fact that settlement in deployed protocols takes place
at much smaller time scales than shifts in mining power or stake distributions. Lastly, the model does not
reflect attacks exploiting rational behaviors of parties, such as selfish-mining attacks [ES14], beyond simply
considering such parties corrupt.

2.2 Ledger Consensus

In the context of ledger consensus protocols (also referred to as blockchain [GKL15] or state machine repli-
cation [Sch90] protocols), one is usually interested in preserving two properties, consistency and liveness,
formulated in [Sch90, Lam19, GKL15]. Consistency means that once a block (or equivalently, a transaction
within it) is considered settled by some honest party, then it is present in the currently held chains of all par-
ties, and remains that way forever. In this work we consider the block-based settlement rule for longest-chain
consensus, where a party considers a block settled if it appears a particular number of blocks deep in the
longest chain currently known to that party. Block-based settlement is adopted in practice, and is generally
preferable to time-based settlement, as argued in [GRR22].

To describe consistency and liveness concisely under the longest-chain rule, we define the set of ∆-
dominant chains Dt ⊆ Ct in each time step t. The set Dt ⊆ Ct is determined entirely by Ct and H(Ct−1−∆):
namely, Dt is the set of all chains in Ct that are at least as long as the longest chain in H(Ct−1−∆). The
intuition behind this definition is that, in a time slot t, it is in principle possible for the adversary to
manipulate an honest party into adopting any ∆-dominant chain, as the adversary is only obligated to
deliver those chains in H(Ct−1−∆) and the chains in Dt are at least as long as those in H(Ct−1−∆).

Consistency for block-based settlement; with parameter k. A block B that is k blocks deep in some
chain in Dt is contained in every chain C ∈ Dt′ for all t′ ≥ t.

The goal of this paper is to bound (from both above and below) the probability that consistency is violated
as a function of the parameter k.

For completeness, we also mention the liveness property [GKR20], though it is not the focus of this paper.

Liveness; with parameter u. For any two slots t1, t2 > 0 with t1 + u ≤ t2, and any chain C ∈ Dt2 , there
is a time t′ ∈ {t1, . . . , t1 + u} and a chain C ′ ∈ H(Ct′) \H(Ct′−1) such that C ′ is a prefix of C.

3 Proof-of-Work Settlement

In this section we first showcase our approach in the more familiar PoW setting, where it provides tighter
results than state-of-the-art settlement bounds.

3.1 Proof-of-Work Blocktrees

We formally capture the above protocol dynamics by the combinatorial notion of a PoW tree. It is a variant
of the “fork” concept first considered for the proof-of-stake case in [KRDO17,DGKR18,BGK+18] and more
recently also employed for PoW-analysis [GKR20,BGK+20,GRR22].

Definition 1 (PoW tree). Let n ∈ N. A PoW tree for the string w ∈ Σn is a directed, rooted tree
F = (V,E) with a pair of functions

l# : V → {0, . . . , n} and ltype : V → {h, a}

satisfying the axioms below. Edges are directed “away from” the root so that there is a unique directed path
from the root to any vertex. The value l#(v) is referred to as the label of v. The value ltype(v) is referred to
as the type of the vertex: when ltype(v) = h, we say that the vertex is honest; otherwise it is adversarial.
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Fig. 2. A PoW tree F for the characteristic string w with ∆ = 1. Honest vertices are shown with double-struck
boundaries, while adversarial vertices are simple circles. Vertices are labeled with l#(·). The tree indicates a k-
consistency violation for k = 4 —given by the red and blue chains—in a circumstance where the simple private-chain
attack does not succeed: in particular, the tree constructs two alternate chains with disjoint suffixes of length 5,
while only three adversarial proofs of work are discovered over this period. We remark that F = Fd1 , since the last

symbol of w is (0, 0), and that Fd1 is obtained by removing the adversarial vertex with label 8. Thus len(Fd1) = 5,
this maximum length achieved by the blue chain. Note, then, that the two chains indicated in red and blue each have
advantage equal to zero, and both are dominant. Considering that these chains share no vertices after the root, they
witness β1(F ) ≥ 0 for the tree F and hence β1(w) ≥ 0 for the characteristic string w.

(A1) the root r ∈ V is honest and is the only vertex with label l#(r) = 0;
(A2) for any pair of honest vertices v, w for which l#(v) + ∆ < l#(w), len(v) < len(w), where len() denotes

the depth of the vertex;
(W3) the sequence of labels l#() along any directed path is non-decreasing;
(W4) if wi = (hi, ai) then there are exactly hi honest vertices and at most ai adversarial vertices in F with the

label i.

We will refer to PoW trees simply as trees when the context is clear. Unless explicitly stated otherwise,
throughout the paper we reserve the term “tree” for the above structure, as opposed to the underlying
graph-theoretic notion.

A PoW tree abstracts a protocol execution with a simple but sufficiently descriptive discrete structure.
Its vertices and edges stand for blocks and their connecting hash links (in reverse direction), respectively.
The root represents the genesis block, and for each vertex v, l#(v) and len(v) denote the slot in which the
corresponding block was created and the block’s depth, respectively. An example PoW tree is shown in
Figure 2, illustrating several of the concepts defined below.

It is easy to see the correspondence between the above axioms and the constraints imposed in the protocol
execution. In particular, (A1) corresponds to the trusted nature of the genesis block; (A2) reflects the fact
that given sufficient time, as needed for block propagation in the network, an honest party will take into
account the blocks produced by previous honest parties. Axiom (W3) reflects that the blocks’ ordering in
a chain must be consistent with the order of their creation and finally (W4) reflects that honest players
produce exactly one block per PoW success, while the adversary might forgo a block-creation opportunity.
Looking ahead, the labeling of the above axioms reflects that while (A1) and (A2) will apply universally to
PoW and PoS alike, axioms (W3) and (W4) are specific to PoW, and will be replaced for PoS analysis by
appropriate variations (S3) and (S4) in Section 4.

Definition 2 (PoW tree notation). We write F `Ww if F is a PoW tree for the characteristic string
w. When the setting is clear from context or not germane to the discussion, we drop the superscript and
simply write F ` w. If F ′ ` w′ for a prefix w′ of w, we say that F ′ is a subtree of F if F contains F ′ as
a consistently-labeled subgraph. A tree F ` w is public if all leaves are honest. The trivial tree, consisting
solely of a root vertex, is considered public. The public core of a tree F , denoted F , is the maximal public
subtree of F .

An individual blockchain constructed during the protocol execution is represented by the notion of a
chain, defined next.
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Definition 3 (Chains). A path in a tree F originating at the root is called a chain (note that a chain does
not necessarily terminate at a leaf). As there is a one-to-one correspondence between directed paths from
the root and vertices of a tree, we routinely overload notation so that it applies to both chains and vertices.
Specifically, we let len(T ) denote the length of the chain, equal to the number of edges on the path; recall
that len(v) also denotes the depth of a vertex. We sometimes emphasize the tree from which v is drawn by
writing lenF (v). We further overload this notation by letting len(F ) denote the length of the longest chain in
a tree F . Likewise, we let l#(·) apply to chains by defining l#(T ) := l#(v), where v is the terminal vertex on
the chain T . We say that a chain is honest if the last vertex of the chain is honest. For a vertex v in a tree
F , we denote by F (v) the chain in F terminating in v.

Definition 4 (Branches). For an integer ` ≥ 1 and for two chains T and T ′ of a tree F , we write T ∼` T ′
if the two chains share a vertex with a label greater than or equal to `. The set of all chains T ′ ∈ F such that
T ∼` T ′ is called the branch of T in F and denoted BF (T ; `); when ` can be inferred from context, we write
BF (T ).

Intuitively, T ∼` T ′ guarantees that the respective blockchains agree on the state of the ledger up to time
slot `. Looking ahead, the adversary can make two honest parties disagree on the state of the ledger up to
time ` only if she makes them hold two blockchains chains T 6∼` T ′.

Definition 5 (Tree trimming; dominance). For a string w = w1 . . . wn and some k ∈ N, we let wdk =
w1 . . . wn−k denote the string obtained by removing the last k symbols. For a tree F ` w1 . . . wn we let
Fdk ` wdk denote the tree obtained by retaining only those vertices labeled from the set {1, . . . , n − k}.
For convenience, we sometimes prefer to emphasize the remaining length of the string (resp. tree), and
denote by wme and Fme the m-symbol prefix of w and the corresponding tree, formally wme := wdn−m and

Fme := F dn−m. We say that a chain T in F is dominant if len(T ) ≥ len(Fd∆).

Observe that honest chains appearing in Fd∆ are those that are necessarily visible to honest players at
a round just beyond the last one described by the characteristic string. Correspondingly, the notion of a
dominant chain matches the use of this term in Section 2.1.

Looking ahead, our approach is to analyze phases that end with ∆ consecutive slots with no honest
successes. Hence, at the end of each phase the characteristic string has the form wx with x ∈ ({0} × N)∆.
We note the following fact.

Fact 1. For a characteristic string of the form wx, where x ∈ ({0}×N)∆, any tree F ` wx has the property
that len(Fd∆) = len(F ) and hence dominance follows simply from len(T ) ≥ len(F ).

Definition 6 (Honest depth h∆). For x ∈ {0, 1}∗, we define h∆(x) inductively so that h∆(ε) = 0,
h∆(x0) = h∆(x), and h∆(x1) = h∆(xd∆) + 1. We often overload h∆ to apply to strings from Σ∗ = (N×N)∗,
in which case symbols with non-zero first coordinate (i.e., from ((N \ {0}) × N)∗ are counted as 1s, while
symbols from ({0} × N)∗ are treated as 0s.

The honest depth h∆(x) of a string x captures the minimum growth of honest blockchains over a period
of slots corresponding to x. More concretely, it is the minimum number of times during x that an honest
slot leader must create a block at a higher depth because it is guaranteed to “see” an honest blockchain at
one depth lower that was created at least ∆ slots earlier.

3.2 PoW Characteristic Quantity: Margin (β`)

As shown in previous works [GKR20,BGK+20,GRR22], the core quantity useful for analyzing PoW longest-
chain blockchains is margin, defined next.

Definition 7 (PoW Margin β`). For a PoW tree F `Ww, we define the advantage of a chain T ∈ F as

αF (T ) = len(T )− len(Fd∆) .

