
FairTraDEX: A Decentralised Exchange
Preventing Value Extraction

Conor McMenamin1,2, Vanesa Daza1,3, Matthias Fitzi4, and Padraic
O’Donoghue

1 Department of Information and Communication Technologies, Universitat Pompeu
Fabra, Barcelona, Spain

2 NOKIA Bell Labs, Nozay, France
3 CYBERCAT - Center for Cybersecurity Research of Catalonia

4 IOHK

Abstract. We present FairTraDEX, a decentralized exchange (DEX)
protocol based on frequent batch auctions (FBAs), which provides formal
game-theoretic guarantees against extractable value. FBAs when run by
a trusted third-party provide unique game-theoretic optimal strategies
which ensure players are shown prices equal to the liquidity provider’s
fair price, excluding explicit, pre-determined fees. FairTraDEX replicates
the key features of an FBA that provide these game-theoretic guaran-
tees using a combination of set-membership in zero-knowledge protocols
and an escrow-enforced commit-reveal protocol. We extend the results of
FBAs to handle monopolistic and/or malicious liquidity providers. We
provide real-world examples that demonstrate that the costs of executing
orders in existing academic and industry-standard protocols become pro-
hibitive as order size increases due to basic value extraction techniques,
popularized as maximal extractable value. We further demonstrate that
FairTraDEX protects against these execution costs, guaranteeing a fixed
fee model independent of order size, the first guarantee of it’s kind for a
DEX protocol. We also provide detailed Solidity and pseudo-code imple-
mentations of FairTraDEX, making FairTraDEX a novel and practical
contribution.

Keywords: Extractable Value · Decentralized Exchange · Incentives · Blockchain

1 Introduction

One of the most prominent and widely-used classes of protocols being run on
smart-contract enabled blockchains is that of decentralised-exchange (DEX) pro-
tocols. DEX protocols allow a specific set of players, whom we call clients, to

email — (primary) conor.mcmenamin@upf.edu
vanesa.daza@upf.edu — matthias.fitzi@iohk.io — padraicodonoghue@gmail.com

This Technical Report is part of a project that has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement number 814284

2 C. McMenamin et al.

exchange one token for another in the presence of market-makers (MMs), who
provide liquidity to clients, usually in exchange for a fee. Interacting with a
blockchain-based DEX requires a client or MM to first interact with the players
who add transactions to the blockchain, known as miners or block producers.
These interactions typically reveal a player’s intention to trade to the block pro-
ducer before the transaction is confirmed on the blockchain, and in doing so,
present the block producer with what has become known as a miner-extractable
value (MEV) opportunity. MEV, first coined in [16], refers to any expected
profits the miner of a block can extract from other players interacting with
the blockchain. This extraction is performed by manipulating the ordering of,
injecting, and/or censoring transactions in prospective blocks. This has been
generalised to expected extractable value (EEV) [26] (defined in Appendix B),
as non-miner players can also perform many of these attacks.

A significant advancement in DEX protocols was the advent of automated
market makers (AMMs), with Uniswap [40] being the most prominent of which.
Projects like Flashbots [18] (a direct spin-off to [16]) have identified that AMMs
are the main source of recorded EEV (> 98%, as seen in the chart labelled
“Extracted MEV Split by Protocol” in [18], of the $665M in EEV identified
by Flashbots since August, 2020). Furthermore, Flashbots only observes basic
forms of EEV, meaning in reality (and as stated by the Flashbots team [19]), this
amount of EEV is a lower bound for the total amount of value being extracted
from clients and MMs alike through participation in DEX protocols. To this
point, a peer-reviewed analysis in [37] identified $540.54M in extracted value
up to August 2021, indicating the current number provided by Flashbots is
significantly lower than the actual amount of extracted value. In [28], it has
been further highlighted that in Uniswap V3, liquidity providers are losing more
to EEV attacks (impermanent loss in this case) than they are collecting in fees.
It is clear that the long-term viability of existing DEX protocols is not plausible.

Although many attempts have been made academically to address this sig-
nificant source of EEV [13,4,14,27,20,2], no satisfactory solution has been found.
The protocols presented in these works remain vulnerable to basic EEV at-
tacks in the case where all transactions are eventually added to the blockchain
(censorship-resistant). The overriding trend in these papers is a purely cryp-
tographic approach to an economic/game-theoretic problem, resulting in rela-
tively straightforward game-theoretic exploits. When describing these protocols
in Section 2, we also describe some of the value extraction attacks to which
the respective protocols are vulnerable. Therefore, there is a clear gap, both in
literature and in practice, to provide a DEX protocol which definitively elimi-
nates all sources of EEV. In this paper, we provide such a protocol. We outline
FairTraDEX, a DEX protocol based on an existing auction process called frequent
batch auctions (FBAs) [9] and zero-knowledge (ZK) tools for set-membership.
FBAs have been proven to provide a strict Nash Equilibrium in which clients
trade at the market fair price for a particular token swap, although are intended
to be run by a trusted third party. FairTraDEX is, to the best of our knowledge,
the first DEX protocol outlining specific practical conditions under which EEV

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 3

is prevented in a censorship-resistant blockchain by replicating the guarantees
of an FBA without the need for a trusted third party. We formally prove this
security against EEV by utilising results from ZK literature and game-theory.

