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Abstract. The existing works on privacy-preserving recommender systems based
on homomorphic encryption do not filter top-k most relevant items on the
server side. As a result, sending the encrypted rating vector for all items to the
user retrieving the top-k items is necessary. This incurs significant computa-
tion and communication costs on the user side.
In this work, we employ private sorting at the server to reduce the user-side
overheads. In private sorting, the values and corresponding positions of el-
ements must remain private. We use an existing private sorting protocol by
Foteini and Olga and tailor it to the privacy-preserving top-k recommenda-
tion applications. We enhance it to use secure bit decomposition in the private
comparison routine of the protocol. This leads to a notable reduction in cost
overheads of users as well as the servers, especially at the keyserver where the
computation cost is reduced to half. The dataserver does not have to perform
costly encryption and decryption operations. It performs computationally less
expensive modular exponentiation operations. Since the private comparison
operation contributes significantly to the overall cost overhead, making it effi-
cient enhances the sorting protocol’s performance. Our security analysis con-
cludes that the proposed scheme is as secure as the original protocol.

1 Introduction

A recommender system (RS) provides personalized suggestions to users based on the
previous behavior of users on similar items. For example, a news website will analyze
the kind of news a user has been reading for some time and it shows more relevant ar-
ticles for that individual. It helps users of that platform find items of interest among
the plethora of other available items. Recommender systems are at the core of al-
most all major web applications in domains like social media, shopping websites,
entertainment, news, etc. They track individuals’ activities, which items a user is fre-
quently viewing, how much time they spend on a particular web page, purchases
after looking at items and how they react to suggested items. Such systems monitor
every user activity and maintain a user profile based on this data. These user profiles
are highly valued by online businesses. If a company that sells medicines or health
insurance learns that a user has been searching for symptoms related to a particular
disease, it may want to target that user for selling its products.

A recommender system helps the users find the relevant products, but often at
the cost of revealing their personal information. Many users may not agree to this
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trade-off and would like to use the recommendations facilities without exposing their
personal information to unknown parties (data servers). A solution to this problem
is to use privacy-preserving recommendation systems (PPRS) which keep user data
hidden from the service providers and give relevant recommendations to the user. As
noted by Rosinosky et. al. [24] there are three broad categories of privacy-preserving
recommender systems: decentralized or federated solutions that let users compute
similarity in decentralized manner, obfuscation-based approaches where user rat-
ings are masked with noise and the encryption-based approach, where homomor-
phic cryptosystems are used to perform computation on encrypt user ratings.

In [1] Badsha et al. proposed collaborative and content-based filtering approaches
to generate the recommendations using ElGamal partially homomorphic encryp-
tion scheme. In [16], Arjan et al. proposed a familiarity-based recommender sys-
tem that uses social network connections to generate recommendations efficiently.
Cryptorec, proposed by Wang et al. [28], uses matrix factorization to train a model
over ratings encrypted under the fully homomorphic scheme (FHE) scheme. In the
cross-domain recommendation system, Oguneseyi et al. [21] proposed a protocol
with BGV [5] as the underlying FHE encryption scheme. Their protocol works with
data from multiple vendors having some common items to improve individual ven-
dors’ recommendation accuracy without leaking user information to other vendors.
A collaborative filtering-based protocol that uses the BGV scheme with packing was
proposed by Jumonji et al. [17].

Recently, Zhengqiang et al. [14] proposed to convert ratings into word vectors and
find the top-k most relevant items for individual users. They use a model-based pre-
diction scheme that is trained on the user data first. As noted by Erez and Tamir [26]
and Michael et al. [12] the model-based recommender systems are less accurate as
compared to item-based collaborative filtering schemes for top-k item recommen-
dations.

Problem statement A real world recommender system usually has several thousand
items, but users expect to receive very few items as recommendations. In existing
PPRS schemes [13], [6], [15] etc., the RS sends to the user the entire rating vector that
consists of encrypted rating predictions for all the items i.e., thousands of cipher-
texts. These ciphertexts are decrypted and top-k predictions are simply filtered at
the users’ end. The communication cost considering thousands of ciphertexts every
time the user asks for recommendations is inefficient, followed by decryption that
requires significant time and computing power. We refer to this requirement as the
private top-k recommendation problem; the server should send only top-k most rel-
evant items to the user to reduce the user-side cost overhead.

Our approach To solve the top-k problem, we propose selecting the top-k items
at the recommendation server itself so that the rating vector sent to the users only
contains k ciphertexts corresponding to the items with the highest predicted rat-
ings. The first challenge here is that selecting top-k items at the server must be done
over the encrypted predicted ratings. The second challenge is that the server should
not learn which items are chosen as the top-k recommendations as this violates the
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fundamental goal of user privacy. We use homomorphic encryption based private
sorting as the basis of our solution. It allows us to compare two encrypted values and
eventually sort the entire vector without revealing the order of elements to the server.

Two-server private sorting model Foteini and Olga [2] proposed a partial homo-
morphic encryption based private sorting scheme. Their scheme uses two servers: a
DataServer (S1) and a KeyServer (S2). The KeyServer generates the required keys and
shares them with the appropriate parties. The user encrypts the data and stores them
on the DataServer, the two servers then execute the private sorting protocol and sort
the data elements without either party learning the data values or the relative po-
sitions of the elements. Both servers are assumed to be semi-honest, meaning that
they follow the protocol and do not collude with anyone while they can try to learn
additional information during the protocol execution.

