
EXTENSIBLE DECENTRALIZED SECRET SHARING AND
APPLICATION TO SCHNORR SIGNATURES

MICHELE BATTAGLIOLA, RICCARDO LONGO, AND ALESSIO MENEGHETTI*

Abstract. Starting from links between coding theory and secret sharing we develop an
extensible and decentralized version of Shamir Secret Sharing, that allows the addition
of new users after the initial share distribution.

On top of it we design a totally decentralized (t, n)-threshold Schnorr signature scheme
that needs only t users online during the key generation phase, while the others join later.

Under standard assumptions we prove our scheme secure against adaptive malicious
adversaries. Furthermore, we show how our security notion can be strengthen when
considering a rushing adversary. Using a classical game-based argument, we prove that
if there is an adversary capable of forging the scheme with non-negligible probability, then
we can build a forger for the centralized Schnorr scheme with non-negligible probability.

1. Introduction

Decentralized systems are slowly becoming a desirable alternative to centralized ones,
due to the advantages of distributing the management of data, such as avoiding single-
points-of-failures or the secure storage of crypto-assets. For them to become a viable
alternative, it is necessary to use secure decentralized cryptographic schemes. In particular,
digital signature schemes assume a central role in this setting, as hinted by the amount of
recent works on multi-user schemes and threshold variant of signature protocols (see e.g.
[1, 2, 5, 4]).

Roughly summarizing, a threshold variant of a scheme is composed by three algorithms:
a multi-party key-generation algorithm, a multi-party signature algorithm, and a verifica-
tion algorithm which is the same as the one of the centralized scheme. In this context, the
multi-party key-generation algorithms usually employ a secret-sharing scheme to obtain a
set of shares of the keys used to sign and verify signatures. The most established scheme is
Shamir’s Secret Sharing Scheme, a secure protocol based on polynomial evaluation. Even
though efficient and secure, this scheme relies on a central authority that generates the
shares and provides them to the participants to the threshold scheme. In order to achieve
a completely decentralized scheme it is therefore necessary to utilize a variant of Shamir’s
scheme in which the dealer is not a single authority, such as for example the scheme de-
scribed in [7, Section 5.2]. In this work we present a (t, n) generalisation of Schnorr’s
(2, 3)-threshold signature [1], using a decentralized secret-sharing scheme, where the dealer
is replaced by a set of users.

Moreover, we also generalize the concept of the offline participant defined in [2] with
the introduction of an “extensible” key generation, developing a protocol that needs only
t participants online during the key generation phase but later can be extended to involve
new parties. Indeed, any set of at least t users is able to generate new shards of the private
key, allowing the addition of new participants (which have the same characteristics of the
initial users) without altering neither the threshold nor the public key.

2020 Mathematics Subject Classification. Primary: 94A60; Secondary: 94B99, 68W40.
Key words and phrases. Secret Sharing, Digital Signature, Threshold Cryptography, Maximum Distance

Separable Code, Diffie-Hellman Assumption.
1

2 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

1.1. Organization. We start with some preliminaries in Section 2, showing how results
from coding theory could be useful in building a Secret Sharing Scheme, defining some
notation, and introducing some cryptographic primitives used later on. Then, in Section 3,
we formally define our extensible decentralized secret sharing we use for the key generation
algorithm.

In Section 4 we describe the (t, n)-threshold Schnorr Signature. Finally, in Section 5 we
prove the security of our protocol.

2. Preliminaries

2.1. Notation. We use the symbol || to indicate the concatenation of bit-strings.
In the following when we say that an algorithm is efficient we mean that it runs in

(expected) polynomial time in the size of the input, possibly using a random source.
We use a blackboard-bold font to indicate algebraic structures (i.e. sets, groups, rings,

fields and elliptic curves). When speaking about a generic group G, we use multiplicative
notation unless stated otherwise.

When describing communication steps we will use two indexes, the first denotes the
sender, while the second the receiver (i.e. the symbol xi,j denotes that the value x was
generated by party i and sent to party j).

With an abuse of notation we sometimes say that a list is a subset of a set. In this
context we simply mean that every element of that list is an element of the set.

2.2. From MDS Codes to Secret Sharing. Let Fq be the finite field with q elements
and let α be an agreed-upon primitive element of Fq. Let {p(i)}i=1,...,τ ⊆ Fq[x] be a set of
τ polynomials of degree t− 1, so p(i) =

∑t−1
k=0 p

(i)
k xk, where p

(i)
k ∈ Fq is the k-th coefficient

of the polynomial p(i).
Let p =

∑τ
i=1 p

(i), with coefficients pk =
∑τ

i=1 p
(i)
k for k = 0, . . . , t − 1, and define

βj = p(αj). Note that, if we define βi,j = p(i)(αj) for i ∈ {1, . . . , τ} and j ∈ {1, . . . , q − 1},
then we have that βj =

∑τ
i=1 βi,j .

Definition 1. Let J = [j1, . . . , jn] be a list of 1 ≤ n ≤ q − 1 distinct integers in
{0, . . . , q − 1}. We define GJ as the (t× n) matrix:

GJ =
[
αj·k]

k∈{0,...,t−1}, j∈J

If n = 1 then J = [j] and we sometimes simply use Gj instead of G[j].

Lemma 1. For any t ≤ n ≤ q − 1 and for any J = [j1, . . . , jn], the matrix GJ is the
generator matrix of a punctured [n, t]q Reed-Solomon code. In particular:

• GJ has maximum rank for any J = [j1, . . . , jn];
• if n = t then GJ is invertible;
• if n = q − 1 then GJ is a standard generator matrix (given as a Vandermonde

matrix) of a [q − 1, t]q Reed-Solomon code.

Lemma 1 summarizes the properties of the matrix defined in Definition 1 and the link
with Reed-Solomon codes [8]. An interested reader can refer to [9] for a comprehensive
introduction to Coding Theory with a focus on Reed-Solomon codes and algebraic codes.
We remark that the link with Reed-Solomon codes derives from the matrix in Definition 1.

An alternative and more general approach would be to use any t× n matrix with coef-
ficients in Fq. In this case Lemma 1 would become a summary of the required properties
that the matrix should satisfy in order to achieve similar results. In particular, we remark
that it is possible to substitute our definition with the one of Extended Generalized Reed-
Solomon codes, a choice that would allow a broader set of acceptable parameters (e.g. in
Definition 1 n can be at most q + 1 instead of q − 1). We focus however on Vandermonde

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES3

matrices to explicit the parallelism with the classical version of Shamir’s Secret Sharing
Scheme.