1.1 Our Contribution

We first introduce a width-sensitive frequent batch auction (WSFBA), an ide-
alised commit-reveal exchange protocol between clients and MMs, based on
FBAs [9]. WSFBAs are an important improvement on basic FBAs with re-
spect to decentralised systems. WSFBAs ensure clients submit market orders
in the presence of monopolistic MMs, compared to a standard FBA in which
clients are required to submit limit orders at the fair price plus some trade fee.
The requirement for clients to submit limit orders leads to worse order execu-
tion as trade probability is decreased, while also placing a significant burden on
clients to choose the fair price. This burden is removed in an WSFBA, providing
an “obvious optimal” for clients, as coined in [38]. Furthermore, in the case of
competing MMs, a WSFBA provides equivalent equilibria to [9]. Importantly,
this equilibrium involves all client orders being traded in the auction in which
the orders are submitted, removing any strategies which involve unfilled orders
needing to being revealed and resubmitted in proceeding auctions.

We then describe FairTraDEX, a blockchain-based implementation of a WSFBA.
In FairTraDEX, order commitments are recorded on-chain (to enforce the cor-
responding escrow punishment). We utilise ZK set-membership proofs to allow
clients to commit to their orders anonymously. As such, in FairTraDEX, every
client must initially register to the protocol, depositing an escrow. Then, when-
ever a client wants to commit to an order, the client only has to prove that they
are a member of the set of players who registered in the protocol. Given enough
registrations, the probability a client’s ZK set-membership proof and committed
order relates to the actual order contents approaches 0 (we formalise this notion
in Section 5) such that no other player in the system can see the committed
order and use it to infer anything about what the order is. To definitively hide a
client’s order-information, orders are committed, including the ZK-proof, by us-
ing a relayer, a third-party who receives a fee for including relayed transactions
in the blockchain (see Appendix B.2 for further details).

We provide an extensive Ethereum virtual-machine (EVM) compatible proof-
of-concept for FairTraDEX [31] including a comparison of protocol running costs
with previous solutions in Section 6, which remain constant with respect to order
size, price and direction. When compared to potentially percentage-point slip-
pages and EEV-attack costs required to trade on current DEXs, also highlighted
in Section 6, FairTraDEX’s formal guarantees of protocol-level EEV prevention
and up-front, fixed and explicit costs set a new standard for DEX protocols.

2 Related Work

The main works aimed at protecting DEX users from EEV either focus on pre-
venting front-running of orders [13,4], the fair ordering of transactions based on

4 C. McMenamin et al.

their delivery time [27], or on hiding client trade information until the trade has
been committed to the blockchain [20,2,14]. Of these works, the closest to our
proposal are [13,4,20,14]. All of these works critically depend on honesty from
MMs, auction operators and/or the block proposers. In Appendix A, we provide
high-level descriptions of the DEX protocols while in this section, we briefly out-
line how, when all players in the respective DEX protocols are rational, EEV
opportunities exist.

In [13], the MM is always allowed to see orders from clients and can choose to
abort them. It is argued that MMs are happy to trade against all orders, including
informed orders. Furthermore, it is assumed that clients are independent, with
random information. This is not true in real-world trading environments, and as
such, Theorem 3 may not hold in practice.

In P2DEX [4], clients must publicly deposit the tokens with which to trade in
the same time frame as the order matching takes place, exposing clients to stan-
dard identity- and directional-based EEV exploits. Separating token deposit and
identity revelation from a client’s commitment to a specific auction are impor-
tant advancements used in FairTraDEX to protect against EEV. Furthermore,
at least one of the servers in charge of fairly executing orders is required to be
honest-by-default. If the servers, a minority subset of players in the P2DEX pro-
tocol, are rational and monopolised/colluding, the servers can front-run orders.
In FairTraDEX, such value-extraction is prevented by keeping all order informa-
tion hidden until every order in a particular settlement round has been commit-
ted. Furthermore, the set of servers act as a point-of-failure as server participa-
tion is required to finalise order-settlement. No subset of players in FairTraDEX
can prevent the matching of correctly-revealed orders, while in P2DEX, any
majority of servers can prevent order-matching.

Similar commit-reveal protocols to FairTraDEX for blockchain-based token-
exchange are proposed in [20,14]. The protocol in [20] is exposed to several
game-theoretic exploits which contradict its protection against front-running.
These include the necessity to reveal order direction a-priori, and the non-trivial
handling of the linkability between commitments and account-balances. The pro-
tocol also depends on an operator who does not participate in token-exchange,
gains exclusive access to order information, and is depended on for protocol
completion. In [14], clients commit their own orders to the blockchain, revealing
their identities, and corresponding token balances/execution patterns which can
be used by a basic professional MM to skew prices and extract value from the
client. Both of [20,14] aim to protect unmatched orders from being revealed, but
to do so, both protocols depend on a third party selected before the auction
begins to execute order-matching (no one else in the ecosystem can finalise the
auction, a single point of failure). Both protocols assume that the operator does
not reveal unexecuted order information.

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 5

3 Preliminaries

This section introduces the terminology and definitions necessary to understand
the main results of the paper. By negl() we denote any function f : N→ R that
decreases faster than any (positive) polynomial p. More formally, ∀ p ∃ λ0 ∈
N : ∀λ > λ0 : f(λ) < 1

p(λ) . For protocol correctness, we must assume that some

of the involved players may be malicious trying to force the protocol into in-
correct execution, and without any direct benefit for themselves. However, for
the game-theoretic part of the analysis, we assume that all players are rational.
Accordingly, the analysis of our protocol is based on two security parameters, a
cryptographic security parameter κ used to bound the probability that the pro-
tocol execution is incorrect, and a game-theoretic extractable-value parameter ψ
used to bound the extractable value of any player. The following are the crucial
terms and definitions needed for the remainder of the paper, with supplementary
terminology and definitions contained in Appendix B.

– Notional Value: The value of a set of tokens expressed in some common
reference token. In this paper, we use the symbol B as the reference token
in which we measure notional, and with which we reason about utility.