7



Observe that αF (T ) ≥ 0 if and only if T is dominant in F . For ` ≥ 1, we define the margin of a tree F as

β`(F ) = max
Th 6∼`Ta

Th is dominant

αF (Ta) ,

this maximum extended over all pairs of chains (Th, Ta) where Th is dominant and Ta 6∼` Th. We call the
pair (Th, Ta) the witness chains for F if the above conditions are satisfied; i.e., Th is dominant, Th 6∼` Ta,
and β`(F ) = αF (Ta). Note that there might exist multiple such pairs in F , but under the condition ` ≥ 1
there will always exist at least one such pair, as the trivial chain T0 containing only the root vertex satisfies
T0 6∼` T for any T and ` ≥ 1, in particular T0 6∼` T0. For this reason, we will always consider β` only
for ` ≥ 1.

We overload the notation and let
β`(w) = max

F`Ww
β`(F ) .

We call a PoW tree F `Ww a witness tree for w if β`(w) = β`(F ); again many witness trees may exist for a
string w.

There is a known tight connection between margin and settlement, captured by the following lemma and
motivating our effort to upper-bound β`.

Lemma 1 ( [GKR20, GRR22]). Consider an execution of a PoW blockchain for L slots as described
above, resulting in a characteristic string w = w1 . . . wL. Let B be a block produced in slot ` ∈ [L], and let
t > ` be such that B is contained in some chain C ∈ Dt. If for every t′ ∈ {t, . . . , L} we have β`(w1 . . . wt′) < 0
then B is contained in every C ′ ∈ Dt′ for all t′ ∈ {t, . . . , L}.

Note that if a tree F `Ww has β`(F ) < 0 then all chains T of length at least len(Fd∆) belong to the same
branch, which we call the main branch.

Definition 8 (Main branch, PoW). Let w ∈ Σn, ` ≥ 1, and F `Ww such that β`(F ) < 0. The unique
branch of F that contains all chains of length at least len(Fd∆) (and possibly other chains) is called the main

branch of F and denoted MW(F ).

3.3 Main PoW Theorem

The goal of Section 3 is to provide recurrences that allow us to upper-bound the value of margin β`(w) for
any PoW characteristic string w. As shown in Lemma 1, this allows us to upper-bound the probability of a
settlement violation in any execution with leadership lottery outcomes captured by w.

We approach this challenge by splitting w into consecutive, non-overlapping substrings called phases, in
a way that ensures the following property:

Phase property: any honest party producing a block in a particular phase is at that time necessarily aware
of all honest blocks that have been produced in all previous phases.

To ensure this property, we determine phase boundaries in w so that two consecutive phases are separated
by a ∆-long sequence of slots in which no honest successes occur. Notice that this clearly implies the phase
property, as any honest block created in phase i will have been delivered to all honest parties within ∆ slots,
before the beginning of phase i+ 1.

More formally, we devise a recurrence determining the quantity β`(wsxt) based on the value β`(ws) and
the suffix xt, where w, x ∈ Σ∗ are arbitrary characteristic strings, while s, t ∈ ({0} × N)∆ represent ∆-long
periods with no honest successes. Together with the trivial initial condition β`(ε) = 0 for the empty string ε,
this gives us a phase-based inductive characterization of β`, where xt denotes the currently processed phase.
Our main result in this section is the following theorem providing such a characterization.

Theorem 1 (The PoW Phase Recurrence). Let ` ≥ 1, let w, x ∈ (N × N)∗ and s, t ∈ ({0} × N)∆ be
characteristic strings. We have:
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Margin recurrence. β`(ε) = 0. Furthermore,

β`(wsxt)

{
= β`(ws) + #a(xt)− h∆(x) if β`(ws) < −#a(xt) or β`(ws) > h∆(x),

≤ min{0, β`(ws)}+ #a(xt) otherwise.

Crossing zero. If |ws| ≥ `− 1 and β`(ws) = 0 then β`(ws(1, 0)(0, 0)∆) = −1 .

We establish the recurrences above over a sequence of lemmas. These lemmas consider β` in one of the
regions that we informally call hot, cold, and critical. A quantity is said to be in the hot region if its value is
sufficiently above zero, such that the currently considered phase cannot bring it down to zero. On the other
hand, it is said to be in the cold region if it is sufficiently negative so that it won’t climb to zero within the
current phase. Finally, it is said to be in a critical region if it is so close to zero that the effects of the special
behavior these quantities exhibit around zero are manifested within this phase—this is the most difficult
situation to analyze, as it corresponds to the situation of a “close race” discussed in Section 1.

Informally speaking, Theorem 1 shows that in both the hot and cold regions, β` exactly follows an ideal
recurrence

β`(wsxt) = β`(ws) + #a(xt)− h∆(x) (1)

where it increases by 1 for each adversarial success, and decreases by 1 whenever the pattern of honest
successes enforces an increase in the honest depth h∆. In the critical region, β`(wsxt) can still be upper-
bounded by both #a(xt) and β`(ws)+#a(xt). Intuitively, this means that if β`(ws) is “close to zero” from the
negative side, then the worst-case behavior observed in the subsequent phase xt is as if the ideal recurrence
was applied but xt contained no honest successes, while if β`(ws) is “close to zero” from the positive side,
β`(wsxt) is still upper-bounded by #a(xt). Finally, note that these rules by themselves would never permit
β` to descend below zero; for this purpose we establish a separate statement that if β`(ws) = 0, then a
subsequent phase containing only a single success that is honest, brings margin into negative values.

3.4 Existing Tools: Tree Compression and the PoW Restructuring Lemma

In our PoW arguments we make use of special honest vertices called tight that are, informally speaking, at
the minimal depth that the preceding part of the tree allows without violating the axiom (A2). Here we
define these vertices formally and summarize several useful properties they have. In particular, in Lemma 3
we show how a PoW tree that has a tight vertex at each possible depth (we call such trees compressed)
allows for a complex restructuring operation that leads to a lower-bound on the margin of the underlying
characteristic string.

Definition 9. Let F ` w ∈ Σn. An honest vertex v of F is called tight if len(v) = len(Fl#(v)−∆−1e) + 1.

The tree F is said to be compressed if, for every depth 0 ≤ d ≤ len(F ), there is a tight honest vertex v of
depth d.

We recall two lemmas established in [GKR20]. The first asserts that witness trees may be assumed to
be compressed without loss of generality. The second identifies and analyses a restructuring operation in
compressed trees. Proofs of both lemmas, adapted to our notation but following those of previous work,
appear in Appendix B.

Lemma 2 ( [GKR20]). Let w ∈ (N × N)∗ and s ∈ ({0} × N)∆. Then there exists a witness tree F `Wws
that is compressed.

Lemma 3 (Restructuring lemma, [GKR20]). Let ` ≥ 1, let w ∈ Σ∗ be a characteristic string and F `Ww
be a compressed PoW tree for w; let T1 6∼` T2 be arbitrary chains in F . For i ∈ {1, 2}, let vi be an honest
vertex on Ti and let Ai denote the set of all adversarial vertices on Ti deeper than vi. If l#(v1) ≤ l#(v2) then

β`(w) ≥ αF (v1) + |A1 ∪A2| .
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3.5 Outside of the Critical Region

We establish the ideal recurrence (1) outside of the critical region in a sequence of three lemmas: first,
Lemma 4 shows that the recurrence gives a lower bound for β`, and then Lemmas 5 and 6 show that it is
also an upper bound in the cold and the hot region, respectively.

Lemma 4 (Lower bound). Let ` ≥ 1, let w, x ∈ (N× N)∗ and s, t ∈ ({0} × N)∆ be characteristic strings.
Then

β`(wsxt) ≥ β`(ws) + #a(xt)− h∆(x) .

Proof. Let F be a witness PoW tree F `Wws, and let (Th, Ta) be a pair of witness chains in F , i.e., Th 6∼` Ta,
Th is dominant in F , and αF (Ta) = β`(F ) = β`(ws).

We construct a tree F ′ `Wwsxt such that β`(F
′) = β`(F )+#a(xt)−h∆(x). Namely, we add #a(xt)+#h(x)

new vertices to F in two steps. First, we extend Ta by a path consisting of #a(xt) adversarial vertices that
we label consistently with xt to satisfy axiom (W4), call the resulting chain T ′a. Second, we also add #h(x)
honest vertices that form a subtree rooted in the terminating vertex of Th, where each of these honest vertices
is always put at the minimal depth allowed by axiom (A2), and labeling them consistently with x to again
satisfy axiom (W4). Let T ′h denote a chain terminating in some maximum-depth newly added honest vertex.
The resulting tree (call it F ′) is indeed a PoW tree: it is easy to observe that all axioms of a PoW tree are
satisfied by construction. Note that lenF ′(T

′
a) = lenF (Ta) + #a(xt), lenF ′(T

′
h) = lenF (Th) + h∆(x), and we

have T ′h 6∼` T ′a as these chains share no new vertices. Finally, T ′h is clearly dominant, and hence the pair
(T ′h, T

′
a) witnesses β`(F

′) = β`(F ) + #a(xt)− h∆(x) as desired.

Lemma 5 (Cold region). Let ` ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)∆ be characteristic strings. If
β`(ws) < −#a(xt) then

β`(wsxt) ≤ β`(ws) + #a(xt)− h∆(x) .

The proof of Lemma 5 is an adaptation of the proof of Lemma 8 from [GKR20] to our setting. Note that
our new approach of processing the characteristic string by phases allows for a stronger statement: the ideal
recurrence is shown to hold closer to the critical region. At the same time, the proof becomes simpler.

Proof. Let w′ := wsxt and let F ′ be a witness PoW tree F ′ `Ww′; let (T ′h, T
′
a) be a pair of witness chains

in F ′ such that len(T ′h) = len(F ′d∆). Furthermore, let F := F ′|ws|e `W ws and define Th := (T ′h)|ws|e and

Ta := (T ′a)|ws|e, i.e., Th and Ta are the restrictions of T ′h and T ′a to vertices with labels at most |ws|; we

have Th, Ta ∈ F by definition of F . Note that, as s, t contain no honest successes, we have Fd∆ = F and

F ′d∆ = F ′, and

len(F ′d∆) ≥ len(Fd∆) + h∆(x) . (2)

By our assumption of negative β`(ws), there is a well-defined main branch MW(F ). We first establish
that, intuitively speaking, any chains in F outside of MW(F ) are, after ws, extended by adversarial vertices
only.

Claim. Consider any chain T ∈ F such that T 6∈ MW(F ) and any T ′ ∈ F ′ that extends T in F ′ so that
T = T ′|ws|e. Then the set of vertices T ′ \ T contains no honest vertices.