We adapt the two-server private sorting model to our setting. We note that the
Foteini-Olga protocol uses the DGK private comparison protocol [10] as a building
block. The DGK protocol compares two inputs by encrypting them bit-by-bit, this
step increases the number of ciphertexts exchanged between the two servers as well
as the computation overhead. The core of the DGK protocol is that given two l−bit
inputs a and b, if we compute z = 2l +a −b then, the most significant bit of z would
be 1 if a ≥ b and 0 otherwise. In case the inputs are encrypted with homomorphic
encryption scheme, computing encrypted z is not difficult. As an alternative to the
DGK protocol, we use a secure bit decomposition scheme.

Contributions Private sorting using homomorphic cryptosystem has been used in
many applications, for example, in [9] authors used private sorting for resource allo-
cation, in [18] authors proposed to design graph database for privacy-preserving so-
cial searches. We are not aware of any previous work on application of private sorting
to recommender systems. We list our contributions as bellow.

– Our proposed enhancement of Foteini-Olga protocol does not require the dataserver
to perform encryption whereas in Foteini-Olga protocol O(`) encryptions were
needed.

– The cost overhead at the keyserver is reduced similarly, in the original protocol
the keyserver is required to perform O(`) encryptions and decryptions, in our
modified version only O(`) decryptions are needed.

– In terms of communication costs, our proposal reduces the communication cost
between two servers by a factor of one-third.

– We implement both the Foteini-Olga protocol (the original paper [2] does not
provide experimental results) and our modified version, and show that our en-
hancement outperforms the original protocol.

– We show the formal security analysis of SBD protocol proposed in [25] that was
missing in original work.

Our proposed modification based on SBD is more efficient for the following reasons.
First, the DGK protocol uses secret sharing where the information is divided into
parts and shared by multiple parties and they jointly execute a protocol. Whereas
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Symbol Description
n RSA modulus
g Chosen randomly from Zn2

Zn Group under addition modulo n
Z∗p Group under multiplication modulo a prime p
∈r Choosing a value randomly

pk, sk Public and private key for generalised Paillier
[m] Encryption of m with basic Paillier scheme
�m� Encryption of m with generalized Paillier scheme
‖m‖ Encryption of m with quadratic residuosity cryptosystem

dl l th bit of integer d

Table 1: Notations

in SBD protocol, information is hidden by masking original values with a random
noise and sharing it with the other party. Second, in SBD a substantial amount of
work can be done in pre-computation phase. For example, the SBD protocol requires
encryption of 0 bit and 1 bit ; these can be pre-computed.

Organisation of the paper The next section reviews the cryptographic building blocks
that are used in this paper. In section 3 we revisit the working of the Foteini-Olga
protocol. Section 4 proposes a private comparison protocol using SBD. We also give
the efficiency and privacy analysis of our protocol. The experimental results are dis-
cussed in section 5. We conclude the paper in section 6.

2 Preliminaries

Here we will discuss about generalized Paillier cryptosystem that is used in Foteini-
Olga protocol. The working of DGK private comparison scheme and secure bit de-
composition protocol. The symbols used throughout the rest of the paper are listed
in Table 1.

2.1 Generalised Paillier cryptosystem

It is a probabilistic public key encryption scheme, introduced by Damgard and Jurik
[11], where modn2 in basic Paillier [22] is replaced with modns+1, and the plaintext
space Zn is replaced with Z∗

ns+1 , where s ≥ 1 is a layer of Paillier.

Key generation: Choose security parameter k and compute k-bit RSA modulus n =
pq . Choose an element g ∈r Zns+1 such that g = (1+n) j x mod ns+1, for j relative
prime to n and x ∈r Z

∗
n . Computeλ= lcm(p−1, q−1) and choose d such that d mod n ∈r

Z∗
n and d =λ mod 0. Here, n, g are public key and d is the private key.
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Encryption: Choose a plaintext i ∈ Zns , take a random number r ∈r Zns+1 , then the
ciphertext is:

�[i ]� = g i r ns
mod ns+1

Decryption: Given a ciphertext �[i ]�

�[i ]�d mod ns+1, here

�[i ]�d =
(
g i r ns

)d = (1+n) j i dmodns
(
xi r ns

)dmodλ

= (1+n) j i d mod ns

In [11], an algorithm is shown to retrieve j i dmodns from (1+n) j i d mod ns
efficiently.

Similarly replacing i with g results into j d mod ns , using these two values the mes-
sage i can be retrieved as

i = ( j i d)( j d)−1mod ns

.

Homomorphic property: The following holds for both Paillier and generalised Pail-
lier, say we have two messages m1,m2 and a constant c, then

[m1 +m2] = [m1][m2], [cm1] = [m1]c

�m1 +m2� = �m1��m2�, �cm1� = �m1�c

The following additional homomorphic property holds for generalised Paillier.

�[m1][m2]� = �[m1 +m2]� = �[m1]�[m2]

2.2 Goldwasser-Micali cryptosystem

Proposed by Goldwasser and Micali in 1982, it is based on quadratic residuosity (QR)
problem. In QR problem, given x, N such that N is RSA modulus, it is difficult to
determine if x = y2 mod N for any y when the Jacobi symbol of x = 1. On the other
hand it is easy if the factors of N are known.

Key generation: Similr to RSA modulus, randomly choose two large primes p, q and

compute N = pq . Next find x such that the Jacobi symbol
( x

N

)
= 1, by choosing ran-

dom numbers and testing. The public key is consist of (x, N ) and the secret key (p, q).