– Market-Implied Fair Price (MIFP, denoted y): As in [9], the MIFP of a to-
ken/token swap is a publicly observable signal which is perfectly informative
of the fundamental fair price of the underlying token/token swap. More-
over, a random order of fixed notional generated by a player in the system
is equally likely to buy or sell tokens at the MIFP, distributed symmetri-
cally around the MIFP. Unless otherwise stated, observing the MIFP has a
prohibitive cost for players in our system.

– Market : A market in a DEX between two tokens Atkn and Btkn consists of
two limit orders, a bid and offer. When the market is quoted from token Atkn

to Btkn, the offer price indicates the quantity of token Atkn a player must
sell for 1 token Btkn, while the bid price indicates the quantity of token Atkn

a player receives for 1 token Btkn. In this paper, we represent such a market
as bid @ offer, with 0 < bid ≤ offer.

– Reference Price (yref): For a market bid @ offer, the reference price yref is
the price such that bid

yref
=

yref
offer , i.e., yref is the geometric mean of bid and

offer.

– (Market) Width (w): For a market bid @ offer, the width is calculated as
w = offer

bid (as such w ≥ 1).

– Multiplicative Market-Impact Coefficient (δ): If the pre-trade MIFP for par-
ticular swap is y, the expected post-trade MIFP given a buy order is δ y
for some δ ≥ 1, while the expected post-trade MIFP given a sell order is
y
δ . Unless otherwise stated, a swap from Atkn to Btkn with multiplicative
market-impact coefficient δ corresponds to buy orders of Btkn having a mul-
tiplicative market-impact coefficient on yB of

√
δ and 1√

δ
on yA. Given our

definition of the MIFP, this impact function implies an upward drift in y
if δ > 1. However, our use of δ is intended to highlight that impact must

6 C. McMenamin et al.

be considered, with the exact choice of δ for a particular token pair being a
complex process and beyond the scope of this paper.

– Client : Any player in a DEX protocol who, for an MIFP y, there exists
some minimum client utility fmcf > 1 such that client buyers (sellers) have

positive expected utility to trade for or below
√

fmcf y (at or above y√
fmcf

).

– Market Maker (MM): A player in a DEX protocol with large supplies of all
tokens, who has positive expected utility trading with clients on markets of
any width w > 1 with reference price equal to the MIFP. MMs can observe
the MIFP.

– Strict Nash Equilibrium (SNE) [35]: Consider a set of non-cooperative play-
ers P1 , ..., Pn, with strategies (series’ of actions) str1 , ..., strn describing
the actions which each player takes throughout a particular protocol. These
strategies form a strict Nash Equilibrium if any individual player deviation
from these strategies strictly reduces that player’s utility.

In creating a DEX protocol, an idealised goal would be to ensure that there
exists an SNE in which clients trade at the MIFP in expectancy. However, this
is unrealistic as MMs are a key component in liquidity provision. Therefore a
more realistic, yet still desirable, goal would be to ensure that there exists an
SNE where clients can trade at the MIFP in expectancy in exchange for some
pre-determined fee, payable to the MMs, which is bounded by the clients’ utility
gain from the swap. In existing AMMs and DEX protocols, this realistic goal
remains unachieved, as explained in Section 2. FairTraDEX however, achieves
this goal.

Note that MMs differ from liquidity pools in AMMs. The decision logic of
AMM liquidity pools is public and deterministic, and any adjustments to liquid-
ity pools must be queued publicly in the mempool, exposing it to EEV attacks.
MMs, however, make private trading decisions and communicate them on-chain.
One possible action is to add liquidity to an AMM, or in the case of FairTraDEX,
add a market to an auction. Following the analysis of [28] and the losses being
incurred by liquidity providers in AMMs, players currently providing liquidity
in AMMs, although acting honestly, do not fit our rational player model. In
FairTraDEX, by ensuring following the protocol forms an SNE, honesty and ra-
tionality are equivalent. If players deviate from the protocol in FairTraDEX, this
strictly decreases their expected utility, which is further discussed in Appendix
G.6.

3.1 Zero-Knowledge Primitives

The aim of this section is to outline the non-interactive zero-knowledge (NIZK)
tools for set membership as used in this paper, such as those stemming from
papers like [33,5,24,7,25]. We generalise these formal works, allowing for the
adoption of any secure NIZK set-membership protocol into FairTraDEX, as we
only require a common functionality that is shared by all of them. Further elab-
oration on these protocols is deferred to Appendix C.

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 7

The zero-knowledge proofs used in FairTraDEX allow, for a given set of
commitments Com to user-generated secrets, that any user knowing the secret
corresponding to a commitment com ∈ Com can prove the knowledge of a secret
corresponding to a commitment in the set, without revealing which secret, or
commitment. Moreover, we require that more than one proof relating to the
same commitment is identifiable by a verifier.

To participate in FairTraDEX, clients privately generate two bit strings,
the serial number S and randomness r, with S, r ∈ {0, 1}Θ(κ) . To describe
FairTraDEX we define a commitment scheme h, a set membership proof scheme
SetMembership, an NIZK proof of knowledge scheme NIZKPoK and a NIZK sig-
nature of knowledge scheme (NIZKSoK). We do not specify which instantiation
of these schemes to use, as the exact choice will depend on several factors, such
as efficiency, resource limitations and/or the strength of the assumptions used.

– h(m): A deterministic, collision-resistant function taking as input a string
m ∈ {0, 1}∗, and outputting a string com ∈ {0, 1}Θ(κ).

– SetMembership(com,Com): Compresses a set of commitments Com and gen-
erates a membership proof π that com is in Com if com ∈ Com.