Now we show that, since p has degree at most t − 1, given any list J ⊆ {1, . . . , q − 1}
of cardinality at least t, with the list of evaluations [βj]j∈J it is possible to interpolate the
polynomial p. That is, the coefficients pk can be reconstructed and therefore the evaluation
p(γ) in any element γ ∈ Fq can be computed.

Proposition 1. Let J = [j1, . . . , jt] be a list of t distinct integers in {1, . . . , n}, and let
GJ be the square matrix constructed as in Definition 1. Then:

(p0, . . . , pt−1) = (βj1 , . . . , βjt) ·G−1
J .

Proof. For any j ∈ {1, . . . , q} we have that βj = p(αj) =
∑t−1

k=0 pk·(αj)k = (p0, . . . , pt−1)Gj ,
thus:

(2.1) (p0, . . . , pt−1) ·GJ = (βj1 , . . . , βjt).

By Lemma 1, since J has cardinality t, then GJ is invertible, so we can multiply both sides
of Equation (2.1) by G−1

J and conclude our proof. □

Proposition 2. Let h be any integer in {1, . . . , n}, let J = [j1, . . . , jt] be a list of t distinct
integers in {1, . . . , n}, and let eℓ be the ℓ-th element of the standard basis of (Fq)

t. Then:

βh =
t∑

ℓ=1

f(βjℓ , h, J, ℓ),

where for any ℓ ∈ {1, . . . , t} we define the function f as:

(2.2) f(x, h, J, ℓ) = x · eℓG−1
J Gh.

Proof. Observe that eℓ · G−1
J is the ℓ-th row of G−1

J . By linearity, from Proposition 1 we
have:

(p0, . . . , pt−1) =
t∑

ℓ=1

βjℓeℓ ·G
−1
J .

So:
t∑

ℓ=1

f(βjℓ , h, J, ℓ) =
t∑

ℓ=1

βjℓeℓG
−1
J Gh = (p0, . . . , pt−1)Gh = βh,

as shown in the proof of Proposition 1. □

An interesting consequence of Proposition 2 is that t distinct shares are sufficient to com-
pute any other share. However, observe that it is possible to obtain βjℓ from f(βjℓ , h, J, ℓ),
since both GJ and Gh can be easily computed even without knowing anything about the
polynomials. This means that Proposition 2 should not be used directly to distribute new
shares of a secret, in order to preserve the privacy of the old shares.

A simple workaround is to split these secret values. Let bh,J,ℓ,k be chosen at random in
Fq for k ∈ {1, . . . , t} \ {ℓ}, and set bh,J,ℓ,ℓ = f(βjℓ , h, J, ℓ)−

∑t
k=1,k ̸=ℓ bh,J,ℓ,k. If we define

bh,J,k =
∑t

ℓ=1 bh,J,ℓ,k, then we have that:

(2.3)
t∑

k=1

bh,J,k =
t∑

k=1

(
t∑

ℓ=1

bh,J,ℓ,k

)
=

t∑
ℓ=1

(
t∑

k=1

bh,J,ℓ,k

)
=

t∑
ℓ=1

f(βjℓ , h, J, ℓ) = βh

Note that the random values are completely canceled out only when summing all the bh,J,k,
this means that the values βjℓ remain hidden, so this is a safe way to generate new shares.

4 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

2.3. Commitments. A commitment scheme [3] is composed by two algorithms:

• Com(m, r): which given the message m to commit and some random value r
(sometimes we will omit this randomness in our notation) outputs the commitment
KGC and the decommitment KGD.

• Ver(KGC, KGD): which given a commitment and its decommitment outputs the com-
mitted message m if the verification succeeds, ⊥ otherwise.

A commitment scheme must have the following two properties:

• Binding: given KGC, it is infeasible to find values m′ ̸= m and KGD, KGD′ such
that Ver(KGC, KGD) = m and Ver(KGC, KGD′) = m′. We say that the commitment is
perfectly binding if the hiding property holds even if the adversary has unbounded
computational power.

• Hiding: Let [KGC1, KGD1] = Com(m1, r1) and [KGC2, KGD2] = Com(m2, r2) with
m1 ̸= m2, then it is infeasible for an attacker having only KGC1, KGC2, m and m′ to
distinguish whether m = m1 and m′ = m2 or m′ = m1 and m = m2, i.e. identify
which KGCi corresponds to which mi with more than negligible advantage. We say
that the commitment is perfectly hiding if the hiding property holds even if the
adversary has unbounded computational power.

Notice that perfect hiding and perfect binding are mutually exclusive properties, in fact
in a perfectly binding commitment KGC can be decommitted in at most one way, so a
computationally unbounded adversary can violate the hiding property via a brute-force
search.

For our Extensible Decentralized Verifiable Secret Sharing Scheme, described in Sec-
tion 3, we need a homomorphic commitment, that is a commitment HCom for which the
following properties hold for all m0,m1, z0, z1, γ ∈ Fq:

HCom(m0; z0) ·HCom(m1; z1) = HCom(m0 +m1; z0 + z1),

HCom(m0; z0)
γ = HCom(γ ·m0; γ · z0).

The Pedersen commitment [6], based on the difficulty of the discrete logarithm, is a
perfectly hiding homomorphic commitment scheme which works as follows:

Setup: let G be a group of prime order q where the DLOG problem is hard (for
the binding property to hold), and g, h be random generators of G, then the
message space of the commitment scheme is Zq, the randomizer space is Zq and
the commitment space is G;

Commitment: to commit to m ∈ Zq using the randomizer z ∈ Zq, the committer
computes C = HCom(m, z) = gm · hz;

Verification: the decommitment is the pair (m, z), and Ver(C,m, z) simply outputs
m if C = gm · hz, ⊥ otherwise.

3. Extensible Decentralized Verifiable Secret Sharing Protocol

In this section we will give a brief description of our decentralized variant of the Verifiable
Secret Sharing Scheme by Pedersen [6], which includes the feature of adding new users.

Let P1, . . . , Pn be n parties participating in the secret sharing scheme, and let t ≤ n be
the chosen threshold.

