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Abstract. At CRYPTO 1994, Cramer, Damgard and Schoenmakers
proposed a general method to construct proofs of knowledge (PoKs),
especially for k-out-of-n partial knowledge, of which relations can be ex-
pressed in disjunctive normal form (DNF). Since then, proofs of k-out-
of-n partial knowledge have attracted much attention and some efficient
constructions have been proposed. However, many practical scenarios
require efficient PoK protocols for partial knowledge in other forms.

In this paper, we mainly focus on PoK protocols for k-conjunctive normal
form (k-CNF) relations, which have n statements and can be expressed as
follows: (i) k statements constitute a clause via “OR” operations, and (ii)
the relation consists of multiple clauses via “AND” operations. We pro-
pose an alternative Sigma protocol (called DAG-X protocol) for k-CNF
relations (in the discrete logarithm setting), by converting these rela-
tions to directed acyclic graphs (DAGs). Our DAG-X protocol achieves
less communication cost and smaller computational overhead compared
with Cramer et al.’s general method.

Keywords: Sigma protocol - Proof of partial knowledge - Conjunctive
normal form - Directed acyclic graph - Disjunctive normal form.

1 Introduction

Proofs of partial knowledge demonstrate the possession of certain subsets of
witnesses for a given collection of statements. In 1994, Cramer, Damgard and
Schoenmakers [14] showed a general method with access structures to construct
proofs of partial knowledge for compound statements, from “atomic” Sigma pro-
tocols for the individual statements.

During the last decades, most works of proofs of partial knowledge [21,1,2,5]
focus on k-out-of-n partial knowledge (i.e., proving knowledge of witnesses for
k out of n statements). The relations of k-out-of-n partial knowledge can be



expressed in the following disjunctive normal form (DNF) on n statements:
every k different statements are combined with operation “AND” (we call such
a combination of k statements a “Type-A clause”), and C¥ different Type-A
clauses are combined with operation “OR”. An informal expression when k = 2
and n = 31s (y1 Ay2)V (y1 Ays) V (y2 Ays), where yy, ya, y3 are 3 statements, and
(y1 Ay2), (y1 Ays), (y2 Ays) are 3 Type-A clauses. We call this kind of relations
complete k-DNF relations, since each of them contains C*¥ Type-A clauses for
some specific £ and n.

However, many practical scenarios require proofs of partial knowledge in
other forms, such as a variant of the aforementioned DNF relations, which are
very similar to complete k-DNF relations but the number of Type-A clauses is
smaller than C* (e.g., when k =2 and n = 3, (y1 Ay2) V (y1 Ays)). We call this
kind of relations incomplete k-DNF relations.

Relations expressed in conjunctive normal form (CNF) are another impor-
tant collection of relations in practice. For instance, many access control policies
are naturally set in CNF and they have been discussed in some attribute-based
encryption schemes [26,28,8,34]. Another class of examples is the collection of
instances of the k-SAT problem [25], e.g., a start-up company wants to show the
investors a business plan (building at least a shopping mall in every k neighbour-
ing blocks) in a zero-knowledge manner, avoiding the business roadmap being
leaked. Some other applications about relations in CNF are also mentioned in
[2], e.g., proof of possession of white money, where given a transaction graph,
a user proves that the money are transferred among some white organizations
while preserving the organizations’ pseudonymity.

In this paper, we mainly focus on k-CNF relations': k different statements are
combined with operation “OR” (similarly, we call such a combination a “Type-
V” clause), and many Type-V clauses are combined with operation “AND”. An
example expression when k = 2 and n = 3 is (y1 Vy2) A (y1 Vy3), where (y1 V y2)
and (y; V y3) are 2 Type-V clauses.

Note that given some witnesses and statements, in order to determine whether
they belongs to a k-CNF relation, one has to check every Type-V clause. But if
for a k-DNF relation, once a Type-A clause is satisfied, the other Type-A clauses
do not need to be checked anymore. It seems that the above difference results in
the failure of applying most approaches of Sigma protocols for complete k-DNF
relations to k-CNF relations.

To the best of our knowledge, only Cramer et al. [14] shows constructions of
Sigma protocols for k-CNF relations. However, it may lead to super-polynomial
communication cost. Acyclicity program, proposed by Abe et al. [2], also works
for k-CNF relations, but it is designed for non-interactive zero-knowledge proofs
(NIZK), not Sigma protocols. More importantly, it seems impossible to transfer
their scheme [2] into a standard Sigma protocol, so acyclicity program [2] does

! In this paper, when we refer to k-CNF relations, we usually mean incomplete k-
CNF relations (i.e., the number of Type-V clauses num is smaller than C¥), since
complete k-CNF relations (i.e., num = C,’f) can be trivially converted to complete
(n — k + 1)-DNF relations.



not have the strengths of Sigma protocols. For example, Sigma protocols often
enjoy low soundness error by design, have high efficiency relative to their generic
counterparts, and are more flexible. Using the Fiat-Shamir transform [15], Sigma
protocols can be transferred to NIZK, so they are widely adopted in both non-
interactive algorithms [7,32,4] and interactive protocols [10,19]. Some protocols
[10,19] even enjoy round complexity improvement benefit from delayed-input
Sigma protocols, which can be transferred from ordinary Sigma protocols using
the method in [11]. But the acyclicity program does not enjoy these advantages.

Therefore, a question is raised naturally: Is it possible to construct a more
efficient Sigma protocol for k-CNF relations?

Our Contributions. This paper gives an affirmative answer to the above ques-
tion in the discrete-logarithm (DL) setting. More concretely, we systematically
study proofs of partial knowledge for k-CNF relations, showing constructions of
Sigma protocols for these relations and extensions.

We firstly formally define partial knowledge for k-CNF relations. Then, we
propose a construction of a Sigma protocol for k-CNF relations and we call it
DAG-X. protocol. More specifically, we first put forth an efficient deterministic
algorithm kCNFtoDAG to convert a k-CNF relation to a directed acyclic graph
(DAG). Then, we construct the DAG-X protocol by composing a collection of
Schnorr’s Sigma protocols [33] according to the DAG. With this approach, we
succeed in reducing the size of the transcripts and improving the efficiency.

As an extension, we apply our DAG-X protocols to construct Sigma protocols
for incomplete k-DNF relations. We prove theoretically that a Sigma protocol
for incomplete k-DNF relations can be obtained from two Sigma protocols: one
for k-CNF relations and the other one for complete k-DNF relations. Then we
construct a Sigma protocol for incomplete k-DNF relations in the DL setting,
by restricting the choices of statements.

A comparison of communication costs of some existing protocols for three
kinds of relations (k-CNF, incomplete k-DNF and complete k-DNF) is shown in
Table 1. To compare these schemes, we consider them in the DL setting where
given a group G of order p, the secret (or witness) of each statement is the
corresponding discrete logarithm. For the Sigma protocols (i.e., except [2]), we
consider the size of the data transmitted during the communication between the
prover and the verifier. For the others (i.e., [2]), we consider the proof size.

For k-CNF relations, the communication cost of our protocol (in Sec. 5.2) is
O(n — k)|G| + O(|V])|Z;]. Note that V' in Table 1 denotes the vertices of the
DAG in our DAG-X protocol. A discussion on upper bound of |V| shows that
the size of our solution is smaller (actually is much smaller in most cases) than
that of [14], which implies that our solution enjoys a better performance when
compared with [14]. Although the communication cost of 2] is linear in n, it is a
non-interactive protocol, so it lacks some general extensions for standard Sigma
protocols as discussed before.

For incomplete k-DNF relations, only a few protocols work for them. As
shown in Table 1, the communication costs of our protocol (in Sec. 6) and [1]



Table 1: Comparison of some existing protocols (in the DL setting)*

Schemes Y protocol? k-CNF incomplete k-DNF complete k-DNF
Cramer et al.[14] Yes O(k - num)(IG[ + 1Z3])  O(k - num)(IG] + [Z;]) O(n)(IG[ + 12,1
Groth et al.[21]**  Yes \ \ O(logn) (|G| + |Z,])
Abe et al.[1] Yes \ O(n)|G| + O(num)|Z; | O(n)|G| + O(C:f)|Z:\
Abe et al.[2] No O(n)(IG| + |2, 1) \
Attema et al.[5] Yes \ \ O(log(2n — k))|G| + 4 x |Z;]
Goel et al.[18] Yes \ \ O(k-n)***
Ours (Sec. 5.2) Yes O(n — k)|G| + O(|V]IZ,| \ O(k)|G| + O(\V|)|Z;\T
Ours (Sec. 6)% Yes \ O(n)|G| + O(IVDIZy|

* The results here are obtained by trivially applying the corresponding protocols. There are n statements and
num clauses in the expression of the k-CNF or (in)complete k-DNF relations, where each clause contains
k different statements. V' denotes the vertices of the DAG in our DAG-X protocol (|V] < k - num).

** The solution in [21] only works for k = 1.

* * * [18] presents a discussion on this kind of relation and the result is directly obtained from the discussion.
It involves a special commitment scheme, so we do not have |G| and |Z;| here.

T The result is obtained from Remark 1.
* Our solution in Sec. 6 only works for special language.

are both less than [14]. In the case of |V| < num, our protocol (in Sec. 6) has
less communication cost than that of [1].

Compared with those protocols for complete k-DNF relations with general
E ([14,5]), [5] does not consider k-CNF relations, and the protocol in [14] for
k-CNF relations has more communication cost than ours.

Finally, we provide an implementation of our DAG-X protocol based on el-
liptic curve groups with key size of 512 bits. It shows that our DAG-X protocol
saves more than 95% communication costs and more than 90% running time,
compared with [14], when proving the relations in our experiments.

Discussion: non-discrete-logarithm setting. In this paper, we mainly focus on
the DL setting (exactly running Schnorr’s Sigma protocol [33] for each state-
ment). Our solution can be extended to non-discrete-logarithm setting. We de-
scribe the DAG-X protocol by using many algorithm interfaces of a modified
Schnorr’s Sigma protocol. If similar modification can also be applied to other
non-discrete-logarithm-based Sigma protocols [30,9,24], then using the frame-
work of our DAG-X protocol and embedding other non-discrete-logarithm Sigma
protocols, the new protocol can work in non-discrete-logarithm setting.

Technical overview. Recall that a Sigma protocol is an interactive protocol
run by a prover P and a verifier V, and during the execution, a commitment a,
a challenge ¢ and a response z are sent in turn by P and V, where c is randomly
picked by V. In the literature, a composite Sigma protocol for compound NP
relations is constructed by composing “atomic” Sigma protocols for the individual
relations securely. Our DAG-X protocol follows this general idea. Generally, to
run the composite Sigma protocol, P firstly runs each of the “atomic” Sigma
protocols to generate the individual commitment a,tm, and then sends a to V,
where a derives from all the a,im’s as per the rule of the composite protocol.
After receiving a randomly sampled ¢ from V, P prepares the challenges catm’s,
based on what she sees (including ¢), for all the “atomic” Sigma protocols to
generate the responses zam’s for all statements. Finally, P packs the responses




Zatm’S and some cam’s as z (e.g., [14,1]) and sends z to V. Correctness usually
requires that having ¢ and z, V can compute a result a’ that equals a.

Our starting point is the most trivial solution, i.e., a contains all commitments

Qatm’S, and z contains all challenges catm’s and all responses zatm’s. Then, we
show step by step how to reduce the size of the communication, i.e., reducing
the numbers of a,tm’s in a, and the number of ciem’s and zatm’s in z.
Step I: reduce the number of aatm’s and cam’s. Inspired by the ring signature
[4], in a Type-V clause with k statements, we take the hash value of the com-
mitment for the (j + 1)*" statement as the challenge for the j* (1 < j < k)
statement, i.e., ¢; = Hash(ajJrl)7 where ¢; denotes one of catm’s and a;j41 denotes
one of azym’s. Further, all Type-V clauses share the challenge ¢ picked by V, and
for each Type-V clause, the k' statement takes ¢ as the challenge. The method
leads to the following benefits.

1. Only one challenge is in the transcript. Following the above method, i.e.,
“c; = Hash(aj+1)”, V can also compute all the challenges (i.e., catm’s for all
“atomic” Sigma protocols) by himself/herself when verification, except the
challenge for the k' statement in each clause. Hence, only one challenge
(i.e., ¢) needs to be transmitted, reducing the number of catm’s in z.

2. Only the commitments of the first statement in all Type-V clauses are in
the transcript, if we informally require that the verifiers in the underlying
“atomic” Sigma protocols can compute aatm, given the corresponding catm
and z,tm. The reason is simple. In a Type-V clause, given ¢ and z; for the
k" statement, if the verifier can compute ag, then he can know c¢,_1 via
cx—1 = Hash(ag). Following the method, the verifier can compute a; by
himself /herself. Thus, we only need to send the commitments of the first
statement in all Type-V clauses to the verifier for verification, which reduces
the number of azim’s in 2.

To guarantee the correctness, we employ a variant of Schnorr’s Sigma protocol
and following we take the proof of 1-out-of-k partial knowledge (i.e., there is
only one Type-V clause) for example to highlight the main idea.

An example relation in the DL setting is in Fig. 1, where x = (x1,...,2k)
and y = (y1,...,yr) denote the witnesses and statements respectively, and the
witness z, for statement y, is known by the prover. In Fig. 1, the prover in
the first step of the Sigma protocol (i.e., P;) randomly picks (z1,...,2x-1,7) to
compute (ay, ...,ax), and then sends only a; as the commitment a to the verifier.
Note that except the last statement, we take the hash value of commitment a;4
(1 < j < k) as the challenge for the j'" statement, i.e., ¢; = H(aj;1), where
H:G — Zj is a collision-resistance hash function. After receiving the challenge
¢ from the verifier, the prover in the third step of the Sigma protocol (i.e., Pa)
computes as follows.

1. For i = k to p+ 1 (where the witness z, for statement y, is known to
the prover), randomly re-computes the commitments for these statements
by randomly picking z;, ..., 2,1, following the similar method of Pi;



R={(xy):y1 =9"tV...Vyy =gk}
P a1 = gzl/y:'(az) — . ay = gz“/y;l(a”+1) N L gzkfl/y:(,aik) —ar=g"
Pr ah = gt el = g L = gyl = gt
a,i:a,’i(lfigp,) Randomly re-compute commitments
G n = SRR R e % )

Fig. 1: An example of the proof of 1-out-of-k partial knowledge

2. For the u" statement Yy, given the commitment a,, the challenge H(a,41)
and the witness x,,, we can re-compute zL for y,, by the property of Chameleon
X-protocol [12] (Schnorr’s Sigma protocol is also a Chameleon %-protocol and
more details are in Sec. 5.1), such that the value of Z;L guarantees a, = a

3. Fori=pu—1to 1, we just set z/ = z;.

/
w

A simple analysis on the correctness is presented here. Recall that for the "
statement, we have a,, = aj,. Then when i = 1—1, the equal challenges H(a;11) =
H(aj, ) and the equal responses z; = z; imply the equality of commitments a; =
a, and the latter further implies H(a;) = H(a}). By induction on 1 <i < p — 1,
we have a = a; = a}, which implies that the verifier will accept the proof. The
detailed algorithm can be found in Sec. 5.1.

