
A Practical Full Key Recovery Attack on TFHE
and FHEW by Inducing Decryption Errors

Bhuvnesh Chaturvedi
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Kharagpur, India

bhuvneshchaturvedi2512@gmail.com

Anirban Chakraborty
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Kharagpur, India

ch.anirban00727@gmail.com

Ayantika Chatterjee
Advanced Technology Development Centre
Indian Institute of Technology, Kharagpur

Kharagpur, India
cayantika@gmail.com

Debdeep Mukhopadhyay
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Kharagpur, India

debdeep.mukhopadhyay@gmail.com

Abstract—Fully Homomorphic Encryption (FHE) promises
to secure our data on the untrusted cloud, while allowing
arbitrary computations. Recent research has shown two side
channel attacks on the client side running a popular HE library.
However, no side channel attacks have yet been reported on
the server side in existing literature. The current paper shows
that it is possible for adversaries to inject perturbations in the
ciphertexts stored in the cloud to result in decryption errors.
Most importantly, we highlight that when the client reports of
such aberrations to the cloud service provider the complete secret
key can be extracted in few attempts. Technically, this implies
a break of the IND-CVA (Indistinguishability against Ciphertext
Verification Attacks) security of the FHE schemes. The core idea
of the attack is to extract the underlying error values for each
homomorphically computed ciphertext and thereby construct an
exact system of equations. As the security of the underlying
Learning with Errors (LWE) collapse with the leakage of the
errors, the adversary is capable of ascertaining the secret keys.
We demonstrate this attack on two well-known FHE libraries,
namely FHEW and TFHE. The objective of the server is to
perform the attack in a stealthy manner, without raising any
suspicion from the innocent client. Therefore in a practical
scenario, the successful key retrieval from a client would require
the server to perform the attack with as few queries as possible.
Thus we craftily use timing information during homomorphic
gate computations to optimise our attack and significantly reduce
the required number of queries per ciphertext. More precisely,
we need 8 and 23 queries to the client for each error recovery for
FHEW and TFHE, respectively. We mount a full-key recovery
attack 1 on TFHE (without and with bootstrapping) with key size
of 630 bits and successfully faulted 739 and 930 ciphertexts to
recover correct errors. This required a total of 19838 and 29200
client queries respectively. In case of FHEW with key size 500,
we successfully faulted 766 ciphertexts to recover correct errors,
which required 7565 client queries. The results serve as a stark
reminder that FHE schemes need to be secured at the application
level apart from being secure at the primitive level so that the
security of participants against realistic attacks can be ensured.

Index Terms—FHE, LWE, IND-CVA, ciphertext verification
1The demo code for our attack is available on https://github.com/

SEAL-IIT-KGP/CVO-TFHE. Please feel free to check out this demo, and
let us know if you have any questions on the same.

attack, key recovery

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) schemes [1], [2],
[3], [4], [5], [6], [7], [8] are a class of encryption schemes
that allow arbitrary computations on encrypted data without
the need to decrypt it first, while also ensuring that the output
remains encrypted as well. In other words, such schemes
accept a set of ciphertexts π1, π2, . . . , πn and evaluates a
known function f on them to obtain a set of resulting
ciphertexts c1, c2, . . . , cm, without any knowledge of the secret
key used to generate the input ciphertexts. Such schemes
are helpful in construction of privacy-preserving protocols
in cloud computation scenario that allows a user (client) to
offload its confidential data onto a remote cloud. The cloud
can also perform arbitrary computations on it on behalf of the
user without revealing the original data. The client is anyone
in possession of the secret key and uses it to encrypt its data.
Once encrypted, it sends the data to a server to be processed.
The server, in general, evaluates a known function on this
encrypted data using a (publicly available) bootstrapping or
evaluation key which is an encryption of the secret key itself.
The server sends the result of the computation, which is
still in encrypted form, back to the client. The client, upon
receiving the encrypted result, decrypts it using the secret key
it possesses. The owner of the secret key also may use it
to generate a set of public keys for others to encrypt their
data which can then be sent to the cloud for computation.
However, in both scenarios, decryption can only be performed
by the client who possesses the secret key. Moreover, in both
scenarios, once the data leaves the client machine, it remains
encrypted throughout the transmission and computation stages.
The server remains oblivious to the inputs as well as the
output(s); however, it does know the function that is being
evaluated and the design of the circuit that implements it.

1

https://github.com/SEAL-IIT-KGP/CVO-TFHE
https://github.com/SEAL-IIT-KGP/CVO-TFHE


The basic assumption of FHE is that the server is untrusted,
and thus it should not know any information about the client
data. This stems from the fact that the data stored on the server
is encrypted under the client’s key which the server does not
possess. On the other hand, the server is free to perform any
computation on the encrypted data as it is not under the client’s
control. Therefore, considering the underlying crypto-primitive
to be mathematically strong, the server may start undertaking
spurious activities including, but not limited to, manipulating
client’s data in order to extract private information. Thus the
server itself is considered as untrusted and malicious. It must
also be mentioned that the aim of such a server is to retrieve
private information about the client’s data while also ensuring
that the attack remains undetected, so as not to lose trust of the
client. Thus it becomes necessary to evaluate the security of
such FHE schemes from the practical aspect as well, apart
from primitive and implementation levels. As observed by
authors in [9], to make an informed choice on the security
guarantees of homomorphic schemes, one needs to consider a
broader view of the overall system, along with the primitive.

Interestingly, if the data gets corrupted during computation
or transmission, it might result in incorrect decryption. In such
a scenario, the client might inform the server of such erroneous
results and ask for re-computations. As stated in [9], such
a scenario exists in practice in pay-per-computation model,
where the client pays for each correct computation. In case
of a wrong result, it will certainly ask the server for a free
re-computation. Moreover, in a practical setting, the client can
send a sample set of ciphertext and verify the results at its end
in order to determine the quality-of-service, before availing the
actual computational service. Previous works [9], [10], [11]
have already shown how this “reaction” from the client can
be exploited by the server to leak secret information. In this
paper, we show that this “reaction” attack [12], [13] can be
used to mount a full key recovery attack on two well known
and practically used FHE schemes, namely FHEW and TFHE.

The security of FHE schemes [14], [15], [16], [17], [18],
[19], [20] relies on mathematically hard problems such as
Learning With Errors (LWE) [21], or its ring variant Ring-
LWE [22]. The intractability of these schemes depends upon
the idea of noise (or error) 2, a small value that is added
to ciphertexts during encryption operation which grows when
homomorphic operations are performed on these ciphertexts.
Once this noise grows beyond a certain threshold limit, decryp-
tion will no longer work correctly and will give wrong result.
Thus a refreshing operation is required to bring back the noise
to an acceptable level. Gentry in 2009 [23] introduced the
idea of bootstrapping, which performs a decryption operation
on the ciphertext using an encryption of the secret key. The
problem with bootstrapping is that it is a very costly operation,
and the efficiency of an FHE scheme depends on how fast
the bootstrapping can be performed. FHEW [15] was the first
scheme to implement a bootstrapped gate that works under 1
second, which was further brought down to under 0.1 seconds

2Moving forward, we use the term ‘error’ to denote the noise in LWE
equations.

in TFHE [24].

A. Motivation

The majority of the works that tried to break the security
of FHE schemes either reported the asymptotic complexity
of solving the mathematically hard problems [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], or
reported the security level of the schemes built using these
problems [38]. Since these mathematical problems are con-
sidered to be hard both in classical and quantum world,
schemes built using these primitives are considered to be
post quantum secure. However, as established through decades
of research [39], [40], [41], [42], [43], a mathematically
secure cryptographic scheme could be jeopardised in prac-
tice due to implementational hindsight. Such implementations
may inadvertently leak secret information through passive, or
side-channels. Recently, two side-channel attacks [44], [45]
have been shown on two different versions of a popular HE
library [46], [3], that extracts the plaintext message being
encrypted or the secret key that is being generated using a
single power trace. However, one must note that both these
attacks target the operations running on the client side to
observe side channel information.

Given the client-server settings for FHE applications, per-
forming side channel attacks at the client side is a relatively
stronger attack model as it requires access to the client device
by the adversary, which is certainly not easy. Moreover, the
essence of FHE lies in the fact that the cloud server is untrusted
and thus, can indulge in malicious activities to extract sensitive
information. It must be mentioned in this context that attacking
the FHE applications at the server side is not trivial as neither
the secret key gets involved in the computations nor error
values (noise) are generated on the server. More specifically,
while the secret key is directly involved in the computations at
the client end, the ciphertext at the server side does not directly
reveal the secret key. However, the error values incorporated
in the ciphertext does grow in magnitude due to computations
(homomorphic operations) at the server side, thereby neces-
sitating the use of bootstrapping mechanism to contain the
error. Moreover, since the plaintext bits are encrypted using a
semantically secure encryption scheme, the ciphertext does not
leak any information about the underlying plaintext message.
This prevents an attacker to conduct any attack on its own to
reveal sensitive data, without an external feedback [9]. This
external feedback can come in the form of a reaction from
the client when it decrypts a perturbed ciphertext, which a
malicious server can leverage to leak sensitive information.
However, such queries may attract attention from the client,
and if detected, it will result in the client to loose trust on
the server and revoke its service. Thus it is important for the
server to keep the number and frequency of such queries to as
low as possible. Thus the server may look for any additional
information that may help it to reduce the number of queries.

B. Contribution

In this paper, we make the following contributions.

2



• We show that a malicious server can introduce intended and
calculated perturbations in the homomorphically computed
ciphertext and perform ”reaction” attacks on the client by
using the feedback from the client.

• We provide a novel attack scheme using the error threshold
for decryption and a reduced error range to induce faults in
the ciphertext.

• Unlike prior attacks, we target the server side where the
secret key is not directly involved in any computation and
show that reactions from client can leak potential informa-
tion when considered in a cloud computing scenario.

• Finally, we recover exact error corresponding to each ci-
phertext by using a binary-search based approach to induce
curated perturbations in the original ciphertext and utilizing
feedback from the client. Once the errors are recovered, the
secret key is extracted by forming a system of equations with
the ciphertexts and solving them using Gaussian Elimination
method.

C. Organization

The rest of the paper is organized as follows: Section II
provides the background of LWE [21] problem along with a
brief working of FHEW [15] and TFHE [24] libraries, while
Section III provides a summary of existing attacks on FHE
schemes. Section IV describes the threat model under which
our attack works. Section V explains in details how the client
works as a ciphertext verification oracle. Section VI explains
how we leverage the CVO to mount a key recovery attack,
while Section VII explains how we utilize timing information
to reduce the number of queries. Section VIII provides our
experimental results. Section IX provides potential counter-
measures to our attack, and Section X concludes our paper.

II. BACKGROUND

In this section, we provide a brief background on the
Learning With Errors problem, which is the underlying math-
ematical foundation for the FHE schemes we discuss in this
paper. We follow it up with working principles of two well-
known FHE libraries that are based upon the LWE primitive.