We assume that q is big enough that, given n polynomials of degree d sampled uniformly
at random, the probability of their sum to be of degree d′ < d is negligible. Finally, we use
a homomorphic commitment HCom as defined in Section 2.3.

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES5

3.1. Secret Generation. The distributed secret generation algorithm is carried out by
the first τ ≤ n parties {P1, . . . , Pτ}, and proceeds as follows:

Player i, i ∈ {1, . . . , τ}
Input:
Private Output:
Public Output: G, g, q,H, α

(1) Each Pi for i ∈ {1, . . . , τ} generates a secret polynomial p(i) ∈ Fq[x] of degree t−1,
by sampling the coefficients p

(i)
k uniformly at random in Fq.

(2) The constant term p0 of the summation polynomial p (see Section 2.2) is implicitly
defined as the secret to be shared. Note that no single party Pi for any i knows
this secret.

(3) Each Pi samples another random polynomial z(i) ∈ Fq[x] of degree t− 1, and uses
its coefficients to compute and publish the commitments to the coefficients of their
secret polynomial p(i): C0,i,k = HCom

(
p
(i)
k ; z

(i)
k

)
.

(4) After having received every single commitment C0,j,k, for j ∈ {1, . . . , τ} and
k ∈ {0, . . . , t− 1}, each Pi sends to each Pj the polynomial evaluations βi,j = p(i)(αj)

and γi,j = z(i)(αj).
(5) Each Pi for i ∈ {1, . . . , τ} sends (βi,j , γi,j) also to every party Pj for j ∈ {τ +

1, . . . , n}.
(6) Exploiting the homomorphic properties of the commitment, each Pi for i ∈ {1, . . . , n}

checks the values received against the published commitments:

(3.1) HCom(βj,i; γj,i)
?
=

t−1∏
k=0

(C0,j,k)
(αi)k ,

for j ∈ {1, . . . , τ}.
(7) If all of these checks pass, each Pi sets its share of the newly generated secret as

βi =
∑τ

j=1 βj,i, and saves the checking value γi =
∑τ

j=1 γj,i.

We remark that the τ parties involved in the secret generation algorithm are always
capable of determining the secret p0, regardless of the value t. We have two possible cases:

• τ ≥ t: in this case the Decentralized Secret Sharing Protocol behaves as a (t, n)-
VSS, and no group of less than t parties can work together to reconstruct the
secret;

• τ < t: in this case, P1, . . . , Pτ can reconstruct the secret even if they are less than
t.

In particular, observe that if τ = 1 then our protocol behaves as a VSSS in which the
shares are created and distributed by an Authority.

3.2. Secret Reconstruction. If J ⊆ {1, . . . , q} is a list of t distinct indexes, then with
the vector of shares (βj)j∈J it is possible to reconstruct the secret p0 as follows:

p0 = (βj)j∈J ·G−1
J · eT1 ,

which is a direct consequence of Proposition 1. Let ℓ ∈ {1, . . . , t} be the position of j inside
the list J , note that the Shamir share βj can be converted into an additive share ωj :

ωj = βjeℓ ·G−1
J · eT1(3.2)

p0 =
∑
j∈J

ωj

6 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

3.3. Addition of New Parties. Let J = [j1, . . . , jt] ⊆ {1, . . . , n} be a list of t distinct
indexes. The parties {Pi}i∈J can collaborate to add the new party Pn+1 (i.e. generate its
share βn+1) with the following algorithm:

(1) Each Pjℓ for ℓ ∈ {1, . . . , t} chooses uniformly at random bn+1,J,ℓ,k, zn+1,J,ℓ,k ∈ Fq

for k ∈ {1, . . . , t} \ {ℓ}, and sets bn+1,J,ℓ,ℓ = f(βjℓ , n+ 1, J, ℓ)−
∑t

k=1,k ̸=ℓ bn+1,J,ℓ,k,
zn+1,J,ℓ,ℓ = f(γjℓ , n+ 1, J, ℓ)−

∑t
k=1,k ̸=ℓ zn+1,J,ℓ,k, where f(x, n+1, J, ℓ) is defined

as in Equation (2.2).
(2) Each Pjℓ publishes the commitments Cn+1,J,ℓ,k = HCom(bn+1,J,ℓ,k; zn+1,J,ℓ,k) for

k ∈ {1, . . . , t}.
(3) After having received every single commitment Cn+1,J,ℓ,k, for ℓ, k ∈ {1, . . . , t}, each

Pjℓ checks the coherence of these commitments with the ones published during the
generation phase:

(3.3)
t∏

k=1

Cn+1,J,ℓ,k
?
=

t−1∏
k=0

 τ∏
j=1

C0,j,k

(αℓ)k

eℓG
−1
J Gn+1

,

for ℓ ∈ {1, . . . , t} (GJ and Gn+1 are defined as in Definition 1), and:

(3.4)
t∏

k=1

t∏
ℓ=1

Cn+1,J,ℓ,k
?
=

t−1∏
k=0

 τ∏
j=1

C0,j,k

(αn+1)k

.

If everything checks out, Pjℓ sends to each Pjk the values bn+1,J,ℓ,k and zn+1,J,ℓ,k,
for ℓ, k ∈ {1, . . . , t}.

(4) Each Pjℓ checks the consistency of the data received and the committed values:

HCom(bn+1,J,k,ℓ; zn+1,J,k,ℓ)
?
= Cn+1,J,k,ℓ,

for k ∈ {1, . . . , t}, then sets bn+1,J,ℓ =
∑t

k=1 bn+1,J,k,ℓ, zn+1,J,ℓ =
∑t

k=1 zn+1,J,k,ℓ,
and sends them to Pn+1.

(5) Pn+1 retrieves its share as: βn+1 =
∑t

ℓ=1 bn+1,J,ℓ, and the checking value as:
γn+1 =

∑t
ℓ=1 zn+1,J,ℓ. Then it checks their consistency with the commitments by

verifying:

(3.5) HCom(bn+1,J,ℓ; zn+1,J,ℓ)
?
=

t∏
k=1

Cn+1,J,k,ℓ,

for ℓ ∈ {1, . . . , t}, and Equations (3.3) and (3.4).
Note that at the end of the procedure, Pn+1 has its own secret values just like the other
parties, so it can participate in the secret reconstruction or the addition of further parties.