If applying the above method directly to each Type-V clause of a k-CNF

relation, then the size of the response z (resp., the commitment a) would be O(k-
num) (resp., O(num)), where num is the number of Type-V clauses. Hence, the
complexity is theoretically equal to that of [14] as shown in Table 1. Therefore,
we further consider to reduce the number of @atm’s and zaem’'S.
Step II: reduce the number of azem’s and zaem’s. Given a k-CNF relation, there
may be many duplicate statements in different Type-V clauses. If these duplicate
statements can share the commitments a,¢m’s and responses zatm’s, then we can
reduce the numbers. To this end, we convert the relation to a DAG, requiring
that (i) every Type-V clause is converted to a directed path with k vertices and
each vertex represents a statement; (i) the maximum length of paths is k, and
the number of paths with length &k equals the number of the Type-V clauses num.
We merge the vertices in the graph while the above requirements are preserved.
For the details of the rules of merging, please refer to the transfer algorithm
kCNFtoDAG in Sec. 4. Our composite Sigma protocol is run over the DAG. As
a result, the size of the commitment a is O(n — k), and the size of the response
z is O(|V]), where V is the vertex set of the DAG. Through a theoretic analysis
(in Appendix C), we show that |V| < (k- num), even |V| < (k- num) in most
cases.

To illustrate the idea more clearly, we take the k-CNF relation in Eq. (1) for
example and the relation is informally denoted as

(Y1 Vy2) A (Y2 Vya) A(ys vV ys) A (Y1 V ya). (1)

Fig. 2 is the DAG output by kCNFtoDAG when inputting the relation in Eq.
(1), which has 4 directed paths, just equal to the number of the Type-V clauses
in Eq. (1). Node 4,4’ (¢ € [1,4]) represents the corresponding statement y;. For



each Type-V clause, we have a corresponding directed path with length & (e.g.,
for (y1 Vyz2), we have path 2 — 1). There are 4 different statements and each has
2 duplicates in Eq. (1). Note that in Fig. 2, there is only one node representing
y1 (similar for y4), because we merge some nodes by the algorithm kCNFtoDAG.
We also note that not all nodes corresponding to the duplicate statements can
be merged, e.g., node 3 and node 3’ for ys.

©_® 0

C3r = H((14) Cyr = H(ag) c1 = H(a2\|a4)
Cy = C C3 =2¢C Co = ¢C
Fig.2: An example of our scheme

Based on the DAG output by kCNFtoDAG, we compose the “atomic” Sigma
protocols for individual relations. Informally, we run a “atomic” Sigma protocol
over each node in the DAG. In a nutshell, for each node, we generate a commit-
ment for the corresponding statement of the node, and then generate a response
after receiving the challenge.

Note that the DAG affects the generation of the challenges for statements.
In Fig. 1, we note that the challenges are generated sequentially and only one
commitment influences the computation of a challenge (i.e., informally, ¢; =
H(a;t1)). However, in Fig. 2, there may be multiple arrows pointing to a node
v (e.g., node 1). For convenience, we call the nodes that these arrows point
from the predecessor nodes of node v. So here we have the challenge for the
corresponding statement of node v being influenced by multiple commitments,
which are generated for the statements of the predecessor nodes of v. More
exactly, to compute the challenge, the hash function will take these commitments
as the input (e.g., ¢; = H(az||a4)). For those nodes that no arrows point to, we
directly take c as the challenge for their corresponding statements (e.g., ¢4 = ¢).
With this approach, we preserve the effect of Step I for reducing the number of
Qatm’s and Catm’S.

Related works. A general composition technique of Sigma protocol was pro-
posed by Cramer, Damgard and Schoenmakers [14]. The idea is to secret-share
the challenge according to the access structure and then use the shares as chal-
lenges in the corresponding Sigma protocols for each of the “atomic” statements.
Another composition technique, to sequentially generate the challenge as we do
in Step I, is introduced in [4] and recently revisited in [16,2]. Some more discus-
sion on constructing proofs for k-CNF relations using the techniques of [14] and
[2] are placed in Appendix A.

Composition is also a hot topic in NIZKs in the common reference string
model. Numbers of works [20,22,3,29,31] are proposed to implement disjunctive
relations for the Groth-Sahai proofs [23] and Quasi-Adaptive NIZKs [27].

Composite Sigma protocol for 1-out-of-n partial knowledge (or complete k-
DNF relations) have been studied for a long time, since Cramer et al. [14] achieves




linear communication complexity. Later, Groth and Kohlweiss [21] show how to
achieve logarithmic (in n) communication when k = 1, while Attema, Cramer
and Fehr [5] achieve logarithmic communication for general k¥ and » in the DL
setting. Recently, Aarushi Goel et al. [18] propose stacking Sigmas to compose
Sigma, protocols for disjunctions. The resulting Sigma protocol has communi-
cation complexity proportional to the communication required by the largest
clause.

Roadmap. The rest of paper is organised as follows. We review preliminaries in
Sec. 2. The definition of k-CNF relations is introduced in Sec. 3 and a transfer
algorithm kCNFtoDAG is presented in Sec. 4. We formally present the DAG-X
protocol in Sec. 5 and an extension on incomplete k-DNF relations in Sec. 6.
Finally, we show the experimental results in Sec. 7.

2 Preliminary

Notations. Throughout this paper, let A denote the security parameter. For
any k € N, let [k] := {1,2,--- ,k}. For a finite set S, we denote by a < S the
process of uniformly sampling a from S. For a distribution X, we denote by
a < X the process of sampling a from X. For any probabilistic polynomial-time
(PPT) algorithm Alg, we write Alg(x;r) for the process of Alg on input = and
with inner randomness r, and use y < Alg(z) to denote the process of running
Alg on input z and with uniformly sampled inner randomness r, and assigning
y the result. We also use the symbol “<" to assign the value of a variable or
the result of a formula on the right-hand side to the variable on the left-hand
side. We write vectors in Z7 or G" in boldface, e.g., x = (z1,...,2,) € Z. In
addition, let (a||b) denote the concatenation of a and b.

Sigma protocol. Let R be a polynomial-time-decidable binary relation. The
corresponding language L consists of statement y such that there exists a wit-
ness x satisfying (z,y) € R. We specify L as an NP language. A Sigma protocol
¥ = (P,V) for polynomial-time-decidable relation R is a three-move proto-
col and cousists of two efficient interactive protocol algorithms (P,V), where
P = (P1,P2) is the prover and V = (V1, Vs) is the verifier, associated with a
challenge space CL. Specifically, for any (z,y) € R, the commitment a, the chal-
lenge ¢ and the response z are sent in turn by the prover and verifier, where
¢ is randomly picked over CL by the verifier. It enjoys completeness if for any
(z,y) € R and any transcript (a, ¢, z) output by the protocol, the verifier (i.e., Vs)
outputs 1. It also has the security requirements of knowledge soundness, special
honest verifier zero knowledge (special HVZK) and witness indistinguishability.
In this paper, we relax the requirement of knowledge soundness to computa-
tional knowledge soundness. Due to page limitations, formal definitions of these
security requirements will be given in Appendix B. Without loss of generality,
when there are multiple Sigma protocols, for ¥ = (P, V), we use 2.P and 2.V
to specify the prover and verifier of X, respectively.

Graphs. A directed graph is a tuple G = (V, E) where V is a set of elements
called vertices (or nodes) and E is a set of vertices pairs, E C V x V, called



directed edges or arrows. Given an edge e = (u,v), it is pointed from vertex u to
vertex v, and w is called the head of e and v is called the tail of e. A cycle in G
is a finite sequence of edges (e1,...,¢;) satisfying that the tail of edge e; is the
head of edge e; 1 for Vi € [I] ( we set ;11 = e1). A graph with no cycles is called
acyclic. Given an acyclic graph G, we define a vertex sequence (vq,...,v;) as a
path, where there is an edge e = (v;,v;41) for every pair of neighboring vertices
(vi,vi41) for ¢ € [l — 1]. The number of edges pointed to vertex v is called the
in-degree of vertex v and we denote it as in-deg(v). Similarly, the number of
edges pointed from vertex v is called the out-degree of vertex v and we denote
it as out-deg(v). Given a vertex v, we call it a source if in-deg(v) = 0 and call it
a sink if out-deg(v) = 0. In addition, we define some operations for a directed
acyclic graph G: (1) sink(G) outputs a vertex set S¥"k that contains all sinks;
(2) similarly, source(G) outputs a vertex set S%!"¢ that contains all sources; (3)
for any vertex v, pred(v) outputs a vertex set SP"d where the elements are the
head of the edges that are pointed to vertex v.

3 Definition of k-CNF relations

In this section, we formally define partial knowledge for k-CNF relations. Let y
denote a statement, and S}, denote the universal set of which the elements are k-
size subsets of [n], i.e., Sk = {{i1,..., g} 1 <i1 < ... <ip <n,{i1,...,ix} C
[n]}. Besides, (z1,y) € Ry (I € [n]) denotes a valid witness-statement pair be-
longing to a relation R;. Then, we define the following partial knowledge for
compound statements.

Definition 1. (Partial knowledge for k-CNF'). Given n different statements
(Y1)ie[n), n sub-relations (Ri)icn), and S;, & Sk, the prover proves that for all
{i1,...,1} € S}, she knows the witnesses for at least one of y;,,- -+ , i, -

The relation can be presented in CNF as follows,
Ri-onr,sy, = 1Y)t Apiy,iyes, (Viem (T4, vi;) € Rij)}, (2)

where X, y are two n-dimension vectors, and R;, € {R; | [ € [n]} is a sub-
relation. We call (Ve (zs,,y:,) € Ri;) a “Type-V” clause, where {iy,... iz} €
Sk Let num denote the number of Type-V clauses in Ry_onr, sy, 1.€., num = AR
Note that num < CF, and we only consider polynomial-time relation, so it
is required that the membership of (x,y) to Ri.cnr,s; can be determined in
polynomial time in |y|. We denote the (polynomial-time) relation defined in Eq.
(2) as a k-CNF relation.

We stress that not all the Ry onr,s; defined in Eq. (2) can be decided in

polynomial time. For example, when k is about 2 and num is close to CK,

3
generally the complexity of determining whether (x,y) € Ryonr,s; is O(k -

num) = O(% - 07?), S0 it is super-polynomial.

In this paper, we focus on k-CNF relations that can be determined in poly-
nomial time, e.g., (i) |S}| is polynomial in |y|, and (ii) k is a constant. Specif-
ically, when |S}| is polynomial in |y|, the time for determining Ri-oNF,s; 18



linear in |S}|, so it is also polynomial. On the other hand, when k is a constant,
O(k - num) = O(num), where num is polynomial in n in the worst case.
Remark 1. When num = C¥, a proof for a k-CNF relation can be transferred
into a proof of (n — k + 1)-out-of-n partial knowledge. Then there exists some
trivial and efficient solutions, e.g., [5]. Thus, without loss of generality, when we
refer to k-CNF relations, we usually mean “incomplete” k-CNF relations (i.e.,
num < CF). It also can be inferred that a proof of k-out-of-n partial knowledge
can be transferred into a proof for a (n — k + 1)-CNF relation with C?—k+1
clauses.

Throughout this paper, we mainly focus on the discrete logarithm (DL) set-
ting. In other words, the prover aims to convince the verifier that she knows the
discrete logarithms of some statements (i.e., the group elements). Formally, let
G be a cyclic group of order p, and g be a generator of G. Following Def. 1 and
the DL setting, we define the relation Rg}CNF’ g a8 follows:

R;&CNF,S,’C ={0%Y) : AMirinyes, Viemyi, = 979)}, (3)

where x € (Z, U{L}H)" \ {(L)"}, y € G", S, is defined as in Def. 1, and
for all {i1,...,ix} € S;, 1 < i1 < ... < i < n. Furthermore, for any x €
(Zy U{LH)"\A{(L)"}, let SY = {i € [n] | y; = g"*}. In other words, SY contains
the indices that prover knows the corresponding witnesses.

4 Converting k-CNF relations into DAGs

Before constructing our Sigma protocol for k-CNF relations, we firstly introduce
a deterministic transfer algorithm kCNFtoDAG, which can convert a k-CNF re-
lation Ry.cnr,s; (in Eq. (2)) to a directed acyclic graph (DAG). In Sec. 5, we
will show a Sigma protocol (DAG-X) based on the DAG output by the algorithm
kCNFtoDAG.

We require that the DAG output by kCNFtoDAG should have the following
properties:

— Property-(i): Each node in some path corresponds to a statement in the
corresponding Type-V clause.

— Property-(ii): The number of paths from the nodes in S%°""¢ to the nodes
in Sk equals the number of Type-V clauses in the expression of Ri-cNw, s,
and the lengths of these paths are k.

Furthermore, we require that the number of vertices in the DAG should be as
few as possible. That’s because in Sec. 5, we will show that the communication
complexity of our DAG-X protocol depends on the number of the vertices of the
DAG output by kCNFtoDAG.

Now, we turn to the details of algorithm kCNFtoDAG.
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For simplicity, we require that the statements in each Type-V clause are
sorted from the smallest index to the largest, e.g., Ry in Eq. (4) (for simplicity,
we use X to denote (z,y) € R).

Rl = {(va) : (El \ E2 \ 23) A (21 V EQ \Y 24)

A(S2VE3VE5)A(S3V SV Ss)} (4)

A simple idea to implement kCNFtoDAG is to build a separate directed path
for each Type-V clause. However, it would result in (k-num) nodes in the graph,
where num is the number of Type-V clauses. As shown in Fig. 3, we draw a DAG
for Ry in Eq. (4), using the simple idea. It is clear that the DAG has the above
two properties, and there are totally 3 x 4 = 12 nodes in the graph.

To reduce the number of nodes, we consider the following method first. We
scan the relation and let every statement have at most three states, i.e., begin-
ning, middle, ending. The beginning state shows that the statement is the last
statement of some Type-V clause so the corresponding node is the head of some
path. The middle state indicates that the statement is placed in the middle of
some Type-V clause. The ending state is that the statement is the first state-
ment of some Type-V clause (note that in Sec. 5, the prover will compute a
commitment for each node, and only the commitments for the nodes indicating
statements with ending state will be sent to the verifier). Then for every Type-V
clause, we have a path in G from a node indicating the beginning state of some
statement to a node indicating the ending state of some statement.

Thus, we merge the nodes with the same state in Fig. 3, then obtain another
DAG in Fig. 4. We use ay, b, e; (I € [1,5]) to denote the beginning, middle,
ending state of the [** statement respectively. When describing the DAG here,
for convenience, we also use these notations (i.e., a;, b; and e;) to represent the
head nodes, middle nodes and tail nodes respectively. In addition, we may use
superscripts to indicate different duplicate nodes (e.g., nodes b} and b3 in Fig. 6
represent the different duplicates). When talking about the paths in the DAG,
we sometimes write the path with nodes and arrows (e.g., for the path (as, ba, e1)
in Fig. 4, we write it as a3 — by — e1). In Fig. 4, the number of vertices is 9,
which is smaller than that in Fig. 3.