Encryption: The message m has to be in represented in bits for encryption. A bit mi

can be encrypted using the public key and a random yi such that g cd(yi , N ) = 1. The
ciphertext is:

ci = yi
2xmi mod N
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Decryption: To decrypt a ci , we need factors of N as p, q . Determine if the ci is a
quadratic residue by calculating Jacobi symbol over ci . If it is a quadratic residue,
then mi = 0 otherwise mi = 1.

Homomorphic propoerty: Given two ciphertexts ‖m1‖,‖m2‖ corresponding to two
messages m1,m2:

‖m1 ⊕m2‖ = ‖m1‖‖m2‖

2.3 DGK private comparison

It is a secure two party computation protocol proposed by Damgård, Geisler and
Krøigård [10]. In the basic version of the protocol, each party has a secret number and
they want to compare their secret inputs without telling the actual value to the other
party. There are other variations of the protocol depending on which party learns
the comparison result [4]. DGK protocol uses a modified Paillier scheme, and it can
be realized using Goldwasser-Micali scheme as well. For this discussion we consider
two parties A and B with private `-bit integer inputs x and y respectively. The key
pair is (pk, sk), party B has the private key sk. At the end, A learns the result of x < y
in under encryption while B does not learn about the relation. The notation ‖xi‖
denotes the encryption of i th bit of x and t is the security parameter used in key
generation. Table 2 follows the protocol description in [27]. In step-3, A chooses the
variable δA to restrict B from learning abut the relation, to compute λ, knowledge of
δA and δB is necessary and B only knows δB in plain and never gets δA . Similarly in
step-6 A receives ‖δB‖ so that it learns λ under encryption only. In step-4, the value
ci will only be 0 when x j = y j for each j, i < j < ` and at the same time xi 6= yi .

In the protocol we can see B has to perform ` encryptions in the first step. A has
to perform `modular multiplications in step-2, and blind ` elements before sending
them to B in step-5. Finally, in the last step B performs ` decryptions to learn the
comparison result.

2.4 Batcher’s sort

Batcher proposed an odd-even merge sort [3]. The sorting scheme can be divided
into two parts odd-even_merge() and odd-even_mergesort(). Table 3 and 4 shows the
pseudocode for both routines.

2.5 Secure bit decomposition (SBD)

In the SBD protocol, there are two parties: Alice, who has a public key pk, and Bob
who has a m bit integer x encrypted with pk. They both jointly run the SBD protocol
and at the end Bob receives encrypted bits of x = 〈E(b0),E(b1), . . . ,E(bm−1)〉 whereas
Alice learns nothing about x or its bits. We use the protocol proposed by Samanthula
et al. [25], which is based on Paillier’s additive homomorphic encryption scheme.
The protocol is divided into two phases: Encrypted_LSB() computes the least signif-
icant bit of an encrypted integer input and SVR() verifies if the bits representation
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Input: Party A: x, B : y and sk, 0 < x, y < 2`

Output: A learns ‖λ‖, λ ∈ {0,1} such that λ= 1 if x ≤ y and λ= 0 otherwise

1. B sends the encrypted bits ‖yi ‖, 0 < i < 2` to A
2. For each i , 0 < i < 2`, A computes ‖xi ⊕ yi ‖ as follows:

‖xi ⊕ yi ‖ =
{
‖yi ‖, if xi = 0

‖1‖‖yi ‖−1modn otherwise

3. A chooses a uniformly random bit δA and computes s = 1−2δA
4. For each i , 0 < i < 2`, A computes

‖ci ‖ = ‖s‖‖xi ‖‖yi ‖−1

(
`−1∏

j=i+1
‖xi ⊕ yi ‖

)3

modn

5. A blinds ‖ci ‖ by raising them to a random exponent ri of 2t bits:
‖ci ‖ = ‖ci ‖ri modn, and sends them in random order to B

6. B checks whether one of the numbers ci is decrypts to zero. If
there is one, δB = 1 else δB = 0

7. B sends ‖δB‖ to A where it computes ‖λ‖ = ‖δA ⊕δB‖

Table 2: DGK private comparison protocol [27]

Input: Sequence a0, a1, . . . , an−1 of length n > 1 whose two halves a0, a1, . . . , an/2−1
and an/2, . . . , an−1 are sorted (n is power of two)

Output: The sorted sequence
if n > 2 then:

– apply odd-even_merge(n/2) recursively to the even subsequence
a0, a2, . . . , an−2 and to the odd subsequence a1, a3, . . . , an−1

– comparison [i : i +1] for all i ∈ {1,3, . . . ,n −3}

else:

– comparison [0 : 1]

Table 3: Batcher sort: odd-even_merge()

Input: Sequence a0, a1, . . . , an−1 (n is power of two)
Output: The sorted sequence

if n > 1 then:

– apply the odd-even_mergesort(n/2) recursively to the two halves
a0, a1, . . . , an/2−1 and an/2, . . . , an−1 of the sequence

– odd-even_merge(n)

Table 4: Batcher sort: odd-even_mergesort()
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is correct for the corresponding integer (under encryption). Both these sub-routines
cost Alice and Bob O(l og n) communication. Algorithm 1 shows the working of the
protocol between the dataserver and the keyserver, the details of SVR() is given in the
appendix A.