3.4. Security of the Secret Sharing. In this section we prove correctness and security
of the secret sharing scheme described in section 3.1, reducing it to the correctness and
security of a centralized version, which are a direct consequence of the binding and hiding
properties of the commitment scheme. For the correctness we refer to Definition 4.1 of [6]
which includes the verifiability, for the security we refer to Theorem 4.4 of [6].

Definition 2 (Centralized Secret Sharing). The centralized version of the scheme described
in section 3.1 between a dealer D and players P1, . . . , Pn with threshold t of a secret s ∈ Fq

proceeds as follows:
(1) D chooses two random polynomials p, z ∈ Fq[x] of degree t− 1 such that p0 = s;
(2) D computes and publishes Ck = HCom(pk, zk) for k = 0, . . . , t− 1;
(3) D sends to Pj βj = p(αj) and γj = z(αj);

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES7

(4) each Pj checks that their share is correct by verifying:

(3.6) HCom(βj , γj)
?
=

t−1∏
k=0

C
(αj)k

k

The secret s can be reconstructed as usual by interpolating {βj}J where J is a set of at
least t indexes.

Lemma 2 (Correctness). If HCom is binding then the secret sharing of Definition 2 is
correct. If HCom is perfectly binding then the secret sharing of Definition 2 is correct even
if D has unbounded computational power.

Proof. For the homomorphic properties of HCom when the dealer is honest then Equa-
tion (3.6) holds so an honest Pj accepts.

In order to make the players reconstruct a different secret s′, ∃j such that D has sent
to Pj a wrong share βj ̸= p(αj). Pj accepts βj only if Equation (3.6) holds, this means
that ∃γj such that HCom(βj , γj) = HCom(p(αj), z(αj)) and that D has managed to find
it and send it to Pj , contradicting the binding property of HCom. □

Lemma 3 (Security). If HCom is hiding then the secret sharing of Definition 2 is secure.
If HCom is perfectly binding then the secret sharing of Definition 2 is secure even if the
adversary has unbounded computational power.

Proof. To prove that an adversary with the views of up to t − 1 players does not gain
any information about the secret s, we prove that, for any s′ ̸= s this adversary cannot
distinguish a view of the sharing of s form a view of the sharing of s′. To achieve this,
we prove that the existence of an adversary that has more than negligible advantage in
winning the game defined below breaks the hiding property of HCom.

Definition 3 (View-distinguishing game). The game between a challenger C and an ad-
versary A proceeds as follows:

(1) C chooses randomly s, s′ ∈ Fq, then flips a random bit b ∈ {0, 1} and sends to A

the ordered pair (s, s′) if b = 0, (s′, s) if b = 1.
(2) A chooses a set J ⊂ {1, . . . , n} of size up to t− 1 and sends it to C: these are the

indexes of the corrupted players, i.e. A will see their views.
(3) C chooses randomly p, p′, z, z′ ∈ Fq[x] such that p0 = s, p′0 = s′, and βj = p(αj) =

p′(αj), γj = z(αj) = z′(αj) ∀j ∈ J . Then C sends to A the commitments Ck =
HCom(pk, zk), C ′

k = HCom(p′k, z
′
k) for k = 0, . . . , t − 1, and the values βj , γj for

j ∈ J .
(4) A outputs a guess b′ of b and wins if b′ = b.

The advantage of A is P(b′ = 1|b = 1)− P(b′ = 1|b = 0).

Let A be an adversary that has a non-negligible advantage ε in winning the game
of Definition 3, then we can violate the hiding property of HCom as defined in Section 2.3
by simulating a game for A. The simulator S sets s = m and s′ = m′, C0 = KGC1,
C ′
0 = KGC2, and chooses randomly βj , γj ∈ Fq for j ∈ J (if the size of J is less than t − 1

then S chooses also other t − 1 − |J | values in order to have an extended set J ′ of size
exactly t− 1). Note that if we implicitly define p, p′ ∈ Fq[x] as the polynomials such that
p(0) = m1, p′(0) = m2, p(αj) = p′(αj) = βj , then ∃λj,k for k = 1, . . . , t − 1 such that
pk = λ0,k ·m1 +

∑
j∈J ′ λj,k · βj and p′k = λ0,k ·m2 +

∑
j∈J ′ λj,k · βj . So, if we define:

Ck = C
λ0,k

0 ·
∏
j∈J ′

HCom(βj , γj)
λj,k , C ′

k = C ′
0
λ0,k ·

∏
j∈J ′

HCom(βj , γj)
λj,k ∀k = 1, . . . , t− 1

then we implicitly set γj = z(αj) = z′(αj) where the coefficients of the polynomials
z, z′ ∈ Fq[x] are defined as the coefficients of p, p′ using γj instead of βj , r1 instead of

8 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

m1 and r2 instead of m2. This means that the Equation (3.6) holds for both sets of
commitments {C0, . . . , Ct−1}, {C ′

0, . . . , C
′
t−1}. So S can simulate the game by sending to

A during step 1 the ordered pair (s, s′), then if A answers with 0 we guess that s = m1 and
s′ = m2, otherwise we guess that s = m2 and s′ = m1. Note that the simulation is perfect
so we have the same non-negligible advantage ε in breaking the hiding property. □

Theorem 1. The secret sharing scheme described in section 3.1 is secure.

Proof. For sake of simplicity we suppose that τ = t but the same proof can be adapted for
an arbitrary τ .

Let suppose that the adversary controls P2, ..., Pt. We show that after the Secret Gen-
eration 3.1 it has no information about the secret p0.

First of all, notice that p(1)0 is uniformly distributed, thus p0 is uniformly distributed as
well.

Then notice also that steps 1 to 6 are t independent executions of the verifiable secret
sharing scheme described in Definition 2 with n participants and threshold t, each having
as dealer a different Pi, i = 1, ..., t, thus the adversary does not gain any information about
p
(1)
0 , the secret of the honest player. Moreover the last step does not involve any new

message exchange, thus does not reveal anything.
Hence, the adversary has no information about p0.

□

Theorem 2. The Addition of New Parties described in section 3.3 is secure.

Proof. To prove the security of the Addition of New Parties we need to show that an
adversary controlling at most t − 1 participants is not able to learn anything about the
secret of the other parties.