A. Learning With Errors problem

The idea of Learning With Errors problem was introduced
by Regev in 2005 [21]. Since its inception, LWE has been used
as a foundation of multiple cryptographic constructions [47],
[48], [49], [50], [51], [52], [53], [54] due to the assumption
that it is as hard as worst case lattice problems. LWE is based
on addition of random noises to each equation in a system
of equations, thus turning it into a system of approximate
equations, as follows

a11s1 + a12s2 + · · ·+ a1ksk ≈ b1 (mod q)

a21s1 + a22s2 + · · ·+ a2ksk ≈ b2 (mod q)

...
am1s1 + am2s2 + · · ·+ amksk ≈ bm (mod q)

For brevity, let k ≥ 1 be an integer and s be a secret sampled
uniformly from some set S ∈ Zk. An LWE sample is denoted

by a tuple (a, b) ∈ Zq
k × Zq, where a ∈ Zq

k is chosen
uniformly and b = a · s+ e ∈ Zq. Here e is a noise value, also
called error, sampled uniformly from a Gaussian distribution
with mean 0 and standard deviation σ ∈ R+. LWE problem
has the following two variants -

• Search problem: having access to polynomially many
LWE samples, retrieve s.

• Decision problem: distinguish between LWE samples and
uniformly random samples drawn from Zq

k × Zq.

Both the versions are considered to be hard to solve, even
for a quantum computer. The attacks on LWE based schemes
try to solve any one of the above problem or to estimate the
security level of the schemes based on the parameter set used
to implement them. However, once these error (noise) values
are recovered, they can be removed from the corresponding
ciphertext to obtain a system of exact equation which can then
be trivially solved.

B. Torus Based Homomorphic Encryption
1) Torus Domain For TFHE: Torus [24] is defined as a

set of real numbers modulo 1, or real values lying between
0 and 1. It is denoted as T = R/Z = R mod 1. This set
T along with two operators, namely addition ‘+’ and external
product ‘·’, forms a Z-module. It means that addition is defined
over two torus elements while external product is defined as a
product between an integer and a torus element, both of which
results in a torus element. Product between two torus elements
is not defined. In the CPU implementation of TFHE library [1],
Torus elements are defined as 32-bit unsigned integers and all
the operations are performed modulo 232. The plaintext bits 1
and 0 are encoded as µ and −µ, and are represented as 32-bit
unsigned integers.

2) Integer Domain for FHEW: The plaintexts and cipher-
texts as well as the underlying operations in the FHEW
library [2] are defined over Integers modulo 512. The plaintext
space is divided into two halves with each half either repre-
senting a 0 (encoded as 0) or 1 (encoded as 128). On the
other hand, the ciphertext space is divided into four quadrants
representing one of the four possible ciphertext values between
0 to 3. Thus, unlike TFHE where plaintext and ciphertext space
is same, they are different in case of FHEW.

C. Fully Homomorphic Encryption Libraries

In this work, we focus on two well-known LWE based
FHE libraries, namely FHEW [2] and TFHE [1]. The overall
working principle of these two FHE schemes can be broadly
broken into three stages. First is the encryption stage that
runs on client side and involves the encryption key. Once the
ciphertexts are generated, they are sent to the server upon
which homomorphic gate evaluation is performed. Finally
bootstrapping is performed on the resulting ciphertext to
reduce the overall noise. The last two stages run on server and
does not directly involve the secret key. Once the computations
is done at the server, the final encrypted result is sent to the
client for decryption and involves the decryption key.

3



1) The Encryption Stage: The encryption process starts
with sampling a noise value e ∈ Zq from a Gaussian distribu-
tion and adding it to the message m to obtain an intermediate
value of b = m+ e. It then samples a random vector a ∈ Zq

k

and performs a dot product with the secret vector s ∈ Bk

where B ∈ {0, 1} for TFHE and B ∈ {0,±1} for FHEW. The
result of this dot product is then added to the intermediate
value of b to obtain its final value as b = a · s+m+ e. The
final ciphertext comes out to be (a, b). The above process is
same in case of both FHEW and TFHE, the only difference
being the length of secret key k and the standard deviation σ
of the Gaussian distribution.

In public key setting, the owner of the secret key generates
its public key by first generating a random matrix A ∈ Zq

m×k

and a random vector e ∈ Zq
m consisting of noise values ran-

domly sampled from a Gaussian distribution. It then computes
a vector b = A × s + e ∈ Zq

m, where “×” represents the
matrix-vector product. This matrix-vector pair (A,b) acts as
its public key. To encrypt a message x ∈ Zq, a user randomly
selects a row (a, b) from the public key and then adds x to b to
obtain b′. The pair (a, b′) acts as the ciphertext corresponding
to the plaintext message x.

We would like to mention that our attack works irrespective
of whether the user is working under the secret key setting or
public key setting as our attack targets the decryption stage
which involves the secret key in both these settings.

2) Homomorphic gate evaluation and bootstrapping: In
both FHEW and TFHE, the server receives two ciphertexts
c1 = (a1, b1) and c2 = (a2, b2) on which it performs the gate
evaluation operation. It does so by defining a gate constant
as a pair (1024, bFgc) and (0, bTgc) for FHEW and TFHE,
respectively. The second part of these constants, i.e., bFgc and
bTgc, are defined differently for the 4 and 10 homomorphic
gates, apart from NOT-gate, defined in FHEW and TFHE,
respectively. The result c = (a, b) of the gate computation
is evaluated by computing a = 1024 − (a1 + a2) and
b = bFgc − (b1 + b2) under modulo-512 in FHEW and by
computing a = 0 ± (a1 ± a2) and b = bTgc ± (b1 ± b2)
under modulo-232 in TFHE, where the ordering of + or −
depends on the homomorphic gate being evaluated. During
bootstrapping, which takes place immediately after the gate
operation, the noise is reduced followed by a key-switching
procedure to switch back to the original secret key as refresh-
ing operation changes the underlying secret key. In case of
FHEW, an additional modulus switching operation is required
to switch modulus from the ciphertext to the plaintext domain,
while in TFHE it is carried out during noise reduction phase
itself.

3) The Decryption Stage: Once the client receives the
ciphertext c = (a, b), a result of some homomorphic compu-
tation, it begins the decryption process by computing ⟨a · s⟩,
which denotes the dot product between the vectors a and s,
and then subtracting this result from b. As a result of this
computation, the client receives a noisy version x ± e of the
underlying plaintext message x. In case of TFHE, the sign
of this phase is checked to output 1 if it is positive and

0 if it is negative. In case of FHEW, a constant value 64
is added to this phase such that it becomes x + e′, where
e′ = e + 64. This is then divided by 128 to obtain x′ + e′′,
where 0 < e′′ < 1, and x′ is the plaintext bit corresponding to
the encoded bit x. Finally the floor value of x′ + e′′ is taken,
which removes e′′ and reveals the plaintext bit x′. However
the last step (checking sign in TFHE and flooring in FHEW)
of the decryption operation extracts the correct message only
when the associated noise is below a pre-determined threshold,
otherwise it decrypts incorrectly.

III. EXISTING ATTACKS ON FHE SCHEMES

The security guarantee of the FHE schemes, discussed
in [24], [15], is based on the underlying hardness of LWE
problem. Unsurprisingly, the earlier attempts to break the
semantic security of these schemes were majorly focused
on attacking the underlying LWE problem. For example the
authors in [25] showed an attack on LWE problem when the
coefficients of secret key s ∈ Zk

q (a vector of dimension k)
are taken from integers modulo some pre-defined q. However,
it does not take into consideration the case when s ∈ {0, 1}k
or s ∈ {0,±1}k, i.e., the secret key is a Binary or Ternary
vector of dimension k, which is the case for TFHE and FHEW.
Interestingly, authors in [26] showed an attack on Binary LWE
problem where the secret key is a Binary vector. This attack
belongs to the class of Primal Attacks, which directly tries to
solve the search version of the LWE problem. Similarly, [27]
shows a Dual Attack on small-secret LWE, i.e., LWE problem
where secret key is Binary or Ternary vector, to solve the
decision version of the LWE problem and then use the Search-
to-Decision reduction to recover the secret key. Recently,
authors in [38] proposed a Dual attack on TFHE but the attack
does not practically break the security of the scheme. Rather,
the authors reported a drop in the security level of the scheme
from the one reported in the original TFHE scheme [14]. It
must be noted that all the above mentioned attacks are generic
and are not practically feasible for the lattice dimensions used
in the recent FHE schemes.

Apart from theoretical attacks on LWE primitives, side
channel attacks have also been proposed in recent times
that target the implementational aspects of FHE schemes.
The first side-channel attack on HE has been demonstrated
recently in [44], targeting the client side that is running the
encryption operation of SEAL library [46]. The attack targets
the conditional statements executed in the Gaussian Sampler
routine to obtain the coefficients for the error polynomial.
Another side-channel attack on HE has been demonstrated
in [45], targeting the client side running the key generation
step of latest version of SEAL library [3]. The attack targets
the stage where the generated secret key is being converted to
its Number Theoretic Transform (NTT) domain.

In FHE setting, attacking a client system poses realistic
challenges, and one must assume a stronger attack model
where the attacker has access to the client’s machine. Whereas
the server, itself being untrusted and malicious, provides a
more realistic scenario where it can perform arbitrary compu-

4



tations on the ciphertext, make calculated perturbations, and
even manipulate the FHE libraries to decipher the data stored
and computed at the server. However, while the server is
free to manipulate the ciphertexts that it possesses, it cannot
decrypt them directly as it does not possess the secret key. In
addition, the operations at the server do not directly involve
the secret key 3. In the context of HE, prior works have
tried using reaction-based attacks to extract any meaningful
information [9]. However, they have limited scope and do
not directly apply to contemporary FHE schemes like FHEW
and TFHE. For example, the attacks [9], [11] both target the
encryption of secret key, i.e the bootstrapping key. Moreover,
[11] assumes sparse key and a decryption oracle. In contrast,
our attack works irrespective of bootstrapping stage, making
it more generic and directed towards any LWE-based scheme.
The attack in [10] shows a message recovery attack. On the
other hand, ours is a full key recovery attack that targets the
errors present in the output ciphertexts.

IV. ATTACKER ASSUMPTIONS AND THREAT MODEL

In this section, we present the basic security assump-
tions which are valid for FHE. We further discuss on the
attacker threat model which is relevant to the cloud computing
scenario, under which FHE based applications are meant to
operate in reality.

To begin with, the security of FHE schemes is evaluated
under two security models, namely IND-CPA and IND-CCA.
FHE schemes are expected to be IND-CPA secure, ensuring
that an adversary can gain no information about the underlying
plaintext from the ciphertext [9]. On the other hand, it has also
been established that no FHE schemes can be either IND-
CCA [10], [11], [55] or IND-CCA2 secure, which implies
that an adversary can break such schemes if it has access to a
decryption oracle [9]. Our attack operates under the notion of
IND-CVA (Indistinguishability against Ciphertext Verification
Attack) security [13], which is based on the idea of “reaction”
attack from [12]. Under this premise, it is assumed that an
adversary has access to an oracle that accepts a ciphertext
as input and returns as output whether the decryption was
successful or not. This oracle, which we refer to as Ciphertext
Verification Oracle or CVO, is essentially the client itself
in a “pay per running times model”, where client pays for
each correct computation [10], [11]. In such a model, the
client could ask for a free re-computation in case the result
returned by the cloud is incorrect. The client before using the
FHE cloud services would typically have a verification phase,
wherein it will check the correctness of the homomorphic
ciphertexts. In case of decryption failures the client would
need to report the same to the cloud, to avoid payments for
erroneous service of the cloud. The client may be paying for a
service on encrypted information on the cloud, which could be
pertaining to data analytics, predictive analytics, etc. In case
of inferior performance, the client company can analyze the
exchanges and report on the possible erroneous instances to

3An encrypted version of the secret key, called Bootstrapping key, is
involved at the server end.