Input : Common input: Keyserver’s public key pk, and modulus N
Keyserver’s input: private key: sk
Dataserver’s input: Encrypted [x], 0 ≤ x < 2m

Output: Dataserver learns: x̄ = 〈[b0], [b1], . . . , [bm−1]〉, and the keyserver learns
nothing

1. `= 2−1 mod N
2. T = [x]
3. for i = 0 to m −1 do:

– [xi ] ← Encrypted_LSB(T,i)
– Z ← T [xi ]N−1 mod N 2

– T = Z` mod N 2

4. end for
5. γ← SV R(E(x),〈[b0], [b1], . . . , [bm−1]〉)
6. if γ= 1 then

return
7. else

go to step 2
8. end if

Algorithm 1: Secure bit decomposition protocol

First, the Encrypted_LSB() routine takes two inputs: a ciphertext of an encrypted
integer and an integer in plaintext, and returns the encrypted least significant bit
of the encrypted integer passed to it. The two observations that this sub-protocol
follows are:

Observation-I For any given x, let y = x + r mod N , where r is a random number in
Zn . Here the relation between y and r depends on whether x + r mod N leads to an
overflow or not. y is always greater than r if there is no overflow. Similarly, in the case
of overflow y is always less than r .

Observation-II For any given y = x + r mod N , where N is odd, the following prop-
erty regarding the least significant bit of x always hold:

x0 =
{
λ1 ⊕λ2, if r is even

1− (λ1 ⊕λ2), otherwise

Here λ1 denotes whether an overflow occurs or not, and λ2 denotes whether y is odd
or not. That is λ1 = 1 if r > y , and 0 otherwise. Similarly, λ2 = 1 if y is odd and 0
otherwise, ⊕ denotes the XOR operation.
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Input : Dataserver’s input: Encrypted integer: T , and plain iteration number: i
Keyserver’s input: private key: sk

Output: Dataserver learns: Encrypted least significant bit of T as [xi ]
1. Dataserver:

– r ∈r ZN
– Y = [ri ]T mod N 2

Send Y to keyserver
2. Keyserver:

– y = decrypt(Y )
– If y is even: α= [0]
– Else: α= [1]
– Send α to dataserver

3. Dataserver:
– If r is even: [xi ] =α
– Else: [xi ] = [1]αN−1 +1 mod N 2

4. Return [xi ]

Algorithm 2: Secure bit decomposition sub-protocol: Encrypted_LSB()

3 Private sorting

The private sorting is a well known problem where a user uploads encrypted data on
a cloud server and asks the server to perform sorting without decryption. The pri-
vacy requirement is that the server must not learn the relative order between any
element as well as the values of those elements. Homomorphic encryptions allow
computation over encrypted data, and thus can be used in designing private sort-
ing protocols. The existing private sorting schemes such as [8], [7], [20] proposed
FHE based sorting schemes that are better than some previous approaches. A major
drawback of FHE-based schemes is the computation cost and noise growth in the
ciphertext, especially when the multiplicative depth is more. In [8], the average time
to sort 40 elements is around 1400 sec using the Lazy sort method. In [20], authors
compared the performance of sorting based on comparison done using integer-wise
and bit-wise operations. Here authors proposed a polynomial interpolation-based
approach to compare two integers encrypted with FHE. They concluded that though
the bit-by-bit comparison performs more operations than integer-wise comparison,
the practical time required is lesser in bit-wise element comparison. A better scal-
able solution was proposed in [7], in this work authors proposed a polynomial rank
sort scheme using BGV protocol. Their results show better scalability and it took 865
seconds to sort 60 items (in their test environment).

A private sorting scheme that uses a partial homomorphic scheme is shown in
[2], it meets the functional requirements and can perform over a large number of
items. It has a semi-trusted third party as a keyserver that helps cloud server during
the private sort operation. To the best of our knowledge this is the only private sorting
scheme that is based on PHE.
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3.1 Foteini-Olga private sorting protocol

The protocol consists of several sub-routines that are executed jointly by both the
servers. The protocol uses the Batchers sorting scheme [3]. It is a comparison-based
algorithm that compares two elements at a time and gradually sorts the entire array.
The basic features of the scheme are that it is highly parallelizable and its perfor-
mance does not depend on the element values. The important sub-routines used in
the private sorting process are EncSelect(), EncPairSort(), EncCompare() and Enc-
Sort(). In this section we describe EncCompare() in detail and given the functionali-
ties of each sub-routine. For a complete description we refer the reader to the original
paper [2].

EncSelect() This function takes three inputs, two encrypted integers [a], [b] and an
encrypted boolean �v�. Based on the value of v it returns either re-encrypted �[a]� or
�[b]�. In other words, the ciphertext is different than what was given as input so that
the output does not leak the relationship between the input values.

EncSelect ([a], [b],�v�) = (�1��v�−1)[a] �v�[b] = �(1− v)[a]+ v[b]� = �[c]�

We can see here that the output is �[c]�, to get [c] from this, there is another sub-
routine StripEnc(). S1 masks it with a random noise e and sends masked �[c + e]� to
S2, who replies with [c + e]. The server S1 unmasks and gets [c]. For simplicity we
represent the output of EncSelect() as [c] henceforth.

EncPairSort() In this routine as shown in Table 5, S1 has PKP , two encrypted inte-
gers ([a], [b]). After execution S1 will receive a pair of ciphertexts ([c], [d ]) = ([a], [b]) if
a ≥ b otherwise ([c], [d ]) = ([b], [a]). Basically the two numbers are arranged in sorted
order without revealing the values a,b or their relative order. First, S1 executes Enc-
Compare() to obtain �v�, then it executes EncSelect() twice to obtain the ciphertext
pair ([c], [d ]). To sort the entire input array, both servers will jointly execute the pair
sort function iteratively.