Initially we suppose that the adversary does not control Pn+1, but only t−1 out of the t
parties which perform the protocol to add Pn+1. WLOG we can suppose that these parties
are P1, . . . , Pt and that the adversary controls P2, . . . , Pt.

We can notice that step 1 is a (t, t) additive secret sharing of f(β1, n + 1, J, 1), with
dealer P1, verified with a homomorphic commitment. This is secure and does not leak any
information about β1 or βn+1.

The following steps do not require any additional computation or communication in-
volving the secret bn+1,J,1,1, so the security is trivial.

Now we need to deal with the case of the adversary controlling Pn+1 and t − 2 among
P1, . . . , Pt. WLOG we can suppose that the adversary controls P3, . . . , Pt.

The same considerations as before hold for step 1. However, now the adversary is also
able to learn bn+1,J,1 and bn+1,J,2 after step 5. In the computation of each bn+1,J,1 and
bn+1,J,2 there are two unknown and uniformly distributed addends, that is the adversary
learns bn+1,J,1,1 + bn+1,J,2,1 and bn+1,J,1,2 + bn+1,J,2,2, but these sums give no information
on the addends, so the adversary is not able to learn anything more. □

Theorem 3. The Addition of New Parties described in section 3.3 is robust, i.e. an
adversary controlling at most t− 1 parties is not able to corrupt the protocol without being
noticed.

Proof. Suppose that the adversary controls P2, ..., Pt. To prevent the correct execution of
the protocol the adversary could send wrong data either during step 1 or 5.

In the first case a cheating behaviour is caught thanks to 3.3 and 3.4 unless the ad-
versary is able to produce b̃n+1,J,j,1 ̸= bn+1,J,j,1 and z̃n+1,J,j,1 ̸= zn+1,J,j,1 such that
HCom(b̃n+1,J,j,1, z̃n+1,J,j,1) = HCom(bn+1,J,j,1, zn+1,J,j,1). This is impossible due to the
binding property of HCom.

In the second case a cheating behaviour is caught in the same way thanks to 3.5.
□

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES9

4. Threshold Schnorr Signature

In this section we describe a possible use case of our extensible Secret Sharing Scheme:
a (t, n)-threshold variant of Schnorr’s digital signature algorithm with offline participants.
For our construction we need a group G of prime order q with generator g where the DLOG
problem is assumed to be hard. Note that this means that the field Fq is isomorphic to
the ring Zq, so we will write Zq from now on. Moreover the hardness of DLOG implies
that the size of q is exponential in the security parameter, thus any practical application
necessarily has a number of users n ≪ q. Finally, we require that at least τ ≥ t users are
online for the setup, in the following we suppose there are exactly τ = t online parties in
the key generation phase, namely P1, . . . , Pt.

The protocol is dividend into four algorithms:
(1) Setup Phase (4.1): in this phase all the players interact to set some common

parameters. Note that in a practical implementation this phase can be performed
ahead of time without any real communication, because these parameters are usu-
ally fixed (e.g. for Bitcoin applications which have to use secp256k1 and SHA-256).

(2) Key-Generation (4.2): this phase is performed by parties P1, . . . , Pt to create the
public key for the signature scheme and the private shares for themselves.

(3) Signature Algorithm (4.3): this phase is performed whenever any group of t
parties wants to produce a signature.

(4) Participant Addition(4.4) performed by any group of at least t parties to create
new shares for a new player.

From now on “Pi does something” means that all the parties involved in that phase
perform the specified action.

4.1. Setup Phase. The aim of this phase is to make the starting parties P1, . . . , Pt to
agree on all the parameters required in the protocol.

Player i, i ∈ {1, . . . , t}
Input:
Private Output:
Public Output: G, g, q,H, α

P1, . . . , Pt have to establish a group G of prime order q with generator g in which the
discrete logarithm problem is considered to be hard, a secure hash function H whose
outputs can be interpreted as elements of Zq, and a primitive element α of Zq. Lastly the
agree on a common instance of a commitment scheme Com (e.g. the Pedersen commitment
scheme).

4.2. Key generation. In this phase, the starting parties P1, . . . , Pt produce a common
public key A and each obtains a share of the corresponding private key.

Player i, i ∈ {1, . . . , t}
Input:
Private Output: βi
Public Output: A

(1) Secret key generation and communication:
(a) Pi randomly chooses ai ∈ Zq and sets Ai = gai ;
(b) Pi randomly chooses a polynomial p(i) of degree t− 1 such that p(i)(0) = ai.
(c) Pi computes [KGCi, KGDi] = Com(Ai);
(d) Pi publishes KGCi
(e) Pi publishes KGDi
(f) Pi gets Aj for 1 ≤ j ≤ t, i ̸= j.

10 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

(2) Shards verification and private key computation:
(a) Pi computes (as per Section 3) βi,j = p(i)(αj) and sends it to player Pj ;
(b) Pi checks the integrity and consistency of the shards βj,i;
(c) Pi proves in ZK the knowledge of ai using Schnorr’s protocol.

(3) Pi compute its private key βi =
∑t

j=1 βi,j .
(4) The public key is A =

∏t
i=1Ai. Implicitly we set

∑t
i=1 ai = a.

4.3. Signature Algorithm. This algorithm is used when a set J of at least t players
agrees to sign a message M .

The parameters involved are:

Player i, i ∈ J
Public Input: M,A
Private Input: βi
Public Output: (s, e)

The protocol proceeds as follows.
(1) Generation of r:

(a) Pi randomly chooses ki ∈ Zq;
(b) Pi computes ri = gki ;
(c) Pi computes [KGCi, KGDi] = Com(ri) and sends KGCi;
(d) once every KGCj for j ∈ J has been received, Pi sends KGDi;
(e) Pi computes rj = Ver([KGCj , KGDj]) for each j ∈ J ;
(f) Pi computes r =

∏
j∈J rj .

(2) Generation of s:
(a) Pi converts its Shamir share βi to an additive share ωi such that

∑
j∈J ωj = a,

as in Equation (3.2);
(b) Pi computes e = H(r||M) and si = ki − ωie;
(c) Pi computes [KGC′i, KGD

′
i] = Com(si) and sends KGC′i;

(d) once every KGC′j for j ∈ J has been received, Pi sends KGD′i;
(e) Pi computes sj = Ver([KGC′j , KGD

′
j]) for each j ∈ J ;

(f) Pi computes s =
∑

j∈J sj .
(3) Pi computes rv = gsAe and checks that H(rv||M) = e.