Fig. 1: Receiving client reaction works by (1) receiving two
ciphertexts from client, (2) computing a homomorphic gate,
(3) introducing carefully crafted perturbation, and (4) sending
this modified ciphertext to the client. Client sends a feedback
if decryption fails, otherwise keeps the message.

the service-providing entity, which is the cloud. In such cases,
the existence of the decryption verification oracle is not neces-
sarily restricted to the beginning period of the availed service
but for the entire duration of the usage. Consider the setting
where the server or cloud 4 offers homomorphic computations
as a service through well-known FHE libraries like FHEW
and TFHE. It must be noted that these FHE schemes operate
on binary message space, i.e, the plaintext is either 0 or 1.
Therefore, in order to obtain homomorphic computations on
encrypted data, the actual data stream is represented in binary
form and each bit is encrypted at the client end and sent to the
server for homomorphic operations on individual ciphertext.
It must be mentioned here that FHE allows homomorphic
encryption in both public and private key settings. In public
key setting, the messages are encrypted using public key while
the encrypted computational result from the server is decrypted
back using the secret key. Whereas in private key setting, both
encryption and decryption is performed using the secret key.
Irrespective of the key variant chosen by the client, we target
the decryption key, which is secret in both the cases.

FHE libraries implement different Boolean circuits to per-
form homomorphic gate operations at the server. While FHEW
supports AND, NAND, OR and NOR gates, TFHE provides
all the basic gates. In this work, we assume the client wants
to compute homomorphic NAND operations on its encrypted
data on the cloud server. One must note that any Boolean
circuit and function could be homomorphically implemented at
the server given the availability of basic gates in the libraries.
We choose NAND gate as it is a universal gate and any
logical circuit can be implemented using proper chaining of
NAND gates. We further assume that the server is untrusted
and malicious and intends to extract sensitive information from
client’s data. Being in control of the FHE libraries, the server
could perform any homomorphic operation on the client’s data,
in addition to the operation requested by the client. Finally, we
highlight that the client provides feedback to the server when
an expected computational result comes out to be incorrect
at the client end after decryption. In other words, the server
is able to observe the reaction from the client only when the

4We have used cloud and server interchangeably throughout the paper.

5



decryption results in a failure. The overall process of receiving
client’s feedback is shown in Fig. 1.

V. CLIENT AS THE DECRYPTION VERIFICATION ORACLE

In the context of cloud computing, the server stores private
information of its clients in encrypted form, thereby ensuring
security and privacy of client’s data. However the server, being
untrusted, acts as a potential adversary and carefully introduces
perturbations on the stored data of the client and then checks
if these modifications trigger any error later in the process.
The objective of the attacker is to ascertain the exact value of
the random noise (error) in the resulting ciphertext obtained
after the homomorphic gate computation. Since this ciphertext
will still be encrypted under the original secret key, obtaining
the errors in these ciphertexts will also lead to extraction
of the secret key. As already discussed (cf. Section II), the
mathematical robustness of LWE-based schemes is based on
the intractability of both the secret key and the random error.
Thus, leakage of these noise values can trivially leak the
underlying secret key. Also, for a key size of k bits, at least
k ciphertext messages with their corresponding error values is
required to retrieve the key.

In cloud setting, the effect of introducing faults in the
data cannot be directly observed by the server. Therefore,
the malicious server needs reaction or feedback from the
client to understand the effect of the purposeful faults [9].
As explained in Section IV, the client being in a pay-per-
use model, could insist the server for recomputation of ho-
momorphic operations on specific ciphertexts if a decryption
error is observed. However, the adversary would have to send
perturbed ciphertexts, only corresponding to those which are
queried by the client. In other words, the attacker should be
able to extract information by inducing errors in ciphertexts
which are resultant of an intended homomorphic query. Rather,
it has to introduce measured perturbations in the client’s
valid ciphertext in order for the client to decrypt it and send
feedback to the server on decryption error. As an example,
suppose a client intends to perform homomorphic encryptions
like AES (Advanced Encryption Standard) [56], [57] on the
cloud. The client before paying for the service and using it
for a business would like to check the validities of the result
by performing a Known-Answer-Test (KAT) [58]. In another
instance, the client may be paying for a machine learning as a
service (MLaaS) on encrypted data. In case of inferior results,
the client may subsequently place a log to the server to indicate
the pathological cases. We essentially discuss how such a log
can be utilized by the server in turn to determine the secret key.
However, the challenge in this case is that the server does not
have information regarding the plaintext for a corresponding
ciphertext. Moreover, the random error values introduced into
the ciphertext during encryption is sampled from a Guassian
distribution where the sign of the error could be either positive
or negative. Thus, in order to obtain the exact error value, the
server first needs to determine the value of the corresponding
plaintext message and the sign of the error value.

Fig. 2: (A) Truth table of NAND gate, and (B) Truth table
for initial client feedback, where r denotes result of gate
computation, sgn represents whether sign of error in this
result is positive (0) or negative (1), and R represents whether
feedback is received (1) or not (0).

In the following subsection, we explain the idea of the
attack wlog. when the client intends to perform homomorphic
NAND computations on the cloud. We choose NAND gate
as it is a universal gate. However, before proceeding with the
description of the attack, we would like to clarify why the
decryption verification oracle is not a decryption oracle by
taking the example of a homomorphic NAND computation.

Why Decryption Verification Oracle is not a Decryption
Oracle?: Consider a homomorphic NAND gate computing on
ciphertexts corresponding to messages x1 and x2, resulting in
the ciphertext for the plaintext data r = NAND(x1, x2). Let
the ciphertexts be denoted as Cx1

, Cx2
, and Cr respectively.

In our attack, we are considering situations wherein the
adversarial cloud server perturbs the ciphertexts Cr and sends
it to the client. The information the adversary exploits is the
reaction of the client on a decryption error. It may be observed
that the existence of a decryption error leaks the difference
of the plaintexts corresponding to the ciphertexts Cr and its
noisy version, i.e. r⊕ r′. On the contrary, a decryption oracle
would leak the information of r, which is not leaked with the
information in case of the decryption verification oracle. This
shows that the attack we discuss is not an IND-CCA attack,
but rather threatens the IND-CVA security of FHE schemes.

A. Recovering the Plaintext and Error Sign

As discussed, the client encrypts a stream of ciphertexts and
sends them to the server for homomorphic NAND computa-
tions. We note that the FHE schemes discussed in this paper
perform bit-wise encryption of the plaintext messages and then
homomorphic operations on those single-bit ciphertexts. More
precisely, each ciphertext received at the server is either an
encryption of ‘0’ or an encryption of ‘1’. Therefore, given
a ciphertext, the original plaintext value would be in binary.
Moreover, as per the truth table of NAND gate (as shown in
Fig. 2(A)), 75% of times the result of the computation would
turn out to be 1. In short, given two ciphertexts Cx1 and Cx2 ,
corresponding to two unknown and uniformly chosen plaintext
bits x1 and x2, the output of the NAND operation between
Cx1

and Cx2
has a 0.75 probability of being 1. The server

can use this bias to recover both the plaintext message and
the error sign by craftily introducing additional error into the
final computational result and sending it back to the client for

6



Fig. 3: Different bounds of errors plotted on a number line.

its reaction. We will like to highlight the fact that such biases
exist for many other gates as well. For example, in case of
NOR gate the result of the computation would turn out to
be 0 in 75% of times. Thus in case we target NOR instead of
NAND, we will target an encryption of 0 instead of encryption
of 1. It must be mentioned that the bias in gate operation aids
the attack but is not a necessary condition for the attack to
work. Even for balanced gates (like XOR, XNOR), our attack
would still work, albeit requiring to perturb more ciphertexts
which in turn requires more CVO queries.

B. Perturbing Computed Result

With the stream of ciphertext messages at the helm of
the server, it can now launch “reaction” attacks on randomly
chosen ciphertext samples of the client. We assume wlog. that
out of m ciphertexts sent by the client to the cloud, the server
randomly samples n ciphertexts, where m ≫ n, to introduce
purposeful perturbations. This is a reasonable assumption in
the cloud computing setting as the ciphertexts are essentially
encryptions of single bit information and in order to obtain a
meaningful computation from the server, the client would need
to send a large number of ciphertexts. It is worth mentioning
here that the value n is of the order Ω(k) where k is the size
of the secret key in bits.

Targeting the decryption error threshold: The decryption
process in FHE schemes take place at the client end, after
the homomorphically computed result on ciphertexts reaches
the client. Due to the accumulation of the errors after ho-
momorphic gate operations at the server, the total error in
the computed result increases which is then brought down
using bootstrapping operation to retain homomorphy. Other-
wise once the accumulated error crosses the pre-determined
threshold eth, it results in an incorrect decryption. We leverage
this fact to forcefully induce failed decryption by introducing
errors purposefully. The objective of the server is to breach
the threshold eth during decryption. Now suppose, for every
ciphertext, the server knows whether the underlying error
value lies within a certain range. More precisely, given a
ciphertext Cr containing unknown error value er, the server
precisely knows a range of absolute values of error bounded
by a minimum value, ±emin, and a maximum value, ±emax.
However, the server does not have the knowledge about the
sign of er, and therefore, the exact value and sign of emin and
emax.

Modifying the final computed result: Consider the error
number scale denoted in Fig. 3. The actual error er and the
error threshold can be either positive (eth) or negative (e′th).
As a consequence, the error range denoted by emin and emax

can have either positive or negative (e′min and e′max ) values.
Therefore, any positive error value +er would essentially lie
between the range +emin and +emax, all of which are less
than the error threshold +eth. The converse is true for negative
error values. Therefore, the following relations hold for both
positive and negative error values.

−e′th < −e′max < −er < −e′min

+emin < +er < +emax < +eth

For correct decryption at the client’s end, the actual error er
must be less than +eth or greater than −eth. We further note
that the error er also lies between either of the known ranges
−e′max and −e′min or +emin and +emax. Let us denote the
quantity eth − emin as ediff . Now, we add the term ediff
with the computed result of homomorphic gate operation. As
depicted in Fig. 3, if the original error (after homomorphic
gate operation) is negative, the final error after perturbation lies
within the permissible range (less than threshold), albeit in the
opposite sign domain. In contrast, when the error is positive,
the final error after addition of perturbation lies beyond the
permissible range (more than the threshold) in the positive
domain. Therefore, it is easy to note that the decryption failure
would only occur when the original error is positive.

Elimination of probable choices: While the malicious
server could perturb the output ciphertexts to instigate reaction
from the client, there exist two major challenges that the server
needs to deal with. 1⃝ knowledge of the plaintext value for
the corresponding ciphertext and 2⃝ sign of the actual error.
Now, given two ciphertext Cx1

and Cx2
from the client, let

the NAND output be denoted as Cr. As per the truth table,
Cr could be either encryption of 0 or 1, denoted by C0

r

or C1
r , respectively. Now, following the strategy of introduc-

ing perturbations (discussed in the preceding paragraph), the
server adds the error term ediff into the computed ciphertext
Cr. Depending on the input plaintext (r) of the perturbed
ciphertext, one of the following four conditions will take place.
1 r = 0, sign = +ve: The perturbed ciphertext is C0

r +ediff
with the actual error being positive (+er) and underlying
plaintext is 0. As the original error was positive, the decryption
of C0

r will result in 1. However, since the original plaintext
was 0 and the decrypted one at the client’s end is 1, the client
will inform the server regarding the incorrect computation.
Therefore, this particular combination ensures a feedback from
the client.
2 r = 0, sign = −ve: The perturbed ciphertext is C0

r +ediff
with the actual error being negative (-er) and underlying
plaintext is 0. In this case, the decryption will result in 0, since
the overall error after perturbation will still remain within the
error threshold +eth. Therefore, the client will not provide any
feedback in this case as the decrypted output matches with the
expected result for the client.