– NIZKPoK (r,S,Com): For a set of commitments Com, returns a string S and
NIZK proof of knowledge if the person running NIZKPoK () knows an r pro-
ducing a proof when running SetMembership(h(S||r),Com). In FairTraDEX,
this revelation identifies to a verifier when a proof has previously been pro-
vided for a particular, albeit unknown, commitment as the prover must re-
produce S. This is used in FairTraDEX, in conjunction with an escrow, to
enforce the correct participation of both, clients and MMs.

– NIZKSoK (m): Returns a signature of knowledge that the person who chose
m can also produce NIZKPoK.

4 Width-Sensitive Frequent Batch Auctions

In this section we outline the properties of an idealised variation of an FBA
which we define as a width-sensitive FBA. Width-sensitive FBAs maintain the
desirable properties of FBAs with respect to optimal strategies for MMs and
clients [9], while also adding important protections for clients in a decentralised
setting where monopolistic MMs may exist. The important assumption with re-
gard to the guarantees of an FBA is the presence of at least two non-cooperative
MMs. In a decentralised setting, this can be seen as insufficient. One of the most
desirable properties of FBAs in the presence of 2 non-cooperative MMs is the
fact that clients submit market orders. We envisage clients as relatively unin-
formed players for whom choosing the correct/fair price to trade has an implicit
cost. Market orders remove this burden, providing clients with an “obvious op-
timal” as advocated in [38]. To reach a similar equilibrium in the presence of
a monopolistic MM, we must amend the basic FBA protocol. In this section,
we define a width-sensitive FBA (WSFBA) to handle monopolistic MMs, while
retaining the desirable properties of an FBA in the presence of two or more
non-cooperative MMs.

8 C. McMenamin et al.

In the presence of a single rational MM, we need to utilise the value gained
by clients for exchanging token. That is, recall from Section 3, clients in our
protocol observe a positive utility of at least the minimum client fee fmcf for
exchanging tokens. In a WSFBA, this fee is translated to a market width, and
input with clients orders as a maximum market width on which clients are willing
to trade. This allows us to prove submitting market orders remains a SNE.
Conversely in an FBA, if MMs cooperate/are replaced by a monopolistic MM,
submitting market orders is a strictly dominated strategy for clients, with clients
now required to submit a limit price. WSFBAs avoid this degradation of user
experience, and the corresponding reduced probability of execution and quality
of liquidity this has on FBAs.

We let D represent the net trade imbalance of clients in a particular instance
of a WSFBA in terms of B. A positive D indicates a client buy imbalance (more
client buyers than sellers of the swap), while a negative D indicates a client sell
imbalance. We require a finite bound on the absolute imbalance, which we denote
Qnot <∞, for the existence of optimal MM strategies. As in [9], we assume that
|D| ≤ Qnot, and in-keeping with the notion of an MIFP, D is symmetric around
0 at the MIFP. This Qnot is used as the lower-bound on the notional of a MM’s
bid and offer in WSFBA. Importantly, this ensures client orders submitted to
the auction are executed (used in the proof of Theorem 1). We now define a
WSFBA.

Definition 1. A width-sensitive frequent batch auction (WSFBA) involves MMs
submitting markets to the TTP with total notional on the bid and offer of at least
Qnot. Clients and MMs privately submit limit and market orders to the TTP
including a requested maximum width from the tightest MM, above which the
order is not executed. Orders are collected until a specified deadline. After this
deadline, client orders with requested width greater than or equal to the tightest
MM width, along with a randomly-selected market from the tightest provided
markets, are settled at a single clearing price which maximises the total notional
traded, and then minimises the net trade imbalance.5 If there is more supply at
the clearing price than demand, sell orders at the highest price at or below the
clearing price are pro-rated based on size such that supply equals demand at the
clearing price. Similarly, if there is more demand than supply at the clearing
price, buy orders at the lowest price at or above the clearing price are pro-rated
based on size such that demand equals supply at the clearing price. Any limit buy
orders below/sell orders above the clearing price are not executed.

The key differences between a conventional FBA and a WSFBA are the specifi-
cation of MM widths by clients, the minimum MM notional requirement on the
bid and offer, and the requirement for the clearing price to minimise the imbal-
ance over all prices which maximise the notional traded. Minimising imbalance
is a small optimisation which produces a reasonable and precise clearing price
when MMs do not show width 1 markets as in an FBA. A precise algorithm
for verifying a given clearing price satisfies these proprieties is included both in

5 As Qnot is greater than the absolute client order imbalance, the clearing price must
lie between the MM bid and offer

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 9

Algorithm 4 and [31], and described in Appendix F. The other amendments are
intended to protect clients against monopolistic MMs, and are discussed in the
proceeding section.

4.1 Properties of Width-Sensitive Frequent Batch Auctions

In Theorem 1, we identify an SNE for WSFBAs, and show that it is equivalent
to the SNE of an FBA. The case of a single monopolistic MM is more complex.
First, we observe that an MM in a WSFBA always shows a market with reference
price equal to the MIFP. In the proceeding lemmas and theorems, proofs omitted
from the main body of the paper are included in Appendix D.

Lemma 1. For an MM in a WSFBA between Atkn and Btkn with MIFP equal
to yA→B = yB

yA
and a client order of notional XB > 0, she strictly maximizes

her expected utility by showing a market with reference price yref = yA→B for
any fixed width w ≥ 1.

This result is independent of the choice of width and market-impact coef-
ficient. However, it assumes that the MM trades with the client on either the
bid or the offer. With respect to a WSFBA without notional restrictions and a
monopolistic MM, if clients submit market orders, there are fringe cases (large
imbalances) which incentivize MMs to show markets far from the MIFP. Remov-
ing these restrictions from a WSFBA makes for interesting future work.