The output signature is (s, e). If a check fails, the protocol aborts.

4.4. Participant Addition. This protocol allows any set J of at least t users to add a
new user Pm to the protocol. After the protocol Pm will have the same powers (i.e. can
sign and add new users) of the other users.

The parameters involved are:

Player i, i ∈ J Player m
Public Input: A Public Input: pkm
Private Input: βi Private Input: skm
Output: Private Output: βm

The protocol works as follows:
(1) Pm publishes its public key pkm that {Pi}i∈J will use to communicate with it;
(2) Additive Secret Sharing:

(a) Pi transforms its Shamir share βi in an additive share ωi, as in eq. (3.2);
(b) Pi performs an additive secret sharing of ωi =

∑
j∈J ωi,j ;

(c) Pi sends ωi,j to Pj ;
(d) Pi publishes gωi,j for each j ∈ J . All the values are stored in a public matrix

Ω.

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES11

(e) Pi verifies to have received correct shares as explained in Section 3.3.
(3) Share distribution:

(a) Pi computes ω̄i =
∑

j∈J ωj,i;
(b) Pi encrypts ωj,i with pk and sends it to Pm;

(4) Key reconstruction and verification:
(a) Pm computes its private key βm =

∑
i∈J ω̄i;

(b) Pm verifies to have received correct shares as explained in Section 3.3.

Observation 1. The symmetric encryption algorithm used by Pm should be IND-CPA
secure, in order to maintain the security of the protocol. In the security proof we will
suppose that the algorithm is indeed secure and the key generation protocol generating
pkm, skm was ran correctly.

5. Security Proof

In this section we discuss the security of the scheme in terms of the unforgeability
properties defined below.

Definition 4 (Unforgeability). A (t, n)-threshold signature scheme is unforgeable if no
malicious adversary who corrupts at most t−1 players can produce the signature on a new
message m with non-negligible probability, given the view of the threshold sign on input
messages m1, . . . ,mQ (adaptively chosen by the adversary), as well as the signatures on
those messages.

The unforgeability of our protocol is formally stated in the following theorem:

Theorem 4. Assuming that:
• the Schnorr signature scheme instantiated on the group G of prime order q with the

hash function H is unforgeable;
• Com,Ver is a non-malleable commitment scheme;
• the Decisional Diffie-Hellman Assumption holds;

our threshold protocol is unforgeable.

In Section 5.4 we will prove the theorem by showing that if there is an adversary A able
to forge a signature for the threshold scheme with non negligible probability ϵ > λ−c with
λ a polynomial and c > 0, then it is possible to build a forger F that forges a signature
for the centralized Schnorr scheme also with non negligible probability. The simulation
works by having an oracle that feeds inputs for the centralized scheme to F, our goal is to
respond by generating a signature exploiting A. First, it has to simulate the key generation
protocol in order to match the key received from the oracle, then it can proceed with the
signature part. The core of this setup is that if A is able to crack our protocol, F will take
advantage of that and will also create a forgery for the centralized version of the protocol.

Following the definition of unforgeability, A will control t − 1 players while F controls
the remaining ones, WLOG we assume that F controls the first player and A controls
P2, . . . , Pt. It is important to notice that these t − 1 players that the adversary controls
can either be present from the start, during the key generation, or added later, with the
participant addition. In the following we will suppose that every malicious party is involved
in the key generation and that t = τ , i.e. only t parties are involved in the key generation.
The proof where the malicious parties are distributed differently is analogous and could be
easily deduced.

The adversary interacts by first participating in the key generation part in order to
generate a public key A, then starts requesting signatures on some messages mi. It can
either take part in the signature generation process or not. Eventually A outputs a message
m ̸= mi ∀i and its valid signature with probability at least ϵ, where this is taken over the

12 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

random tapes of the adversary and the honest player, respectively TA and Ti. So we can
write that

(5.1) PTi,TA
(A(TA)Pi(Ti) = forgery) ≥ ϵ,

where A(TA)Pi(Ti) is the output of A at the end of this process and PTi,TA
denotes that

the probability is taken over the random tape Ti and the adversary tape TA.
We say that a random tape is good if

(5.2) PTi(A(TA)Pi(Ti) = forgery) ≥ ϵ

2
.

We recall the following useful lemma, stated and proved in [2].

Lemma 4. If TA is chosen uniformly at random, then the probability that TA is a good
tape is at least ϵ

2 .

5.1. Key generation simulation. Now we see in detail how the key generation phase
is simulated. F receives from the challenger the public key Ac for the centralized Schnorr
protocol. The simulation proceeds as follows:

(1) F selects a random values a1, β1,j ∈ Zq for j = 2, ..., t, defines A1 = ga1 and
implicitly sets β1,j = p(1)(j).

(2) F computes the commitment [KGC1, KGD1] = Com(A1);
(3) F receives all the KGCj ;
(4) F sends KGC1;
(5) Pi sends KGDi;
(6) F receives KGDj and computes (Aj) = Ver(KGCj , KGDj) for all j;
(7) Now F knows all the parameters needed in the computation of A, so it rewinds the

adversary A to step 4, aiming to get A = Ac;
(8) F computes Â = Ac∏τ

2 Ai
, computes the commitment [ˆKGC1, ˆKGD1] = Com(Â), and

sends it to A, so that it will receive Â as A1 which leads to A = Ac. Notice that
F does not know the discrete logarithm â of Â.

(9) F simulates a fake verification protocol since it cannot compute a polynomial p̂(1)

such that p̂(1)(j) = β1,j and p̂(1)(j) = â:
(a) similarly as in the proof of Lemma 3, ∃λj,k for k = 1, . . . , t − 1 such that

p̂
(1)
k = λ0,k · â+

∑t−1
j=1 λj,k · β1,j ;

(b) F sets the commitment C0,1,0 to â as the commitment to a random value (for
the hiding property of HCom this is indistinguishable to a real commitment
since it does not need to be opened)1

(c) F computes the commitments to the other coefficients of its unknown secret
polynomial p̂(1) as:

C0,1,k = (C0,1,0)
λ0,k ·

∏
j∈J ′

HCom(β1,j , γ1,j)
λj,k

where γ1,j ∈ Zq for j = 2, . . . , t are randomly chosen.
(d) after having received all the other commitments C0,j,k, F sends β1,j , γ1,j to Pj .