TS| e

5 4

0\

5 4 3 2 1

Fig. 3: A simple idea Fig. 4: An example for CNF

However, the above approach cannot handle all cases. A counter example is
Ro={(xy) : (Z1VE2VEZ) A (E1VEVEHA(E1VE3VEy)

A(S2VE3VE5)A(S3V SV 5)) (5)
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and we try to draw a DAG as shown in Fig. 5, using the above approach.

e

5 4 3 2 1 5 4 3 2 1

Fig.5: A counter exam Fig.6: A fixed graph

Compared with relation Ry in Eq. (4), one more Type-V clause is added in
Eq. (5) (i-e., (X1 V33V Xy)), and we use the dashed arrows in Fig. 5 to show
the difference compared with Fig. 4. Note that there is a “crossing edge” (i.e., in
node b3) in Fig. 5. It implies two more directed paths (i.e., ay — bs — ey and
as — by — e1) are introduced in Fig. 5, while (X2VY3VE,) and (X1VE3VE5) are
not in Eq. (5). Hence, the obtaining DAG does not have the above two properties.
Essentially, a “wrong” crossing edge may introduce nonexistent Type-V clauses.
Thus, to output a correct DAG, a duplicate node for b3 is needed in this case,
as shown in Fig. 6.

Next, we present the formal description of algorithm kCNFtoDAG, which is
constructed with the above approach. We also take relation Ry in Eq. (5) as an
example, to show how kCNFtoDAG works step by step.

Algorithm description. Inputting a k-CNF relation Rycnr,s; (in Eq. (2)), the

deterministic transfer algorithm kCNFtoDAG runs in the following steps and
finally outputs a DAG G = (V, E):

1. Preparing nodes. For each Type-V clause in Ry cnr,s;, draw a sepa-

rate directed path (vi,...,vg) with length k and each node represents a
statement. For each path, we require that the indices of their correspond-
ing statements are from the largest to the smallest. In other words, given a
function f : V' — [n], mapping the nodes to the indices of the corresponding
statements, we have f(v1) > ... > f(vk).
As shown in Fig. 7, for every Type-V clause of the expression of Ry in Eq.
(5), we draw a path. There are 5 paths and 15 nodes in total. The numbers
in the bottom of Fig. 7 (i.e., 5,...,1) indicate the statements that the above
nodes map to, e.g., node ag represents statement ys. It is clear that given
any path (v1,vs,v3) in Fig. 7, the indices of the corresponding statements
are in descending order, e.g., for the path which is denoted as az — b2 — €3,
we have f(v1) =3 > f(v2) =2 > f(vs) = 1.

2. Merging prefixes. For any node v; (I € [k]) in some path (vy,...,vx), we
define the prefiz of v; as (vi,...,v—1). For any v; and vj, if their prefixes
(v1,...,v—1) and (v{,...,v]_;) correspond to the same statements, then
for all ¢ € [l — 1], we merge v; and v} into one node. Here, we merge the
nodes in descending order of the indices of the statements, i.e., from the
largest index to the least index.
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Fig. 7: Graph after step 1 Fig. 8: Graph after step 2

For example, in Fig. 7, node by (in path a} — by — e3) and node b} (in
path a2 — bl — e3) have the same prefix (i.e., node a and node a2). Thus,
we merge them into one node (i.e., the blue node a5 in Fig. 8). Similarly,
we merge node a} and node a3 into another blue node a4 in Fig. 8. Finally,
we obtain Fig. 8 after merging prefixes and there are totally 5 paths and 13
nodes.

. Merging suffixes. For any node v; (I € [k]) in some path (v1,...,vg), we
define the suffiz of v; as (v141,...,vx). Note that a node may have multiple
suffixes after merging prefixes. For any v; and v, we will merge them into
one node, if they satisfy the following conditions: i) they correspond to the
same statement; ii) the numbers of suffixes of v; and v] are the same (if the
suffix is empty, the number of suffixes is 0); iii) when the numbers of suffixes
are greater than 0, for each suffix of v;, there is suffix of v] such that the
corresponding statements of the suffixes are the same. Here, we merge the
nodes in ascending order of the indices of the statements, i.e., from the least
index to the largest index. Finally, output the graph G.

In Fig. 8, the suffix of the node e} in path as — b3 — e}, the suffix of node
e? in path a; — b} — e? and the suffix of node e} in path az — b3 — €3,
are all empty. Thus, we merge them into one node, as the blue node e; in
Fig. 9.

After that, node b} (in path a4 — b} — e;) and node b3 (in path az —
b3 — e1) share the same suffixes (i.e., node e;). Thus, we merge node b}
and node b3 into one node (i.e., the blue node by in Fig. 10). Finally, we can
see that the graphs in Fig. 10 and Fig. 6 are identical. There are 5 paths
and 10 nodes in total in Fig. 10, and the number of the nodes in Fig. 10 are
much smaller than that in Fig. 7.

Fig.9: Merging nodes to e; Fig.10: Graph after step 3
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That’s the description of the deterministic transfer algorithm kCNFtoDAG.

Now we turn to discuss the properties that kCNFtoDAG has. Formally, we
have the following two theorems. Due to space limitations, the proofs of these
two theorems will be postponed in Appendix C.

Theorem 1. Given a k-CNF relation, the DAG output by algorithm kCNFtoDAG
has the aforementioned Property-(i) and Property-(ii).

Theorem 2. Given a k-CNF relation Ry_cnr,s; for n statements, the number
of vertices |V| in the DAG, output by the above transfer algorithm kCNFtoDAG,
satisfies that |V| < Min(Vhound, (k - num)), where num is the number of the
clauses in the expression of Ri-cNF,s1 5 and

Vbound =2°+2(n—2d+ 1)+ (n —2d+2)C, 1 (6)
d=n—k+1 (— <k<n-1)

In addition, if we just prepare as many nodes as the theoretical result (i.e.,
Vbound ), then we can further reduce the running time and memory space when
invoking kCNFtoDAG. An improved algorithm is attached in Appendix D.

Discussion on Viouna. Here, we also provide another method to analyze the up-
per bound Viound, which may be more easier to understand. Given an integer n
and an integer & (for simplicity, here we firstly assume that & is an even number),

then we prepare k - Cﬁ/ % nodes in the following way:

1. Prepare two same subgraphs and each subgraph has C’rli/ 2 paths with length
k/2, so there are 2 - (k/2) - C¥/? = k. C¥? nodes in total.

2. Each path in the subgraph corresponds to a combination of k/2 distinct
numbers chosen from [n]. For simplicity, the indices of the nodes in each path
are the numbers of the corresponding combination sorted from smallest to
the largest.

We note that these nodes can represent the expression of any k-CNF relation.
For a clause (y1 V y2 V -+ V yi) in the expression, we divide it into two parts
(y1Vy2 V- -V 2) and (yg /241 VYk/2+2V- - -Vyr). Then we can find a path in the
first subgraph, representing the first part (y; Vy2 V-V yy/2), according to the
indices of the statements. Similarly, we can find a path in the second subgraph
for the second part. Finally, we add an edge between them so that they form a
new path with length k. After all the clauses in the expression are dealt with
like this, we remove all paths with length k/2 and then obtain a DAG for the
k-CNF relation.

It is obvious that all the clauses have the corresponding paths, and the ob-
tained DAG satisfies the aforementioned Property-(i) and Property-(ii).

When k is an odd number, we can deal with the case by adjusting the lengths
of the paths in each subgraph (i.e., let the lengths of the paths in the two
subgraphs be [k/2] and |k/2] respectively).
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It seems not easy to explore the size relation between k - Cﬁ/ % and Vbound 1n
Eq. (6). For instance, when k > (n+1)/2, k- CE/? could be larger than Vpouna =
|25 41, : | 2=5E 41 k/2
(2k —n) - Cp in Eq. (6), since (2k —n) < k and Cp < Ch
(the latter is because =5+ < k/2 < (n +1)/2 when k > (n + 1)/2). In any
case, when we compare the upper bound of the number of vertices in the DAG
output by kCNFtoDAG with the upper bound of the number of statements in
the original expression of a k-CNF relation (i.e., k - C¥), both the two kinds of
analysis (i.e., (k:~C,’f/ 2) and Viound ) show that our method may have a remarkable
improvement.

5 DAG-X protocol for k-CNF

In this section, we construct a Sigma protocol for k-CNF relations. Specifically,
we first show a Sigma protocol for k-CNF relations based on a Sigma protocol
for 1-out-of-k relations in Sec. 5.1. Further, we convert the k-CNF relations to
directed acyclic graphs (DAGs), and then show a DAG-based Sigma protocol
(DAG-X. protocol) in Sec. 5.2.

5.1 Warm-up

Here we describe a Sigma protocol for k-CNF relations. Part of the ideas will be
adopted in our later DAG-X protocol.

Framework. Let Ri.or be a 1-out-of-k relation in the DL setting, i.e.,
Rior ={(x,¥) 1 =¢" V...Vyp =g}, (7)

where x € (Z; U{L})*\ {(1)*} and y € G*. We will firstly construct a Sigma
protocol X®1-0r for Ri_or. Then, with X®*1-0Rr as an ingredient, we construct a
dl

k-CNF,S/

composite Sigma protocol 2 lain k

for Rg}CNRS; (Eqg. (3)) in this way:

1. For each Type-V clause in Rg}CNRS;, the prover P; calls XR1-0r P; to
generate a commitment; then she sends all the commitments to the verifier.

2. The verifier V; picks a random number from Z; as a challenge and sends it
to the prover.

3. The prover P, calls £R1-0r P, to generate responses and then sends them
to the verifier.

Finally, the verifier V5, outputs 1 if and only if £®1-°% V), accepts all the
transcripts (for all the Type-V clauses in R%}CNF’ SL)'

Completeness, computational knowledge soundness and special HVZK prop-
erty of this composite Sigma protocol are trivially based on that of £R1-0r_ So
we omit the analysis here, and turn to the construction of X*1-0r,

Sigma protocol XR1-or, Before describing the protocol X™1-0r  we firstly re-
call Schnorr’s Sigma protocol [33] X, = (P,V) for relation R = {(z,y) :
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y = ¢*} in Fig. 11, where the description of the HVZK simulator Sim is also
presented. Observe that the witness = is not needed for Egoh.Pl, so we write
E%zch.Pl(J_,y) directly in Fig. 11. Note that Schnorr’s Sigma protocol E%zch is a
Chameleon X-protocol [12] (see the definition in Appendix B). Generally, in a
Chameleon Y-protocol, the prover can compute the commitment a by using the
simulator (taking a statement y and an arbitrary challenge ¢’ as input). Once the
challenge ¢ has been received, the prover can compute the response z by using
the witness x and the randomness which is used by the simulator to compute
a. Thus, a Chameleon Y-protocol for R has two modes: standard mode when
P runs P; and Po, and a Chameleon mode when P runs the simulator. It is
required that for all (z,y) € R, the transcript output in the standard mode and
that output in the Chameleon mode are indistinguishable. As pointed out in
[12], &, is a Chameleon Y-protocol, so we provide another proving algorithm
P’ = (P}, P}) for £F, in Fig. 11.

In fact, Schnorr’s Sigma protocol is a perfect Chameleon X-protocol, so for
all (z,y) € R, the transcripts generated by (P, V) and that generated by (P’,V)
are distributed identically.

Standard mode: Va(y, a,c, 2): Chameleon mode:
(1) ,Pl(Jﬂy) a <_92/yc (1) P{(L,y):
T Ly, at—g' Return (a’ = a) d « Z;
Send a to V T4 Ly, G gr/yc/ //E;zch.Sim(y,c')
(2) Vi(a): Simulator Sim(y, c¢): Send a to V
C Ly 2Tk a gy | (2) Vi(a):
Send c to P Return (a, 2) ¢+ Zy, Send ¢ to P
(3) P2(a,c,z,y) (3) Pi(a,c, 'z, y):
Z4rtcr z+r+(c—c)x
Send z to V Send z to V

Fig. 11: Schnorr’s Sigma protocol %,

Now, we turn to the construction of Sigma protocol LR1-0r

Let E%zch be Schnorr’s Sigma protocol as shown in Fig. 11, and ¢ : {0,1}* —
Z,, be a collision-resistant hash function. The Sigma protocol YRior = (P,))
for Rior is as follows (and the detailed algorithms are shown in Fig. 12).

1. P — V. The prover P; computes the commitment as follows. First, P; calls
YR -P1(L, yx) to generate a random commitment ay, for the k' statement
Y. Then for | = k — 1 to 1, P; invokes the HVZK simulator ¥¥,.Sim,
feeding it with ¢(a;41) as the challenge, to generate a; for the I*"* statement
y;. Finally, P; sends a = a; to the verifier V.

2. YV = P. Receiving a, V; samples ¢ <— Z; and sends it to P.

3. P — V. Receiving ¢, P> proceeds to compute the response. We denote the
largest component in SY as p, i.e., the witness x,, for y, is known by the
prover. For every [ > u, Py invokes the HVZK simulator Z%zch.Sim to gener-
ate another commitment a; for each statement y;. Then, for [ = p, P, calls
Egzch',})é(aw (p(a/pb+1)7 W(au+1)’$lﬂyu) (or E’ézch'P2<akvcv xkvyk) if = k) to
generate a valid response. For every | < pu, we just set the responses equal
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to those responses output by the HVZK simulator in the first step. Finally,
Po sends z = {21}iex) to the verifier.

The verification is as follows. The verifier V5 invokes the codes in E%?éh.VQ to
compute the commitments for every statement. Then he compares the computed
commitment of the first statement with the commitment a sent by P;. If they
are equal, V5 outputs 1.

(1) Pi(zu, y):

7Ly, ak +—g" // E&n-Pi(L,yx)
Forl=k—1to1l:
2 T, a4 g7t [yl // E&an-Sim(y1, p(ai+1))
Send a = a1 to V
2) Vi(a):

¢+ Zy, Send ¢ to P
(3) P2(a,c,zu,y):

Ifp==k:
2k < T 4 ThC, A ay /] SEn Pa(ak, ¢, xr, yi)
Else:
a2k Ly, ay, g7 [k // 5&n.Sim(yk, )
Forl=k—1topu+1:

2 Ly, ap gzl/y;ﬂ(alﬂ) /) 2&..Sim(yi, p(aj4q))
Zu 4 Zut (‘P(a:wl) - ‘P(a;Hl))mm a:L —ay
// Zéach-,})é(alv@(a;wtl)v@(alwq)wrlvyl)
Forl=p—1t%o 1:a; + ai, 21 + 4
Send z = {zi1}1e) to V

Vz(y,a, ¢, Z):
{zihiew) < 2, ar < g7 Jyi

Forl=k—1to1: a] + gzl/y;o<al+1>

Return (a = a)

Fig. 12: Algorithms of X®1-0r (1 is the largest component in S¥, i.e., the
prover knows x,, for y,.)