Recall clients have a strictly positive utility to exchange tokens described by
the minimum client fee fmcf , which is equivalent to being strongly incentivized
to trade on a market with reference price yref and width w ≤ fmcf . With this in
mind, we can now apply the main result of [9] to a WSFBA.

Theorem 1. For a WSFBA, the strict Nash equilibria strategies given the num-
ber of non-cooperative MMs submitting markets being N are:

– N = 1: Clients submit market orders of requested width fmcf and the MM
shows a market of width at most fmcf with reference price equal to the MIFP.

– N ≥ 2: Clients submit market orders of requested width greater than 1 and
MMs show a market of width 1 with reference price equal to the MIFP.

Theorem 1 identifies that clients always submit market orders, and in settings
where it is unclear whether there is a single monopolistic MM, or many non-
cooperative MMs, it can be seen that clients always submit market orders with
requested width fmcf .

5 FairTraDEX

In Section 4 we constructed a WSFBA using a TTP to enforce correct player
balances, order sizes, revelation of orders, correct calculation of the clearing price
and the settlement of orders. In a decentralised setting with rational players, such
a TTP does not exist. However, we do have access to censorship-resistant public

10 C. McMenamin et al.

bulletin boards in the form of blockchain-protocols. As discussed in the Section
1, these bulletin boards have many caveats such as the ordering of transactions
based on transaction send time not being preserved (transaction re-ordering
attacks). However, if we are able to bound the delay of updates being added to
such a bulletin board (transactions being confirmed on the blockchain), we can
implement a WSFBA in such a setting.

In this section we construct the FairTraDEX protocol as a sequence of algo-
rithms. We then provide a series of results regarding the incentive compatibility
of these algorithms with the goal of proving FairTraDEX instantiates a WSFBA,
and that following the protocol is an SNE.

5.1 System Model

1. All players P1, ...,Pn are members of a blockchain-based distributed ledger,
and a corresponding PKI.

2. The ledger is represented by a linear blockchain with its state progressing by
having new blocks sequentially appended. For simplicity, we assume instant
finality of blocks meaning that such an appended (valid) block cannot be
replaced at any later point in time.

3. A transaction submitted by a player for addition to the blockchain (either
directly or relayed) while observing blockchain height H, is included (and
thus finalised) in a block of height at most H + T , for some known T > 0,
given that the transaction remains valid for sufficiently many intermediate
ledger states.

4. The public NIZK parameters are set-up in a trusted manner.

We do not make any assumptions regarding transaction ordering in blocks.
Specifically, the order in which transactions are executed is at the discretion of
the block proposer.

If block producers are participating as MMs/clients, we need to adjust T .
Let 0 < α < 1 bound the fraction of blocks produced over chains of length
greater than T by a MM responding to/the set of clients requesting trades in a
particular instance of a FBA (we need to consider all clients in a request phase,
as they may all have the same direction, and as such, some positive expectancy to
preventing a MM revelation). We need to increase T by a factor of 1

1−α (similar
to the methodology behind the Chain Quality property in [21,36]). Moreover,
our property can be seen as a ‘block-based’ variant of the time-based liveness
property defined in [21,36]. An example for instant finality is Algorand [12]
which stands in contrast to, e.g., Bitcoin which only guarantees eventual finality,
while example of a public NIZK parameter setup is a Perpetual Powers of Tau
ceremony, as used in Zcash [39].

5.2 FairTraDEX Algorithms

Each player Pi owns (has exclusive access to) a set of token balances bali which
are stored as a global variable. For a token tkn, bali(tkn) is the amount of to-
ken tkn that Pi owns. Keeping the notation from Section 3.1, outputs included

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 11

in round brackets () are known only to the player running the algorithm, with
all other outputs posted to the public bulletin board, updating existing vari-
ables/balances where appropriate. Algorithm outputs are not signed, so players
observing the output of an algorithm instance can only infer information about
the player running the algorithm from public outputs and any corresponding
global variable updates.

We now outline FairTraDEX as a set of algorithms: Setup(), Register(), Com-
mitClient(), CommitMM(), RevealClient(), RevealMM() and Resolution(). A
FairTraDEX instance is initialised by running Setup(), and proceeds indefinitely
in rounds of three distinct, consecutive phases: Commit, Reveal and Resolution,
each of length T blocks (see Section 5.1). For readability, we provide here the
intuition to the algorithms of FairTraDEX, with a detailed explanation of each
algorithm provided in Appendix E.

Players in the underlying blockchain protocol can enter FairTraDEX as clients
by running an instance of Register(), which for a given client deposits an escrow
escrowclient, and generates private information (S, r ∈ {0, 1}O(κ)) which is used
in CommitClient() to prove that the client indeed deposited an escrow, without
revealing which deposit.

In the Commit phase, all players can run any number of CommitClient()
and/or CommitMM() instances. CommitClient() generates a client order, com-
mits to that order publicly and proves in ZK that the player deposited an escrow.
If such a proof cannot be generated, or a proof has already been generated for
the same S, no order can be committed. A correctly run CommitMM() instance
generates a market for a prospective MM, commits to that market publicly and
deposits an escrow escrowMM.

In the Reveal phase, players can run any number of RevealClient() and/or Re-
vealMM() instances. RevealClient() publishes an order generated through Com-
mitClient(), returning the escrow corresponding to the CommitClient() instance,
and as such the Register() instance, to the client. RevealMM() publishes a mar-
ket corresponding to a CommitMM() instance, and returns the corresponding
escrow. Both Reveal phase algorithms assert that the client and MM have suf-
ficient token balances to submit their order and market respectively. These as-
sertions are also ensured in the Commit phase, but must be rechecked to ensure
correct balances at the point of token transfer.