7



3 r = 1, sign = +ve: The perturbed ciphertext is C1
r +ediff

with the actual error being positive (+er) and underlying
plaintext is 1. We note that in this case the decrypted result
would be 0 since the perturbed ciphertext was encryption of
1 with a +ve error, thereby essentially flipping the result.
Therefore the client decrypts the result as 0 but the expected
outcome was 1, thereby sending feedback to the server for
incorrect result.
4 r = 1, sign = −ve: The perturbed ciphertext is C1

r +ediff
with the actual error being negative (-er) and underlying
plaintext is 1. The original error being −ve, the final result
after decryption does not exceed the threshold +eth. There-
fore, it would not generate feedback from the client since the
decrypted result matches with the expected result.

Considering r as the expected plaintext, sgn as the sign of
the error and R denoting whether a feedback is received from
the client, we record the different combinations of these events
from the above mentioned four cases. Fig. 2(B) shows the
record of all possible combinations where sgn is considered
as 0 on the error being +ve and 1 on −ve. Likewise, R is set
as 1 on receiving a feedback from client, 0 otherwise. Since
the server relies on the feedback from the client as a signal
for determining the effect of the error, we strictly focus on
cases 1 and 3, or more precisely, 1st and 3rd rows in the
table shown in Fig. 2(B). We observe that the server receives
feedback only when the sign of the error is +ve and does
not receive feedback when the error is −ve. Thus presence or
absence of feedback from the client leaks the sign of the error
with probability 1.

Recovering the plaintext value: To recover the underlying
plaintext message, we introduce another perturbation in the
original ciphertext Cr. In case of TFHE, we simply subtract
2µ, where µ = 229, from the ciphertext which causes the
underlying plaintext message to flip from 1 to 0 while keeping
0 to remain same. This follows from the decryption function,
approxPhase(Cr), which represents the sign bit of the
underlying plaintext. Originally, b = s · a+µ+ e corresponds
to encryption of 1, which implies, b − s · a = µ + e. When
perturbed to b∗ = b−2µ, we have b∗ = −µ+e. Here, assuming
a small e, we have a flip in the sign bit, thereby transforming
µ to −µ. On the other hand, for an encryption of 0, we have
b = s·a−µ+e, implying, b−s·a = −µ+e. Next it is perturbed
to b∗ = b− 2µ = −3µ+ e. Thus, the sign bit remains −ve in
both the cases, which corresponds to a decryption of 0. The
client will send feedback in the first case as it was expecting 1
whereas it received 0. On the other hand, the client will simply
accept the message in the second case as it was expecting a
0 and it received a 0. This observation reveals the underlying
plaintext message to be 1 (in case of reaction) or 0 (in case
of no reaction).

In case of FHEW, we obtain a new ciphertext C ′r by
performing the operation HomAND(Cr, HomNOT (Cr)).
The obtained ciphertext C ′r will always be an encryption of 0
irrespective of whether Cr is an encryption of 1 or 0. Similar
to TFHE, the client will send feedback in the first case as
it was expecting 1 whereas it received 0. On the other hand,

Algorithm 1 Error Recovery using Binary Search

1: eth := positive error threshold
2: emin := minimum bound of error
3: emax := maximum bound of error
4: c := ciphertext with the original error er
5: start ← emin

6: end ← emax

7: etemp ← 0
8: function GETERRORPOSITIVE(c, start, end)
9: if start == end− 1 then return etemp

10: else
11: mid ← ⌊ start+end

2 ⌋
12: ediff ← eth −mid
13: c ← c + ediff = a · s + xr + er + ediff

14: feedback ← CV O(c)
15: c ← c− ediff = a · s + xr + er + ediff − ediff

= a · s + xr + er
16: if feedback = “correct decryption” then
17: etemp ← mid
18: GETERRORPOSITIVE(c, start, mid)
19: else
20: GETERRORPOSITIVE(c, mid, end)
21: end if
22: end if
23: end function

the client will simply accept the message in the second case
as it was expecting a 0 and it received a 0. This observation
reveals the underlying plaintext message to be 1 (in case of
reaction) or 0 (in case of no reaction). We would like to
emphasize that FHEW library [2] does not allow homomorphic
gate evaluations on a pair of related ciphertexts, where both the
inputs are either same or one is the complement of the other.
However the validation of whether the inputs are related or not
is performed over the server side as part of the homomorphic
gate evaluation, and thus can be simply disabled.

Therefore, we will target only those ciphertexts whose
underlying plaintext message r is 1 and the underlying error
value is +ve. We target an encryption of 1 to leverage the
biasness of NAND gate towards 1. With this combination of
knowledge about the sign of the error and the underlying
plaintext message, the adversary launches its final phase of
attack to recover the secret key.

VI. RECOVERING THE ORIGINAL ERROR VALUE

In this section, we show how an adversary can launch a key
recovery attack by setting emin = 0 and emax = +eth, which
encompasses the entire range of possible positive error values.
Once done, the adversary proceeds to use active perturbations
in the computed ciphertext result and iteratively sends faulty
ciphertexts to the client, while awaiting its reaction. In Sec-
tion V, we explained how the adversary can uniquely ascertain
the plaintext message and the corresponding error’s sign (+ve
or −ve) of the homomorphically computed ciphertext by
carefully introducing additional error and making just two
queries to the client for a particular ciphertext. The additional
error introduced into the ciphertext result can be computed as
etemp = er+(eth−emin) where er, eth, emin are the original
error in the computed ciphertext, positive error threshold for
decryption and minimum error bound, respectively. With the
knowledge of error sign, underlying plaintext message and
a range of errors, the server now recursively perturbs the
originally computed ciphertext by changing the amount of
additional error and sending it back to the client for checking

8



its reaction. The overall process for exact error recovery is
shown in Algorithm 1. We propose a recursive binary-search
based approach to introduce different perturbations in the
original ciphertext. The central idea is that given two bounds
emin and emax, we first determine whether the error lies closer
to the emin or emax. This can be found out using the same
idea that we used to determine the sign of the error. The
variables start and end are first initialized with emin and
emax respectively. The first condition we check is if start
becomes equal to end − 1, which implies that there is only
one error value left in the range, which will be the original
error er (since we are considering the entire range of error,
the recovered error will always be correct). Otherwise, we
compute a term mid as the mid-point of the range [start, end].
Following the notion of binary search, our objective is to
recursively divide the range into half and ascertain whether
the er lies in the first or second half. We then calculate the
error term to be added as ediff = eth −mid. This additional
error term ediff is then added to the original ciphertext c. The
idea is that if the error lies to the right of mid on the error
number line (refer Fig. 3), then the addition of this error term
ediff would make the overall error (er + ediff ) to cross the
positive threshold eth. In such a case, the client experiences
a decryption failure and reverts with a feedback to the server.
On receiving the feedback, the server can understand that the
actual error er lies between mid and end. However, if the
error er lies to the left of mid, then addition of the term ediff
would still not cross the error threshold eth. Quite obviously,
the client would successfully decrypt the ciphertext and thus
will not send any feedback. Here again, on non receival of
feedback, the server would understand that the error er does
lie between start and mid. Therefore, similar to the working
process of binary search, the server can eliminate half of the
error space on every iteration and gradually progress towards
the actual error. Therefore, the output
of the algorithm is the actual error er of the ciphertext.

Recovering The Secret Key: Once the error is recovered
for each ciphertext, the server can trivially retrieve the secret
key using Gaussian Elimination [59]. The number of such
ciphertext required to create the system of equation depends
on the size of the key. For example, if the key size is k bits,
one will need at least k ciphertext with correct error values
for solving the equations and retrieve the key. We note that
the number of ciphertext required to launch the attack is in
the order of the size of the key, more precisely, Ω(k).

VII. EXPLOITING GAUSSIAN NATURE OF TIMING AND
ERROR DISTRIBUTION

The reaction-based attack on FHE schemes presented
in Section VI requires a considerable number of additional
queries to the CVO to retrieve the original error value corre-
sponding to each ciphertext. Considering a practical scenario
where the client provides a stream of ciphertext to the server
for computation and verifies the result at its end (as part of the
initial service quality trial phase), a large number of erroneous
results could create suspicion as well as distrust in the quality

of service on the server. Such incidents could entice the client
to change the secret key or discard the service altogether,
thereby dampening the entire purpose of the attack. Therefore,
to make the attack stealthy, the server needs to reduce the
number of queries per ciphertext, which in turn, reduces the
total number of queries required to recover errors for Ω(k)
ciphertexts.

In this section, we show how the server can utilize the
execution time of homomorphic operations, to ascertain a
lower and upper bound on the error ranges and thereby
reduce the number of queries per ciphertext. In libraries like
TFHE and FHEW 5, the error is sampled from a “Gaussian
distribution”. Therefore, the error values towards the tails
of this distribution are less likely to appear when randomly
drawn. In other words, since during encryption, the errors are
sampled from a Gaussian distribution, some error values have
a higher probability of being sampled than others. Also, since
the final ciphertext of a homomorphic gate computation is a
linear combination of the input ciphertexts, the error in the
final ciphertext is also a linear combination of errors in the
input ciphertexts and thus follows a Gaussian distribution.
We exploit this observation to further reduce the probable
range of errors by creating timing buckets containing error
values and performing a bucket-matching analysis for un-
known ciphertexts. To summarize, if the adversary can identify
the range (±emin,±emax) such that the error value for a
particular ciphertext has a high probability of lying within
that range, it can reduce the overall error search space. While
this approach will require perturbing more ciphertexts, it will
reduce the overall number of queries required to recover errors
for Ω(k) ciphertexts. The reason for requiring to perturb more
ciphertexts is that, for certain ciphertexts that are encryption
of 1 and have +ve error value, i.e, the ones we are targeting
(cf. Section V-B), the error value might not lie in the range
[+emin,+emax]. Our proposed algorithm will detect such a
case and will not proceed to recover the error, the reason
for which has been explained later in this section. Let us
understand the scenario with an example of a ciphertext Cr

with error +er. Based on the value of +er, one of the
following three conditions will arise:
1 +er < +emin: Referring to Fig. 3, +er will lie to the left

of +emin. If we add ediff = eth − emin to the ciphertext
Cr, the overall error ediff + er will be less than eth, and thus
will not cause decryption error. We will not proceed with such
ciphertexts and simply ignore them. This situation is similar
to a ciphertext with −er and consumes only 1 query.
2 +emin ≤ +er ≤ +emax: We have already covered this

case in Section VI in detail. The number of queries required
in this case will be ⌈log (emax − emin)⌉, which is lesser than
⌈log (eth − 0)⌉ given (emax − emin) < (eth − 0).
3 +emax < +er: In this case, if we add ediff = eth −
emin to the ciphertext Cr, the overall error ediff + er will
become greater than eth, and thus will result in decryption
error. The server will treat this as the case of a ciphertext with

5We have observed that the errors in LWE equation in FHEW also follow
Gaussian distribution. Please refer Appendix ?? for further details.