Completeness. Now we analyze the completeness of X®1-0r For any (x,y) €
Ri.0r, denote the largest component in S¥ as u. If p = k, we have a} =
g Jys = g" eyt = ¢g" = a, = a),. If p < k, we have a) = g**y§ = aj, and
then by mathematical induction we have aj;,; = aj, ;. Further, we have
afl = g fyl ) = gyl )
— gt (el ) —plaus)z /y;f(aiw = go Jyp(en) = q, = a,.
Therefore, when [ < p, we can prove the following recursively: a]' = g*/ yf(al“) =

gzl/yf(al“) = g~ /yf(al“) = a; = aj. It implies that af = a] = a1 = a, so Vs
outputs 1.
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The completeness implies some special features of £®1-0r:

1. For every statement, the commitment computed by Py equals that com-
puted by Vs, i.e, a; = a] (I € [K]).

2. For the statement of which the prover knows the witness, the corresponding
commitments in different steps are the same, i.e., a, = aL = aZ.

3. If ajp1 # @, (I € [k —1]) and the prover does not know the witness of y;,

then it holds that a; # a] with overwhelming probability.

Due to page limitations, the analysis of computational knowledge soundness,
special HVZK and witness indistinguishability of 3®1-0% are given in Appendix
E.

With this Sigma protocol ¥R*1-0r as a building block, we can obtain a compos-
Rz}CNF,s;c
plain
as mentioned before. We note that the communication complexity of the com-
posite Sigma protocol for RQECNR st is O(k - num), which theoretically equals

ite Sigma protocol X for Rg}CNF) st (Eq. (3)) following the framework

the complexity of [14].

5.2 Description of DAG-X protocols

Here, we construct a more efficient Sigma protocol for R%}CNF’ st in Eq. (3).

Informally, we construct this protocol following the main idea of ¥®1-0%  except
that (i) we firstly convert the relation to a directed acyclic graph (DAG), and
generate a commitment for each node v of the DAG (instead of generating a,
for each statement y; in X*1-0r) and (ii) the value of commitment for node
v depends on all the commitments for the nodes in SP™d (while the value of
commitment a; depends on a single statement a;4 for statement y;41). Further-
more, the communication complexity of the DAG-based protocol depends on the
number of vertices of the DAG.

Building blocks. Let X%, be Schnorr’s Sigma protocol as shown in Fig. 11, and
¢ : {0,1}* — Z3 be a collision-resistant hash function. Let kCNFtoDAG be
the deterministic transfer algorithm presented in Sec. 4, which takes a k-CNF
relation Ry onr,s; (i-e., relation of the form like Eq. (2)) as input and outputs a
directed acyclic graph G = (V, E). As in the description of kCNFtoDAG, we can
have a function f : V — [n] such that if there is an edge from v; to v in the
graph, then f(v1) > f(v2).

Querview. We firstly run the transfer algorithm kCNFtoDAG to convert the rela-
tion Rg}CNF’S’; to a DAG G = (V, E). Note that a node in G represents only one
statement, while a statement may correspond to multiple nodes, since there are
multiple Type-V clauses in the expression of Rg}CNF) s Recall that in the Sigma

protocol XR1-0or in Fig. 12, for each statement y;, a corresponding commitment
a; is generated. Here, with similar approach, for each node of G, we compute
a commitment for the corresponding statement. For a node v, the commitment
computed with the algorithm P; of the DAG-X protocol is denoted as a, if
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v € §%°Uree or b, if (v & S°UE) A (v & S5K), or e, if v € S5k, In other words,
it is denoted according to the in-degree and out-degree of node v. Note that the
in-degree and out-degree cannot both be zero when k > 2 (it is a trivial problem
when k& = 1). In addition, the values of these commitments will not be changed
once they are assigned.

On the other hand, recall that in ¥®1-0r (as shown in Fig. 12), commitment a;
is computed based on p(a;11), i.e., the underlying hash function ¢ takes only one
commitment as input. In our DAG-¥ protocol, when computing the commitment
for the statement corresponding to node v (hereinafter, we sometimes directly
write it as the commitment for node v for simplicity), the hash function ¢ would
take all the commitments for the nodes in SP*® as input. Specifically, for the
algorithm P; of the DAG-X protocol, we provide an algorithm msg(G,v) to
“splice” the commitments computed by P, denoting the output of msg(G,v)
as m,, such that ¢ will directly take m, as input. We assume that msg always
“splice” the commitments from the smallest index to the largest one. So for any
fixed node v in G, msg(G,v) is also a fixed value. The detailed description of
msg will be given in Fig. 14.

Analogously, in the description of the DAG-X protocol (which will be shown
in Fig. 13 and Fig. 14), the commitments computed by Ps (resp., V») are denoted
as a,, bl or el (resp., al, bl or el/). Respectively, we also provide msg’ and msg”,
and the detailed descriptions will be given in Fig. 14.

Note that in ¥®1-0r (as shown in Fig. 12), the corresponding commitments
computed in ¥®1-0r Py and in XR1-0r Py are equal (ie., ; = a] in Fig. 12),
only when the prover knows the witness 2; or a;+1 = a;, ;. Comparatively, in our
DAG-X protocol, the commitments (for a node v) computed in P; and in Ps are
equal, only when the prover knows the witness (of the statement corresponding
to v) or msg(G,v) = msg' (G, v).

Rdl , Rdl ,
L. . . k-CNF,S! . k-CNF, S
In addition, as described in X, . k in Sec. 5.1, X ;.. k P; sends all
’ plain ’ “plain
dl dl
the a1’s of different Type-V clauses to ERk—CNF’S;“ V1, and then ZRk'CNF’S;“ %
1 1 ype- plain Y plain -V2

computes all the corresponding (af)’s and compare them with ay’s for verifica-
tion. Comparatively, in our DAG-X protocol, P; sends all the {e,}, gk to V1,
and then V, computes all the {e]}, gk and compares them with {e,},  gsink
for verification.

Next, we turn to the detailed description of our DAG-3 protocol.

dl
Rk—CNF,S’

Description. Our DAG-based Sigma protocol Xy, * for relation R%}CNF’S’;
is as follows. The detailed algorithms are shown in Fig. 13 and Fig. 14.

1. P — V. The prover P; first calls kCN FtoDAG(R%}CNF’Sé) to get a directed

acyclic graph G = (V, E), and then generates the commitment a as follows:
for every node v in G,

a) if v is a source (i.e., in-deg(v) = 0), then P; calls ©X, .P; to generates a
g Sch g
commitment for this node, i.e., a, = g, where r, < Z;.
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(b) if v is neither a source nor a sink (i.e., in-deg(v) # 0 and out-deg(v) # 0),
P; invokes the HVZK simulator X%, .Sim to generate the commitment b,
for node v (i.e., by + B, .Sim(ys(v), (my))), where m,, < msg(G, v).

(c) if v is a sink (i.e., out-deg(v) = 0), P; computes a commitment for
node v similar to step (b), and the only difference is that we denote the
commitment as e, here.

Finally, P; sends a = {e,},cgsnk to the verifier V.

2. YV = P. Receiving a, V; samples ¢ <— Z; and sends it to P.

3. P — V. Receiving ¢, P, proceeds to compute the response. In a nutshell,
for every v € V: if the prover knows xy(,) of the corresponding statement
Yf(v) she calls YR ,.-Pa to compute a response if v € S%°U, or calls %, . P}
if (v & §%°Ur) A (m,, # m),); otherwise (i.e., the prover does not know any
witness of the corresponding statement), she calls Z?Ch.Sim to generate a
response and re-generate the commitment once v € S%°U"¢ or m,, # m,. In
the above cases, if (v & S%U") A (m,, = m/)), then we just set the response
equal to that output by the simulator in P;. Note that if for some v € S5k,
the prover does not know wy(,y, and m, # m;, then the protocol aborts,
because we can find a Type-V clause such that the prover does not know
any witness of the statements in it, which implies that (x,y) & R%}CNF’ st

Finally, Ps sends z = {z, }yev to V.

The verification is as follows. Vs, invokes the codes in ¥F,.Vs to compute the
commitments for every node in G according to the edges in G. If the commit-
ments of the nodes in S¥"k are equal to the corresponding commitments sent by
Py, then Vs accepts, otherwise he rejects.

We provide some more explanations about the algorithms here.

Given a node v, msg(G,v) will always succeed in returning the same value,
because (i) G is a directed acyclic graph, there are no inter-dependent nodes, i.e.,
no endless loops exist; (ii) its predecessor nodes can have correct assignments,
which can be achieved by adopting recursion or a special node sequence (for the
code “For v € V” in P; and we omit the details here). In addition, the “For
loops” in the msg are executed following a deterministic sequence of nodes, e.g.,
from the smallest index to the largest. Similar explanations are also applied to
P> and Vo with msg’ and msg” respectively.

For all v € V, a, (or b, or e,) and %, are generated by Py, a), (or b, or e)
and z, are generated by Po, and a (or b)) or el/) is generated by Va. P knows
some witness of y(,) if and only if f(v) € S}. Moreover, algorithm P, has the
following properties.

(I): For any v € V, if f(v) € SY, then al, = a, or b, = b, or e, = e,. In other
words, if al, # a, or bl # b, or el # e,, then f(v) ¢ S¥.

(II): For any v € V \ §%oureeif f(v) ¢ SY, and for all ' € SP @/, = a, or
b, = by (ie., m, =m)), then b, = b, or e, = e,.

(IIT): Tmplied by (I) and (II), if a), # a, or b, # b, or e, # e, for some
v € V\ §%Ure then there must be some v’ € SPr* such that a!, # a, or
b:, # by (which further implies f(v’) ¢ Sy according to Property (1)).
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(1) Pi(x,y):

G = (V,E) + kCN FtoDAG(Ri}CNF,SI/C) // convert the relation into a DAG
For v e V:
If in-deg(v) = 0: 7y = Zp, @y < g™ /) 80 P1(L, yrw))
Else If out-deg(v) # 0:
Moy < msg(G,v), 2 = Zp, by < g7 [yfin”) /)58 Sim (Y (1), p(m))
Else my < msg(G,v), 2y < Zy, ey < gfv /yf((:)lv) //Eézch.Sim(yﬂv),tp(mv))

Send a = {ev}, cgsink t0 V
(2) Vi(a): ¢ < Zy, Send c to P
(3) P2(a,c,x,y):

Forv e V:
If f(v) € SY: //P knows witness of yy(.)
If in-deg(v) = 0: 2y <= 7y + Tf()C, al, < ay //27520}].7)2(@1,,0, Tf(v)r Yf(v))

Else If (m), + msg'(G,v), m, # my,):
2o 4= 2o+ (9(m}) — 9(m))T 50y / /B8 Pa(av, p(my,), (M), T 5 (0)s Y5 ()
Else 2z, < 2,
If out-deg(v) # 0: by, < b,
Else €}, < e,

Else //P does not know witness of 3.
If in-deg(v) = 0: 2z, « Zj, ay, < gz'"/yf;(v) //E;ih.Sim(yf(ﬂ),c)

Else If (m), + msg'(G,v), m, # m)):
If out-deg(v) # 0:

2o Loy, Vy g™ [y / /58 SIm(y vy, ()
Else Return L
Else
If out-deg(v) # 0: by, < by, 2y < 24
Else €], < ey, 2y — 2y
Send z = {zy fvev to V

dl
Rk-CNF,SL

Fig. 13: Generation algorithms of X, (Assume that the “For loops” are
executed following a deterministic sequence of nodes.)

(IV): Implied by (III) and by induction on path, if a} # ag or bj; # by or e # e
for some v € V', then there must be some path such that for any vertex v in the
path from a source to v, f(v) ¢ Sy.
(V): As a special case of (IV), if €5 # e; for some ¥ € S there must be
some path such that for any vertex v in this path, f(v) ¢ S¥, which also implies
that there is a Type-V clause Vc[xy;; such that P does not know any witness
of (yij )je[k]a ie., (xa Y) ¢ ,R'%}CNF,S;'

Note that when the event mentioned in Property (V) occurs, Py will return
1, as shown in Fig. 13.
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Va(y, a, ¢, 2): msg(G, v):
G = (V, E) + kCNFtoDAG(R x5 ) My <L, SPd « pred(v)

{e”}ves‘ink —a, {Z’U}UGV — z For ’Ul c SErEd:
Forv e V: If in-deg(v’) = 0: my + (My]|ay)

If in-deg(v) = 0: ay < ¢** /Y5 Else my < (mol[by)

Else If out-deg(v) #0: Return m,
my msg"(G v)
b gzv/y @ msg’ (G, v):
@) ml L1, SPrd « pred(v)
Else , Y .
my < msg” (G, v) FO“_} €5 N , A
” o o(m!!) If in-deg(v") = 0: my, + (myllal,)
€ = 97 Y Else m/, < (m!,||b!,)
If Vo € S5tk el = e, Return m/,
Return 1
Else msg” (G, v):
Return 0 ml 1, SPd « pred(v)

For v/ € SPred:
If in-deg( " =0: my < (my||all)
Else m}, < (m}|[b2))

Return m),

dl
Fig. 14: Verification algorithm of EDZSNF *t and other auxiliary algorithms

(Assume that the “For loops” are executed following a deterministic sequence
of nodes.)

Completeness. For any (x,y) € R%}CNF’S;, let (a,c,z) denote the transcript
generated by the protocol. Now we consider the computation of Vy(y,a,c, 2).
Note that for all v € S%°Uree !/ = g% /yS Y a!,. By induction on path, we have
the following claim, the formal proof of wﬁuch will be given in Appendix F.

Claim. For allv € V' \ S5 o/ = a! or b/ =b..

According to above claim, for any v € V, m! = m/. For each v € Sk
satisfying f(v) € S¥, we have:
(1) If my, # m), then

=g/ yﬂv =g*/ y}"((:; v

_ gzu+(50(mv)—@(mu))sz) /y?((:}’)lv) zv/yf( = e,.
(2) If m, = m),, then according to the procedures of P, we have z, = Z,, so
= gz“/y;f((;”“) =g Jyfon = g R = e

For each v € S®ink satisfying f(v) € SY, we have:

(1) If m, # m!, then according to Property (IV), there is some path such
that for any vertex ¥ in the path from a source to v/, f(v) ¢ S¥ (we
denote these k — 1 vertices as Spa). Note that v € S5k and f(v) & S¥
50 Spa U {v} constitute a path such that for any vertex ¥ in the path,

22



f(©) ¢ SY. According to Property (V), (x,y) € R CONF, 5/ contradicting

the assumption that (x,y) € Rk CNF,S) So we don’t need to consider this
case in completeness analysis.

(2) If m, = m/, then according to the procedures of 732, we have e/, = e, and
Zy = 2. Since m!, = m., we derive el = gz“/y]f((:; = gz“/yf(mv) = ey.

Other properties. For computational knowledge soundness and special HVZK
property, we have the following theorem. Due to space limitations, we provide
the proof in Appendix G.