To see this, observe that any honest vertex in F ′ with label greater than |ws| must have depth at least
len(Fd∆) + 1 = len(F ) + 1 by axiom (A2), hence all vertices in T ′ \ T with depth at most len(F ) must

be adversarial. However, len(T ) + #a(xt) < len(F ). To see this, note that we have αF (T ) ≤ β`(ws) as
T 6∈ MW(F ) and hence again there exists some dominant chain in MW(F ) that forms a witness pair with T .
Moreover, β`(ws) < −#a(xt) by assumption, and this together implies len(T ) + #a(xt) < len(F ) and hence
len(T ′) < len(F ). This already shows that there are no honest vertices in T ′ \ T and establishes Claim 3.5.

We now argue that Th ∈ MW(F ). Towards contradiction, assume that Th 6∈ MW(F ). Then Claim 3.5
applies to Th and T ′h \ Th contains no honest vertices, hence

len(T ′h) ≤ len(Th) + #a(xt) . (3)
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However, by assumption len(Th) − len(F ) = αF (Th) ≤ β`(ws) < −#a(xt), where the first inequality holds
as Th 6∈ MW(F ) and hence there exists some dominant chain in MW(F ) that forms a witness pair with Th.
Hence len(Th) < len(F ) − #a(xt), and using equations (3) and (2) gives us len(T ′h) < len(F ) ≤ len(F ′), a
contradiction with the definition of T ′h. Therefore, Th ∈ MW(F ).

Since T ′h 6∼` T ′a, it also follows that Th 6∼` Ta, and at most one of these chains belongs to MW(F ), hence we
have Ta 6∈ MW(F ). By Claim 3.5, T ′a\Ta contains no honest vertices. Hence we have len(T ′a) ≤ len(Ta)+#a(xt)
and we can combine this with equation (2) to get

β`(ws) ≥ αF (Ta) = len(Ta)− len(F ) ≥ len(T ′a)−#a(xt)− len(F ′) + h∆(x)

= αF ′(T
′
a)−#a(xt) + h∆(x) = β`(w

′)−#a(xt) + h∆(x) ,

where the first inequality is again justified by Ta 6∈ MW(F ). This concludes the proof of Lemma 5.

Lemma 6 (Hot region). Let ` ≥ 1, let w, x ∈ (N× N)∗ and s, t ∈ ({0} × N)∆ be characteristic strings. If
β`(ws) > h∆(x) then

β`(wsxt) ≤ β`(ws) + #a(xt)− h∆(x) . (4)

The proof of the above lemma employs as a crucial ingredient the tree compression concept and the
restructuring lemma that we recalled in Section 3.4.

Proof of Lemma 6. As in the cold case, the proof begins with a witness tree F ′ for wsxt and shows how
to construct a tree F ∗ ` ws for which β`(F

∗) ≥ β`(wsxt) − #a(xt) + h∆(x); this completes the theorem
as β`(ws) ≥ β`(F

∗). To set down notation, define F ′ ` wsxt to be a compressed witness tree with witness
chains (T ′h, T

′
a); we then consider the restriction F ` ws of F ′ to the string ws and, in particular, the

restrictions (Th, Ta) of the witness chains (T ′h, T
′
a) to F . To prepare for the main argument, we establish a

few straightforward properties of these two trees. First, observe that the inequality

len(F ′
d∆

) = len(F ′) ≥ len(F d∆) + h∆(x) = len(F ) + h∆(x) (5)

follows immediately from Fact 1, tree axiom (A2), the definition of honest height, and the fact that s and t
contain no honest successes. We then establish that there are no honest vertices on T ′a with label exceeding
|ws|; in other words, there are no honest vertices in T ′a \ Ta. Towards a contradiction, assume that there is
an honest vertex in T ′a \ Ta and let v′a be such an honest vertex with maximum label (and hence maximum
depth). Since l#(v′a) > |ws|, all vertices u on T ′a with len(u) > len(v′a) also have l#(u) > l#(v′a) > |ws| and, by
maximality of v′a, all these vertices are adversarial; hence there are at most #a(xt) subsequent vertices (on
T ′h) by axiom (W4). However, as v′a is honest we also have len(v′a) ≤ len(F ′). Combining these, we conclude
β`(wsxt) = len(T ′a) − len(F ′) ≤ len(T ′a) − len(v′a) ≤ #a(xt). Combining this with the assumption β`(ws) >
h∆(x) yields a direct contradiction to Lemma 4, which asserts that β`(wsxt) ≥ β`(ws) + #a(xt) − h∆(x).
We conclude that there are no honest vertices on T ′a \Ta and, in particular, that len(T ′a)− len(Ta) ≤ #a(xt).

The last honest vertices on the chains Th and Ta play a central role in the remainder of the analysis; these
we denote vh and va, respectively. We handle the two cases l#(vh) ≥ l#(va) and l#(vh) < l#(va) separately,
in either setting concluding the argument with an application of Lemma 3 to a vertex with minimal label.

The case l#(vh) < l#(va). We define the sets Aa and A′a to consist of the adversarial vertices appearing
after va on Ta in F and F ′, respectively; thus Aa ⊂ A′a. We likewise define Ah and A′h for the chain Th and
vertex vh.

We first establish that

len(va) ≤ len(vh) + |A′h| . (6)

Recalling that T ′h is dominant, len(va) ≤ len(F ) ≤ len(F ′) = len(F ′
d∆

) = len(T ′h). In the case when all vertices

of T ′h after vh are adversarial, the inequality (6) follows immediately because len(T ′h) = len(vh) + |A′h|.
Otherwise, there is a first honest vertex v′h on T ′h that appears after vh; by definition, this vertex does not lie
in F and is labeled by an index in x. Considering that the quiet region s lies between the labels for va and v′h,
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we must have len(va) < len(v′h) by axiom (A2). Combining this with the fact that len(v′h) ≤ len(vh)+ |A′h|+1,
the inequality (6) follows. We may then conclude that

β`(wsxt) = αF ′(T
′
a) = len(T ′a)− len(F ′

d∆
) = len(T ′a)− len(F ′)

= len(va) + |A′a| − len(F ′) ≤ len(vh) + |A′a|+ |A′h| − len(F ′) .
(7)

Now we invoke Lemma 3 with chains Th, Ta and vertices vh, va in F . By assumption l#(vh) < l#(va), and
hence we obtain

β`(ws) ≥ αF (vh) + |Aa ∪Ah| = len(vh) + |Aa|+ |Ah| − len(F ) (8)

using the definition of αF , Fact 1, and the observation that l#(vh) < l#(va) implies vh 6= va and together
with the definition of vh, va this means that Aa∩Ah = ∅ and |Aa∪Ah| = |Aa|+ |Ah|. Combining (7) and (8),
we conclude that

β`(wsxt)− β`(ws) ≤ |A′a| − |Aa|+ |A′h| − |Ah| −
(
len(F ′)− len(F )

)
≤ #a(xt)− h∆(x)

as desired. The last inequality follows from (5) and the fact that there are no more than #a(xt) adversarial
vertices in F ′ that do not lie in F .

The case l#(vh) ≥ l#(va). We remark that the tree F is compressed. To see this, note that any honest
vertex v of F ′ labeled from the suffix xt must have height strictly larger than len(Fd∆) by axiom (A2); on

the other hand, in light of Fact 1 len(Fd∆) = len(F ) since ws ends with a quiet period and it follows that

the removal of the honest vertices labeled by xs does not affect those of depth at most len(F ). In particular,
F still has an honest vertex of each relevant height and is compressed.

We now invoke Lemma 3 with the chains Ta, Th and vertices va, vh in F . Since l#(va) ≤ l#(vh), we
obtain:

β`(ws) ≥ αF (va) + |Aa| = αF (Ta) = lenF (Ta)− len(Fd∆)

≥ (lenF ′(T
′
a)−#a(xt))−

(
len(F ′)− h∆(x)

)
(9)

= αF ′(T
′
a)−#a(xt) + h∆(x) = β`(wsxt)−#a(xt) + h∆(x) ,

where the inequality in line (9) follows from (5). This concludes the proof.

3.6 The Critical Region

Finally, it remains to tackle the behavior of β` in the critical region. We establish the two upper bounds
mentioned in Section 3.3 in Lemmas 7 and 8, and show the crossing-zero property in Lemma 9.

Lemma 7. Let ` ≥ 1, let w, x ∈ (N× N)∗ and s, t ∈ ({0} × N)∆ be characteristic strings. Then

β`(wsxt) ≤ β`(ws) + #a(xt) .

Proof. As before, let w′ := wsxt and let F ′ be a witness PoW tree F ′ `Ww′; let (T ′h, T
′
a) be a pair of witness

chains in F ′ such that len(T ′h) = len(F ′d∆) = len(F ′) (cf. Fact 1). Furthermore, let F := F ′|ws|e `Wws and

define Th := (T ′h)|ws|e and Ta := (T ′a)|ws|e, i.e., Th and Ta are the restrictions of T ′h and T ′a to vertices with
labels at most |ws|; we have Th, Ta ∈ F by definition of F . Moreover, let TH be a chain in F such that
len(TH) = len(F ).

If TH 6∼` Ta, we have β`(ws) ≥ αF (Ta). Looking at the set of vertices T ′a \Ta in F ′, let H ⊆ T ′a \Ta denote
the set of those vertices v ∈ T ′a \ Ta that satisfy len(F ) < len(v) ≤ len(F ′). Intuitively, H covers the vertices
in the extension T ′a \Ta that have depths in which F ′ might contain honest vertices with labels greater than
|ws|. Observe that therefore |H| ≤ len(F ′) − len(F ) and all vertices in (T ′a \ Ta) \ H are adversarial. This
gives us

β`(w
′)− β`(ws) ≤

(
len(T ′a)− len(F ′)

)
−
(
len(Ta)− len(F )

)
= (len(T ′a)− len(Ta))−

(
len(F ′)− len(F )

)
≤ (|H|+ #a(xt))−

(
len(F ′)− len(F )

)
≤ #a(xt)
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as desired.
On the other hand, if TH ∼` Ta then we have TH 6∼` Th, and

β`(w
′)− β`(ws) ≤

(
len(T ′a)− len(F ′)

)
− (len(Th)− len(TH)) ≤

(
len(T ′a)− len(F ′)

)
+ (len(TH)− len(Th)) .