9



Fig. 4: End-to-End attack process showing (A) how buckets are generated, (B) how timing information is used as first level of
filtering, (C) how reaction from client is used to reduce search space which ultimately leads to recovery of error, and (D) how
recovered errors along with original ciphertexts are used to form a system of exact equations which are then solved using
Gaussian Elimination to recover client key.

+er, and will thus proceed with recovering the error using
Algorithm 1. However since the search space is limited to
[+emin,+emax] while +er > +emax, the recovered error will
be incorrect as the final error value returned will be +emax−1.
This is because the value of start (cf. Algorithm 1), which is
initially emin, will keep on increasing until it becomes equal
to +emax − 1. At this point, start = end − 1 = +emax −
1 and thus the recursion will stop and the current value of
start will be returned. To prevent this from happening, we
will perform an additional query by adding ediff = eth −
emax to the ciphertext Cr. If +er > +emax, then the total
error etemp = er + (eth − emax) > eth and will cause a
decryption error. We will simply discard such ciphertexts and
not proceed with recovering its error. However, this additional
query will have to be performed for both cases 2 and 3 in
order to differentiate among them. We would like to highlight
the fact that this additional query will not be performed when
the timing information is not used and the entire range of
errors is considered. The reason for the same is that in such a
scenario, the final error will always lie in the range considered
and hence will always be recovered.

We note that our algorithm will always be successful in
recovering the correct error. This is because cases 1 and
3 ensure that ciphertexts with error +er < +emin or
+er > +emax are dropped and the server does not proceed
with recovering the error for them. On the other hand the
server will always be successful in recovering the error from
ciphertexts falling under case 2 as the underlying error will
always follow the relationship +emin ≤ +er ≤ +emax, for
which our algorithm will always converge to the correct error.

A. Identifying Outliers using Timing Analysis

We now explain in details how the server utilizes timing
value of the homomorphic operations to reduce the error
search space. The attack works in two phases - pre-processing
and actual attack. Fig. 4 shows the overall process of our
attack by utilizing the timing information. We now explain
each of these phases.

Pre-processing Phase: The adversary starts by sampling a
random secret key st by locally running the key generation
process of the library. Once generated, the adversary chooses
two messages x0 and x1 and obtains polynomially many
encryptions of the same under the chosen secret key st. It
is easy to note that each of these encryptions will result in
different ciphertexts, albeit containing different error values.
In other words, for a given plaintext message xj , multiple
distinctive ciphertexts, Ci = ai · s + xj + ei with different
values of ai and ei, can be produced. The adversary can
create any arbitrary number of such ciphertexts using the
two messages. Once it generate sufficient number (empirically
determined) of ciphertexts, it starts the next part of this phase
to generate timing buckets, which is different for FHEW and
TFHE schemes, owing to the way both these libraries are
implemented.
For FHEW: The adversary does not modify the library and
simply injects timing hooks at the beginning and end of
the complete homomorphic gate evaluation which includes
bootstrapping as well. It obtains the result of the entire gate
computation c = (a, b) encrypting a message xr and the time
t required to perform this computation. Thus the adversary
treats the entire gate computation operation as a black-box
and does not tamper the underlying operations in any way.
On the other hand, disabling the bootstrapping operation will
cause the result to remain in the ciphertext space, which will
result in incorrect decryption. Running the modulus switching
operation alone is not sufficient to prevent this as the presence
of high amount of error interferes with this operation. Thus
it is not a choice but a necessity for an adversary to work
in the black-box setting as opposite to TFHE where the
ciphertext obtained from a gate computation running without
bootstrapping will still decrypt correctly.
For TFHE: The adversary is free to run both the original as
well as a modified homomorphic gate to obtain the result of
the gate computation of c = (a, b) and the time t required to
perform this computation. The situation is similar to that in
FHEW when the original, unmodified gate is being run. On the
other hand, the modified gate is obtained by making a copy of

10



the original gate into a new function, disabling the refreshing
operation, and injecting timing hooks around the point where
ciphertext addition or subtraction is taking place. We note that
the adversary (server) has complete control of the library and
can choose to make modifications in the source code. We
performed our attack on both these versions of the library, i.e.,
one where the gate is modified to remove the refreshing step
and the timing is observed around the point where ciphertext
addition or subtraction is taking place, and other where the
gate is not modified and the timing is observed for the entire
homomorphic gate computation which includes the refreshing
step. We show that disabling bootstrapping requires even lesser
number of queries to recover the error from a single ciphertext
as compared to when bootstrapping is enabled.

Now, as the adversary knows the secret key st, it can
simply extract the error er in the ciphertext by evaluating
er = b − a · st − xr. This error er along with the execution
time t obtained during homomorphic gate computation forms a
timing trace (t, er). We obtain a varied range of timing values,
say from tstart to tend, for n ciphertexts, tstart and tend being
the smallest and largest timing values in the entire trace profile.
We empirically select a timing interval, say δ, and segregate
the entire timing range into ⌈ tend−tstart

δ ⌉ number of buckets.
For simplicity, let’s denote a particular bucket as:

Btmax
tmin

(t): tmin and tmax represents the minimum and
maximum timing values for this particular bucket.

t: a timing value such that tmin ≤ t ≤ tmax.
Next, for each timing value t ∈ Btmax

tmin
(t), we put the corre-

sponding error value er into the bucket Btmax
tmin

(t). Therefore,
at the end of the segregation process, all buckets contain a
number of error values that correspond to the timing t where
tmin < t < tmax for a particular bucket.

It is worth mentioning that the size of the bucket δ is chosen
on the basis of the timing values obtained during generation
of traces and is independent of the range of error in the final
ciphertext. In other words, the adversary is free to choose
any value for δ based on the tstart and tend, obtained during
traces generation. The objective of the attacker is to choose
an optimal value for δ in order to maximize the number of
errors in a single bucket, while also ensuring that it does not
encompass the whole timing range. In other words, the value
of δ is chosen such that a single bucket contains a higher
fraction, say .75 to .90, of the n traces, while the rest belongs
to some other bucket(s).

Since it is this bucket that we are targeting to reduce the
error range required to launch our CVO-based attack, it is
necessary that the bucket size is chosen optimally so that the
targeted bucket neither contains too high (which will increase
the range of error and thus will require more number of
queries per ciphertext) or too low (which will increase the
chances of error of a sample lying outside the range and so
will require perturbing more ciphertexts) number of errors. We
also highlight that the bucket size δ might not be the same
for every gate as the operations corresponding to each gate
is different. Once such bucket is identified, we sort the errors
in that bucket and set the lowest and highest positive error

Fig. 5: Plot of timing distribution vs error distribution in
timing bucket. The shaded region highlights the timing values
between 3775 and 4050 that correspond to the timing bucket
containing highest number of errors.

values in this bucket as +emin and +emax respectively. We
also note down the values of tmin and tmax for this bucket.
In this work, we majorly focus on the NAND gate and thus
create buckets for that particular gate only.

Actual Attack Phase: During the actual attack, the adver-
sary obtains a fresh ciphertext pair from the client, encrypted
under an unknown key, sk, that it is trying to recover. The
adversary then runs the same gate operation for which the
buckets were built (NAND in our case), on this new ciphertext
pair. It receives as output a new ciphertext that encrypts the
result of this computation with an increased error value in
case of the modified TFHE, or which is further reduced due
to bootstrapping in case of FHEW or the unmodified TFHE
library. It also receives as output the corresponding timing
value t′. Since the adversary does not know the secret key, it
cannot recover the error e′ of this new ciphertext 6 unlike it
was able to do during pre-processing step. Finally, this timing
value t′ is compared with the timing range, [tmin, tmax], of
the bucket obtained previously, which contains the maximum
number of errors. We only consider those ciphertext samples
for which tmin ≤ t′ ≤ tmax, and reject others. Once
such ciphertexts are identified, we perform the error and
key recovering process, as explained in section VI, by using
the reduced range [+emin,+emax] obtained using the bucket
instead of the original [0,+eth].

B. Gaussian nature of Timing and Error distributions

The homomorphic gate operations in FHE libraries are
essentially linear operations of LWE equations. Therefore, it is
counter-intuitive why shall timing-based buckets would work
in such a scenario. In this section, we provide the intuition on
why and how the bucketing process helps in reducing the error
search space using empirical results on TFHE. Fig. 5 shows
the distribution of timing values which follows a Gaussian
distribution (shown in red). It also shows count of errors in
different buckets (shown in blue bars), where the (second)
bucket with the highest number of errors represents the peak of
this distribution, while the rest represents the tails. The timing
and error values are obtained after running homomorphic
NAND operation 10000 times on a pair of ciphertexts, in

6It is this error that we are trying to recover first which will then be used
to recover the secret key.

11



TFHE. The highlighted (in green) portion shows the timing
range, which is 3775 to 4050 in our case, that corresponds
to the bucket with highest number of errors. We can clearly
see that both these (Gaussian) distributions coincides, which
implies that we can utilize the peak of the timing distribution
to find the peak of the error distribution. Finally, Fig. 7
shows the frequency of errors obtained from the 10000 cipher-
texts obtained as a result of the above homomorphic NAND
computations. The shaded regions highlight the error ranges
(−emax,−emin) (in green and to left) and (+emin,+emax)
(in red and to right) obtained from the highest bucket. One
can observe that the highlighted portions, obtained using the
timing information, have reduced the search space for the
error. In case of FHEW, the distribution of errors in the
final ciphertext obtained after homomorphic NAND operation
follows a Gaussian distribution, as evident from Fig. 6 which
shows the plot of frequency of errors in 10000 ciphertexts,
even though the error is sampled from a Chi distribution
during encryption. Since the underlying timing distribution
also follows a Gaussian distribution, the same can be used
to infer the peak of the error distribution, as in the case of
TFHE, and thus can be utilized to reduce the error range.
Since this timing and error distribution is independent of the
secret key s, the plaintext message xr and the mask ar, errors
in the ciphertexts encrypted using any random key will also
follow this distribution.

Fig. 6: Plot of frequency of errors for 10k ciphertexts in
FHEW.

VIII. EXPERIMENTAL RESULTS

In this section, we provide the experimental results of the
attack for both FHEW and TFHE. We first show the results
for when the entire range of errors is considered, which
is taken to be [0, 63] and [0, 10200547327], and then show
the results when the range of error is reduced using timing
information. Here 63 and 10200547327 are the +ve error
threshold of homomorphic NAND gate for FHEW and TFHE,
respectively. During experiment, we generated 3000 pair of
random plaintext bits in both the cases, i.e., without and with
timing information, except for the case where bootstrapping is
disabled in TFHE in which we generated 6000 pair of random

Fig. 7: Plot of frequency of errors in intervals of 100. The
shaded regions on the left and right highlights the bound of
negative and positive errors in the targeted bucket.

plaintext bits. We encrypted these plaintext pairs using 5
different, randomly generated secret keys. We proceeded to run
a homomorphic NAND gate on each of these ciphertext pair
to obtain the corresponding computation result, upon which
we ran our attack. Table I shows the count of ciphertexts
out of these 3000 samples (6000 in case of TFHE without
bootstrapping) for which we were able to successfully recover
the error term and the total number of CVO queries made
for the same. For a single ciphertext, we required 8 and
33 queries, when timing information is not used, and 8, 29
and 23 queries, when timing information is used, to recover
the underlying error term for FHEW with bootstrapping,
TFHE with bootstrapping and TFHE without bootstrapping,
respectively. From the table, we can observe that our im-
proved attack has reduced, on average, the number of CVO
queries by almost 10000, 20000 and 4000 when using the
timing information with bootstrapping enabled and disabled
for TFHE, and with bootstrapping for FHEW, respectively.
However, in both instances the number of samples for which
the errors were successfully recovered has also reduced, which
was expected due to our two level filtering based on the timing
value and error range. For our improved attack using the timing
information, we started with creating the timing buckets. We
fixed the input plaintext pair as x0 = 1 and x1 = 0, wlog, and
generated a secret key st using the key generation function
of the libraries. We then obtained timing traces for 10000
ciphertext pairs of the above message pair under the same key.
The traces were obtained for FHEW, TFHE with bootstrapping
and TFHE without bootstrapping. Once obtained, we divided
these traces into timing buckets of sizes 2500000, 500000 and
275 across the above three cases, respectively.