In the Resolution phase, any number of Resolution() instances can be run.
The first correct Resolution() instance selects the tightest market from the set
of revealed markets, revealedMkts, for inclusion in order settlement, and any
tie-breaks settled using h(revealedMkts), as a random seed. The clearing price
which maximises notional traded, and then minimises the notional imbalance
of the remaining market and orders is computed. A precise algorithm for ver-
ifying the clearing price is included in Appendix G.5, Algorithm 4, and de-
scribed in Appendix F. Orders and markets are then settled based on this clear-
ing price. Finally, the arrays tracking active commitments, orders and markets
clientCommits, MMCommits, revealedOrders, revealedMkts are cleared, so un-
successfully revealed commitments during this round cannot be used to run

12 C. McMenamin et al.

RevealClient() or RevealMM() in future rounds. This effectively destroys the
deposited escrows of such commitments.

5.3 Properties of FairTraDEX

We now argue that FairTraDEX possesses all of the necessary properties to
instantiate a WSFBA, and discuss the practical implications of these properties.
As the Register() and CommitClient() algorithms are constructed analogously
to the Mint() and Spend() functions in [33], we can make use of the results as
provided therein. These can be translated informally as:

1. Linkability: Consider a player Pj , a set of registrations RegIDs to which Pj
does not know the privately committed values, and a valid ZK signature of
knowledge π and serial number S corresponding to some regIDi ∈ RegIDs.
Pj in has no advantage in linking π and S to the corresponding regIDi over
probability 1

|RegIDs| + negl(κ).

2. Double-spending: Given a set of registrations RegIDs, and any number of
valid (π, S) pairs corresponding to elements in RegIDs, it is computationally
infeasible to generate a new serial number S′ and corresponding valid proof
of registration π ′ in RegIDs.

Given that all players in the system are registered as clients, by definition
of MIFP, the expected trade imbalance implied by their orders is 0. However,
in reality, we cannot always expect this level of client participation, with less
client registrations typically resulting in a greater advantage for rational players
in predicting the implied trade imbalance of committed orders.

To account for this in our analysis, we introduce nψ denoting the minimal
number of registrations required to guarantee that EEV is negl(ψ). Note that in
certain blockchain systems, as the total number of players may be unknown to
players within the system, precisely defining nψ may not be possible (for exam-
ple, a player registering for the second time observes a smaller relative increase
than a player registering for the first time). In that sense, our analysis demon-
strates that the listed desirable properties can be achieved under a sufficient
level of registration (nψ registrations), but not necessarily that a client can de-
tect whether this level is met in a given auction instance. In practice, a client’s
decision whether or not to commit to an order in FairTraDEX will be based on
heuristics involving the number nc of observed client registrations, noting that
non-negligible EEV may be tolerable if the total expected participation fees are
less than fmcf .

When players are rational, however, running these algorithms might not be
an SNE. Only if following a protocol is an SNE can we be sure that rational
players correctly follow the protocol. Towards proving FairTraDEX forms an
SNE for all rational clients and MMs, we prove a serious of Lemmas that we use
to prove the main result of the section, Theorem 2. Due to space restrictions, we
provide here an intuition for these Lemmas, while formally stating and proving
them in Appendix D. We first prove that some player in the blockchain protocol

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 13

runs a Resolution() instance every round. Then, we prove a serious of Lemmas
demonstrating that given a rational client (resp. MM) runs an instance of Reg-
ister() (resp. CommitMM()), that same player correctly runs CommitClient()
and RevealClient() (resp. RevealMM()) in the proceeding phases. Finally, we
show that it is indeed an SNE for a client (resp. MM) to run Register() (resp.
CommitMM()).

With these results in hand, we have it that rational clients and rational MMs
correctly execute all algorithms as outlined by FairTraDEX. We now show that
with at least nψ Register() calls, the optimal strategy for a client is to submit
market orders, while the optimal strategy for a MM with MIFP yA→B is to show
a market bid @ offer with bid ≈ yA→B ≈ offer in the case where there are at
least 2 non-cooperative MMs, and of width w ≤ fmcf otherwise.

Theorem 2. Consider an instance of FairTraDEX between Atkn and Btkn with
MIFP yA→B and at least nψ previously called instances of Register(). For N
non-cooperative MMs, the following strategies form strict Nash equilibria:

– N = 1: Clients run Register(), followed by CommitClient() producing market
orders of width fmcf . The MM runs CommitMM() producing a market of
width at most fmcf with reference price equal to yA→B in size Qnot. Clients
and MMs then run RevealClient() and RevealMM() respectively.

– N ≥ 2: Clients run Register(), followed by CommitClient() producing market
orders of width greater than 1. MMs run CommitMM() producing markets
of width 1 with reference price equal to yA→B in size of at least Qnot. Clients
and MMs then run RevealClient() and RevealMM() respectively.

Although providing width- markets may seem prohibitive for MMs, the unique
guarantees of FairTraDEX ensure that no players external to the protocol can
extract value from players within the protocol. As player value is being retained
within the FairTraDEX protocol, fees can be introduced to compensate MMs.
Given the potential value retention of FairTraDEX (see Section 6, Table 2),
these fees can be substantial while still ensuring FairTraDEX provides clients
with best-in-class liquidity.