Rdl ,
Theorem 3. If ¢ is a collision-resistant hash function, EDZSNFS provides

computational knowledge soundness and is special HVZK.

Communication complexity. It is clear that there are |SS"K| group elements and

([V+1) elements in Z; in the communication of the 3-move Sigma protocol
dl
EDQSNF kTf we apply Fiat-Shamir transform [15], the total proof would be |V|
elements in Z;.
According to Theorem 2, |V| < Min(Vhound, (k - num)), which implies that

|V| < k-num. Note that the communication complexity of [14] is O(k - num) S0

h CNF, S'
we can draw such a conclusion that the communication complexity of ¥,

is better than that of [14]. A further analysis of Vioung in Appendlx C.2 will show

k CNF,S

that generally Viouna < k - num. It implies that generally ¥, protocol
based on kCNFtoDAG has a remarkable performance improvement on proving
k-CNF relations, when compared with [14].

6 Extension: incomplete k-DNF relations

In Sec. 5.2, we have shown a Sigma protocol for k-CNF relations. However, in
some scenarios, the required relations of partial knowledge are formalized in
disjunctive normal form (DNF) [13,5] , i.e., each clause combines the statements
using “AND” operation, and then the formula of the relation combines the clauses
using “OR” operation. If every clause has k statement, we call it k-DNF relations
and then we further classify them into complete ones and incomplete ones. In
this section, we show a construction of Sigma protocols for incomplete k-DNF
relations, partially based on DAG-X. protocol in Sec. 5.

6.1 Problem definition

First, please refer to Sec. 3 for the notations of Sy, and R; (I € [n]). Then, we
define the following partial knowledge for compound statements.

Definition 2. (Complete k-out-of-n partial knowledge for DNF). Given
n different statements {yi}1en) and n sub-relations {R;}icpn), the prover proves
that she knows k witnesses among the n statements. In other words, she knows
some (Yiy, -+ ,Yip,) are true, where {i1,--+ ,ix} € Sk.
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The relation can be presented in DNF as follows,

?e(—)ISNF,Sk = {(x,y) : \/{i17»--7ik}65k (/\jE[k] (xijvyij) € Ri]’)}? (8)

where x,y are two n-dimension vectors, and R;; € {Ri};e[n] is a sub-relation.
For simplicity, we denote the relation in disjunctive normal form where every
clause has k statements as complete k-DNF relation. Furthermore, we stress
that |Sy| = Ck.

Then similarly, we define the incomplete k-out-of-n partial knowledge relation
in DNF as follows.

Definition 3. (Incomplete k-out-of-n partial knowledge for DNF). Given
n different statements {yi}ic[n), 1 sub-relations {Ri}icpm), and a subset Sy G Sy,
the prover proves that she knows some (y;,, -+ ,y:, ) are true, where {i1, -+ ,ix} €

Sy
Similarly, the relation can be presented in DNF as follows,

iNE sy = 106 Y) 1 Vi esy (Njem (T, 9i,) € Rij))s (9)
where x,y are two n-dimension vectors, and R;, € {Rl}le[n] is a sub-relation.
Note that |S}| < C¥. We denote the relation in Eq. (9) as incomplete k-

DNF relation and we also focus on the incomplete k-DNF relations that can
be decided in polynomial time.

6.2 A transfer for special cases

Following R{%Bxr s, (Eq. (8)) and R {54 sy (Eq. (9)), we further consider the

following relations,

RE%NF,S,C\SQ ={(x,¥) : Afir,...inyesi\sy (View (T4, i;) € Riy)} (10)

tsf __ com not
R™ = Ryi’drr,s, N RiZone,s,\s7 (11)

where x and y are two n-dimension vectors, S/ & Sk, and we assume that
1 <id; < ... < i < n without loss of generality. Obviously, we have that
Rtsf C Ruot

k-CNF, S\ Sy’ * _

Now we show R¥f C RyDNF, spr- Specifically, for any pair (x,y) belonging
to R™f, (x,y) € RiDar.s, and (x,y) € RZ?&NF’S]C\S;C/. In other words, at least
one clause labeled in Sy with respect to Ri°Byr s, » €8, (Njew (i, y5;) € Riy),
is true, while the clauses labeled in Si\S}, with respect to R‘,;f’éNF’Sk\Sg, e.g.,
(View)(wi;»yi;) & Ri;), are all true. It means that the clauses labeled in Si\Sj/
with respect to Ri’Pyr s, are all false. In all, at least one clause labeled in Sy’

incom

with respect to Ri’pr g, is true, which implies that (x,¥) € RSN s

We claim that a Sigma protocol SR for relation R¥f can be transferred to a

incom

Sigma protocol for relation R\ ¢. Given a witness-statement pair (x,y) €
W
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incom

R}f%’l’\}‘F sprs We know that one of the clauses with respect to Rk_DNR sy is true.
The prover chooses one among the true clauses, and then she only preserves the
witnesses for the statements in this clause and set the others empty. Therefore,
we get an x'. It is clear that (x',y) € R}ﬁ%’l{?p’sg and (x',y) € R%f. Thus, if

YR with the input (x’,y) outputs a proof and the verifier accepts the proof
together with input y, then the accepting proof indicates that the prover knows
the partial knowledge of y as per the relation R*f, which implies that the prover
knows the partial knowledge of y as per the relation }f'fi{}} sy

not

s com R "
The Sigma protocol YR can be obtained from SREDNF.s, and X EONFLSk\SY
using “AND”-proof construction [6]. Therefore, we have the following theorem.

Theorem 4. The proof for an incomplete k-DNF relation RiIcIE%DI{InF,S,’C’ can be

obtained from a proof for a complete k-DNF relation Ri’pyr s, and a proof for

a k-CNF relation RE?&NF’S,C\SZ.

incom

) s ) Rcom
In other words, a Sigma protocol X' *"PN¥:5¢ can be obtained from X' *-DNF. sk

not

R ” . . . Reom
and ¥ *ONFSk\S% | Since there are some efficient constructions for Y 'k-DNF.Sy

not

e.g., [14], what remains is to construct ¥ *°NF:5k\S efficiently. However, it seems

difficult to prove a “NOT” statement (e.g., (i,,¥i;) & Ri,) generally.

Here, we discuss this problem in the discrete logarithm setting for some spe-
cial cases. More specifically, in the following, we show a construction of a Sigma
protocol for Rik‘f%}{]“F’SZ under the conditions (defined by Eq. (12)-(13)) in the
discrete logarithm setting.

We firstly introduce the definition of p-type pairs as follows.

Definition 4. (p-type pair). Let G be a cyclic group of prime order p generated
by g € G. Let h € G be some arbitrary non-identity element and log, h is
unknown. Then we call (z,y = ¢g*h”) € Z,, X G a p-type pair, where p € Z,,.

We stress that for any distinct py, p2, when z1, 22 < Z,, y1 = ¢g**h”* and
Yo = g”2hP? are distributed identically.

Then, we consider the following two conditions for relations: 1) every state-
ment is obtained from a 0-type or 1-type pair, as shown in Eq. (12); 2) further
there are only k O-type pairs among all witness-statement pairs, as shown in Eq.
(12)-(13).

Rconl = {(X,Y) : /\le[n] (yl = gzl \ yl/h = gml)}? (12)
Reonz = {(x,¥) + ([ [we) /0" = g=i=a ). (13)
=1
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3 3 3 incom com not
In the discrete logarithm setting, Rk-DNF,S,;" W DNF. 5, and Rk-CNF,Sk\S,;/
can be written as

R;‘i%’?ﬁ‘fég ={(x%,¥) : Viir.inyesy Njew ¥i; =979} (14)
Ribarse = {6¥)  Viniges (Aem i, = 9™)}, (15)
Riconm,sovsy = 16¥) : Aiinresasy (Viewyi, = 977) ) (16)

Under the conditions defined by Eq. (12)-(13), R?%?ngg further becomes
Rincom _ gincomdl | o (17)

k-DNF,S}/

Note that Ri,i%)gﬁd}g,, indicates that at least one clause labeled in S}/ is true, and
Pk

Rikmom means that only one clause labeled in S}/ is true.

zoéglF se\sy i Eq. (16) under the conditions defined by

Eq. (12)-(13). Firstly, because of Eq. (12), a “NOT” statement, i.e., y;, = g*'s
here, can be transferred into y;, /h = g**i. Secondly, Eq. (12)-(13) guarantee that
once (x,y) € Ricom for every {iy,...,ix} € Si\Sy, there is at least one of the
. . . . . . . not,dl
indices of the (n—k) 1-type pairs falling in {i1, ..., dx}. Therefore, Rk-CNF,Sk\S,;'
in Eq. (16) under the conditions defined by Eq. (12)-(13) becomes

Now we turn to R

RZ?&’&}E@:\SL/ = {(Xv }’) : /\{z‘l,...,z‘k}esk\sg(Vje[k] Yi; /h =g )}~ (18)
Considering relation

R?f = R;C_)gf\?%’sk M RZ?&’{\;—;?’E;\SZ M Rconl N RCOHQ, (19)
it is easy to see that Rif = Rincom. We note that RZOBII\?I}‘ s, in Eq. (15) indicates
that at least one clause labeled in S is true, while R%f in Eq. (19) implies that
only one clause labeled in S, is true and it is not labeled in S;\S}.

Hence, in order to construct a Sigma protocol for R'};‘C"m in Eq. (17), we need

com,dl

to construct a Sigma protocol for R}ff, which can be obtained from »""*-PNF.S)

Rnot,p—type . . .
3 EONESEASE 3 Reont and Y Reonz using “AND” operation [6]. Moreover, X Reon:
and Y Ren2 can be obtained from Schnorr’s Sigma protocol and “AND /OR” proof

com,dl
construction. As for ZR’“‘DNF’%, there are existing constructions, e.g. [5,14]. As

not,p-type

R . . :
for £ FCNFSAS! note that for each sub-relation with respect to RICLEWPe
k-CNF, S\ SV

not,p-type

1" .
3 RCONESEASY can be obtained

Schnorr’s Sigma protocol can be applied; then
from the Sigma protocol in Sec. 5.2.

Thus, we obtain an efficient Sigma protocol for Ri°™ in Eq. (17), i.e., the
incomplete k-DNF relation RIPCom si under the conditions defined by Eq. (12)-

k-DNF,
(13).

Remark 2. Note that besides p-type pairs, the statements can be other kinds of
elements, e.g., DDH and OneNDH in [13]. Roughly, we only require that they
are indistinguishable and the conditions will be modified accordingly.
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7 Experiments

dl
RI«-CNF,s;c

In this section, we show the performance of our DAG-X protocol X, 4 and
to have a more straight view, we compare it with that of [14]. Note that we
implement [14] in its simplest way as mentioned in the introduction section.

We implement our experiments in Golang language (version 16.6) based on
elliptic curve groups with key size of 512 bits. The experiments are conducted
on a docker, over Pengcheng Cloud Brain?, running Ubuntu 16.04 on two Intel®
Xeon™ Gold 6248 CPUs@2.50 GHz and using 64 GB memory in total. We are
interested in the space overhead in communications as well as the timing over-
head in running the Sigma protocols. To this end, we present microbenchmarks
to evaluate the overhead costs. There are two factors k and n, that will affect
the performance greatly. For simplicity, we have n vary from 10 to 50 and we
choose 4 < k < n/3 in most cases (if n/3 < 4, we just set k = 4, e.g., in Fig. 15,
there is only one data when n = 10). Since we find no k-CNF relations in use in
the real world, we construct some different relations in the DL setting for our ex-
periments. Given n and k, the number of clauses in a k-CNF relation expression
num also has an influence on the performance, but the range of num is large.
Similar to the theoretical analysis in Appendix C, here we set num = C¥ — x,
where x is a random number in [50, 200], which is nearly the worst case and can
reflect the worst performance (i.e., the most space and running time that the
tested Sigma protocols need)?. In Appendix H, we draw some 3D figures to show
the complete and thorough influence of k and n over the performance. Here, we
pick some experimental data and draw some 2D figures, e.g., stacked bar charts
and line charts, for better comparison. Following are the experimental analysis.
Communication costs. The communication costs are measured by the bit
length of all the messages between the prover and the verifier when running
the Sigma protocols. A theoretical comparison is displayed in Table 1 in Sec. 1.
Here, we make a quantitative comparison. In Table 2, we show that the commu-
nication size when k = 4. It is clear that our scheme saves more than 97% space
overhead compared with [14].

2 https://cloudbrain.pcl.ac.cn/

3 Although our experiments mainly consider the setting of “dense-CNF” (informally,
where num is almost C’fi), in fact it also implies that our protocol performs better in
most cases (including “non-dense-CNFs”). Given the performance of CDS for “dense-
CNFs”, it is easier for us to infer the performance of CDS for other k-CNFs (“non-
dense-CNFs” with the same k), because given k, the performance of CDS is liner in
the number of clauses num. Besides, the performance of our protocol for “non-dense-
CNFs” will be better than that for “dense-CNFs”. When considering the performance
of “non-dense-CNFs”, we can compare the worst performance of our protocol with
the performance of CDS. For example, when num is about 1/2-C¥ (in this case, the
running time and space overhead of CDS is about half of that of CDS for “dense-
CNFs”), it can be implied that our protocol can save about 80% running time and
space overhead.

4 ;o _ 1 _ bits of our scheme
ratio = 1 — 2RSRonsEeme X 100%
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Fig.15: Figures for the experiments (CDS is the solution [14] proposed by
Cramer, Damgard and Schoenmakers. The number of clauses in one relation
is Ck — y, where x is a random number in [50,200].)
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Table 2: Communication cost when k = 4 (x10* bits)*

n [14] Our scheme ratio

10 65.54 1.72 97.37% |
15 538.62 4.07 99.24% |
20 1964.03 7.45 99.62% |
25 5160.96 11.90 99.77% |
30 11204.6 17.48 99.84% |
40 37412.9 31.92 99.91% |
50 94310.4 50.92 99.94% |

For more cases, we draw a stacked bar chart as shown in Fig. 15a, where k
varies from 4 to 9. It is clear that our solution has a remarkable decrease on the
communication costs compared with [14]. In addition, the figure shows that the
effect on decrease would be better as n and k get larger.

Running time. We evaluate the running time of P;, Ps and Vs in Fig. 15. Note
that when testing our solution, we also record the running time of kCNFtoDAG
for special interest. In fact, the directed acyclic graphs can be pre-computed.
Thus, when recording the running time of P; or Vs in our scheme, we have two
versions: one includes the running time of kCNFtoDAG and the other one does
not. Here we implement kCNFtoDAG using the improved algorithm in Appendix
D.

We planned to evaluate both schemes with the same range of n and k. How-
ever, the running time of [14] grows so fast that the program was killed when n
and k are set relatively large numbers. Therefore, in the experiment of [14], we
set n from 10 to 33 and k from 4 to 7. In the experiment of our scheme, n varies
from 10 to 50 and k varies from 4 to 10. More detailed experimental results can
be found in Appendix H. Here, we just pick some data for analysis.