Observe that if len(T ′a)− len(F ′) > 0, all vertices on T ′a with depth greater than len(F ′) must be adversarial
by definition of F ′. Similarly, if len(TH) − len(Th) > 0, then all vertices on T ′h with depth d satisfying
len(Th) ≤ d ≤ len(F ) = len(TH) must be adversarial, as the minimum depth at which honest vertices labeled
from x can appear is len(F ) + 1 due to axiom (A2) and the fact that s contains no honest successes. Putting
these two facts together, we get len(T ′a) − len(F ′) + len(TH) − len(Th) ≤ #a(xt), concluding the proof also
for this case.

Lemma 8. Let ` ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)∆ be characteristic strings. If β`(ws) ≤ h∆(x)
then β`(wsxt) ≤ #a(xt).

Proof (sketch). The lemma can be established by an argument identical to the proof of Lemma 6, with a
single exception.

Using the notation from that proof, in this case we do not prove that T ′a \ Ta contains no honest vertices
as before. Instead, we observe that if there actually is an honest vertex on T ′a \ Ta, then by definition of Ta
this vertex has a label exceeding |ws|, and hence the deepest honest vertex in T ′a can only be followed by
at most #a(xt) adversarial vertices. This directly implies β`(wsxt) ≤ #a(xt) and proves the lemma for this
case.

Otherwise we again have no honest vertices on T ′a \ Ta, and the rest of the argument is identical to the
proof of Lemma 6 as it never again invokes the assumption about β`(ws). The argument gives us β`(wsxt) ≤
β`(ws) + #a(xt)− h∆(x), and since here we assume β`(ws) ≤ h∆(x) we can conclude β`(wsxt) ≤ #a(xt) as
desired.

Lemma 9. Let ` ≥ 1, let w, x ∈ (N × N)∗ and s, t ∈ ({0} × N)∆ be characteristic strings. If |ws| ≥ ` − 1
and β`(ws) = 0 then β`(ws(1, 0)(0, 0)∆) ≤ −1.

Proof. Let w′ := ws(1, 0)(0, 0)∆ and towards a contradiction, assume β`(w
′) ≥ 0. By definition of β`, there

exists a witness PoW tree F ′ `Ww′ and two chains T ′1, T
′
2 in F ′ such that T ′1 6∼` T ′2, αF ′(T

′
1) = 0, αF ′(T

′
2) ≥ 0,

and T ′1 terminates with the unique (and honest) vertex with l#(v′h) = |ws| + 1 prescribed by w′; let us call
this vertex v′h. (Note that (T ′1, T

′
2) are not necessarily witness chains as we don’t ask for αF ′(T

′
2) = β`(F

′),
this allows us to require that T ′1 terminates in v′h without loss of generality.) Denote F := F ′|ws|e `Wws and
note that F is in fact obtained from F ′ by just removing v′h. As #h(s) = 0 and |s| = ∆, by axiom (A2) we

have lenF ′(v
′
h) > len(F ) and hence len(F ′d∆) = len(F ′) > len(F ) = len(Fd∆). Let T1 := (T ′1)|ws|e. Note that

as T ′1 6∼` T ′2 and |ws(1, 0)| ≥ `, we must have v′h 6∈ T ′2 and T ′1 6= T ′2, hence T ′2 also exists in F and T1 6∼` T ′2
in F . As len(Fd∆) < len(F ′d∆), we have αF (T1) ≥ 0 and αF (T ′2) > 0, resulting in β`(ws) ≥ β`(F ) > 0, a

contradiction.

4 Proof-of-Stake Settlement

4.1 Proof-of-Stake Blocktrees

The execution of a longest-chain PoS protocol is in principle similar to the execution of its PoW counterpart,
with two notable differences, described in passing already in Section 2.1. Most importantly, the effect of an
adversarial lottery success is different: it allows the adversary to create an arbitrary number of blocks for the
corresponding slot, while in PoW a single lottery success only leads to a single block. Second, a valid PoS
chain may only contain at most one block from any given slot, while in PoW the adversary can in principle
use multiple adversarial blocks from the same slot to extend the same chain.

To model this behavior, we consider the same alphabet Σ = N × N for characteristic strings also in the
PoS case. However, the notion of a tree needs to be adapted to capture the above differences. The resulting
notion of a PoS tree conceptually matches the ‘fork’ notion from previous PoS works [DGKR18,BGK+18].
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F ` w = (1, 0)

1

(0, 0) (2, 0)

3

3

(1, 0)

4

(0, 1)

5

5

(0, 1)

6

6

(2, 0)

7

7

(0, 0) (1, 0)

9

(0, 0) (2, 0)

11

11

(0, 0)

0

Fig. 3. A public PoS tree F for the characteristic string w with ∆ = 1, using the same graphical representation
as Fig 2. The tree indicates a successful double spend attack given by the orange and blue chains and highlights a
notable feature of the proof-of-stake setting: the adversary’s ability to play multiple blocks in slots 5 and 6 permits
a double spend attack in circumstances where there would be no attack in the proof-of-work case. We remark that
F = F = Fd1 = Fd1 , since all leaves of F are honest and the last symbol of w is (0, 0). Clearly len(F d1) = 5. The two
chains indicated in red and blue each have advantage equal to zero, and both are dominant. Considering that these
chains share no vertices after the root, they witness µ1(F ) ≥ 0 for the tree F and hence for the characteristic string
w.

Definition 10 (PoS tree). A PoS tree is defined exactly as a PoW tree (cf. Def. 1), except that axioms (W3)
and (W4) are replaced by the following axioms:

(S3) the sequence of labels l#() along any directed path is strictly increasing;
(S4) if wi = (hi, ai) then there are exactly hi honest vertices of F with the label i and if the number of

adversarial vertices with label i is nonzero then ai > 0.

The two changes to tree axioms formally capture the two differences from the PoW setting, listed above.
Note that the notation laid out in Definitions 2–6, as well as Fact 1, immediately apply also to the PoS case.
An example PoS tree is depicted in Figure 3.

4.2 PoS Characteristic Quantities: Reach (ρ) and Margin (µ`)

As established in an existing line of work on PoS protocols going back to [KRDO17], the dynamics of a PoS
longest-chain protocol can be captured by a pair of quantities called reach and margin. Note that this is in
contrast to the PoW case where a single quantity is sufficient (see Section 3), and represents the additional
complexity in analyzing the PoS case. We recall the notions of reach and margin as generalized in [BKM+20],
and adapt them to our notation. For consistency with these works, we refer to µ` as margin; no confusion
should arise as it is always clear whether we consider the PoW or PoS margin.

Definition 11 (PoS reach, margin). For a public PoS tree F `S w, we define the advantage of a chain
T ∈ F exactly as in the PoW case in Definition 7. We define the reserve of a chain T in F to be the number
of adversarial indices appearing in w after the last index in T ; specifically, if v is the terminal vertex of T ,
we define

reserveF (T ) := |{i > l#(v) | wi = (hi, ai) ∧ ai > 0}| .

We then define

reachF (T ) := αF (T ) + reserveF (T ) ,

ρ(F ) := max
T in F

reachF (T ) and ρ(w) := max
F`Sw

F public

ρ(F ) .

For a given w, we sometimes refer to a tree F and a chain T maximizing the above expressions as a witness
tree and a witness chain, respectively; note that these are not necessarily unique.
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For a public PoS tree F `S w we define the margin of F , denoted µ`(F ), to be the “penultimate” reach
taken over chains T1, T2 of F such that T1 6∼` T2:

µ`(F ) := max
T1 6∼`T2

(
min{reachF (T1), reachF (T2)}

)
.

There might exist multiple such pairs in F , but under the condition ` ≥ 1 there will always exist at least one
such pair, as the trivial chain T0 containing only the root vertex satisfies T0 6∼` T for any T and ` ≥ 1, in
particular T0 6∼` T0. For this reason, we will always consider µ`(·) only for ` ≥ 1. We again overload the
notation by defining

µ`(w) := max
F`Sw

F public

µ`(F ) .

We use the terms witness tree and witness chains analogously also in the case of margin, it will be always
clear from the context whether we are referring to witnesses with respect to reach or margin.

Intuitively, there is again a natural connection between margin and settlement: if w is a characteristic
string capturing the execution of the PoS blockchain up to some current time t, and µ`(w) < 0 for some
` < t, then any tree F `S w that resulted from the execution has µ`(F ) < 0 and hence does not allow the
adversary to make any honest party at time t adopt a blockchain that would not agree with its current chain
up to the index `. In other words, all chains with non-negative reach share their prefix up to slot `, i.e.,
belong to the same branch. This connection was formally established for PoS in [KRDO17, DGKR18]; we
summarize it for our setting in the following lemma. This will motivate our effort to upper-bound µ`.

Lemma 10 ( [KRDO17,DGKR18]). Consider an execution of a PoS blockchain for L slots as described
above, resulting in a characteristic string w = w1 . . . wL. Let B be a block produced in slot ` ∈ [L], and let
t > ` be such that B is contained in some chain C ∈ Dt. If for every t′ ∈ {t, . . . , L} we have µ`(w1 . . . wt′) < 0
then B is contained in every C ′ ∈ Dt′ for all t′ ∈ {t, . . . , L}.

Similarly as before, if a PoS-tree F `S w has µ`(F ) < 0 then all chains T with reachF (T ) ≥ 0 at least
len(Fd∆) belong to the same branch. This justifies the following definition.

Definition 12 (Main branch, PoS). Let w ∈ Σn, ` ≥ 1, and F `S w such that µ`(F ) < 0. The unique
branch of F that contains all chains with non-negative reach (and possibly other chains) is called the main
branch of F and denoted MS(F ).

4.3 Main PoS Theorem

The main result of this section is the following theorem, which is an analogue of Theorem 1 for the PoS case.

Theorem 2 (The PoS Phase Recurrences). Let ` ≥ 1, let w, x ∈ (N × N)∗ and s, t ∈ ({0} × N)∆ be
characteristic strings. Then we have:

Reach. ρ(ε) = 0. Furthermore,

ρ(wsxt)

{
= ρ(ws) + #[a](xt)− h∆(x) if ρ(ws) > h∆(x),

≤ #[a](xt) otherwise.

Margin. If |wsxt| < ` then µ`(wsxt) = ρ(wsxt), otherwise

µ`(wsxt)

{
= µ`(ws) + #[a](xt)− h∆(x) if µ`(ws) < −#[a](xt),

≤ ρ(wsxt) otherwise.