S1 (PKP , [a], [b]) S2 (SKP ) operation
�v� ← EncCompare

(
pk, [a], [b]

)
v = 1 if a ≥ b and 0 otherwise

[c] ← EncSelect([a], [b],�v�) c = (1− v)a + vb
[d ] ← EncSelect

(
[a], [b],�1��v�−1)

d = va + (1− v)b

Table 5: EncPairSort() method [2]

EncSort() In this routine as shown in Table 6, S1 uses Batcher’s sorting scheme [3]
(see appendix 2.4) to sort the encrypted elements with the help of S2. Here the en-
crypted values to be sorted are stored in an array A and at each level of the sorting
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S1 (PKP , A) S2 (PKP ,SKP ) Operation
A = [[a1], [a2], . . . , [aN ]]

1: Ai ← A

2: for i ∈ {1, . . . ,k −1} k = (
log N

)2 , N =A
3: set of element pairs S ←pairsi .A i th level of Batcher’s sort
4: while (S 6= ⊥)
5: (x, y) ∈ S next pair of Ai to sort
6:

(
Ai+1[x], Ai+1[y]

)← EncPairSort
(
pk, Ai [x], Ai [y]

)
7: S ← S \ {(x, y)} remove (x, y) from S
8: //end while
9: //end for
10: B ← Ak

Table 6: EncSort() method [2]

process the pairs are chosen in a sub-array where they are compared and sorted us-
ing EncPairSort(). In Table 6, A is the input array that is copied into A1. Then for each
level pairsi .A stores the element pairs in a set S. Next we take one pair (x, y) at a time
and run EncPairSort() till all the array elements are sorted in pairs. This results into
an array A2, where the pairing is now done by combining two elements at consecu-
tive odd indices, similarly the even indices elements are paired together. These pairs
are passed into EncPairSort() one at a time and the cycle repeats till all the pairs are
processed. Finally the sorted array is stored in B as output. EncPairSort() calls Enc-
Compare() and EncSelect() to sort the pair as discussed earlier. An example of the
sorting process is given below.
Example: We will take the example shown in [2] and to simplify the notation we
write the inputs as plaintexts. Let the given input array be A = [5,1,2,9]. First it will
be copied into A1 then in the first iteration pairs1 will be {(5,1), (2,9)} (index 1,2
and 3,4). It will be passed to EncPairSort() function and the resultant array will be
A2 = [1,5,2,9], Next, pairs2 = {(1,2), (5,9)}, (index 1,3 and 2,4) that will produce A3 =
[1,5,2,9]. Finally, in the last iteration, the pair3 = {(5,2)} (index 2,3) will be passed to
EncPairSort() and the result will be a sorted array A4 = [1,2,5,9]. All numbers will
be encrypted and S1 performs swapping using EncSelect(). After every iteration, the
ciphertext will change so that S1 cannot infer the order.

The following definition by Foteini and Olga captures the functionality of Enc-
Sort().

Definition 1. An encrypted sorting functionality EncSort() takes as input a public/secret
key pair (PKP ,SKP ) of a semantically secure cryptosystem and an array A = [[vi ]],
i ∈ {1, N } of N elements encrypted with PKP . Let π be a permutation of indices 1 to N
that corresponds to the indices of A’s elements sorted using its unencrypted values vi .
Then the output if EncSort() is an array B = [[(v ′

j )]], j ∈ {1, N }, where v ′
j = vπ(i ) and

i ∈ {1, N }.

Key-value sort() The steps of EncPairSort() can be applied to a key-value pair based
array of elements where sorting is done based on value. In PPRS the value will be
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user rating and key will be corresponding item index. The elements in a rating vector
are in the form of a tuple with each element encrypted individually. For example, the
tuple 〈[a], [i ]〉 indicates that rating a was assigned to an item at index i . To implement
this, only change is required that EncSelect() function is executed not only on value
but on key as well. The rest of the steps remain the same as shown in Table 7. Here,
based on �v� indices will be updated to ([i ′], [ j ′]) = ([i ], [ j ]) or ([i ′], [ j ′]) = ([ j ], [i ]).

S1 (PKP ) S2 (SKP ) operation(〈[a], [i ]〉,〈[b], [ j ]〉)
�v� ← EncCompare(PKP , [a], [b]) v = 1 if a ≥ b and 0 otherwise
[c] ← EncSelect([a], [b],�v�) c = (1− v)a + vb
[d ] ← EncSelect

(
[a], [b],�1��v�−1)

d = va + (1− v)b
[i ′] ← EncSelect

(
[i ], [ j ],�v�) i ′ = (1− v)i + v j

[ j ′] ← EncSelect
(
[i ], [ j ],�1��v�−1)

j ′ = vi + (1− v) j

Table 7: Key-value sort method [2]

EncCompare() The EncCompare() is based on the observation that for any two `-
bit numbers a,b the most significant bit of z = 2`+a −b represents the relationship
between a and b. The bit z` = 1 if a ≥ b and z` = 0 otherwise. As shown in Table 8, first
S1 computes and masks [z] before sending it to S2. Then both servers jointly execute
DGKCompare() and for this phase they use QR key pairs (PKQ ,SKQ ). This step lets S1

learn the QR-encrypted relationλbetween d ′ and r ′. The remaining steps are used to
convert the QR-encrypted ‖λ‖ to Paillier encrypted �v�. The final output �v� is used
in EncSelect() function to pick either a or b based on the value of v .

The call to DGKCompare() sub-routine requires multiple rounds of communica-
tion between the two servers. The communication cost between the servers is O(`k)
for ` bit number and where k is a security parameter. The computation cost for both
servers is O(` log`) modular multiplications. A sorting algorithm needs to compare
elements from the list very frequently and therefore use of a multi-round sub-routine
greatly affects the efficiency of the sorting protocol. Although we may assume that
the servers have enough computational power and are connected with high speed
communication networks, the cost overheads limit the scalability of any protocol.