The running time of kCNFtoDAG is presented in Fig. 15b. It can be expected
that as k and n get larger, the running time increases very quickly, since the
number of vertices grows fast. If we compare it with the running time of P,
and Vs of our scheme (as shown in Fig. 15¢ and Fig. 15e), kCNFtoDAG performs
reasonably well.

Table 3: Running time when k = 4 (s)®

P1 Po Vo
[14]  Ours ratio [14] Ours ratio [14] Ours ratio
10] 8.91 0.72 91.87% 1[0.0049 1.40x10* 97.11% || 10.04 0.85 91.56% J.
15| 57.47 1.92 96.66% J| 0.033 8.63x107* 97.27% || 65.08 2.13 96.72% |
20(182.23 3.91 97.85% || 0.11 2.20x107° 97.95% || 187.41 4.13 97.80% |
25| 456.37 6.54 98.57% || 0.33 5.97x107% 98.20% || 477.74 6.66 98.61% J
30[1046.45 10.09 99.04% || 0.63 5.21x1072 91.78% ||1058.25 10.08 99.05%
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For the running time of Py, Py and Vs, we draw a table (Table 3) to present
the running time when k = 4. The table tells that our scheme saves more than
90% running time, compared with [14]. More cases (i.e., n varies from 10 to 30
and the range of k is [4, 8]) are shown in Fig. 15 (Fig. 15¢ - Fig. 15¢). They also
indicates that the running time of Py, P2 and Vs of our scheme outperforms [14].
Note that counting in the running time of kCNFtoDAG or not does not affect
the performance a lot, since it only occupies a limited percentage of the total
running time and the time of commitment generation in PP; and verification in
Vs of our scheme dominate the whole performance. In addition, Table 3, Fig. 15¢
and Fig. 15e show that the running time of P; and Vs have similar performance.
It is because in both [14] and our scheme, P; and Vs have similar computation
for the commitments.

In all, according to the experiment results, when compared with [14], our
scheme achieves a remarkable performance improvement on proving k-CNF' re-
lations, no matter from the view of communication costs or running time.
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A More discussions about [14] and [2] on k-CNF
relations

For the Cramer et al.’s scheme [14], we often use its simplest way. In a nutshell,
for the i*" clause in the expression of a k-CNF relation, the prover shares a given
challenge c into k challenges ci, ..., ci under the constraint that ¢ = ¢{ ®...@®c},
and uses c; (1 < j < k) as the challenge for the j!" statement in the i** clause.

Therefore, given a k-CNF relation, duplicate statements are independent
from each other and the challenges for the statements in one clause are restricted
via exclusive OR. We also take the relation in Eq. (1) for example and draw Fig.
16. As shown in Fig. 16, in each clause, there is a separate challenge for each
statement and the result of exclusive OR of these challenges in each clause is
restricted to the random challenge ¢ picked by the verifier. As a result, the size
of the communication is proportional to (k- num), where num is the number of
clauses.

c1@cg=c
cy Deg=c
cy ey =c

cprDey =c

6: An example of [14]
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In [2], Abe et al. propose another method called acyclicity program to deal
with CNF relations and construct a non-interactive zero knowledge proof (NIZK)
scheme. As shown in Fig. 17, the relation in Eq. (1) is firstly transferred into
the left graph of Fig. 17. For each clause, the graph has a directed cycle, e.g.,
(y1 V y2) is turned into 1 — 2 — 1. For each statement y;, it only has one
challenge ¢; and the challenge satisfies the equation ¢; = Hash(a,||...) where a;
is a commitment of the statement that has the arrow that is pointed to node 1,
e.g., ¢; = Hash(asg||as). Therefore, unlike [14] and our scheme, each statement
(no matter having duplicates or not) only needs one node such that it reduces the
proof size. Thus, the size of the communication is proportional to n, where n is
the number of total different statements in the relation. The satisfying witnesses
can make the graph have no cycles. For example, in the right graph of Fig. 17,
if the prover knows the witnesses of yo and y4 (the corresponding nodes with
dotted line) and we remove these nodes and corresponding arrows in the graph,
the graph has no cycles.

However, it needs to be very careful to generate the graph, e.g., the node
order in the cycle. For a more complicated clause (y; V y2 V y3), we can have
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two kinds of cycles: 1 -2 -+ 3 - 1and 1 - 3 — 2 — 1. As pointed in [2], a
seemingly intuitive approach to “convert” the relation to an acyclicity program
does not work, i.e., a satisfying witnesses may still have cycles in the converted
graph even after removing the corresponding nodes and arrows. To improve the
robustness, Abe et al. propose a complex method in [2]. Since the scheme is non-
interactive and no open source codes are found, we will not take it as a contrast
experiment in the later experiment section.

—_— @ O =W
J =0 ]
= ® 2T (®)
¢; = Hash(as||ay) cs = Hash(ay||as)
¢y = Hash(ay||as) c3 = Hash(az||ay)

Fig.17: An example of [2]

B Preliminary of Sigma protocols

A polynomial-time relation R is a subset of X x ) for which membership of (x, y)
to R can be decided in time polynomial in |y|, where X and ) are the witness
space and statement space respectively. If (z,y) € R, we say that x is a witness
for statement y. We define the NP-language L as Lgr = {y € Y|T =z € X :
(z,y) € R}. Following [17], let Lz be the input language including both Lz and
all well formed statements that do not have a witness. It follows that Lx C Lz
and membership in Lz can be tested in polynomial time. We implicitly assume
that the verifier of a protocol for relation R runs the protocol only if the common
input y € Lz and rejects immediately if y ¢ Lx.

A Sigma protocol ¥ = (P, V) for polynomial-time relation R consists of two
efficient interactive protocol algorithms (P, V), where P = (Py, P2) is the prover
and V = (V1, V,) is the verifier, associated with a challenge space CL. Specifically,
for any (z,y) € R, the input of the prover (resp. verifier) is (z,y) (resp. y). The
prover first computes (a, aux) < Pi(z,y) and sends the commitment a to the
verifier. The verifier (i.e., V1) returns a challenge ¢ < CL. Then the prover replies
with z < Pa(a, ¢, z,y,aux). Receiving z, the verifier (i.e., V) outputs b € {0,1}.
The tuple (a,c,z) is called a transcript. We require that )V does not make any
random choices other than the selection of ¢. For any fixed (a, ¢, 2), if the final
output of V(y) is 1, (a, ¢, 2) is called an accepting transcript for y. For simplicity,
we denote by (P(z), V)(y) the final output of V when running the protocol (P, V)
on common input y with P running on additional input z.

(P,V) for R is called complete if for all (z,y) € R, (P(x),V)(y) = 1. The
corresponding security notions are as follows.
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Definition 5. (Knowledge soundness). We say that a Sigma protocol (P, V)
for R provides knowledge soundness, if there is an efficient deterministic algo-
rithm Ext such that on inputy € Y and two accepting transcripts (a, ¢, 2), (a,c’, )
where ¢ # ¢/, Ext always outputs an x € X satisfying (x,y) € R.

Here, we consider computational knowledge soundness.

Definition 6. (Computational knowledge soundness). We say that a Sigma
protocol (P,V) for R provides computational knowledge soundness, if there is

a deterministic algorithm Ext such that on input y € Y and two accepting tran-

scripts (a, ¢, 2), (a,c, 2') where ¢ # ¢, the probability that Ext cannot output an

x € X satisfying (z,y) € R is negligible.

In other words, Ext will output an = with overwhelming probability.

Definition 7. (Special HVZK). We say that a Sigma protocol (P,V) for R
with challenge space CL is special honest verifier zero knowledge (special HVZK),
if there is a PPT simulator Sim which takes (y,c) € Y xCL as input and satisfies
the following properties:

(i) for all (y,c) € Y x CL, Sim always outputs a pair (a,z) such that (a,c, z) is
an accepting transcript for y;

(i) for all (x,y) € R, the tuple (a,c,z), generated via ¢ < CL and (a,z)
Sim(y, ¢), has the same distribution as that of a transcript between P(x,y)
and V(y).

The Sigma protocols can be combined using “AND/OR”-proof construction
and the combined protocol is also a Sigma protocol satisfying the above secu-
rity properties [6]. In addition, the OR-proof construction also satisfies witness
indistinguishability.

Definition 8. (Witness indistinguishability). We say that a Sigma protocol
(P, V) for R with challenge space CL is witness indistinguishable (WI), if for
any PPT malicious verifier V*, there is a negligible function negl(\) such that
for all xg,z1,y satisfying (xo,y) € R and (x1,y) € R,

| Pr((P(z0), V*)(y) = 1] = Pr[(P(x1), V") (y) = 1]| < negl(}).

If the two distributions are identical, we say that the Sigma protocol is perfect
WI.

Chameleon X-protocol. In a Chameleon Y-protocol, the prover can compute the
commitment a by using the simulator and thus knowing only the input but not
the witness. Once the challenge ¢ has been received, the prover can compute
the response z by using the witness x (which is thus used only to compute the
response) and the coin tosses used by the simulator to compute the commitment.

Definition 9. (Chameleon X-protocol [12]). A X-protocol I1 for polynomial-
time relation R is a Chameleon X-protocol if there exists an special HVZK sim-
ulator Sim and an algorithm P4 satisfying the following property:
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Delayed Indistinguishability: for all pairs of of challenges ¢ and ¢’ and for all
(x,y) € R, the following two distributions {r + {0, 1}'””; (a,z") < Sim(y, ;7);
z + Phla,c,d,x,y) : (y,a,¢,2)} and {(a, z) < Sim(y,c) : (y,a,c,z)} are indis-
tinguishable, where Sim is the special HVZK simulator and d is such that Sim, on
input an \-bit instance, uses at most A% random coin tosses. If the two distribu-
tions above are identical then we say that delayed indistinguishability is perfect,
and I1 is a Perfect Chamelleon %-protocol.

Note that a Chameleon YX-protocol IT has two modes: the standard mode when
P runs P; and Ps, and a delayed mode (in Sec. 5.1, we also call it Chameleon
mode) when P uses Sim and Pj. Moreover, observe that since Sim is a simula-
tor for II, it follows from the delayed-indistinguishability property that, for all
challenges ¢ and ¢ and common inputs y, distribution

{r < {0,1}1"; (a,2) = Sim(y, &7); 2 + P(a,c,¢,,9) : (a,c,2)}
is indistinguishable from

{r {0, 1} 0 Py (y, 2;7)2  Pa(a,c,,9) : (a,¢,2)}

That is, the two modes of operations of II are indistinguishable. This prop-
erty make us able to claim that if II is WI when a WI challenger interacts
with an adversary using (P;,P2), then II is WI even when the pair (Sim, P))
is used. Finally, we observe that Chameleon Y-protocols do exist and Schnorr’s
protocol [33] is one example. When considering the algorithms associated to a
Chameleonn Y-protocol, we will add PJ.

C Analysis of kCNFtoDAG

C.1 Proof of Theorem 1

Proof (Proof of Theorem 1). It is clear the result of Step 1 (i.e., preparing nodes)
satisfies the requirements of Property-(i) and Property-(ii) of kCNFtoDAG:

1. every clause is mapped to a path, and all nodes in this path correspond to
the statements in the clause;

2. every k-size path is mapped to a clause, and the number of paths is exactly
equals the number of clauses.

Hence, the DAG after Step 1 (and before Step 2) has Property-(i) and
Property-(ii).

Note that the merging operations in Step 2 (i.e., merging prefixes) and Step
3 (i.e., merging suffixes) will not change any statement a node corresponds to.
Further, we claim that these merging operations do not lead to the changes in
the number of k-size paths either. The reason is as follows.
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We first consider the merging operations in Step 2. As shown in Fig. 18,
there are two cases. In Case 1, we only merge the beginning nodes (e.g., v;
and v]) corresponding to the same statement (e.g., y5); in Case 2, we merge
nodes (vy,---,vp) and (vf,---,v},) where I’ < k, and for all ¢ € [n], v; and v]
correspond to the same statement. Since two same clauses will not occur in the
expression of Ry_cnr,s; , there are no prefixes with length k, which implies that
the number of k-size paths will not decrease. In addition, the merging operation
is from the beginning node, so the length of each path is still k.

OROR0)

@

OnO)
OnO

Case 1

OnORO)
G%g%@

)
G%®<@

Fig. 18: Merging prefixes of kCNFtoDAG
(the numbers in the cycles represent the statements)

Secondly, we note that after Step 3 the DAG also has Property-(i) and
Property-(ii). If not, then there are “wrong” crossing edges (since the length
of paths and statements that nodes correspond to will not be changed by the
operation of merging suffixes). In other words, there exists a node v; such that
a path (consisting of some prefix of v;, v; itself, and some suffix of v;) is a new
path when compared with the DAG after Step 2 (and before Step 3). However,
it is contradictory to the condition iii) of merging suffixes (i.e., Step 3) in Sec. 4.

Therefore, the claim holds. In all, the output of kCNFtoDAG satisfies the
requirements of Property-(i) and Property-(ii). O

C.2 Proof of Theorem 2

Proof (Proof of Theorem 2). Given a graph G output by kCNFtoDAG in Sec. 4,
we analyze the upper bound of the number of nodes.

- — @
O= »%@é

Fig.19: A node with multiple paths

We consider the problem in another way. Take the node v in Fig. 19 for
example. The in-degree of node v is 2 and out-degree is 3. If we do not want
to have “wrong” crossing edges, then we need to duplicate the node at most
Min(in-deg(v), out-deg(v)) times, i.e., 2 times here, where Min returns the mini-
mum value.
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Then we discuss how many nodes the prover needs to duplicate at most for
each statement. Given statement y; (I € [n]), we first consider the case when
2< k<2

1. When 1 <1 < k, recalling that the statements in each Type-V clause are
sorted from the smallest to the largest, we assume that there are i statements
before y; in some clauses. and then, we have 0 < ¢ < [ — 1. Given a fixed
value i, in the graph G output by kCNFtoDAG, the out-degree of the node
representing the statement y; is at most C}_, as we pick i statements among
the statements labelled in [1,1—1], and its in-degree is at most CS:}% as we
pick (k—1—1) statements among the statements labelled in [[ + 1, 7], so we
need to duplicate at most Min(C}_, C’S:ll_i). Therefore, the total number

of nodes duplicated for y; would be at most Zi;(l) Min(Cj_,, CF=17H).

2. When k <1 < n—k+ 1, similar to the above case, the total number of
nodes would be at most Zi':ol Min(Cj_,, C*=} 7).

3. When n — k+ 1 < [ < n, considering that there are i statements after
y; in some Type-V clauses, we have 0 < i < n — [. Similarly, given i,
i.e., y is the (k — i)*" statements in the clause, the out-degree is at most
Oﬁ:ll_i as we pick (kK — 1 — i) statements among the statements labelled
in [1,/ — 1], and the in-degree is at most C'_, as we pick i statements
among the statements labelled in [l + 1,n]. Thus, we need to duplicate at
most Min(CF—!™%, C% ) when given i. Therefore, the total number of nodes

would be at most 37— Min(CF 1% ¢ ).