Crossing zero. If |ws| ≥ `− 1 and ρ(ws) = µ`(ws) = 0 then

µ`(ws(1, 0)(0, 0)∆) ≤ −1 .
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Theorem 1 describes the characteristic PoS quantity β` in terms of phase-based recurrences. Informally
speaking, it states that the reach quantity, as long as it remains within the hot region, exactly performs an
“ideal recurrence”

ρ(wsxt) = ρ(ws) + #[a](xt)− h∆(x) , (10)

where it increases by 1 for each adversarially-successful slot, and decreases by 1 whenever the pattern of
honest successes enforces an increase in the honest depth h∆. Whenever reach approaches the critical region
(recall that reach is never negative by definition), we only upper-bound it with the quantity #[a](xt)—note
that this is analogous to the outcome of the ideal recurrence in a hypothetical case where the honest successes
first bring ρ to zero where the remaining honest successes have no effect, while the remaining adversarial
successes increase ρ back up to #[a](xt). As for margin, before slot ` it is identical to reach, and after slot
` it (again exactly) performs an analogue of the ideal recurrence (10) as long as it remains within the cold
region, while outside of it we only make use of the trivial upper bound by ρ. Finally, we also establish a
statement describing the crossing of zero, analogous to PoW.

4.4 Bounding Reach

The following lemma establishes the tightness of the ideal recurrence (10) for reach in the hot region.

Lemma 11 (Reach in the hot region). Let ` ≥ 1, let w, x ∈ (N × N)∗ and s, t ∈ ({0} × N)∆ be PoS
characteristic strings. If ρ(ws) > h∆(x) then

ρ(wsxt) = ρ(ws) + #[a](xt)− h∆(x) .

Proof. Denote w′ := wsxt. We first prove a lower bound on ρ(w′). Towards that, consider a public witness
tree G `Sws for reach in wx, and let U be the witness chain achieving reachG(U) = ρ(ws). Let vh be some
maximum-depth honest vertex in G, i.e., lenG(vh) = len(G). Construct a labeled rooted tree G′ from G
by adding #h(x) honest vertices that form a subtree rooted in vh, where each of these honest vertices is
always put at the minimal depth allowed by axiom (A2), and labeling them consistently with x. Observe
that by construction, G′ is a valid public PoS-tree for w′. Using Fact 1 and the construction of G′ we have
len(G′d∆) = len(G′) = len(G) + h∆(x), and hence

ρ(w′) ≥ reachG′(U) = αG′(U) + reserveG′(U)

= (αG(U)− h∆(x)) +
(
reserveG(U) + #[a](xt)

)
= ρ(ws) + #[a](xt)− h∆(x) > #[a](xt) , (11)

where the last inequality follows by our assumption on ρ(ws).
Towards an upper bound, let F ′ `Sw′ be a public witness tree for reach in w′, and let T ′ be the witness

chain for reach in F ′, i.e., reachF ′(T
′) = ρ(w′). Let F := F ′|ws|e `S ws and let T be the restriction of T ′

to F . Using Fact 1 and the fact that F and F ′ are by definition public, we have Fd∆ = F , F ′d∆ = F ′, and

len(F ′d∆) ≥ len(Fd∆) + h∆(x).

We now establish that T = T ′. Indeed, if that is not the case, let v′ be the terminating honest vertex of T ′.
Since l#(v′) > |ws|, it must be reserve(T ′) ≤ #[a](xt); and since v′ is honest, we have ρ(w′) = reachF ′(T

′) ≤
#[a](xt). This would be a contradiction with (11), proving that T = T ′.

Given the above, we have

ρ(w′) = reachF ′(T
′) = αF ′(T

′) + reserveF ′(T
′)

≤ (αF (T )− h∆(x)) +
(
reserveF (T ) + #[a](xt)

)
= reachF (T ) + #[a](xt)− h∆(x) ≤ ρ(ws) + #[a](xt)− h∆(x)

as desired.
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It remains to prove the upper bound for reach in the critical region, this is done in the following lemma.

Lemma 12 (Reach approaching zero). Let ` ≥ 1, let w, x ∈ (N × N)∗ and s, t ∈ ({0} × N)∆ be PoS
characteristic strings. If ρ(ws) ≤ h∆(x) then

ρ(wsxt) ≤ #[a](xt) .

Proof. Let w′, F ′, T ′, F, T be as in the proof of Lemma 11. We again have Fd∆ = F , F ′d∆ = F ′, and

len(F ′d∆) ≥ len(Fd∆) + h∆(x).

Towards a contradiction, assume that ρ(wsxt) = reachF ′(T
′) > #[a](xt). As F ′ is public, clearly T ′ is

honest without loss of generality, and lenF ′(T
′) ≤ len(F ′), hence we have reserveF ′(T

′) > #[a](xt). However,
this is only possible if reserveF ′(T

′) accounts also for some indices i (where w′i = (hi, ai) and ai > 0)
that satisfy i < |ws|, i.e., some adversarial vertices labeled from ws, and hence T ′ = T . However, given that
len(F ′d∆) ≥ len(Fd∆)+h∆(x), this means that reachF (T ) > h∆(x) and therefore ρ(w) > h∆(x), contradicting

our assumption and hence concluding the proof.

4.5 Bounding Margin

Towards bounding the quantity µ`(·), first observe that its definition directly implies that µ`(w) ≤ ρ(w) for
any w ∈ Σ∗. Moreover, for any w with |w| < `, we actually have µ`(w) = ρ(w) as, recalling the definition of
µ`(F ) and the relation 6∼`, notice that any chain T with l#(T ) < ` satisfies T 6∼` T , and hence the witness
chains T1, T2 for µ`(F ) may satisfy T1 = T2.

We now proceed to prove a lower bound on µ`.

Lemma 13 (Margin lower bound). Let ` ≥ 1, let w, x ∈ (N×N)∗ and s, t ∈ ({0}×N)∆ be characteristic
strings. If µ`(ws) < −#[a](xt) then

µ`(wsxt) ≥ µ`(ws) + #[a](xt)− h∆(x) .

The proof of the above lemma uses the same approach as the proof of Lemma 4 in the PoW case, we
give it in Appendix C for completeness. Note that in the PoS case, the construction given in the proof only
works under the assumption µ`(ws) < −#[a](xt), which is however exactly the region we are interested in.

We now turn to upper-bounding µ` in the specific case µ`(ws) < −#[a](xt). Given that as observed above,
for any ws satisfying |ws| < ` we have µ`(ws) = ρ(ws) ≥ 0, this bound is only applicable after |ws| ≥ `.

Lemma 14 (Margin in the cold region). Let ` ≥ 1, let w, x ∈ (N × N)∗ and s, t ∈ ({0} × N)∆ be PoS
characteristic strings. If µ`(ws) < −#[a](xt) then

µ`(wsxt) ≤ µ`(ws) + #[a](xt)− h∆(x) .

The proof of Lemma 14 is an adaptation of the proof of Lemma 5 to the PoS setting, we give it in
Appendix C for completeness.

The previous two lemmas together establish that margin follows an analogue of the ideal recurrence (10)
in the cold region.

4.6 Crossing Zero

Finally, we show that if after slot ` both quantities are equal to zero, margin can descend to negative values.
The proof of Lemma 15 uses essentially the same reasoning as that of Lemma 9, we provide it in Appendix C.

Lemma 15. Let ` ≥ 1, let w, x ∈ (N × N)∗ and s, t ∈ ({0} × N)∆ be characteristic strings. If |ws| ≥ ` − 1
and ρ(ws) = µ`(ws) = 0 then

µ`(ws(1, 0)(0, 0)∆) ≤ −1 .
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4.7 A Practical PoS Adversary

In order to evaluate the strength of our settlement bounds, we describe and analyze a natural practical
adversary in the proof-of-stake setting. It is analogous to the conventional “private-chain attack” adversary
in the PoW setting.

In general, the adversary maintains two chains (L, S) and a “public depth” p, equal to the current depth
of the deepest honest block. We collect this data together, writing ({L, S}, p), and use l and s to denote the
lengths of the chains L and S. We adopt the convention that L is the longer and S is the shorter of the two
chains, with ties broken arbitrarily. The adversary will maintain the invariant that l ≥ max(p, s) and that L
and S diverge after `. Then it is clear that l − p is a lower bound for reach and that s− p is a lower bound
on margin. Given a current adversarial state ({L, S}, p), we describe how the adversary responds to a new
phase corresponding to a characteristic string x for which #a(x) = a and h∆(x) = h.

In preparation for the full description, we set some terminology. Consider a chain C in this context (which
is to say that C is one of S and L). We define the adversarial extension to be the chain Ca obtained by
adding a path of #a(x) adversarial vertices to the end of C; this chain extension is consistent with x. If the
length of C is at least p, we additionally define the honest extension Ch as follows: Define Th to be a tree,
rooted at the unique vertex of C of depth p, that contains one vertex for each honest success in x arranged
so that each vertex is at the minimal depth dictated by ∆ delay. The depth of this tree is h∆(x). Then define
Ch, the honest extension of C, to be any path in this tree of maximal depth (thus having depth p+ h∆(x)).
Note that this honest extension Ch is consistent with the characteristic string x of the new phase.

Prior to `, the adversary maintains the invariant that L = S. A new phase with characteristic string x
is fielded by constructing both the adversarial and honest extensions of L, called La and Lh, respectively,
and assigning L′ to be the longer of these. The resulting state is L′ (and S′ = L′). In the case where this
phase includes the slot `, the resulting state is ({La, Lh}, p + h); observe that these do not share a vertex
with label ` or more.

After `, there are two cases depending on ({L, S}, p). If s < p, no honest blocks can be immediately
placed on S. In this case, define S′ = Sa, the adversarial extension of S and define L′ be the longer of La and
Lh, the adversarial and honest extensions of L. The resulting output state is ({L′, S′}, p + h). The second
case arises when s ≥ p: here we carry out the same procedure but reverse the roles of L and S: specifically,
the honest spur is added to S rather than L, yielding two extensions of interest Sh and Sa. The longer of
these is declared to be S′; L′ is defined to be the simple adversarial extension of L. Note that while these
rules are defined in terms of features of the entire phase, they can be carried out in an online fashion with
no particular attention to placement of honest vertices (except that all blocks are delivered to honest parties
with maximal delay). Note, furthermore, that the attack requires no tie breaking and can be thus carried
out by an adversary that requires no capabilities beyond globally and uniformly delayed honest messages.
(In contrast, it is not clear how to practically implement adaptive adversarial tie breaking.)