Fig. 8 shows the plot of total number of CVO queries made
across the three cases of TFHE for 5 different keys. From the
plot, we can observe that the total number of CVO queries
made has reduced when timing information is used, which is
even further reduced when bootstrapping operation is disabled.
For the third case, i.e., with timing and without bootstrapping,
we considered 6000 samples instead of 3000 samples used
for the other two cases. The reason for doing so is that the
bucket size in this case is quite small (275) and thus there is
a higher chance for a timing trace generated during the attack
phase to lie outside the range of the target bucket. However,

12



TABLE I: Total number of CVO queries made (and total num-
ber of samples for which errors were successfully recovered)
for the two schemes, for 5 different, random keys.

Key 1 Key 2 Key 3 Key 4 Key 5

FHEW Without Timing 10737
(1071)

10865
(1090)

10576
(1042)

10289
(1009)

10630
(1054)

With Timing
(bucket size = 2500000)

7565
(766)

7744
(790)

5285
(524)

5664
(573)

7541
(771)

TFHE
Without Timing 36437

(1032)
37308
(1058)

38887
(1110)

37487
(1065)

38128
(1086)

With Timing
& With Bootstrapping

(bucket size = 500000)

29200
(930)

29991
(959)

30991
(997)

25227
(806)

27714
(887)

With Timing
& Without Bootstrapping

(bucket size = 275)

19838
(739)

17500
(646)

18624
(677)

17569
(650)

18206
(663)

we would like to emphasize that while we need to perturb
more ciphertexts in the third case, we still require the lowest
number of CVO queries which is one of our goals.

Once we recover the original error from ciphertexts, a
system of equations is formed and then the same is solved
to recover the entire key. We perform full key recovery for
FHEW and TFHE with key size 500 and 630 bits on two
different systems, a Desktop computer running Intel Xeon
Silver 4210R @ 2.4GHz powered by Ubuntu 20.04, and a
Desktop computer running Intel i7-7567U @ 3.5GHz powered
by Ubuntu 18.04. We obtained similar results on both these
systems, which implies that our attack is not machine specific
and can be carried out using any machine. However we only
report the results we obtained by running the attack on the
Xeon-based machine as the processor is of server grade. In
case of TFHE without timing, with timing and bootstrapping
enabled and with timing with bootstrapping disabled, we
perturbed 3000, 3000 and 6000 ciphertexts, respectively, and
out of those, 1032, 930 and 739 ciphertext were suitably
faulted to recover their error values. In case of FHEW with
and without timing, we perturbed 3000 ciphertexts in both
cases, out of which 1071 and 766 ciphertexts were suitably
faulted to recover their error values. Finally, we ran Gaussian
Elimination from SageMath9.0 and Python 3.8 to recover the
entire secret key. In case of TFHE without timing information,
the overall attack took around 3 hours and required 36437
CVO queries. With timing information, it took around 10 and
6 hours, starting from bucket matching to key recovery, and
required 29200 and 19838 CVO queries, in case of TFHE
with bootstrapping enabled and disabled, respectively. In case
of FHEW, we required 0.5 and 1.5 hours and required 10737
and 7565 CVO queries, in case of without timing and with
timing, respectively.

IX. DISCUSSION AND FUTURE DIRECTION

In this section, we discuss about few critical questions that
can arise when one considers the practical implication of the
attacks and the role of client in aiding the attack. We follow
it up with some of the possible countermeasures against our
proposed attack.

A. Some Practical Questions

Why would the client decrypt a modified ciphertext when
it already has obtained a correct decryption previously?:

Fig. 8: Comparison of total number of CVO queries made for
5 different, randomly generated secret keys across the three
cases in TFHE.

To answer this question, we would like to state that the client
has no way of knowing whether it has received a modified
version of some previous ciphertext or a new ciphertext that
is the result of a fresh computation. In other words, the server
may perform a replay attack by re-sending a modified version
of a previous ciphertext. One might argue that the client can
simply check the first part, i.e., a of the ciphertext pair (a, b)
and check whether it was part of any previous ciphertext or
not. However this requires the client to store the results of all
the previous computations, which requires both storage and
processing, and is thus not practical.

What if the user does not react and instead ask for a
re-computation at a later time?: To answer this question,
we would like to highlight first that the encrypted inputs are
already stored on the server and the client has knowledge
of their location to identify them uniquely. One may think
of this location as the row index of a table that stores these
ciphertexts. Whenever the client wants the server to evaluate a
function on certain inputs, it simply informs the server of the
function and the indices of the input ciphertexts. The server is
free to maintain a log of these function along with its inputs
and outputs. In case the user decide to ask for a re-computation
at a later stage on the same inputs, it will mention their
corresponding indices to the server along with the function to
be re-evaluated. At this point the server can simply check its
logs to obtain the previous results and resend the same along
with another perturbation of previously perturbed ciphertext.
To prevent this attack, the user may encrypt the inputs again
to generate a new set of ciphertexts and re-transmit them, but
then it defeats the whole point of storing the data in the cloud
in the first place.

What if the server re-sends a modified ciphertext as part
of the result of some later computation and gets no reaction
from the client?: In this case, the server will not be sure
whether it is due to correct decryption or that the decryption
was incorrect but the output that it gave was what the user
was expecting in the first place. To put this into an example,
say a previously modified ciphertext c is an encryption of 1,
which the server is aware of. The server modifies c, without
knowing whether it will decrypt correctly or not, and replaces
a ciphertext c′ of some later computation with c which it then

13



sends to the client along with the other unmodified ciphertexts.
The client decrypts the same and obtains 0 as a result, which
implies that the decryption is not correct. But it so happens
that the user was expecting 0 when it decrypts this ciphertext.
Thus the user accepts the result even though there was an
incorrect decryption and does not send any reactions to the
server. One way to prevent this from happening is that the
server can identify a gate or a set of gates (e.g., NAND, OR)
in the final level of the circuit that has a high probability to
output encryption of a certain bit (say 1) irrespective of the
input values, and then can always send an encryption of that
bit as the output of this gate.

B. Potential Countermeasures

The authors in [9] utilized the IND-CVA security model to
attack the input data and underlying homomorphic function
in a similar setting and proposed certain possible countermea-
sures. We will revisit two of their countermeasures to analyse
the relevance in context to our proposed attack, as the authors
have already refuted the other countermeasures. At last we
also propose a possible countermeasure against our attack.

Obfuscate function and distrust server on decryption
failure: First, the authors have proposed to obfuscate the
underlying function that is being evaluated so that the server
neither understands the function nor it can locate the position
of important data bits. However, function obfuscation will
be irrelevant in the context of our attack as we are only
targeting the output of the function based on the circuit used
to implement this function. Since an obfuscated function will
still be implemented using these homomorphic Boolean gates,
our attack will still be relevant. Finally, they have proposed
to distrust the server immediately when a decryption failure
occurs. However the decryption can still fail with a small
probability even when the ciphertext has not been tampered
with. Also this is not a good countermeasure in practice, as
the client will have to look for a trusted server that does
not tamper with its data thus nullifying the whole purpose
of homomorphic encryption.

Using Authenticated Encryption: A natural solution to
this perturbation-based attack could be to use authenticated
encryption [60], [61]. In such schemes, the tag verification
fails if the accompanied ciphertext is perturbed. The user
will not decrypt such ciphertexts, and thus will always react
irrespective of whether the ciphertext was supposed to decrypt
correctly or not. However classical AE schemes do not allow
homomorphic computations on the ciphertexts or the associ-
ated tags. To overcome this drawback, the ciphertexts and their
corresponding tags are encrypted using FHE schemes, possibly
TFHE or FHEW as they support fastest bitwise homomorphy.
To put the above into perspective, let us have two pairs of AE
based ciphertexts (C1, T1) and (C2, T2) upon which we want
to perform an operation “◦” to obtain a final pair (C3, T3), such
that C3 = C1◦C2. The input AE ciphertexts are first converted
into homomorphic ciphertext pairs (CF

1 , TF
1 ) and (CF

2 , TF
2 ),

upon which the operation “◦” is evaluated homomorphically
to obtain the resultant pair (CF

3 , TF
3 ) which is homomorphic

encryption of (C3, T3). In case the ciphertext CF
3 is not

perturbed, the pair (CF
3 , TF

3 ) will decrypt correctly to the
pair (C3, T3), which is a valid ciphertext-tag pair. However
in case the ciphertext CF

3 is perturbed, two cases will arise.
If the error in the perturbed ciphertext does not cross the
threshold, then the pair (CF

3 , TF
3 ) will decrypt correctly to

the pair (C3, T3), which is a valid ciphertext-tag pair. On the
other hand, if the error in the perturbed ciphertext crosses the
threshold, then the pair (CF

3 , TF
3 ) will decrypt to a different

pair (C∗3 , T3), which is an invalid ciphertext-tag pair. The
client will react in the latter case, while it will not react in
the former case. This shows that the reaction-based attack will
work even if authenticated encryption is used. Additionally, the
server will get a reaction even without the client decrypting
the received ciphertext as the client need not know the result
of the decryption beforehand for it to react or not.

Countermeasure with reaction restriction: Since our attack
is based on the reaction of the client, it makes sense to limit the
number of such reactions over a pre-determined period of time.
However, our proposed attack does not demand consecutive
reactions or re-computation requests. Server can induce erro-
neous computations with series of correct computations and
collect and store the ciphertexts from the client feedback over
a period of time. So, it is difficult to define the time range for
which the restriction on the number of re-computation requests
can be imposed. Second, as explained in the plaintext recovery
step of the attack, the cloud can forcefully perturb the cipher-
text to an encryption of 0 and observe the client’s reaction.
It may happen the client will simply accept the message as
it was expecting a 0 without any reaction. This no reaction
(or passive reaction) is also a leakage about the original
ciphertext generated from the homomorphic evaluation. Hence,
only restricting the number of recomputation requests may
not fully alleviate this attack possibility. However, modifying
the decryption step with threshold cryptosystem [62] can be
promising against this attack. In this case, the secret key is
divided among N users as their shares such that any subset of
t or more shares can be used to decrypt a ciphertext encrypted
under the original secret key, but any subset of t − 1 shares
or less cannot be used to do so. Verifying this countermeasure
will be taken as a future work.