Thus, the total number of nodes in G is |V] < Z;:ll Zf;é Min(Cj_,,C*= 71 +

—k41 k=1 g ; k—1—i —Uppe o k—1ei v
?:k 2o Mm(ollfhcn—ll 7)+27:n—k+22?:0 Min(Cy 7, G ).

In the following, we show that We have the following lemma.

Lemma 1. When 2 < k < 2t we have |V| < 2F +2(n — 2k +1) + (n — 2k +
)L,

Proof. First, we have
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k—11-1 n—k+1k—1
V=SS Min(Ci oy, i+ ST S IMin(G L, CEt
=1 172 . v
+ Z Min(CF % Ch ) (20)
I=n—k+2 i=0
k—11-1 n—k+1 5]
chllJr Z ZCZ1+Cnl Z Z (21)
=1 i—0 . l=n—k+2 i=0
k—1 n—k+1 L%J n
=Y 27' Y Y (Gl o) Y 2 (22)
P PEp—— I=n—k+2
n—k+1 L%J
=2F—24 Y MG+ 0. (23)
=k i=0

We explain why Eq. (21) holds. For the first and third parts, i.e., the sum
LSO MIn(CE L CRTTY and e Sy Min(CF 01 ), since

Mm(C’} LOF17H < ¢ and Min(CF 1 0L )) < CF,, we have
k=111 ‘ k=11-1
DSOS Min(Cly, CE T <N Gy,
I=1 i=0 =1 i=0

n n—I —

n n—I
> D Min(@GETNCL) S > D G
n—k =0

l=n—k+2 i= l=n—k+2 i=0

For the second part, i.e., the sum > '~/ b Zf;ol Min(Cj_,,C*=}77), we divide
the range of i, i.e., [0,k — 1], into two parts for every [ € [k,n — k +1]: (1) when
0<i<|%] itis clear that Min(Cj_,,C¥=}7") < Cj_;; (2) when [5] +1<i <
k — 1, it is clear that Min(C}_,,C*=} 7" <ck /7" When [£]+1<i<k-1,
if we set t = k — 1 — 14, then we have C’k 1 P = Ct ;- Then, the range of ¢ is 0 <
t<k-—2- LkJ < | £]. Therefore, we have S i S Min(Cy_,, CF T <

TSI (G Gy,

Then we have the following Lemma.

Lemma 2. If1 <i < Min(l —1,n —1), then we have C{_, +C! _, < C!_,

Proof. For some m (m > i), we first define a function f(z) = (i — 1+ x)(i —
2+z)...(1 +z)x where x € [0,m — i]. Then we define another function g(z) =
f(z)+ f(m—i—z) where z € [0, m—i]. We can rewrite f(z) as f(z) = Z;‘:o ajx’
where a; > 1, which implies that its first derivative f’(z) > 0 and its second
derivative f”(z) > 0 for all z € [0, m — i]. Hence, the second derivative of g(x)
is ¢"(x) = f"(x)+ f"(m —i—x), which is greater than or equal to 0. Therefore,
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g(x) is a convex function over [0, m — i] and we have the following formula with
respect to the definition of convex function,

YA€ [0,1]: gA(m —14)) < (1 —XN)g(0) + Ag(m — i).

It is clear that g(0) = g(m — i), so for all A € [0,1] : g(A(m —i)) < g(0) =
(m—1)...(m—1), which implies that the maximum value of g(z) over [0, m — i]
is(m—1)...(m—1).

Let m=n—i+1,thenm—i=n—-2i+1=n—10+1—1—2i+ 2 for some [
such that 1 <1 <n. Since ¢t < Min(l —1,n —1), we have t <l —1and i <n—1.
Therefore, m —i=(n—1—14)+ (I —1—14) 4+ 2 > 0. Then, we have

Ci,+C,
(=Dl —-1-1)...(1-1—i+1)+m-Dn—1-1)...(n—1—i+1)

7!

fl=d)+fn—1—-i+1)
il
f(l—i>+f((n—§+1)—i—(l—z‘))

1!

//let m=n—i+1

:g(li!_i) J/(L—) €[0,(n—i+1)—i

(n—i)n—i—-1)...(n—2i+1)
il

=t

n—i*

Note that for g(I — i), it is required that (I —¢) € [0, (n — i+ 1) — 4] according to
the definition of g(z). Since ¢ < Min(l — 1,n — ), then we have ¢ < (I — 1) and
i<(n—=1),sowehave 0 <1< (I—d)and I—-3) < (n—2i)<(n—i+1)—i.
Therefore, (I — i) € [0,(n — i+ 1) — i]. Hence, we complete the proof. O

When 2 < k <l <n-k+1, wehave [E] <k—-1<1-1<n-—kand
ng§k:—1Sn—lgn—k.Therefore,whenl§i§LEJ,Wehavelgig

2
Min(l — 1,n — ). Thus, by Lemma 2, we have

n—k+1 L%J 4 ' n—k+1 L%J
Vi<2b—2+4 > (Gl +CL ) <2b -2+ > (24> Ciy)
1=k =0 =k =1
n—k+1 L%J

=284+ —2k+1)+ D D Ci,
=k i=1
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In addition, we have

1<z’§L§J
<2-13) jle<"It oz k<
<t Jfi<b)<k-1

i

2
soweholdi < 5] <=
number, we get

5. Further, because of the monotonicity of combinatorial

n—k+1 15
V| <284 2(n— 2k +1) + PN
=k i=1
n—k+1n—L%] X
<2k 4 2(n—2k+1)+ clzl.
=k =1

On the other hand, we have
Ot =CRli + O = Ol + O + O =
=Ciy + CR + O+ O Oy

-m
=Cr Mt Op T Ot ot o O
—-m _ 1 _ ~m—(m+1)+1
//CT’,ZI—WT =1= Cn—(7n+1)
m—+1 m+1

_ m—i+1 __ n—m-—1
- § : Cn—i - Z On—i .
i=1 i=1

In other words, 1~ C%_, = C»~t=1 = Ct*+1 if we set t = n—m — 1. Therefore,

V] < 25 2(n—2k4 1)+ 00 OhF T = 264 2(n—2k+1) + (n—2k+2)Ch T .
O

Analogous to the analysis of the case when 2 < k < "T'H, we have the

following result for "7“ <k<n-—1.Whenl <! <n-—Fk+1, the total number
of nodes would be at most Zi;é Min(Cj_,, C*=}17"). When n — k +1 <1 <k,

n—1
the total number of nodes would be at most Z?:_kl_l Min(CF= %, C% ). When
k < 1 < n, the total number of nodes would be at most Z::ol Min(CF 2% Ot ).

n—k+1
Hence, with similar analysis, |[V| < 2" "1 4-2(2k —n—1) + (2k — n)C’,Ll 2t

In all, |V satisfies the following inequality.

n 4+ 1
d=k 2<hk< ——)
2

n
d=n—k+1 (

+1
<k<n-1)
2

(24)

d
V] < Voound = 2% +2(n — 2d + 1) + (n — 2d + 2)CL2 {
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On the other hand, from the description of kCNFtoDAG in Sec. 4, it can be
inferred that there will be (k- num) nodes after the first step, so |V| < (k-num)
after the merging operations. Hence, |V| < Min(Viound, (k - num)). a

The upper bound Vipoyunas in Eq. (24) only depends on k and n, while num
depends on the specific structure of R, so it seems difficult to directly compare
Vbound in Eq. (24) with (k-num). When given k and n, Viound is fixed and num
can range from 1 to C¥, so here we make a rough comparison in the worst case

(i.e., we set num = C¥). Fig. 20 shows the comparison when 2 < k < 2L (for
the case "TH < k < n — 1, the comparison is similar), it shows that Viounq is

much smaller than & - C* in most cases, and the value ‘/]:C’igf‘; drops rapidly as

k increases. Thus, we can draw such a conclusion that Vyounq is smaller than
k - num in most cases.

117 =
1.0 3 V/}ound
t kI
0.9+ °
0.8 " = n=10
* n=20
n 4 n=30
0.2 o v n=40
. ¢+ n=50
A
0.1+ Ay
Y L]
.
0.0 N1 VPO .
0 5 10 k 15 20 25

Fig. 20: ‘?”76‘:,5’ 2<k< "7“, and since the y-axis values of the points do not

fall in the rz;nge [0.25,0.75], we remove this part in the figure for simplicity.)

In fact, the exact number |V| can be further smaller than the theoretical
result in Eq. (24), because some inequality tricks in the proof (of Lemma 1) make
the theoretical result larger. Hence, the protocol can have a better performance
in practice than in theoretical analysis.

D Improved kCNFtoDAG

Given the relation Ry cnr,s; as input, kCNFtoDAG outputs a directed acyclic
graph, which satisfies the security requirements as needed in our Sigma protocol.
However, the complexity of the running time of the algorithm introduced in Sec.
4 is O(k - num), where k is the number of statement in each clause and num is
the number of clauses, so it is time consuming when k and num get very large.
Hence, in this section, we improve the algorithm.

The main problem is that merging is a time consuming operation, even com-
pared with the total running time of scalar computation over the elliptic curve.
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kCNFtoDAG(R):
//R.clauses: parse R as clauses and every
clause contains the statement labels (i1,..., k)
where 1 <41 < ... <ip <n.
G < Nodes(n, k)
For every (i1,...,1x) € R.clauses:
If Label(41,1) = 0:
G[z’l][Prefix((il, ey ik),h)} =1
current < (i1, Prefix((i1,...,1k),71))

Else
G[zl][Sufflx((zh ey ik)7 7,1)] =1

current < (i1, Suffix((é1,...,1x),%1))
For j =2 to k:
If Label(i;,j) = O:
Gi;][Prefix((i1, ..., ik),4;)] =1
next < (i;, Prefix((é1,...,%k),%;))
Else
G[i5][Suffix((i, ..., k), 15)] =1
next < (i;, Suffix((i1,..., k), 4;))

Draw an arrow from current to next
current <— next
Return G

AddNodes(1,t,G):
 label = Label(i,t) / /it =1
If label = 0:
For every (i1,...,4t—1) € [n]" ™"
[/1<ii<...<iza <l
G[(i1, . ie-1)] =0
If label = 1:
For every (it41,...,ik) € [n]* 7"
Jl<iy1<...<ix<n
Gl[(Ge41,---,ik)]) =0
Return G

Nodes(n,k):

G+1
For I =1 ton:
If2<k< "TH:
HF1<i<k:
Fort=1tol:
G < AddNodes(l,t, Q)
HTk<li<n-—-k+1:
For t =1 to k:
G < AddNodes(l,t, Q)
IfTn—k+1<i<n:
Fort=k—n+1tok:
G < AddNodes(l,t, Q)
If ol <k <n-1
fl<li<n—k+1:
Fort =1 to l:
G <+ AddNodes(l,t, G)
Ifn—k+1<1<k
Fort=k—n+1ltol:
G <+ AddNodes(l,t, G)
Itk <l <n:
Fort=k—n+1tok:
G <+ AddNodes(l,t, G)
Return G

Prefix((ih...,ik),ij):
//1<i1 <...<ir <nandj€ k]
Return (i1,...,%;-1)

SUffiX((’il, ey ’Lk), ’ij)l
If j = k: Return “$”
//“$” denotes the empty string of

suffixes
Else Return (ij41,...

» k)

Label(l, 7):
//the I*" statement is in the j** place
in some clause, ! € [n] and j € [k]

If (C)~} < C¥7J): Return 0

Else Return 1

Fig. 21: Algorithm description of improved kCNFtoDAG
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The difference between the algorithms in Sec. 4 and here is that the improved
kCNFtoDAG here does not need to merge as many nodes as the kCNFtoDAG in
Sec. 4 does.

Based on the analysis in Appendix C, it can be referred that usually the
total number of the nodes in the directed acyclic graph is much smaller than
(k - num), especially when num is close to CX. Therefore, if we just prepare
as many nodes as the analysis, then we can reduce merging operations. As a
result, no matter from the view of storage or from the view of computational
complexity, the algorithm kCNFtoDAG is improved a lot. The detailed algorithms
are introduced in Fig. 21.

E Security proof of X®i-or

We analyze computational knowledge soundness, special HVZK and witness in-
distinguishability of Sigma protocol X®1-0r = (P, V) constructed in Sec. 5.1.
Computational knowledge soundness. A deterministic algorithm Ext is con-
structed as follows. For two accepting transcripts (a,c,z) and (a,é, Z) where
c # ¢, we parse {2}en) < z and {Z};epp < Z. Note that taking (y,a,c,z2)
(resp., (y,a,¢, 2)) as input, Vo will compute {a;' };ex) (vesp., {@ }iepr))- Now, we
provide the following claim with a postponed proof.

Claim. With overwhelming probability, there is some index I (I € [k]) such that

N 5. "o__ =n
z; # Z; and ai =aj.

We find the largest index [ € [k] satisfying z; # Z; and a] = @], and also denote

it as [ for simplicity. If [ = k, we extract zj: x5 < (2k — 21)/(C — ¢), else we
extract the witness x;(I < k) in this way: z; < (Z; — zlﬂ)/(cp(dﬂl) - ga(a%’ﬂ)),
where a}’H and d}’H are computed by Vs when taking (y,a,c, z) and (y,a,¢, 2)
as input respectively (see Fig. 12).

Finally, Ext outputs z;. When [ =k a = a; implies g* /ys = g% /y¢, so
we have y;~¢ = g*~*. Therefore, log, yx = (2 — 2&)/(¢ — ¢) = x1. Hence, the

extracted witness x, is the witness of the statement . When [ < k, al =
d;f implies ng/y;;(a”l) = gii/yfo(a”l), so we have yfo(a”l)ﬂp(a”l)

Therefore, if 90(51};1) + @(a%;l), then we have log,y; = (% — z[)/(cp(d;g_l) -

= gii—zz?,

go(a%’H)) = x;. Hence, when [ < k, the extracted witness x; is the witness of the

statement y; if @(d%;l) # gp(a;g_l).

Therefore, the output x; of Ext is the witness of the statement y;.

In the following, we analyze the success probability of Ext.

Firstly, the inequality ¢ # ¢ guarantees that we can extract x; when [ = k.
Now we show that c,o(f;igf+ ) # w(a%ﬁr ,) with overwhelming probability. Note that if
i
of index [, which implies that a;f+ , equals &Ef_s_ , otherwise we find a collision

a’  equals d;f+ . when [ < k, then we get zj,; = Z;,, according to the definition

for collision-resistant hash function ¢. By recursion, we can get a}, = a; and
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2r = Zj, which is contradictory to that ¢ # ¢é. Thus, a;er . #+ d;er ¥ which implies
that @(&%; D # <p(azf+ ,) with overwhelming probability. Therefore, when [ <k,
it is also guaranteed that we can extract z; successfully.

Secondly, we prove the above claim.

Proof. We assume that there is not any index [ (I € [k]) such that 2; # Z; and
a; = a;. In other words, for every 1 <[ < k, there are two cases:

1. o =& and z; = Z;
1 9

1 ~1

2. ora #aj.