In terms of the recurrence relations (for µ` and ρ) that this yields, prior to ` we have µ` = ρ by definition
and ρ′ = µ′` = max(0, ρ+a−h) by construction. After `, reach continues to satisfy ρ′ = max(0, ρ+a−h). If
µ` < 0 it similarly satisfies µ′` = µ`+a−h. Otherwise, µ` is non-negative. We say that a configuration-input
pair is “critical” if ρ+ a− h < 0 (and µ` ≥ 0). If the setting is critical, then margin satisfies µ′` = ρ+ a− h.
(Note that in this case, the two chains have switched roles.) Otherwise, set µ′` = 0 for convenience (as the
exact value is not important to track).

5 Numerical Evaluation

In this section, we study explicit bounds provided by our analysis. We are interested in both PoW and PoS
longest-chain consensus, and we pick one representative system for each. For PoW blockchains we study
PoW-based Ethereum because its relatively short block interval presents a more challenging subject for
analysis, while Bitcoin with its long block interval was already given fairly tight bounds [GRR22,GR22]. For
PoS blockchains we study Cardano, which implements the Ouroboros Praos protocol [DGKR18].
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5.1 Modeling the Slot Leader Distribution

We assume the slot leader election is an ideal lottery. That is to say, the probability that any party (honest
or adversary) becomes a leader in a slot is proportional to its or its hashing power (for PoW) or its stake8

(in PoS), and this probability is independent of any other parties or any other slot. Thus, the total number
of slot leaders in a given slot is given by a sum of Bernoulli random variables, one for each party. When
there are sufficiently many parties, the sum of Bernoulli random variables can be approximated by a Poisson
random variable. More concretely, we model the number of honest leaders in a single slot as a Poisson random
variable of parameter rh, and the number of adversarial leaders in a single slot as a Poisson random variable
of parameter ra.

Then, rh
rh+ra

(resp. ra
rh+ra

) is the fraction of honest (resp. adversarial) hashing power in PoW, or stake

in PoS. Furthermore, 1
rh+ra

is the expected time it takes for one slot leader to appear, which is the target
block interval. The inter-block time of Ethereum is roughly 13 seconds; the inter-block time of Cardano is
20 seconds (as f = 1/20 and slots are 1 second long). We can then derive rh and ra from the target block
interval of the blockchain systems, and the assumed adversarial fraction.

Next, we need to make an assumption on the network propagation delay (recall that we denote it ∆r when
denominated in seconds). The 90th percentile block propagation time for Ethereum has been measured to be
around 2 seconds [Eth21], hence we will use 2 seconds as one example value of ∆r. We will also give results
for ∆r = 5 seconds as a more conservative estimate. We did not find public propagation delay measurements
for Cardano, but since Cardano and Ethereum have very similar block sizes, we use the same estimated
values of ∆r (i.e., 2 seconds and 5 seconds) for Cardano as well.

5.2 Symbol Distribution in a Phase

As our recurrences from Sections 3 and 4 work at the phase granularity, the first step of the numeric evaluation
is to compute the distribution of symbols in a phase. We will use PoS as the example in this subsection. The
treatment for PoW is very similar.

Let xt be the characteristic string corresponding to a phase where x ∈ (N × N)∗ and t ∈ ({0} × N)∆.
There are three quantities our recurrences need for each phase:

– #h(x), the total number of honest successes in the phase,
– #[a](xt), the total number of slots with adversarial successes in the phase, and
– h∆(x), the honest depth of the phase.

The latter two quantities are directly used in the recurrences, and we will explain the role of #h(x) in
Section 5.3.

We now explain how we can compute the join distribution of the above three quantities for a given
slot. By definition, whenever there is a ∆ period with no honest successes, the phase ends. We will process
one honest success at a time, and at each step, update the joint probability density functions (pdf) of the
three quantities of interest. To do so, we keep track of the distributions of two additional random variables
representing elapsed times:

– S: elapsed time since the beginning of the phase, and
– Sh∆ : elapsed time since the last increase of honest depth.

Let Th be the elapsed time since the previous honest success. Th is an interarrival time in a Poisson point
process, which follows an exponential distribution. With each new honest success, the distribution of S is
updated by a simple convolution of Th and the original S (which yields the pdf of the sum of two random
variables). The distribution of Sh∆ can be similarly updated except that we always have Sh∆ < ∆, so the
post-∆ portion of its pdf is reset and added to its pdf at 0. From here, we can also compute the probability

8 This is a slight simplification in the case of Ouroboros Praos, where the probability of a party that holds an
s-fraction of stake (for s ∈ [0, 1]) becoming a slot leader is in fact 1 − (1 − f)s for a constant f set to 1/20 in
Cardano. We adopt this simplification for the sake of broader applicability of our bounds.
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that the new honest success increments the honest depth h∆(x), as well as the distribution of Th conditioned
on whether or not h∆(x) is incremented. We can then compute the distribution of adversarial successes
during Th, again conditioned on whether or not h∆(x) is incremented. Lastly, we can update the distribution
of #[a](xt) by convolving it with the above pdfs.

5.3 Evaluating the Recurrence

Once we have the characteristic string distribution within a phase, it is relatively straightforward to numer-
ically evaluate the recurrences. We again focus on the PoS case. The PoW case is similar (in fact, simpler,
because there is only one quantity involved in the PoW recurrence).

Initially, we must settle on a distribution of (µ`, ρ) at time ` (corresponding to the moment the transaction
of interest appears in a block). While this does depend on `, the distribution converges quickly to a geometric
distribution. For this reason, we will use the stationary distribution of the initial (µ`, ρ) as its distribution
at time `. Also observe that before `, the margin µ` was equal to reach ρ, making ρ the only quantity of
interest. Intuitively, this initial distribution of ρ represents the number of private blocks that the adversary
has on top of the longest public honest block when the transaction of interest enters the ledger.

Next, we need to evolve the recurrence until settlement happens. Unfortunately, we do not know when
exactly settlement happens as that depends on the adversarial strategy and the initial value of ρ. Therefore,
we instead evolve the recurrence until the earliest possible time that a settlement error could occur. Observe
that a settlement error can occur only after 2k−s lottery successes have occurred since `, where s is value of
ρ at time ` and k is the settlement depth. This is because two chains of length k must exist for the adversary
to cause a settlement error. (For example, if ρ = 2k at time `, an adversary can immediately activate the
settlement of “buried by k blocks” and violate consistency.) To do so, we need the distribution of the total
number of successes in each phase, which is also why we need the quantity #h(x) in the joint distribution of
a phase.

From here, we keep evolving the recurrence, but “freezing” any probability mass on positive values of the
margin. We then evolve the system forward until the (exponentially decaying) contributions from further
evolution are negligible.

The same approach can be used to numerically evaluate the concrete attack described in Section 4.7 to
yield lower bounds on the settlement failure probability for PoS blockchains.

5.4 Numerical Results

Figure 4 is a more detailed version of Figure 1 from the introduction. It depicts our settlement bounds for
Ethereum, compared to the best previous bounds for Ethereum [GRR22]; as well as our new settlement
bounds for Cardano. We provide more numerical results in the tables in Appendix A.

Our methods also enable a direct comparison between PoW and PoS blockchains in terms of settlement
error and settlement delay. Figure 5 plots our settlement upper bound for Cardano and compares it against
a hypothetical PoW blockchain with the same inter-block time as Cardano, and under the same network
delay and adversarial ratio. We can see that given the same system parameters and at the same settlement
depth, a PoS blockchain has a larger settlement error; equivalently, to obtain the same settlement error, a
PoS blockchain needs a slightly higher settlement depth. This is an expected price being paid for avoiding
the enormous energy consumption of PoW, and is caused by giving the adversary the extra power of creating
as many blocks as it wishes using a single success. Our results allow this price to be precisely quantified for
the first time.

6 Conclusions: Practical Relevance

The goal of our work is to provide concrete settlement bounds with practical applicability to deployed longest-
chain protocols. We provide the first such bounds for longest-chain PoS, and along the way also derive the
best existing settlement bounds for PoW. We remark that in specific PoS systems there may be additional
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Fig. 4. Left: Ethereum (PoW) block-based settlement failure for a 10% adversary, results from [GRR22] for com-
parison. Right: Cardano (PoS) block-based settlement failure for a 10% adversary. (The right-side legend applies to
both figures.)
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Fig. 5. Comparison of block-based settlement failure upper bounds for Cardano (PoS, 10% adversary, ∆r = 2s) and
a hypothetical PoW protocol with the same parametrization.

security factors that affect settlement times: for example, the security guarantees for the Ouroboros Praos
or Snow White have two terms, one arising from the intrinsic aspects of longest-chain rule (as studied in
this paper) and one external term that arises from grinding attacks on the leadership schedule (which is
completely orthogonal to our work). Naturally, a comprehensive estimation of settlement delays must reflect
all attack surfaces.

While the concrete results we quote consider the parametrizations of Ethereum and Cardano, our methods
can be directly applied to compute these statistics for any other choice of block interval, block propagation
delay ∆r, and assumed share of adversarial power. In each specific case, the value ∆r can be estimated based
on measurements, such as those we reference for Ethereum. Finally, estimating the fraction of adversarially
controlled stake ultimately comes down to each user’s belief about the state of stake distribution across the
set of users; nonetheless our results allow each individual user to choose their settlement rule based on their
own beliefs about the system and their acceptable failure probability (perhaps depending on the transacted
amount).
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A Further Details of the PoW Analysis

A.1 Proof of Lemma 2

We first set down a simple fact about tight vertices.

Lemma 16. Let F ` w ∈ Σn. Let v be a tight vertex and let v′ be an honest vertex with l#(v) ≤ l#(v′);
then len(v) ≤ len(v′).

Proof of Lemma 16. As l#(v) ≤ l#(v′) and v is tight,

len(v) = len(Fl#(v)−∆−1e) + 1 ≤ len(Fl#(v′)−∆−1e) + 1 ≤ len(v′) .

Note the contrapositive of Lemma 16: if len(v′) < len(v) then l#(v′) < l#(v).

Proof of Lemma 2. Let F `Wws be a public witness tree for ws. We describe a transformation, which we
naturally call “compression,” that converts F into a compressed public tree F c `Wws for which β`(F

c) =
β`(F ). If F is compressed, the transformation makes no change. Otherwise, the transformation is given as
a sequence of “compression steps,” each of which reduces the total depth of the tree and locally improves
tightness violations.