4 Enhancement using SBD

The most important routine in Foteini-Olga is EncCompare() that compares two en-
crypted inputs. It is jointly executed by both servers and the dataserver learns the
encrypted result as the output. We propose to use secure bit decomposition (SBD)
instead of EncCompare() in Foteini-Olga protocol. The dataserver can compute en-
crypted z and then execute SBD with the keyserver, the dataserver will learn en-
crypted bits of the z (including MSB) efficiently. We discuss the detailed steps below.
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Information known to S1: PKP ,PKP , [a], [b]
Information known to S2: PKP ,SKP ,PKQ ,SKQ
Output: S1 learns �v�, where v = 1 if a ≥ b else v = 0

Dataserver (S1) Keyserver (S2)

[z] = [2`][a][b]−1modn2

pick r ∈r {0,1}`+k

[d ] = [z][r ]modn2 [d ]−−→
decrypt [d ]

r ′ = r mod2` d ′ = dmod2`

‖λ‖=DGKCompare(r ′,d ′)←−−−−−−−−−−−−−−−−−→
‖d`‖←−−− encrypt d`

encrypt r`
‖v‖ = ‖d`‖ ‖r`‖ ‖λ‖

choose t ∈r {0,1}
‖st ‖ = ‖v‖ ‖0‖, st−1 = ‖v‖ ‖1‖

‖s0‖,‖s1‖−−−−−−−→
decrypt ‖s0‖,‖s1‖

encrypt s0, s1
�s0�,�s1�←−−−−−−

�v� = �st �
Table 8: EncCompare() method [2]

In SBD protocol, various computations can be done offline. For example, the key-
server can generate several encryptions of bit 0 and bit 1 in advance and use them
during the protocol run, it removes the encryption cost at runtime. As shown in ap-
pendix 1, in Encrypted_LSB() routine, the keyserver assigns value of α as encryption
of 0 or 1, this operation is performed ` times for a `-bit integer decomposition. This
cost can be replaced by a simple read() operation if the keyserver has precomputed
list of encrypted 0 and 1.

The SBD setting in [25] is similar to that in [2] with the keyserver and the dataserver.
The dataserver that has two encrypted inputs, first computes [z] = [2`][a][b]−1modn2.
Next it runs SBD protocol with the keyserver, that knows public and private keys.
During the SBD execution, the keyserver does not learn value of z or the bit repre-
sentation of it. The keyserver will however know the length of z, which is public in-
formation and does not affect the secrecy of user ratings. Once the dataserver learns
the encrypted bits of z, it can recognize the most significant bit as �v� and send it
to the next module as shown in Foteini-Olga protocol. The advantage of using SBD
is that it is efficient than EncCompare(), it is compatible with Paillier cryptosystem
and thus does not require additional key management (like in [2]). Comparing Table
8 and Table 9, we can notice that, apart from running DGK and SBD module, in Enc-
Compare() there are additional rounds of communication required to compute �v�
that is not needed in the modified scheme.
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Information known to S1: PKP , [a], [b]
Information known to S2: PKP ,SKP
Output: S1 learns �v�, where v = 1 if a ≥ b else v = 0

Dataserver (S1) Keyserver (S2)

[z] = [2`][a][b]−1modn2

[z]−−→ SBD([z], pk, sk)
pk,sk←−−−−

([x`−1],...,[x0])←−−−−−−−−−−−−−−−−−−
�v� = �x`−1�

Table 9: SBD based private comparison (SBDEncCompare())

4.1 Correctness

The correctness of the fact that if a and b are `−bits integers, x = 2`+b −a is a `−1
bit integer and its most significant bit (the `+ 1th) bit is 1 iff a < b can be directly
extended from the details shown in [4].

The SBD used here is a probabilistic protocol that with high probability produces
correct output as encrypted bits of the input. The correctness depends on the secu-
rity parameter (key length) of the cryptosystem and the length of the input integer
in plaintext. The probability of protocol producing correct bit representation is given
by following equation:

Pr =
(
1− 1

2K−m

)m

Here, K is the keylength and m is bitlength of the input. In a PPRS application, the
input length is 4 as most common applications use 10 or 5-star rating systems. The
minimum Paillier keysize that is used in practice is 1024 bits. So with these parame-
ters, the probability of correct output:

Pr =
(
1− 1

21024−4

)4

≈ 1

Thus there is negligible probability that the SBD protocol will fail in the proposed
scheme.

4.2 Privacy analysis

The private comparison scheme must satisfy the following properties to protect user’s
privacy:

– It should not reveal the rating values (vector elements) to any server.
– It should not disclose the relationship between two ratings to any server.
– There must be no relation between ciphertexts at a particular index before and

after the sorting is done. Basically none of the servers should know the position
of any (encrypted) element before and after sorting the vector
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An IND-CPA secure cryptosystem satisfies the first two requirements. The two ci-
phertexts are indistinguishable by definition of IND-CPA hence, the dataserver who
only has access to the encrypted ratings cannot map a relationship between two rat-
ings. At the same time it hides the actual values of each rating from the dataserver.
The keyserver on the other hand, holds the private key but under the assumption
that the two servers are non-colluding and they follow the protocol honestly pre-
vents the keyserver to learn rating values of any item. In our modification, we are
employing a secure bit decomposition protocol by Samanthula et al. [25]. They have
shown that the keyserver does not learn anything about the encrypted input being
decomposed. It does not learn any bit value after the decomposition as well. The
dataserver only learns the encrypted bits and cannot infer any useful information
from it.