"
l

Note that af = a = af, so according to the assumption, we have z; = Z;. Further,
af = g7 /y{"") and af = g7 /y{" ™) implies that g™ /) = g7 /yf ™) Thus,
we can know that af = af with overwhelming probability. So, according to the
assumption, we have zo = Zp. By recursion, we have a) = aj/ and 2}/ = Z}/,
which is contradictory to ¢ # ¢. Therefore, the assumption does not hold. In
other words, there is some index I (I € [k]) such that z; # % and a; = a; with

overwhelming probability.

In all, the algorithm Ext can extract a witness with overwhelming probability,

which implies that the Sigma protocol XR-°r enjoys computational knowledge
soundness.
Special HVZK. The simulator Sim is shown in Fig. 22. It is easy to check that
the transcript generated by Sim can be accepted by the honest verifier V. So we
just prove that the distribution of the transcript generated by Sim is the same
as that of the transcript between P(z,y) and V(y).

Sim(y,c):
2k Loy, ag < 97 Jyi
Forl=k—1tol: z « Zy, a + gzl/yf(a“rl)
a <+ a1, z < ({zi1}iex)), Return (a, z)

Fig. 22: HVZK simulator of ¥R1-or

For the transcript (a, ¢, z) generated in X®-0r | we claim that ¢ and z (1 <
l < k) are independent, with ¢ uniformly distributed over CL (i.e., Zj, here) and
2 uniformly distributed over Zy. Note that c is randomly picked by V and for
I # p, it is easy to get that z is uniformly distributed over Z;. When | = p
and p = k, zx = r + xxc and r is randomly picked over Z7, so zi is uniformly
distributed over Z;. When | = p but pu # k, 2z, = 2, + (p(aj,41) — @(au+1)) 74,
S0 z;, is also uniformly distributed over Z7. Therefore, our claim holds.

Then, given z;, and ¢, a}, is uniquely determined by a}, = ¢** /ys. By recursion,

for every | < k, given z;, a] is uniquely determined by aj = g*/ y;p(al“).
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For the transcript (a, ¢, z) generated in the simulation, c and z; (1 <1 < k) are
randomly picked over Z;. On the other hand, a = g** Jy5 and a; = g* /yf(al“)
for every | < k.

Thus, the distribution of the transcript generated by Sim is the same as that
of the transcript between P(z,y) and V(y). So the Sigma protocol LR1-or is
special HVZK.

Witness indistinguishability. According to the following theorem, the Sigma
protocol YR1-0r ig perfect witness indistinguishable (WI).

Theorem 5. ([14]). Every Sigma protocol is perfect WI.

F Proof of the Claim in Sec. 5.2

Recall that the claim in Sec. 5.2 is that for all v € V\ S a” = a! or b/ =b.,.
The proof is as follows.

Proof. Let S(© := gsource and for all i < k — 1, S denote the vertex set
that contains all tails of the edges that are pointed from the vertices of S(—1)
(i.e., S@ is the set of all the (i 4+ 1)** vertices in all the paths from S%°Uree to
Ssink). Note that S N SW =@ for all 0 < i < j < k — 1, since it is required
that the lengths of all paths from the node in S5 to the node in S5"% are
k. Specially, S =1 = gsink and for this claim, we only need to prove it in the
casesof 0 < i<k —2.

First of all, we note that for any vy € S© (ie., vy € S%Ur), ol =
97 JYG (0) = Co-

Then, for 0 < i < k— 3, assume that for any v; € S, all =a or bl =1bl, .

Now, we aim to show that for any v;; € SC¢FD, Uy =iy ‘
We firstly notice that in this case, m;’iﬂ = m;iﬂ, since for any v; € S,

"

a

— Y/ N
v; = Gy, Or by =1 .

1. If f(viy1) € SY, there are two cases:
(1) if there is some v' € S{,’Zj‘i (note that SPred  S() such that a/, # a,

K Vi4+1
or by, # by (i.e., my,, #my, ), then

s =07 )

=g g (20

e e )= e ) /y;’(<15> (27)

= g7 [yt = b, (28)

= blvi+17 (29)

where Eq. (25) and (28) are trivial, Eq. (26) is because my, = m;,

and Egs. (27) and (29) are both obtained from the procedures of Ps;
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red [ r_ : —
(2) if for all " € SPIS7, a;, = ay or b, = by (ie., Moiyy = mvlﬂ)/ then
according to the procedures of Py, we have Zvi+l = Zyy, and b, =
e(my, ) )
11 Zv;4q vit1) 2y, vit1/) ’
bm+1a S0 bv i+1 g + /yf(vi+1) g =+ / f(vz+1) - b’Ui,+1 bv7+1

2. If f(vig1) ¢ SY, then we have:
(1) If there is some v’ € ngidl satisfying al, # a, or b, # by (ie.,
My, # My, ), then according to the procedures of Pz, we have
m/l ) ( II’L )
by =9 Ltl/yf(vl+$1 =g /yf(v oy o b =by
(2) If for all v € Sp’ed, ay = ay or b, = by (i.e., my,,, = m, ), then
according to the procedures of Py, we have z,,,, = 2,,,, and b, ==

b b’ Zu; (m/,1+1) _ P e(mo; ) b —p

Vi1 S0 Vit1 =g /yf U1+1 =g / f v +1) Vit1l = Ywigr”
Hence, we have shown that for any v, € SC+D b’ v = by, - This com-

pletes the induction step, and the proof. a

G Proof of Theorem 3

Computational knowledge soundness. To show that the Sigma protocol
dl
EDJ;SNF % provides computational knowledge soundness, we construct an effi-
cient extractor as follows.
Given the statement vector y and two accepting transcripts for the same
commitment a, i.e., (a,c, z) and (a, ¢, 2), the extractor firstly sets that x := (1)",

and runs kCNFtoDAG(Rk CNF., S,) to obtain G = (V, E).

Then, it parses {e,},cgsink < @, {20 }vev 2z and {Z, },ev + Z. For every
path in G, (i) we denote it as (v, ...,vx), where v; € §%°U® and v, € Sk, and
we have f(vl) > > f(vr); (ii) for every v € {v;};ep), the extractor computes

vobl, or el (resp a’, b’ or &) according to Vs, and finds the largest f(v) such
that z, # 2, and a) = Et” (or b =0l or el =€) (for convenience, denote this
vertex by 0 € {vj}je[k]), and (iii)

— if ¥ € §%°U"¢, then the extractor updates ) < (25 — 25) /(¢ — ¢);

— otherwise, it updates x ) < (25 — 25)/(¢(My) — @(m})), where both

and m!/ are computed with msg” according to Vs in Fig. 14.

At last, the extractor outputs x.
That’s the construction of the extractor. Now we analyze its success proba-
bility.
Obviously, for any path (vi,...,vx) in G, if there is some vj (j' € [k])
e ), and

go(m;’j,) # p(ml ) when Jj' > 1 then the extracted (updated) xf(v ,yisa witness

satisfying z,, 7é Zy,, and a” = EL” (or b” b;’ ,, or e” = ¢
for Yf(o,)- Hence if for each path (vq,...,vs) in G, there is such a vj/, then the
output x by the extractor is a witness for y.

Therefore, what remains is to show that (1) for any path (vq,...,v;) in G,

the probability that there is some v € {v;};ep) satisfying z, # Z, and a; = a;
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(or b = 1", or ¢/ = &) is overwhelming, and (2) for this kind of v satisfying
that f(v) is the largest in this path, when v ¢ S p(m!) # @(ml) with
overwhelming probability.

To prove (1), assume that for some path (v1,...,vx), there is no such vertex
(i.e., for all j € [k], if a, = a, or by, b” or e, = &, then z,, = Z,).
In thls case, note that both (a ¢, z) and (a, ¢, Z) are accepted transcripts, so

€y, = €y, = €, _, which implies that z,, = Z,, . For those vertices v € {v;} e\ {1}

satisfying both b/ = b’ (or €/ = &) and z, = %, let v;» (1 < j” < k) denote
the vertex where f(v;~) is the largest. The fact b” , = b;’ ,, (or ev = ev )

suggests o(m! my, )= go(fn;’j”) Now we consider the followmg cases:

— 1f j” —1=1:ifa;, = aj ,according to the assumption, we derive that z,, =

o Hevvever note that ¢ # C, 50 2y, = Z, will imply a}, = gzvl/y]cc(vl) +
gz'vl /Y5 (o) = G, - Hence, we obtain that ay # ag,

—ifj"—-1>1: 1fb;’”1 b;'/,

oy = Fugn s Contradlctmg that “f(v;~) is the largest” since f(vjr_1) >
f(vjn). Hence, we obtain that b/~ # b/

U”l U//l

, according to the assumption, we derive that

The fact a), # a; or b;)’ o F bv ,,_, implies my, , # ;. So we find a collision
J J
of p, the probablhty of ‘which should be negligible.

Next, we turn to prove (2). For those vertices v € {v;} ey satisfying z, # 2,
and o/ = a’ (or b/ = b, or €/ = &), let b € {vj}jem denote the vertex
where f(0) is the largest. What remains is to show that when ¢ ¢ S%°Uree,

o(ml) # @(m!) with overwhelming probability. When o ¢ 5S¢, consider

the followmg two cases:

— if m{] # m!: the collision resistance of ¢ guarantees that p(m) # @(mf)
Wlth overwhelmmg probability.
— if mi =mj: let j € [k] \ {1} denote the index of 9, i.e., & = v;. Note that

mf = mY implies that @] = a, or b = b . Then we derive
[ vy vi_y Vi Vi

that z,, == %, , since f(®) (ie., f(vy)) is the largest. Note that if j —
11,0 L= b;}ﬂ‘ and 2. ),
J— Jj— J -1

-, = Zy,_, implies that <p(m;’3_l) = p(m
which suggests that m!/_ L= m with overwhelming probability. Hence,
5

-1
1
v

by recursion, we can get a; = a, and z,, = Z,,, which is contradictory to
that ¢ # é. Therefore, this case occurs with negligible probability.

So we conclude that ¢(mY) # ¢(mf) with overwhelming probability, finishing

the proof of (2).

Special HVZK. We construct a PPT simulator Sim as in Fig. 23, where the

underlying function msg” is shown in Fig. 14. It is easy to check that the output

of Sim can be accepted by the honest Veriﬁelr Now we show that the output
k-CNF,S7,

distribution of Sim is the same as that of X,
dl
In ZDZSNF Sk , we claim that ¢ and z, (v € V) are distributed independently,

with ¢ uniformly distributed over CL (i.e., Zy here) and z, uniformly distributed
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Sim(y, ¢):
G = (V, E) + kCNFtoDAG(R{!cxp 51 )
Forv e V:

If in-deg(v) = 0: 2y < Zy, ay = 97 /Y5 )

Else If out-deg(v) # 0:

my < msg”(G,v), zv < Zj, by = g** /y;’((g”)
o(my))
f(v)

"o_

Else my + msg”’(G,v), zv < Z5, ey = g™ [y
Return a < {ey}, c gainks 2 < {20 }vev

dl
72k-CNF,S;C

Fig. 23: HVZK simulator of 3, (Assume that the “For loops” are
executed following a deterministic sequence of nodes.)

over Zy. Note that ¢ is randomly picked by V and for every v € V, if f(v) ¢ SY,
it is easy to get that z, is uniformly distributed over Z;. When f(v) € Sy and
v € S5, 2, = ry+Ty(y)c and 1y is randomly picked over Zj, so z, is uniformly
distributed over Z;. When f(v) € Sy, v € S%°"¢ and one of the commitments
for the predecessor nodes of node v is changed, z, = 2, + (@(m},) — ©(My))T f (1),
80 2, is also uniformly distributed over Z;. When f(v) € Sy, v € 5S¢ and all
the commitments for the predecessor nodes of node v are unchanged, z, is also
unchanged and is randomly picked over Z; by P;. Therefore, our claim holds.

Then, for every v € S%°U"¢ given z, and ¢, a!/ is uniquely determined by
gz'v/y;(v). By recursion, for every v € V\S®%Ur¢ given z,, bl or el is
p(my))
f(w)

In the simulation, ¢ and z, (v € V) are randomly picked over Zy;. On the other
hand, a)] = g* /y;(v) for v € S®°Ur® and b/ or e} = gz“/y]f((xg) for v € V\ §souree,

dl
Rk-CNF,s;C

Thus, the output distributions of ¥, and the simulator are identical.
Therefore, we have an efficient simulator, which implies that the Sigma protocol
R(IECNF St

Ypag | is special HVZK.

" __
v =

a

uniquely determined by b!/ or el = g** [y

H Some 3D figures for the experiments

Here, we present some 3D figures for the experiments. Fig. 24 is the communi-
cation cost of [14] and Fig. 25 is the communication cost of our scheme. Fig.
26 is the running time of kCNFtoDAG. Fig. 27 contains the experimental results
of running time of each step of [14] and our scheme. The above figures are the
running time of Py, Pa and Vs of [14], and the below figures are of our scheme.
Communication costs. We set a reasonable range for each parameter, i.e.,
n varies from 10 to 50 and k varies from 4 to n/3 (if 4 > n/3, then we just
set k = 4). Besides, the total number of clauses would be C¥ — y, where x
is a random number in [50,200]. From the figures, it is clear that our solution
has a remarkable decrease on the communication costs compared with [14]. In
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addition, the figures show that the effect on decrease would be better as n and
k get larger.

1.0E+16
1.0E+12
1.0E+08

1.0E+04
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1.0E+12
1.0E+08

1.0E+04

Fig. 25: Communication cost of our scheme

Running time. We show the running time of P;, Py and Vs separately. Note
that when testing our solution, we also record the running time of kCNFtoDAG
for special interest and do not count it in the time of P; or Vs, in order to
compare our scheme with [14] more fairly, as kCNFtoDAG can be pre-computed
and is not adopted in [14].

We evaluate both schemes with the same range of n and k. However, the
running time of [14] grows so fast that the program was killed when n and k are
set relatively large numbers. Therefore, in the experiment of [14], we set n from
10 to 33 and k from 4 to 7. In the experiment of our scheme, n varies from 10 to
50 and k varies from 4 to 10. The total number of clauses also is C¥ — y, where
X is a random number in [50,200]. Fig. 26 and Fig. 27 display the results.

Fig. 26 is the running time of kCNFtoDAG. As k and n get larger, the run-
ning time increases very quickly, since the number of vertices grows fast. But
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Fig. 26: Running time of kCNFtoDAG

in fact, if we compare it with the running time of P; and Vs of our scheme,
kCNFtoDAG performs reasonably well. Fig. 27 presents the running time of the
main algorithms of both Sigma protocols. Fig. 27 points that the running time of
P2 only occupies a limited percentage of the total running time. Thus, it shows
that the running time of P; and V, dominates the running performance. From
the perspective of the whole, our scheme saves lots of time compared with [14].

180 11000
160
140
120
100

°8&338

Fig.27: The above figures are the running time of Py, Py and Vs of [14]
separately and the below figures are of our scheme
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