X. CONCLUSION

In this paper, we have shown that access to a CVO can
result in leakage of the secret key to the malicious server. We
have also shown that the error from a single ciphertext can
be leaked with a constant number of queries to the CVO. In
our experiment, we require 8 and 33 queries to extract error
from a single ciphertext for the libraries FHEW and TFHE
(with bootstrapping), respectively. Using timing information,
we require 8, 29 and 23 such queries for the libraries FHEW
and TFHE, with and without bootstrapping, respectively. Thus
timing information is not necessary to perform our attack,
however it aids in reducing the number of queries which helps
in keeping the overall number of incorrect decryptions to be
low. While CVO-based attacks exists in literature, in this paper

14



we showed such an attack to recover the full secret key on
practical schemes that are being used in real-life construction
of various applications. This attack highlights the fact that
additional protections need to be adopted at a system level to
secure cloud applications [9] built using such FHE schemes.
This becomes all the more important since such schemes
are gearing up for deployment in practice, and may handle
sensitive information once they are deployed.

REFERENCES

[1] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast fully homomorphic encryption library,” August 2016.
https://tfhe.github.io/tfhe/.

[2] L. Ducas and D. Micciancio, “FHEW: A fully homomorphic encryption
library,” May 2017. https://github.com/lducas/FHEW.

[3] “Microsoft SEAL (release 4.0).” https://github.com/Microsoft/SEAL,
Mar. 2022. Microsoft Research, Redmond, WA.

[4] S. Halevi and V. Shoup, “Design and implementation of helib: a
homomorphic encryption library.” Cryptology ePrint Archive, Paper
2020/1481, 2020. https://eprint.iacr.org/2020/1481.

[5] S. Halevi and V. Shoup, “homenc: An implementation of homomorphic
encryption,” November 2019. https://github.com/homenc/HElib.

[6] D. Cousin, K. Rohloff, and Y. Polyakov, “Palisade
homomorphic encryption software library,” December 2019.
https://gitlab.com/palisade/palisade-release.

[7] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio,
I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor, D. Suponitsky,
M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe: Open-source
fully homomorphic encryption library.” Cryptology ePrint Archive,
Paper 2022/915, 2022. https://eprint.iacr.org/2022/915.

[8] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “HEAAN: Homomor-
phic encryption for arithmetic of approximate numbers,” May 2016.
https://github.com/snucrypto/HEAAN.

[9] I. Chillotti, N. Gama, and L. Goubin, “Attacking fhe-based applica-
tions by software fault injections.” Cryptology ePrint Archive, Paper
2016/1164, 2016. https://eprint.iacr.org/2016/1164.

[10] J. Loftus, A. May, N. P. Smart, and F. Vercauteren, “On cca-secure some-
what homomorphic encryption,” in In Selected Areas in Cryptography,
pp. 55–72, 2011.

[11] Z. Zhang, T. Plantard, and W. Susilo, “Reaction attack on outsourced
computing with fully homomorphic encryption schemes,” in Information
Security and Cryptology - ICISC 2011 (H. Kim, ed.), (Berlin, Heidel-
berg), pp. 419–436, Springer Berlin Heidelberg, 2012.

[12] C. Hall, I. Goldberg, and B. Schneier, “Reaction attacks against several
public-key cryptosystem,” in Information and Communication Security
(V. Varadharajan and Y. Mu, eds.), (Berlin, Heidelberg), pp. 2–12,
Springer Berlin Heidelberg, 1999.

[13] Z. Hu, F. Sun, and J. Jiang, “Ciphertext verification security of sym-
metric encryption schemes,” Sci. China Ser. F Inf. Sci., vol. 52, no. 9,
pp. 1617–1631, 2009.

[14] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33,
p. 34–91, jan 2020.

[15] L. Ducas and D. Micciancio, “Fhew: Bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology – EURO-
CRYPT 2015 (E. Oswald and M. Fischlin, eds.), (Berlin, Heidelberg),
pp. 617–640, Springer Berlin Heidelberg, 2015.

[16] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” in Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings (R. Safavi-Naini and R. Canetti, eds.),
vol. 7417 of Lecture Notes in Computer Science, pp. 868–886, Springer,
2012.

[17] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., p. 144, 2012.

[18] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping,” in Innovations in Theoreti-
cal Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012
(S. Goldwasser, ed.), pp. 309–325, ACM, 2012.

[19] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I (T. Takagi
and T. Peyrin, eds.), vol. 10624 of Lecture Notes in Computer Science,
pp. 409–437, Springer, 2017.

[20] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Annual Cryptology Conference, pp. 75–92, Springer,
2013.

[21] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, (New York, NY, USA),
p. 84–93, Association for Computing Machinery, 2005.

[22] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learn-
ing with errors over rings,” in Advances in Cryptology – EUROCRYPT
2010 (H. Gilbert, ed.), (Berlin, Heidelberg), pp. 1–23, Springer Berlin
Heidelberg, 2010.

[23] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, (New York, NY, USA), p. 169–178, Association
for Computing Machinery, 2009.

[24] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
ASIACRYPT (1), pp. 3–33, Springer, 2016.

[25] R. Lindner and C. Peikert, “Better key sizes (and attacks) for lwe-based
encryption,” in Topics in Cryptology – CT-RSA 2011 (A. Kiayias, ed.),
(Berlin, Heidelberg), pp. 319–339, Springer Berlin Heidelberg, 2011.

[26] S. Bai and S. D. Galbraith, “Lattice decoding attacks on binary lwe,” in
Information Security and Privacy (W. Susilo and Y. Mu, eds.), (Cham),
pp. 322–337, Springer International Publishing, 2014.

[27] M. R. Albrecht, “On dual lattice attacks against small-secret lwe and
parameter choices in helib and seal,” in Advances in Cryptology –
EUROCRYPT 2017 (J.-S. Coron and J. B. Nielsen, eds.), (Cham),
pp. 103–129, Springer International Publishing, 2017.

[28] L. Bi, X. Lu, J. Luo, K. Wang, and Z. Zhang, “Hybrid dual attack on
LWE with arbitrary secrets,” Cybersecur., vol. 5, no. 1, p. 15, 2022.

[29] Q. Guo and T. Johansson, “Faster dual lattice attacks for solving
LWE with applications to CRYSTALS,” in Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part IV (M. Tibouchi and H. Wang,
eds.), vol. 13093 of Lecture Notes in Computer Science, pp. 33–62,
Springer, 2021.

[30] S. Bai, S. Miller, and W. Wen, “A refined analysis of the cost for solving
LWE via usvp,” in Progress in Cryptology - AFRICACRYPT 2019 - 11th
International Conference on Cryptology in Africa, Rabat, Morocco, July
9-11, 2019, Proceedings (J. Buchmann, A. Nitaj, and T. Rachidi, eds.),
vol. 11627 of Lecture Notes in Computer Science, pp. 181–205, Springer,
2019.

[31] K. Laine and K. E. Lauter, “Key recovery for LWE in polynomial time,”
IACR Cryptol. ePrint Arch., p. 176, 2015.

[32] S. Arora and R. Ge, “New algorithms for learning in presence of errors,”
in Automata, Languages and Programming - 38th International Collo-
quium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I (L. Aceto, M. Henzinger, and J. Sgall, eds.), vol. 6755 of Lecture
Notes in Computer Science, pp. 403–415, Springer, 2011.

[33] M. R. Albrecht, C. Cid, J. Faugère, R. Fitzpatrick, and L. Perret,
“Algebraic algorithms for LWE problems,” ACM Commun. Comput.
Algebra, vol. 49, no. 2, p. 62, 2015.

[34] M. R. Albrecht, C. Cid, J. Faugère, R. Fitzpatrick, and L. Perret, “On
the complexity of the BKW algorithm on LWE,” Des. Codes Cryptogr.,
vol. 74, no. 2, pp. 325–354, 2015.

[35] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” J. Math. Cryptol., vol. 9, no. 3, pp. 169–203, 2015.

[36] M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the
expected cost of solving usvp and applications to LWE,” IACR Cryptol.
ePrint Arch., p. 815, 2017.

[37] M. Chenal and Q. Tang, “On key recovery attacks against existing
somewhat homomorphic encryption schemes,” in Progress in Cryptology
- LATINCRYPT 2014 (D. F. Aranha and A. Menezes, eds.), (Cham),
pp. 239–258, Springer International Publishing, 2015.

15

https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2016/1164


[38] T. Espitau, A. Joux, and N. Kharchenko, “On a dual/hybrid approach
to small secret lwe: A dual/enumeration technique for learning with
errors and application to security estimates of fhe schemes,” in Progress
in Cryptology – INDOCRYPT 2020: 21st International Conference
on Cryptology in India, Bangalore, India, December 13–16, 2020,
Proceedings, (Berlin, Heidelberg), p. 440–462, Springer-Verlag, 2020.

[39] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Advances in Cryptology — CRYPTO ’96
(N. Koblitz, ed.), (Berlin, Heidelberg), pp. 104–113, Springer Berlin
Heidelberg, 1996.

[40] C. Ashokkumar, R. P. Giri, and B. L. Menezes, “Highly efficient
algorithms for aes key retrieval in cache access attacks,” 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 261–275,
2016.

[41] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014 (K. Fu
and J. Jung, eds.), pp. 719–732, USENIX Association, 2014.

[42] B. Timon, “Non-profiled deep learning-based side-channel attacks with
sensitivity analysis,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, p. 107–131, Feb. 2019.

[43] A. Golder, D. Das, J. Danial, S. Ghosh, S. Sen, and A. Raychowdhury,
“Practical approaches toward deep-learning-based cross-device power
side-channel attack,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, pp. 2720–2733, dec 2019.

[44] F. Aydin, E. Karabulut, S. Potluri, E. Alkim, and A. Aysu, “Reveal:
Single-trace side-channel leakage of the seal homomorphic encryption
library,” in Proceedings of the 2022 Conference & Exhibition on Design,
Automation & Test in Europe, DATE ’22, (Leuven, BEL), p. 1527–1532,
European Design and Automation Association, 2022.

[45] F. Aydin and A. Aysu, “Exposing side-channel leakage of seal homo-
morphic encryption library,” in Proceedings of the 2022 Workshop on
Attacks and Solutions in Hardware Security, ASHES’22, (New York,
NY, USA), p. 95–100, Association for Computing Machinery, 2022.

[46] “Microsoft SEAL (release 3.2).” https://github.com/Microsoft/SEAL,
Feb. 2019. Microsoft Research, Redmond, WA.

[47] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
fortieth annual ACM symposium on Theory of computing, pp. 197–206,
2008.

[48] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
key {Exchange—A} new hope,” in 25th USENIX Security Symposium
(USENIX Security 16), pp. 327–343, 2016.

[49] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 700–718, Springer, 2012.

[50] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h) ibe in the
standard model,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 553–572, Springer, 2010.

[51] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila, “Frodo: Take off the ring! practical,
quantum-secure key exchange from lwe,” in Proceedings of the 2016
ACM SIGSAC conference on computer and communications security,
pp. 1006–1018, 2016.

[52] V. Lyubashevsky, “Lattice signatures without trapdoors,” in Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pp. 738–755, Springer, 2012.

[53] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key
exchange for the tls protocol from the ring learning with errors problem,”
in 2015 IEEE Symposium on Security and Privacy, pp. 553–570, IEEE,
2015.

[54] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and
lattices,” in Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pp. 719–737, Springer, 2012.

[55] M. Chenal and Q. Tang, “On key recovery attacks against existing some-
what homomorphic encryption schemes,” in Progress in Cryptology -
LATINCRYPT 2014 - Third International Conference on Cryptology and
Information Security in Latin America, Florianópolis, Brazil, September
17-19, 2014, Revised Selected Papers (D. F. Aranha and A. Menezes,
eds.), vol. 8895 of Lecture Notes in Computer Science, pp. 239–258,
Springer, 2014.