(10) F simulates the Schnorr ZK proof of knowledge of â, since it does not know this
value.

(11) F participates in the ZK proofs rewinding A and selecting appropriate challenges
in order to extract the secret key of each party controlled by A.

Note that at the end of the protocol, F does not know its private key β1, but F will still
be able to complete correctly the signing part by querying the oracle.

1Note that if HCom is Pedersen’s commitment [6], then F can compute a real commitment as
HCom(â, z

(1)
0) = Â · hz

(1)
0 , where z

(1)
0 ∈ Zq is chosen randomly.

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES13

Observation 2. It is important that in step 4 the adversary sends its KGCj before F sends
KGC1, so that after the rewinding A cannot change its commitments.

If the order were inverted, A could also use the commitment of F to generate its value.
Assuming the non-malleability property, A does not deduce anything about the content

of the commitment, but it could still use it as a seed for a random generator.
If this were to happen, F can guess Â with probability 1

q with q the size of the group,
making the expected time exponential.

It is possible to swap the order in the commitment step using an equivocable commitment
scheme with a secret trapdoor. In this case we only need to rewind at the decommitment
step and change KGD1 in order to match Â.

The proof of the correctness of the simulation is stated in the following lemmas. The
proofs are trivial and use the same argument of the one presented in [2].

Lemma 5. If the Decisional Diffie-Hellman assumption holds, then the simulation termi-
nates in expected polynomial time and is indistinguishable from the real protocosl.

Proof. Since A is running on a good random tape we know that it will correctly decommit
with probability at least ϵ

2 . Therefore the rewinding is performed at most a polynomial
number of times, since the expected number of iterations is 2

ϵ = 2λc. The only difference
from the real protocol is that F does not know the discrete logarithm of Â and so it
performs a fake verification protocol. However, this is indistinguishable from a real one
since they both have the same distribution. □

Lemma 6. For a polynomial number of inputs the simulation terminates with output Ac

except with negligible probability.

Proof. First we prove that if the simulation terminates correctly, then it terminates with
Ac except with negligible probability. This is because of the non-malleability property
of the commitment scheme: if A correctly decommits twice it must do so to the same
string, no matter what P1 decommits (except with negligible probability). Because of the
construction of Â, the output is Ac.

Now we prove that the simulation ends correctly for a polynomially large fractions of
inputs. Since A is running on a good random tape, it decommits correctly for at least
ϵ
2 > 1

2λc inputs. Since Ac is chosen at random we have that Â is uniformly distributed.
We can conclude that for a fraction ϵ

2 > 1
2λc of the inputs, the protocol will terminate

correctly. □

5.2. Security of the addition of new users. Intuitively the security follows from the
fact that the values ωi,j are uniformly distributed and are shards of a full threshold additive
secret sharing of ωi. This ensures that ω̄i is also a full threshold additive secret sharing of∑

i∈J ωi.
The correctness of the algorithm is an immediate consequence of Proposition 2, as

noticed in Section 3.
Moreover we can notice that the adversary is forced to act semi-honestly thanks to the

verification steps as shown in Theorem 2 and in Theorem 3.

5.3. Signature generation simulation. After the the key generation and the addition
of new user, F has to deal with the signature requests issued by A. When A asks for a
signature, F performs a simulation while having access to the signing oracle that uses the
previously created public key. In this section we will suppose that the adversary has the
maximum power possible, i.e. it controls t − 1 participants. The cases where it controls
fewer participants can be dealt with in the same way. Without loss of generality we will
suppose that A controls P2, ..., Pt.

14 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

First we note that after the key generation/participant addition, the simulator knows
every secret of the adversary, since it is able to extract them from the ZKPs in the protocol.

For this reason F can fully predict what A will output and, while it does not know any
secret key of P1, it knows everything of P2, ..., Pt.

The simulation proceeds as follows:
(1) A chooses a message m to sign;
(2) F queries its signing oracle for a signature for m corresponding to the public key

A and gets (sf , ef);
(3) Pi randomly chooses ki ∈ Z∗

q , then computes ri = gki and [KGCi, KGDi] = Com(ri);
(4) F receives all the KGCj ;
(5) F sends KGC1;
(6) Pi sends KGDi, receives KGDj , and computes rj = Ver([KGCj , KGDj]);
(7) F rewinds A to step 5;
(8) F computes r̂1 =

rf∏t
j=2 rj

, then computes the commitment [ˆKGC1, ˆKGD1] = Com(r̂1)

and sends ˆKGC1 to A so it receives r̂1 as r1 which leads to r = rf ;
(9) Pi, for i = 2, . . . , t, computes r =

∏t
j=1 rj , e = H(r||m), si = ki − ωie, and

[KGC′i, KGD
′
i] = Com(si), then sends KGC′i;

(10) F picks s1 at random, computes [KGC′1, KGD
′
1] = Com(s1), then sends KGC′1;

(11) Pi sends KGD′i and gets si = Ver([KGC′i, KGD
′
i]);

(12) F computes r′j = gsj · geωj for each j = 2, ..., t, then if rj = r′j it rewinds A to step
10, otherwise it sends s1 and aborts;

(13) F computes ŝ1 = sf −
∑t

j=2 sj and the commitment [ˆKGC′1, ˆKGD′1] = Com(ŝ1), then
sends ˆKGC′1 to A so it receives ŝ1 as s1 which leads to s = sf ;

(14) Pi computes s =
∑t

j=1 sj and rv = gsAe, then checks that H(rv||m) = e. If a
check fails the protocol aborts, otherwise the signature is (s, e).

Observation 3. The same considerations made in Observation 2 apply also here: it is
important that the adversary sends its commitments before F, so that after the rewinding
A cannot change its commitments, otherwise we need an equivocable commitment scheme
that allows F to change the decommitment as needed.

Lemma 7. If Com is a secure non-malleable commitment scheme, the protocol above is a
perfect simulation of the centralized one and terminates correctly with output (sf , ef).