Remark 1. To minimise expected absolute trade imbalances in a DEX auction,
existing protocols, including FairTraDEX, require the hiding/mixing of order-
information. Consider how FairTraDEX compares to previous DEXs aimed at
ensuring client privacy [4,14,20]. In these previous protocols, each order commit
reveals the same, and in some cases more information per-order than a Regis-
ter() call in FairTraDEX. EEV protection guarantees in these previous protocols
which require nψ orders per auction are achieved in FairTraDEX for every order
in every auction when nψ players are registered to participate in the protocol.
This is an nψ factor improvement in EEV protection/block-space requirements
per auction.

More than this, these previous protocols face liveness issues when players are
concerned about EEV. The first players entering one of these previous protocols
must choose to do so without any guarantees of protection against EEV attacks

14 C. McMenamin et al.

based on information leaked from order commitment (trade direction, identity,
trading patterns, etc.).

5.4 Smart Contract Implementation of FairTraDEX

A blockchain-based pseudo-code implementation of FairTraDEX, and code de-
scription, are provided in Appendix G, while a Solidity implementation of Fair-
TraDEX is provided in [31]. We outline here the key differences between the
algorithmic description of Section 5.2, and the blockchain-based implementa-
tions of Appendix G and [31]. As a blockchain-based implementation under the
model of Section 5.1 involves a PKI for message sending, all public algorithm
outputs must now be signed using the PKI. These messages must now be in-
cluded in blockchain transactions, with a transaction fee required to ensure the
transaction gets added to the blockchain.

For a player to publish a transaction to a blockchain-based smart contract
without revealing her identity, she must utilise a relayer (for details on relayers,
see Appendix B.2). Otherwise, the transaction fee is payable from her account,
revealing sensitive information such as trading patterns and account balances.
Furthermore, this relayer must be rewarded on-chain for relaying the transaction.
This reward is added by the client when depositing her escrow, and retrievable
by the first relayer publishing the transaction to the blockchain. Furthermore all
checks, such as those for the previous use of serial numbers in CommitClient(),
or the recording of the tightest MM width in Resolution(), are explicitly encoded
in the provided implementations.

6 Cost-Benefit Analysis of FairTraDEX

The aim of this section is to demonstrate the contributory significance of FairTra-
DEX vs. current state-of-the-art protocols as introduced in Section 2. In Table
1 we include an overview of the gas costs for running FairTraDEX compared to
the previous blockchain-based attempts to implement batch auctions of [20,14],
with numbers taken from the respective papers. It can be seen that FairTraDEX
has a slightly greater upfront gas cost for clients, but a lesser cost for MMs.

To demonstrate the benefits of FairTraDEX, Table 2 compares specific swaps
that allow for EEV attacks in existing state-of-the-art protocols. We perform our
analysis on ETH/USDC swaps, as this is the highest volume pool on Uniswap,
which at time of writing had pool sizes of 120k ETH and 185M USDC, an
indicative MIFP of 1 ETH equal to 1,540 USDC [40]. Furthermore, we use a gas
cost of 7 gwei [17].

Consider 3 buy ETH orders of 10k, 500k and 10M USDC from 2 different
players who are known to need to trade at any price. P1 has large quantities of
both ETH and USDC, and buys or sells ETH pseudo-randomly, while P2 only
owns USDC/only buys ETH. We take the estimated impact for each order to
be 0, 0.15% and 1% respectively, numbers taken from the Uniswap V3 API [40]
(these are more realistic impacts than those implied by the constant product

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 15

impact [1] of 0, 0.54% and 11.1% respectively, using starting pool sizes of).
Although this is a simplification of order impact, true impact is likely some mul-
tiple/factor of this impact. Protocol fees incentivizing MMs to provide liquidity
are omitted as they are not considered in the provided academic protocols. After
gas costs, this fee should be approximately equal for all protocols (the Uniswap
fee for this pool is 0.3%).

FairTraDEX 6 Uniswap [14] [20]

Register 112,800 - 87,000 -
Commit Client 344,500 - 52,000 276,150
Commit MM (per order) 24,300 - 52,000 276,150
Reveal (per order) 172,000 190,000 171,000 48,750
Settle (per order) 7 45,500 - 122,500 54,000

Total Client 674,800 190,000 432,500 378,900
Total MM 266,100 - 397,500 649,050

Total Client (USDC) 7.27 2.05 4.66 4.08
Total MM (USDC) 2.87 - 4.09 7

Table 1: Comparison of gas costs in batch-auction implementations. 2 Costs pro-
vided for FairTraDEX are amortised over 128 client orders and 8 markets. 3 We add an
estimated cost for token transfer from smart contract to player of 40,000 to the figures
provided in [20] to standardise the costs therein with those of FairTraDEX and [14].

FairTraDEX Uniswap [14] [20]

P1-10,000 0 50 0 0
P2-10,000 0 50 0 0
P1-500,000 0 3000 750 0
P2-500,000 0 3000 750 750
P1-10,000,000 0 150,000 100,000 0
P2-10,000,000 0 150,000 100,000 100,000

Table 2: Comparison of execution costs in USDC of batch-auction implementa-
tions.

When P1 submits an order in FairTraDEX or [20], no information is gained
about the direction of the trade. However, in [14], direction is revealed. As such,
any blockchain participant can front run that impact on all other markets, and
thus the MIFP for any MM responding to the order will be the impacted MIFP.
When P2 submits an order in either of [14,20] the direction is known, and the
MIFP is impacted in the same way as for P1, before any player interacts with
P2, giving P2 a worse price. Using estimated price impacts of 0, 0.15% and
1%, Table 2 demonstrates the costs of executing these swaps, excluding transac-
tion fees, in these protocols, and Uniswap. For Uniswap, we must also add the
recommended slippage, an additional 0.5% of the order size, as it is always in
a block producers interest to give Uniswap players worst execution. It can be
seen that these costs become increasingly more significant as order size increases,
dominating the differences in gas costs of Table 1.