In particular, if F is not compressed, there is a smallest depth d ≤ len(F ) for which there is no tight
honest vertex of depth d. Let F ′ denote the labeled rooted tree obtained from F by carrying out the following
alterations:

– If d = 1, for every vertex v of depth d = 1, replace any edge (v, u) by an edge (r, u) where r is the root.

– If d > 1, raise every vertex v of depth d one level in the tree by replacing the unique edge of the form
(u, v) with the edge (p, v), where p is the parent of u.

The labels of all vertices in F ′ remain the same as those of the corresponding vertices in F . Note that F ′ is
again public. As indicated above, we refer to the procedure carrying F 7→ F ′ as a compression step.

We verify that F ′ `Wws: Axiom (A1) is trivially satisfied. Axiom (W3) holds for F ′ as all directed edges
added to F ′ respect the label ordering. Axiom (W4) holds as all labels are preserved. Finally, we consider
axiom (A2). Note the effect that the process has on the depth of honest vertices in the general case d > 1:
The depths of all honest vertices with (initial) depth less than d are preserved, while the depths of all honest
vertices with depths at least d are decreased by exactly one. Thus the only possible violations of axiom (A2)
could occur among those honest vertices at depth exactly d; however, as all such vertices are non-tight by
assumption, reducing their depth by one preserves axiom (A2). Finally, observe that if d = 1, all vertices
of depth d are adversarial, as any honest vertex of depth 1 is tight by definition, hence the above reasoning
applies as well despite a different alteration rule.

In light of the observations above, note that len(F ′) = len(F ) − 1. It follows that a finite number of
compression steps results in a compressed tree, F c, as desired. Also, given that |s| = ∆ and s contains no
honest successes, we have F = Fd∆ and F ′ = F ′d∆, and hence len(F ′d∆) = len(Fd∆)− 1.

In general, we show below that β`(F
′) ≥ β`(F ); thus, if β`(F ) = β`(ws) then β`(F

′) = β`(ws) and
F ′ is likewise an optimal tree. Consider a chain T of F ; we may naturally associate this with the chain
T ′ of F ′ that terminates with the same vertex. If αF (T ) ≥ 0 it follows from the discussion above that
αF ′(T

′) = αF (T ), as len(T ′) = len(T ) − 1 and len(F ′) = len(F ) − 1. If αF (T ) < 0 it follows that αF (T ) ≤
αF ′(T

′) ≤ αF (T ) + 1, depending on whether the alterations involve any vertices of the chain T . It follows
immediately that β`(F

′) ≥ β`(F ). Specifically, let (Th, Ta) be two witness chains for F so that αF (Th) ≥ 0,
αF (Ta) = β`(F ), and Th 6∼` Ta. Let T ′a and T ′h be the two chains corresponding to Ta and Th in F ′,
respectively; clearly T ′h 6∼` T ′a and note that this does not depend on `. Then αF ′(T

′
h) = αF (Th) and

αF ′(T
′
a) ≥ αF (Ta); therefore T ′h is dominant in F ′ and we have β`(F

′) ≥ β`(F ), as desired.
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A.2 Proof of Lemma 3

The statement of our Lemma 3 only differs from [GKR20, Lemma 4] by considering a more general alphabet
Σ = N × N and a slightly different definition of the relation ∼`. This only leads to minor syntactical
modifications in the proof, we present it in full below for completeness.

Proof. On a high level, we restructure the tree F to obtain a valid tree F̃ `W w that satisfies β`(F̃ ) ≥
αF (v1) + |A1 ∪A2|, establishing the claim. This restructuring consists of two main modifications: (i) use (at
least) all adversarial vertices in A1∪A2 to build a chain T̃a on top of v1 with len(T̃a) at least len(v1)+|A1∪A2|;
and (ii) use tight vertices of depths len(v2) + 1, len(v2) + 2,. . . , len(F ) to build an honest chain T̃h on top
of v2 that achieves len(T̃h) = len(F ). A simple additional modification is needed to ensure that the honest
descendants of v1 and v2 do not violate the validity of the resulting tree F̃ . The heart of the argument is
then to verify that F̃ is indeed a valid tree for w.

Towards a formal description of the restructuring operation, we identify sets of vertices in F that will be
modified in the same way. Let y denote the last common vertex of T1 and T2, and let z denote the deeper one
of the vertices {v1, y}. First, we define A′i := {a ∈ Ai | l#(a) > l#(z)}, we write A := A′1 ∪ A′2 and refer to
the individual vertices in A as a1, . . . a|A| so that i < j implies l#(ai) ≤ l#(aj).

9 Next, as F is compressed, it

contains a tight honest vertex for each depth in {len(v2) + 1, . . . , len(F )}. We label these vertices h1, . . . , hg,
where g = len(F )− len(v2) and hi has len(hi) = len(v2) + i, and denote H := {h1, . . . , hg}. Note that there
might be several tight vertices of a particular depth in F , the choice of vertices for H is arbitrary, we just
ensure that it contains one vertex for each of the relevant depths. Finally, we denote by D = {d1, . . . , d|D|}
the set of all vertices that at the same time

(a) are honest,
(b) are (possibly indirect) descendants of either v1 or v2,
(c) are not (possible indirect) predecessors of either z or v2, and
(d) are not in H.

We again index the vertices in D in a non-decreasing order of labels.
We first modify F as follows:

Set A: The unique edge of the form (u, a1) is replaced with the edge (z, a1) and for each i ∈ {2, . . . , |A|},
the unique edge of the form (u, ai) is replaced with the edge (ai−1, ai).

Set H: The unique edge of the form (u, h1) is replaced with the edge (v2, h1) and for each i ∈ {2, . . . , g},
the unique edge of the form (u, hi) is replaced with the edge (hi−1, hi).

We denote the resulting labeled tree F0, note that F0 is not necessarily a valid tree. To reestablish validity,
we proceed with the following sequence of modifications:

Set D: For each i ∈ {1, . . . , |D|} the unique edge of the form (u, di) in Fi−1 is replaced by (ũi, di), where ũi
is the vertex in Fi−1 with maximum depth out of all honest vertices with label at most l#(di)−∆; note
that this in particular excludes dj for j > i. Formally,

ũi := arg max
u∈Fi−1; ltype(u)=h
l#(u)≤l#(di)−∆

lenFi−1(u) , (12)

where ties in max can be broken arbitrarily. The labeled tree resulting from the i-th iteration is called
Fi.

Finally, we let F̃ := F|D|.

We now show that F̃ is a valid tree for w. The axioms (A1) and (W4) are clearly maintained by the above
modifications and hence inherited from F . Axiom (W3) is satisfied in F̃ as each newly added edge (u, v) has

9 We recommend the reader to first consider the simplest situation where len(y) < len(vi) for both i ∈ {1, 2} and
hence z = v1 and A′

i = Ai.
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l#(u) ≤ l#(v). For new edges {(·, di) | di ∈ D} this directly follows from (12), for new edges {(·, ai) | ai ∈ A}
this is a consequence of the definition of A′i and the ordering within A. Finally, in H we have by construction

len(v2) < len(h1) < · · · < len(hg) = len(F ),

v2 is honest, and each hi is tight (and hence honest). Applying Lemma 16 to each hi implies that

l#(v2) < l#(h1) < · · · < l#(hg)

as required.
To verify axiom (A2), note that when moving from F to F̃ , the depths of all honest vertices outside of

D remained unchanged. The depth of a vertex di ∈ D might have changed, but it has not increased; this
can be shown by simple induction on i: by induction hypothesis, also the depths of all honest vertices with
labels up to l#(di)−∆ have not increased from F to F̃ , and hence

lenF (di) ≥ max
u∈F, ltype(u)=h
l#(u)≤l#(di)−∆

lenF (u) + 1 ≥ max
u∈F̃ , ltype(u)=h
l#(u)≤l#(di)−∆

lenF̃ (u) + 1 = lenF̃ (di) ,

where the first inequality follows from axiom (A2) in F and the last equality is a consequence of (12). Given
the above, the only possible violation of axiom (A2) in F̃ could occur for a pair (v, w) with w = di ∈ D, but
this is exactly prevented by the rule (12). This concludes the argument that F̃ `Ww.

To finish the proof, denote by T̃a and T̃h the chains in F̃ terminating in a|A| and h|H|, respectively. Given

T1 6∼` T2 we have l#(y) < `, and note that the last common vertex of T̃a and T̃h has label at most l#(y),

hence we have T̃a 6∼` T̃h. Furthermore, len(T̃h) = len(F̃ ) by construction. Hence we have

β`(w) ≥ β`(F̃ ) ≥ αF̃ (T̃a) = αF (z) + |A| .

Finally, αF (z) + |A| ≥ αF (v1) + |A1 ∪ A2|: if z = v1 then each Ai = A′i and hence A = A1 ∪ A2; otherwise
z = y and αF (z) ≥ αF (v1) + |(A1 ∪A2) \A|. This concludes the proof.

B Further Details of the PoS Analysis

B.1 Proof of Lemma 13

Proof. Let F be a public witness PoS tree F `S ws, and let (T1, T2) be a pair of witness chains in F , i.e.,
T1 6∼` T2, reachF (T1) = ρ(F ) ≥ 0 and reachF (T2) = µ`(ws) < −#[a](xt).