[56] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced encryption standard (aes),” 2001-11-26 2001.

[57] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the
aes circuit,” in Proceedings of the 32nd Annual Cryptology Conference
on Advances in Cryptology — CRYPTO 2012 - Volume 7417, (Berlin,
Heidelberg), p. 850–867, Springer-Verlag, 2012.

[58] L. E. B. Iii, “The advanced encryption standard algorithm validation
suite (aesavs),” 2002.

[59] H. Herrn and R. Gauss, “Anwendung der wahrscheinlichkeitsrechnung
auf eine aufgabe der practischen geometrie. von herrn hofrath und ritter
gauss.,” Astronomische Nachrichten, vol. 1, no. 6, pp. 81–86, 1823.

[60] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” in
Advances in Cryptology - ASIACRYPT 2000, 6th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Kyoto, Japan, December 3-7, 2000, Proceedings (T. Okamoto,
ed.), vol. 1976 of Lecture Notes in Computer Science, pp. 531–545,
Springer, 2000.

[61] P. Rogaway, “Authenticated-encryption with associated-data,” in Pro-
ceedings of the 9th ACM Conference on Computer and Communications
Security, CCS ’02, (New York, NY, USA), p. 98–107, Association for
Computing Machinery, 2002.

[62] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, and A. Sahai, “Threshold cryptosystems from threshold
fully homomorphic encryption,” in Advances in Cryptology – CRYPTO
2018: 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19–23, 2018, Proceedings, Part I, (Berlin, Heidelberg),
p. 565–596, Springer-Verlag, 2018.

APPENDIX A
CVO ATTACK PROOF-OF-CONCEPT CODE ON TFHE

WITHOUT TIMING INFORMATION

As a proof-of-concept for our CVO-based attack on TFHE
library, we wrote a set of scripts to emulate the behaviour of
client and server during our attack. These set of scripts can
be found at https://github.com/SEAL-IIT-KGP/CVO-TFHE,
inside the directory TFHE/Code 1. This code does not rely
on timing information and serves as a demonstration of how
a CVO can be used to launch an attack on TFHE library.

To execute the PoC code locally, one may follow the
detailed instructions provided inside the readme.md file.
We recommend to use a Linux based machine, prefer-
ably Ubuntu based, as we used a Ubuntu based machine
to develop this code. The necessary tools required to run
the code can be downloaded and installed by running the
setup.sh bash script. Once all the tools and libraries are
installed correctly, three files, namely user_testing.c
(containing code run by client to set up keys and input
ciphertexts), cloud_testing.c (containing code run by
server to perform homomorphic NAND operation on in-
put ciphertexts) and verify_testing.c (containing our
PoC code to perform perturbation and emulate CV Oracle),
needs to be compiled using gcc compiler with the flag
-ltfhe-spqlios-fma. It needs to be ensured that the
output files for these compilations are set as user_testing,
cloud_testing and verify_testing, respectively.
The reason is that user_testing.c internally calls
the executables cloud_testing and verify_testing,
so changing the names of these output files will cause
segmentation fault. Once the compilation is done,
user_testing needs to be executed to run the PoC code.
This execution will take around 3 hours to complete.

16

https://github.com/Microsoft/SEAL
https://github.com/SEAL-IIT-KGP/CVO-TFHE


When the PoC code executes completely, we will be pro-
vided with a certain number of files, out of which we are only
interested in the following two files:

• gaussian elimination.txt: This will contain the samples
whose errors were successfully recovered. We will run
our key recovery script (equation solver.py) on these
ciphertexts.

• count of oracle accesses.csv: This will contain the
number of CVO queries made for each sample. These
values were added up to find the total number of CVO
queries made.

We now focus on the values for each ciphertext result pro-
vided in count_of_oracle_accesses.csv. In certain
rows we find that only 1 query has been made to the CVO.
This is because the corresponding ciphertext contains an error
with negative sign, which does not fetch a reaction from the
client and is thus simply dropped. In certain rows we find that
only 2 queries have been made to the CVO. This is because the
corresponding ciphertext contains an error with positive
sign but the underlying plaintext bit is 0. Thus while the first
case fetches a reaction from the client, the second one does not,
which causes the ciphertext to be simply dropped. At last, there
are certain rows where we find that 32 or 33 queries has been
made to the CVO. This is because the corresponding ciphertext
contains an error with positive sign and the underlying
plaintext bit is 1. Thus both the first and the second cases
fetches reactions from the client. This implies that we have
found the target ciphertext for which we perform additional
queries to recover the underlying error. Thus apart from the
2 queries we required to identify the target ciphertexts to be
perturbed, we required 30 to 31 queries additionally to recover
the underlying error value. To reduce these additional queries,
we took the help of timing information to reduce the range of
our search space.
gaussian_elimination.txt contains the value of

vector a and scalar b that together forms the ciphertext, apart
from the underlying plaintext message m, which is always
536870912 (the Torus equivalent of 1) as we are targeting an
encryption of 1, and recovered_error which corresponds
to the error value that is recovered using our attack. These
samples are used to form our system of equations, where each
of the equation corresponds to a·s = b−m−recovered error,
which is then solved using Gaussian elimination to extract the
secret key s.

APPENDIX B
WORKING OF PROOF-OF-CONCEPT CODE

We now explain how our code works. We are not going into
the details of how the keys are generated, and the encryption
and homomorphic operations are performed. What we do like
to highlight is that these operations run in the standard way
under the parameters defined in the TFHE library. We will only
explain the steps carried out after the result of a homomorphic
NAND gate is obtained by the server, as these steps forms the
part of our actual attack.

To begin with, we define two variables pos_min and
pos_max and initialize them with our error bounds. We also
decrypt the result of the computation and store it as ans. We
assume that the client knows that this is the result it should be
obtaining after it has decrypted the ciphertext obtained from
the client, and will react if this is not the result it obtains. This
forms the basis of our ciphertext verification oracle.

long pos_min = 0;
long pos_max = 10200547327;

int ans = bootsSymDecrypt(answer, key);

Here bootsSymDecrypt() is the unmodified decryption
function, as defined in TFHE library, that takes the ciphertext
answer to be decrypted and the secret key key as arguments,
and returns the underlying plaintext bit.

We now call a function get_sign which performs the first
two perturbations and decides whether to proceed with error
recovery or not.

get_sign(answer, pos_min, pos_max,
key, ans);

We need the value of ans to verify whether the perturbation
caused incorrect decryption or not.

Inside the function get_sign(), to perform the first per-
turbation, we define distance_from_threshold (which
represents ediff ) as the difference of pos_threshold
(which represents eth) and pos_min (which represents
+emin). We add this perturbation value to sample (which
represented e12), decrypt it to obtain the resulting plaintext
bit ai, and then remove this perturbation to get back to the
original ciphertext. At this point we have made a query to the
CVO oracle and so we increment the value of count by one.
We check whether the plaintext bits ans and ai are same or
not. If they are different, then it implies that the underlying
error was positive as the added perturbation caused the
error to cross the positive threshold. If this is the case then
we proceed with the next perturbation, else we ignore this
ciphertext.

long distance_from_threshold =
pos_threshold - pos_min;
sample->b += distance_from_threshold;
int ai = bootsSymDecrypt(sample, key);
count = count + 1;
sample->b -= distance_from_threshold;

if(ans != ai) { proceed with next
perturbation }
else { reject sample }

Here sample represents the target ciphertext answer.
For second perturbation, we subtract a value of 2µ to

sample, decrypt it to obtain the resulting plaintext bit bi,
which will always be 0, irrespective of whether the original
ciphertext was an encryption of 0 or 1, and then add back the
value of 2µ to sample. At this point we have made another

17



query to the CVO oracle and so we increment the value of
count by one. We check whether the plaintext bits ans and
bi are same or not. If they are different, then it implies that
the original ciphertext sample was an encryption of 1 as we
know that the perturbed ciphertext will always decrypt to 0,
for the reason explained previously in the paper. If this is the
case then we proceed with our error recovery process, else we
ignore this ciphertext.

sample->b -= (2*MU);
int bi = bootsSymDecrypt(sample, key);
count = count + 1;
sample->b += (2*MU);

if(ans != bi)
{
error_1 = get_error_if_positive(sample,
pos_min, pos_max, key, ans);
}
else { reject sample }

If both the perturbations causes decryption failure, and thus
fetches reactions from the client, we proceed with calling a
function get_error_if_positive performs our binary-
search based algorithm to extract the underlying error.

Inside the function get_error_if_positive, we de-
fine mid as the average of start (which represents
pos_min) and end (which represents pos_max). As the
base case of recursion, we check whether start becomes
equal to end−1, which implies that our search has converged
to only one error. At this point we end our search and return
the value in error, which will either contain the value of
mid or will contain the default value of 0.

long mid = (start + end)/2;
//base case for recursion
if(start == end-1) { return error }

Otherwise, we define distance_from_threshold
(which represents ediff ) as the difference of
pos_threshold (which represents eth) and mid. We
add this perturbation value to sample , decrypt it to
obtain the resulting plaintext bit ci, and then remove this
perturbation to get back to the original ciphertext. At this
point we have made another query to the CVO oracle and so
we increment the value of count by one.

distance_from_threshold =
pos_threshold - mid;

sample->b += distance_from_threshold;
ci = bootsSymDecrypt(sample, key);
count = count + 1;
sample->b -= distance_from_threshold;

We now check whether the plaintext bits ans and ci
are same or not. If they are same, then it implies that the
result of decryption was correct which in turn implies that the
underlying error lies between start and mid as the added

perturbation did not caused the underlying error to cross the
positive threshold. If this is the case then we reduce our search
space to the bounds start and mid. If they are different, then
it implies that the result of decryption was incorrect which in
turn implies that the underlying error lies between mid and
end as the added perturbation caused the underlying error to
cross the positive threshold. If this is the case then we reduce
our search space to the bounds mid and end.

if(ci == ans) {//if decrypted
correctly
error = mid;
get_error_if_positive(sample, start,
mid, key, ans);
} else {
get_error_if_positive(sample, mid, end,
key, ans);
}

We would like to highlight that after each decryption of
the perturbed ciphertext, we are removing the perturbation to
restore back the original error as it is this error that we are
trying to recover.

18


	Introduction
	Motivation
	Contribution
	Organization

	Background
	Learning With Errors problem
	Torus Based Homomorphic Encryption
	Torus Domain For TFHE
	Integer Domain for FHEW

	Fully Homomorphic Encryption Libraries
	The Encryption Stage
	Homomorphic gate evaluation and bootstrapping
	The Decryption Stage


	Existing Attacks on FHE Schemes
	Attacker Assumptions and Threat Model
	Client as the Decryption Verification Oracle
	Recovering the Plaintext and Error Sign
	Perturbing Computed Result

	Recovering The Original Error Value
	Exploiting Gaussian Nature of Timing and Error Distribution
	Identifying Outliers using Timing Analysis
	Gaussian nature of Timing and Error distributions

	Experimental results
	Discussion and Future Direction
	Some Practical Questions
	Potential Countermeasures

	Conclusion
	References
	Appendix A: CVO attack Proof-of-Concept code on TFHE without timing information
	Appendix B: Working of Proof-of-Concept Code