Proof. The simulation is identical to the real protocol except that here F does not know its
secret shards. Nevertheless it is still able to retrieve the correct value from A by rewinding
it. As above, if the protocol terminates, by construction it will terminate with output
(sf , ef). If A is dishonest or refuses to decommit some values, the protocol aborts. Note
that the check of step 12 is introduced to preserve any abort that the adversary may cause
by sending an invalid s1. □

5.4. Proof of the unforgeability property. Now we are able to prove Theorem 4:

Proof. Let Q < λc be the maximum number of signature queries that the adversary makes.
As we previously proved, our simulator produces a view of the protocol that the adversary
cannot distinguish from the real one, therefore A will produce a forgery with the same
probability as in a real execution. Then the probability of success of our forger F is ϵ3

8
which is the product of the probability of the following independent events:

(1) choosing a good random tape for A, whose probability is at least ϵ
2 as per Lemma

4;
(2) getting a good public key, whose probability is at least ϵ

2 as shown in Lemma 5
and 6;

(3) A successfully produces a forgery, whose probability is again ϵ
2 (5.2).

REFERENCES 15

Under the assumption on the security of the Schnorr signature scheme, the probability of
success of F must be negligible, which implies that ϵ must be negligible too, contradicting
the hypothesis that A has a non-negligible probability of forging a signature for the scheme.

□

6. Conclusions and future works

The main contribution of this work in the context of decentralized secure protocols is
twofold: on one hand we describe and prove the security of a variant of Shamir’s Linear
Secret Sharing Scheme, on the other hand we develop a (t, n)-threshold variant of Schnorr
signature scheme.

Our variant of LSSS is based on the link between Shamir’s scheme and linear MDS codes
and it allows two interesting properties: there is no need for an authority that manages and
learns the shares of a common secret, moreover any group of at least t authorised parties
can extend the sharing scheme by adding new participants which have equal powers to
those belonging to the initial set of n parties.

Due to the properties of the decentralized VSSS, the threshold Schnorr signature protocol
described in this work is completely decentralized and is proven secure under standard
hypotheses (i.e. the centralized Schnorr signature protocol is unforgeable, the commitment
schemes are secure, and the Decisional Diffie-Hellman Assumption holds).

Notice that, by adopting an extensible decentralized VSSS, it is possible to modify
other existing schemes in order to obtain secure (t, n)-threshold variants in which new
participants can be added at any time by a legitimate group of users. In particular, since
our VSSS scheme can be seen as a generalization of the techniques adopted in [2], it is
possible to obtain (t, n) threshold variants of ECDSA. Similarly, it would be interesting
to approach the problem of obtaining threshold variants of post-quantum digital signature
schemes, a still-open problem for the case of several recent post-quantum proposals.

Finally, we remark that, by further decentralising the role of the parties P1, . . . , Pτ ,
it is possible to design a VSSS with complex access-policies to the secret p0. However,
the attempt of creating a decentralised VSSS generic enough to define any possible access
control structure seems to present several difficulties, and the feasibility of this line of
research is still under investigation.

Acknoledgements. This work was created with the co-financing of the European Union
FSE-REACT-EU, PON Research and Innovation 2014-2020 DM1062/2021. Michele Battagli-
ola acknowledges support from TIM S.p.A. through the PhD scholarship. The authors are
members of the INdAM Research Group GNSAGA. The core of this work was partially
presented as a poster at the conference CANS 2022, held in Abu Dhabi from 13 to 16
November 2022.

References

[1] M. Battagliola, A. Galli, R. Longo, and A. Meneghetti. “A Provably-Unforgeable
Threshold Schnorr Signature With an Offline Recovery Party”. In: Proceedings http://ceur-
ws. org ISSN 1613 (2022), p. 0073.

[2] M. Battagliola, R. Longo, A. Meneghetti, and M. Sala. “Threshold ECDSA with an
Offline Recovery Party”. In: Mediterranean Journal of Mathematics 19.1 (2022), pp. 1–
29.

[3] G. Brassard, D. Chaum, and C. Crépeau. “Minimum disclosure proofs of knowledge”.
In: Journal of computer and system sciences 37.2 (1988), pp. 156–189.

16 REFERENCES

[4] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. “UC Non-
Interactive, Proactive, Threshold ECDSA with Identifiable Aborts”. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’20. Virtual Event, USA: Association for Computing Machinery, 2020, pp. 1769–
1787. isbn: 9781450370899. doi: 10.1145/3372297.3423367. url: https://doi.
org/10.1145/3372297.3423367.

[5] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast Trust-
less Setup”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA: Association for Computing Machin-
ery, 2018, pp. 1179–1194. isbn: 9781450356930. doi: 10.1145/3243734.3243859. url:
https://doi.org/10.1145/3243734.3243859.

[6] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing”. In: Advances in Cryptology — CRYPTO ’91. Ed. by J. Feigenbaum. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 129–140.

[7] T. P. Pedersen. “Non-interactive and information-theoretic secure verifiable secret
sharing”. In: Annual international cryptology conference. Springer. 1991, pp. 129–140.

[8] I. S. Reed and G. Solomon. “Polynomial codes over certain finite fields”. In: Journal
of the society for industrial and applied mathematics 8.2 (1960), pp. 300–304.

[9] R. M. Roth. Introduction to coding theory. Vol. 47. 18-19. IET, 2006, p. 4.

(M. Battagliola) University of Trento, Department of Mathematics, michele.battagliola@unitn.it

(R. Longo) University of Trento, Department of Mathematics, riccardolongomath@gmail.com

(A. Meneghetti) University of Trento, Department of Mathematics, alessio.meneghetti@unitn.it
* corresponding author

https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859

	1. Introduction
	1.1. Organization

	2. Preliminaries
	2.1. Notation
	2.2. From MDS Codes to Secret Sharing
	2.3. Commitments

	3. Extensible Decentralized Verifiable Secret Sharing Protocol
	3.1. Secret Generation
	3.2. Secret Reconstruction
	3.3. Addition of New Parties
	3.4. Security of the Secret Sharing

	4. Threshold Schnorr Signature
	4.1. Setup Phase
	4.2. Key generation
	4.3. Signature Algorithm
	4.4. Participant Addition

	5. Security Proof
	5.1. Key generation simulation
	5.2. Security of the addition of new users
	5.3. Signature generation simulation
	5.4. Proof of the unforgeability property

	6. Conclusions and future works
	Acknoledgements

	References