The third requirement mentioned above is to prevent a semi-honest server from
learning the relationship between two items’ ratings. A semi-honest server will try to
learn additional information by observing the available data, and if the ratings are
sorted under encryption and a server can map those ratings with corresponding in-
dices it will reveal that which items are rated higher than others. To decouple the item
rating and corresponding index mapping, we must ensure that the rating and index
ciphertexts are changed every time they are operated on. The homomorphic oper-
ations are performed over ratings and indices during the sorting process iteratively
and corresponding ciphertexts are updated. The dataserver does not know the map-
ping between item with its index and hence cannot infer the relationship between
the items.

4.3 Formal discussion

First we recall the sequential modular composition theorem given by Lindell and
Yehida [19].

Theorem 1. Let f1, . . . , fm be two-party probabilistic polynomial time functionalities
and p1, . . . , pm protocols that compute respectively f1, . . . , fm in the presence of semi-
honest adversaries.

Let g be a two-party probabilistic polynomial time functionality and Π a proto-
col that securely computes g in the ( f1, . . . , fm)-hybrid model in the presence of semi-
honest adversaries.

ThenΠp1,...,pm securely computes g in the presence of semi-honest adversaries.

The authors of [2] and [4] have used the above theorem to show security of their
protocols. They show it by building a simulator for each party and proving that their
views are not distinguishable since the randomness added are from the same distri-
butions. The security of the protocol depends on the secure computation of private
comparison. The DGK protocol is a provably secure protocol for doing private com-
parison.

In our scheme we are suggesting to use secure bit decomposition protocol pro-
posed by Samanthula et al. instead of the DGK protocol as the building block. In [25],
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authors have shown in an informal way that the security of SBD depends on the se-
curity of Paillier cryptosystem. Here, we extend the same by showing views for both
parties running the SBD protocol.

We say that the SBD protocol is secure if the views of both the participants (dataserver
and keyserver) and the ones generated by a probabilistic polynomial time simulator
that are computationally indistinguishable. We represent view of the participants as
VDS ,VK S for dataserver and keyserver respectively. Let PKP ,SKP represent Paillier
public and secret key-pair, a message m encrypted with PKP is represented as �x�,
m is length of x in bits, ri is a random number chosen from ZN , α ∈ {0,1}, U ,V ,W,Y
are computed by the dataserver using homomorphic property of the cryptosystem,
γ ∈ {0,1}.

VDS = (
PKP ,�x�,m,ri ,�α�,U ,V ,W,γ

)
VK S = (PKP ,SKP ,�Y �,�W �)

Now, we can build simulators SDS ,SK S for the dataserver and keyserver respec-
tively, and as discussed above if the view of the simulator is computationally indis-
tinguishable from the respective views of the participants, we can claim that the pro-
tocol is secure. Given the input PKP ,�x�,m, the dataserver’s view can be build as
follows:

– r̃i is chosen randomly from ZN

– Generate �α̃� ∈r {0,1} randomly
– Generate Ũ ∈r {0,2m−1} since the input is m bit long
– Compute Ṽ ,W̃ using Ũ and r̃ ′ ∈r ZN

– Choose γ̃ ∈r {0,1}

Now, the view of the simulator SDS will be

ṼDS = (
PKP ,�x�,m, r̃i , �̃α�,Ũ ,Ṽ ,W̃ , γ̃

)
Next we can claim that VDS ≡c ṼDS , meaning the two views are computationally

indistinguishable. It is so because in the above transcript, ṼDS can be generated by
taking the values with tilde from the same distribution as their respective counter-
parts in the VDS . For example, in VDS the value of γ is generated by the keyserver that
is either 0 or 1, and in γ̃ in ṼDS is chosen from {0,1} and so are the other values. The
Paillier cryptosystem is proven to be IND-CPA secure so the encryption of a random
number from the given range, and the encryption of actual input in VDS would be
indistinguishable.

A similar argument holds for the keyserver, the simulator SK S can be used to gen-
erate view ṼK S . These arguments show that the SBD protocol is secure. We therefore
conclude that the proposed scheme is secure under the semi-honest model.

5 Performance analysis

The computational performance of the Foteini-Olga scheme heavily depends on the
cost of EncCompare() routine that uses DGK private comparison protocol. In the
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proposed scheme, we use SBD to reduce the cost for the private comparison step.
The idea behind this modification is that the sorting operation requires frequent calls
to the comparison function. Therefore making comparison efficient should lead to a
significant performance gain in the overall sorting process.

Server EncCompare() SBDEncCompare()

Encryption Decryption Encryption Decryption

S1 (`+2) QR - - -

S2 2 Pai + (`+1) QR 2 Pai + (`+2) QR - (`+1) Pai

Table 10: Cost comparison with the existing scheme. ` : length of a rating value. QR,
Pai: Enc/Dec operations under QR and Paillier cryptosystems respectively

Protocol Server Encryption Decryption ModExp Comm b/w servers

EncCompare()
S1 O(`) - Const.

(3`+6) CT
S2 O(`) O(`) Const.

Modified scheme
S1 - - O(`)

(2`+1) CT
S2 - O(`) -

Table 11: Asymptotic cost comparison with the existing scheme, CT: ciphertext. ` :
length of a rating value.