We construct a tree F ′ `Swsxt such that µ`(F
′) = µ`(F ) + #[a](xt)− h∆(x) as follows. Let Th be some

chain in F that terminates with an honest vertex and achieves lenF (Th) = len(F ), such a chain exists by the
definition of len(F ). Note that as reachF (Th) ≥ αF (Th) ≥ 0, we must have Th ∼` T1, as otherwise (Th, T1)
would witness µ`(ws) ≥ µ`(F ) ≥ 0, a contradiction. To construct F ′, we add #h(x) honest vertices to F
that form a subtree rooted in the terminating vertex of Th, where each of these honest vertices is always put
at the minimal depth allowed by axiom (A2), and labeling them consistently with x to satisfy axiom (S4).
Let T ′h denote a chain terminating in some maximum-depth newly added honest vertex. The resulting tree
(call it F ′) is indeed a public PoS-tree: it is easy to observe that all axioms of a PoS-tree are satisfied by
construction. Note that len(F ′) = len(F ) + h∆(x) and

reachF ′(T2) = αF ′(T2) + reserveF ′(T2)

= (αF (T2)− h∆(x)) + (reserveF (T2) + #[a](xt))

= reachF (T2) + #[a](xt)− h∆(x) < 0

by our assumption on µ`(ws). Moreover, T ′h 6∼` T2 and reachF ′(T
′
h) ≥ αF ′(T

′
h) ≥ 0 > reachF ′(T2), hence

(T ′h, T2) in F ′ witness µ`(w
′) ≥ µ`(F ′) ≥ reachF ′(T2) = µ`(ws) + #[a](xt)− h∆(x), as desired.
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B.2 Proof of Lemma 14

Proof. Let w′ := wsxt and let F ′ be a public witness PoS-tree F ′ `Sw′; let T ′1 6∼` T ′2 be a pair of witness chains
in F ′ such that reachF ′(T

′
1) ≥ 0 and reachF ′(T

′
1) ≥ reachF ′(T

′
2) = µ`(w

′). Furthermore, let F := F ′|ws|e `Sws
and define T1 and T2 to be the restrictions of T ′1 and T ′2 to F , respectively.

As F, F ′ are public, using Fact 1, we again have Fd∆ = F and F ′d∆ = F ′, and

len(F ′d∆) ≥ len(Fd∆) + h∆(x) . (13)

By our assumption of negative µ`(ws), there is a well-defined main branch MS(F ). We now establish
that, intuitively speaking, chains in F outside of MS(F ) are not extended by any new vertices in F ′.

Claim. Consider any chain T ∈ F such that T 6∈ MS(F ) and any T ′ ∈ F ′ such that T = T ′|ws|e. Then T = T ′.

To see this, observe that any honest vertex in F ′ with label greater than |ws| must have depth at least
len(Fd∆) + 1 by axiom (A2), hence all vertices from T ′ \T with depth at most len(Fd∆) must be adversarial.
As reachF (T ) ≤ µ`(ws) < −#[a](xt) by our assumption on µ`(ws), we have reachF (T ) + #[a](xt) < 0, and
hence T ′ \ T can only contain adversarial vertices. Given that F ′ is public, this already implies T = T ′ and
establishes Claim C.2.

We now argue that T1 ∈ MS(F ). Towards contradiction, assume the opposite. Then Claim C.2 applies to
T1 and T ′1 = T1, hence

reachF ′(T
′
1) ≤ reachF (T1) + #[a](xt) . (14)

However, in this case we would also have reachF (T1) ≤ µ`(ws) < −#[a](xt) and hence reachF ′(T
′
1) < 0, a

contradiction with the definition of T ′1. Therefore, T1 ∈ MS(F ).
Since T ′1 6∼` T ′2, it also follows that T1 6∼` T2, and at most one of these chains belongs to MS(F ),

hence we have T2 6∈ MS(F ). By Claim C.2, T ′2 = T2, giving us reserveF ′(T
′
2) = reserveF (T2) + #[a](xt) and

αF ′(T
′
2) ≤ αF (T2)− h∆(x) via (13). Therefore

µ`(w
′) = reachF ′(T

′
2) ≤ reachF (T2) + #[a](xt)− h∆(x)

≤ µ`(ws) + #[a](xt)− h∆(x) ,

as desired, finishing the proof of Lemma 14.

B.3 Proof of Lemma 15

Proof. Let w′ := ws(1, 0)(0, 0)∆ and towards a contradiction, assume µ`(w
′) ≥ 0. By definition of µ`, there

exists a public witness PoS-tree F ′ `S w′ and two chains T ′1, T
′
2 in F ′ such that T ′1 6∼` T ′2, reachF ′(T

′
1) = 0,

reachF ′(T
′
2) ≥ 0, and T ′1 terminates with the unique (and honest) vertex with l#(v′h) = |ws|+1 prescribed by

w′; let us call this vertex v′h. (Note that (T ′1, T
′
2) are not necessarily witness chains.) Denote F := F ′|ws|e `Sws

and note that F is the public core of the tree obtained from F ′ by just removing v′h. As #h(s) = 0 and

|s| = ∆, by axiom (A2) we have lenF ′(v
′
h) > len(F ) and hence len(F ′d∆) = len(F ′) > len(F ) = len(Fd∆).

Let T1 be the restriction of T ′1 to F . Note that as T ′1 6∼` T ′2 and |ws(1, 0)| ≥ `, we must have v′h 6∈ T ′2 and

T ′1 6= T ′2, hence T ′2 also exists in F . Observe that as len(Fd∆) < len(F ′d∆), we have reachF (T ′2) > 0, resulting

in ρ(ws) ≥ reachF (T ′2) > 0, a contradiction.

C Detailed Explicit Bounds

In Table 1, we provide a detailed account of our numerical estimates of the failure probability of block-
based settlement for a PoS blockchain using the same parameters as Cardano and a PoW blockchain using
the same parameters as Ethereum. We give both lower and upper bounds provided by our method, and
consider two variants of adversarial power (10% and 20%) and two variants of the bound on network delay
(∆r ∈ {2 sec, 5 sec}).
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Confs.
upper bounds lower bounds

∆r = 5s ∆r = 2s ∆r = 5s ∆r = 2s

10% adversary

2 0.24899 0.15019 0.11259 0.10282

3 0.14148 0.072404 0.05152 0.046637

4 0.081549 0.035424 0.024293 0.021176

5 0.047274 0.017353 0.011252 0.0093296

6 0.027549 0.0086415 0.0052946 0.0042396

7 0.016111 0.0043448 0.0025463 0.0019768

8 0.0094453 0.0021932 0.0012351 0.00092412

9 0.0055476 0.0011107 0.00060071 0.00043251

10 0.0032628 0.00056399 0.00029307 0.00020335

11 0.0019209 0.00028694 0.00014342 9.5921e-05

12 0.0011318 0.00014618 7.0336e-05 4.5314e-05

13 0.00066722 7.4554e-05 3.4544e-05 2.1433e-05

14 0.00039352 3.8054e-05 1.6985e-05 1.015e-05

15 0.00023218 1.9436e-05 8.3592e-06 4.8108e-06

16 0.00013702 9.9318e-06 4.1172e-06 2.2817e-06

17 8.0878e-05 5.077e-06 2.0291e-06 1.0828e-06

18 4.7747e-05 2.5961e-06 1.0005e-06 5.1404e-07

19 2.8192e-05 1.3278e-06 4.9348e-07 2.4411e-07

20 1.6647e-05 6.7925e-07 2.4349e-07 1.1596e-07

20% adversary

2 0.50883 0.40081 0.36217 0.33446

3 0.38889 0.28256 0.22941 0.20267

4 0.30061 0.20242 0.14728 0.12452

5 0.23374 0.14596 0.095439 0.077253

6 0.18268 0.10624 0.062274 0.048272

7 0.14332 0.077868 0.040851 0.030331

8 0.11277 0.057336 0.026914 0.019143

9 0.088925 0.042363 0.017794 0.012126

10 0.070254 0.031388 0.0118 0.0077051

11 0.055588 0.023309 0.0078446 0.0049087

12 0.044039 0.017341 0.0052265 0.0031342

13 0.034927 0.012921 0.0034888 0.0020051

14 0.027725 0.0096393 0.0023328 0.001285

15 0.022025 0.0071989 0.0015621 0.0008248

16 0.017508 0.0053812 0.0010474 0.00053013

17 0.013925 0.0040255 0.00070319 0.00034115

18 0.011081 0.0030134 0.00047259 0.00021978

19 0.0088216 0.002257 0.00031793 0.00014174

20 0.0070254 0.0016913 0.00021407 9.1492e-05

Confs.
upper bounds lower bounds

∆r = 5s ∆r = 2s ∆r = 5s ∆r = 2s

10% adversary

2 0.2381 0.17344 0.10527 0.099339

3 0.12159 0.074759 0.037337 0.033968

4 0.063124 0.032805 0.013531 0.011868

5 0.033032 0.014561 0.0049745 0.0042061

6 0.017349 0.0065092 0.0018477 0.0015061

7 0.0091274 0.0029231 0.00069164 0.00054355

8 0.0048061 0.0013164 0.00026048 0.00019736

9 0.0025317 0.00059395 9.858e-05 7.2014e-05

10 0.0013339 0.00026831 3.7459e-05 2.6384e-05

11 0.00070294 0.00012131 1.4282e-05 9.699e-06

12 0.00037045 5.4877e-05 5.4613e-06 3.5758e-06

13 0.00019524 2.4836e-05 2.0935e-06 1.3216e-06

14 0.0001029 1.1244e-05 8.0421e-07 4.8953e-07

15 5.4238e-05 5.0913e-06 3.0953e-07 1.8167e-07

16 2.8588e-05 2.3059e-06 1.1933e-07 6.7532e-08

17 1.5068e-05 1.0445e-06 4.6076e-08 2.5142e-08

18 7.9426e-06 4.7318e-07 1.7815e-08 9.3727e-09

19 4.1866e-06 2.1438e-07 6.8961e-09 3.4984e-09

20 2.2068e-06 9.7136e-08 2.6725e-09 1.3072e-09

20% adversary

2 0.49466 0.42451 0.36218 0.3444

3 0.35537 0.28277 0.22941 0.21209

4 0.25774 0.1904 0.14728 0.13242

5 0.18804 0.1292 0.09544 0.083466

6 0.13771 0.088158 0.062274 0.052985

7 0.10109 0.060405 0.040852 0.03382

8 0.07434 0.04152 0.026914 0.021683

9 0.054733 0.028608 0.017795 0.013952

10 0.040334 0.019749 0.0118 0.0090044

11 0.029743 0.013654 0.0078447 0.0058265

12 0.021947 0.0094518 0.0052266 0.0037785

13 0.016201 0.0065496 0.0034888 0.0024552

14 0.011964 0.0045424 0.0023328 0.001598

15 0.0088387 0.0031526 0.0015621 0.0010417

16 0.0065315 0.0021894 0.0010475 0.00068

17 0.0048278 0.0015214 0.0007032 0.00044442

18 0.0035693 0.0010576 0.0004726 0.00029078

19 0.0026394 0.00073556 0.00031793 0.00019044

20 0.0019521 0.00051176 0.00021408 0.00012484

Table 1. The failure probability of the block-based settlement rule for (left) a PoS blockchain with Cardano-like
parametrization and (right) a PoW blockchain with Ethereum-like parametrization under different number of confir-
mations, adversary ratio and network delays.
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