Table 11 shows the comparison between EncCompare() and our modified scheme.
The computation cost at the dataserver (S1) is reduced remarkably as the cost of en-
cryption and decryption is much more than that of modular exponentiation. Unlike
EncCompare(), in the proposed scheme the keyserver (S2) requires only decryption
operations since all the encryption operations can be pre-computed.

In terms of communication costs, our scheme requires 2/3 of the ciphtertext ex-
changes between two servers required by the EncCompare() routine. It is important
to note that these communications are required for each comparison operation, so
to sort a vector with few hundreds of items, our scheme would save a lot of data ex-
change between servers.

It is evident from the comparison that the modified scheme reduces the commu-
nication cost significantly, as the comparison function is called multiple times in a
sorting algorithm.

5.1 Experimental results

We implemented the both original private sorting protocol [2] and our variant using
Andrew’s implementation of various homomorphic encryption based protocols as a
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Operation Paillier QR
Encryption 62 490
Decryption 530 512

Table 12: Runtime for Enc Dec operations in Paillier and QR schemes with Keysize
1024-bit, measured in millisecond, results for 100 iterations

Number of items Foteini-Olga protocol Modified protocol
10 8.5 2.2
20 32.4 8.3
40 143.5 34.3
60 321.8 74.8
80 544.3 133.1

100 850.3 208.6

Table 13: Run time (time in sec.)

codebase [23]. We use the implementations of DGK protocol, Paillier cryptosystem
and other modules in our implementation. These protocols are implemented in Java,
we used a windows-10 operating system with 16GB RAM and AMD Ryzen-7 2.3 GHz
processor. For the QR and Paillier encryption protocols, the security parameter is
taken as 1024 bits.

The aim of this work is to design an efficient private sorting scheme that can be
used in encryption-based PPRS. Thus, our aim is not to evaluate the accuracy of any
specific PPRS algorithm (content-based, collaborative or model-based protocols), so
we have not used any well-known datasets for our experiments. We generated vary-
ing amount of random numbers from a range [0,10] that is very common in rating-
based web applications and encrypted them. Then the encrypted vector is assumed
to be the predicted rating vector and we run the protocol to find top-k values in the
vector. We measured the time taken to perform private sorting, this does not include
key generation or pre-computation time as they are one time computation. We per-
formed the experiment at least five times for each vector size and noted the average
time taken by the system to perform computations. The number of items we started
with 10 and gradually increased to 100. Due to our system limitations we could not
test for more items. We tested the protocol on a single machine so communication
delays are not measured. It is worth noting that since we are not using DGK proto-
col, we only use Paillier cryptosystem. Table 12 shows that the Paillier cryptosystem
is faster as compared to QR scheme and reduces the overhead on the servers. The
comparison results between original using Foteini-Olga protocol and the modified
scheme are shown in Table 13.

It is important to note that the recommendation service is not always online.
For example, in YouTube the recommended video list is updated after every video
is clicked. As another example, in news recommender systems, a user profile is cre-
ated and news articles are pushed few times a day, or when an event occurs. If the
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application is not very time sensitive, the server latency to generate the top-k most
relevant items maybe tolerated.

6 Conclusion

In this work, we studied top-k item recommendation problem in privacy-preserving
recommender systems and narrowed it down to efficient private homomorphic sort-
ing scheme. Private sorting is a classical problem and the available solutions include
homomorphic encryption based approaches as well. We studied a PHE-based pri-
vate sorting scheme by Foteini and Olga, and modified it to enhance the perfor-
mance. We propose to replace DGK private comparison protocol with a secure bit
decomposition protocol, it reduces the communication and computation cost over-
heads. The communication cost after our modification is reduced by one-third. The
computation cost at the keyserver is also reduced to almost half as no dynamic en-
cryption are needed during the protocol execution now. The dataserver has to spend
less on computing as the expensive operations like encryption is not needed in the
modified scheme. These are replaced by comparatively cheaper operations like mod-
ular exponentiations. We show in our privacy analysis that the proposed modifica-
tion does not compromise the privacy goals of a recommender system. In future we
would like to observe the performance of our modification when the applications
use multi-threading and to create more efficient codebase for the proposed proto-
col.
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Input : Dataserver’s input: E(x),〈E(x0),E(x1) . . . ,E(xm−1)〉
Output: Dataserver receives: γ= 0 if the decomposition was correct or 1 otherwise

1. Dataserver:

– U =
m−1∑
i=0

E(xi )2i mod N

– V =U +E(x)(N −1) mod N
– r ′ ∈r ZN and W =V r ′ mod N

Send W to keyserver
2. Keyserver:

– If D(W ) = 0: set γ= 0
– Else: set γ= 1

Send γ to dataserver

Algorithm 3: Secure bit decomposition sub-protocol: SVR()

28. Wang, J., Chao, J., Tang, Q., Liu, Z., Khin, A.M.M.: Cryptorec: Novel collaborative filtering
recommender made privacy-preserving easy. IEEE Transactions on Dependable and Se-
cure Computing pp. 1–1 (2021). https://doi.org/10.1109/TDSC.2021.3065752

A SBD: Secure verification of result phase

The second half of the SBD protocol is to verify if the bit decomposition is correct or
not from the step 5 to 8 in Algorithm 1. The sub-protocol: secure verification of result
(SV R()) is used to perform this verification. Basically what the dataserver does here,
it reconstructs the integer from the decomposed bits, masks it with some random
noise, and send it to the keyserver for decryption. If the bit decomposition is correct,
the keyserver will receive encryption of 0 otherwise some random encrypted num-
ber. The result is conveyed to the dataserver; if the decomposition is incorrect, the
dataserver starts over from step 2 of Algorithm 1.