16 C. McMenamin et al.

Although Table 2 can be seen as simplifying how orders are handled, it
demonstrates two crucial motivators for our work. Firstly, any information re-
vealed about clients before a trade is agreed can, is and will continue to be used
against clients. Furthermore, this cost is not necessarily paid to the MM. As or-
ders are committed in public, any blockchain participant can use the committed
information to front run the impact on the MIFP before the client or MM has
an opportunity to trade, extracting money from the DEX protocol. Secondly, as
the effects of these value-extraction techniques increase super-linearly in order-
size, a protocol with the value-extraction guarantees of FairTraDEX is needed
to allow typically large clients to utilise the benefits of DEXs, and blockchain
protocols in as a whole, at a fixed cost, as demonstrated in Table 1, without
incurring the prohibitive execution costs of previous solutions, as demonstrated
in Table 2.

7 Conclusion

We provide FairTraDEX, a blockchain-based DEX protocol based on WSFBAs
in which we formally prove the strategies of rational participants have strict
Nash equilibria in which all trades occur at the MIFP plus or minus bounded
upfront costs (specified market widths) which approach 0 in the presence of
non-cooperative MMs. This is an attractive alternative to existing mainstream
protocols such as AMMs where rational players effectively and systematically
prevent such an equilibrium from happening. Compared to previous blockchain-
based attempts to implement EEV-proof DEXs, FairTraDEX is the first to prac-
tically allow for indistinguishable client-order submissions by decoupling order
submission from escrow deposit and order revelation. The FairTraDEX benefits
formalised in Section 5.3, summarised in Remark 1, and demonstrated in Sec-
tion 6 provide important improvements on previous protocols regarding EEV
protection, setting a new standard for EEV protection in DEXs.

As stated in the comparisons of Section 6, protocol fees are omitted for all
protocols. Given the total retention of value within the FairTraDEX protocol (no
extractable value), fees in line with the utility gained by clients for exchanging
their tokens can be charged to incentivise the long-term participation of MMs in
FairTraDEX. These fees should reflect the need to incentivize MMs while retain-
ing the unique client-side benefit of trading at the MIFP in expectation, which
is proven to occur in FairTraDEX. Analysis of these fees makes for interesting
future work.

References

1. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of uniswap
markets. In: Cryptoeconomic Systems Journal (2019)

2. Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O., Tamari,
R., Yakira, D.: Helix: A fair blockchain consensus protocol resistant to ordering
manipulation. IEEE Transactions on Network and Service Management 18(2),
1584–1597 (2021). https://doi.org/10.1109/TNSM.2021.3052038

https://doi.org/10.1109/TNSM.2021.3052038

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 17

3. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Proceedings of the 16th Annual International Confer-
ence on Theory and Application of Cryptographic Techniques. p. 480–494. EURO-
CRYPT’97, Springer-Verlag, Berlin, Heidelberg (1997)

4. Baum, C., David, B., Frederiksen, T.: P2DEX: Privacy-preserving decentralized
cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) Applied Cryp-
tography and Network Security. pp. 163–194. Springer International Publishing
(2021)

5. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society, New
York, NY, USA (2014)

6. Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) Advances in Cryptology — EUROCRYPT
’93. pp. 274–285. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

7. Benarroch, D., Campanelli, M., Fiore, D., Gurkan, K., vKolonelos, D.: Zero-
knowledge proofs for set membership: Efficient, succinct, modular. In: Borisov, N.,
Diaz, C. (eds.) Financial Cryptography and Data Security. pp. 393–414. Springer
Berlin Heidelberg, Berlin, Heidelberg (2021)

8. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to iops and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
Advances in Cryptology – CRYPTO 2019. pp. 561–586. Springer International
Publishing, Cham (2019)

9. Budish, E., Cramton, P., Shim, J.: The High-Frequency Trading Arms Race:
Frequent Batch Auctions as a Market Design Response *. The Quarterly Journal
of Economics 130(4), 1547–1621 (07 2015). https://doi.org/10.1093/qje/qjv027,
https://doi.org/10.1093/qje/qjv027

10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Proceedings of the 22nd Annual Interna-
tional Cryptology Conference on Advances in Cryptology. p. 61–76. CRYPTO ’02,
Springer-Verlag, Berlin, Heidelberg (2002)

11. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Proceedings of
the 26th Annual International Conference on Advances in Cryptology. p. 78–96.
CRYPTO’06, Springer-Verlag, Berlin, Heidelberg (2006), https://doi.org/10.

1007/11818175_5

12. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science 777, 155–183 (2019)

13. Ciampi, M., Ishaq, M., Magdon-Ismail, M., Ostrovsky, R., Zikas, V.: Fairmm: A
fast and frontrunning-resistant crypto market-maker. Cryptology ePrint Archive,
Report 2021/609 (2021), https://ia.cr/2021/609, retrieved: 02/02/2022

14. Constantinides, T., Cartlidge, J.: Block auction: A general blockchain protocol for
privacy-preserving and verifiable periodic double auctions. In: 2021 IEEE Interna-
tional Conference on Blockchain (Blockchain). pp. 513–520. IEEE Computer Soci-
ety, United States (2021). https://doi.org/10.1109/Blockchain53845.2021.00078

15. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy. pp. 253–270. IEEE, United States (2015).
https://doi.org/10.1109/SP.2015.23

16. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning, transaction reordering, and consensus in-

https://doi.org/10.1093/qje/qjv027
https://doi.org/10.1093/qje/qjv027
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://ia.cr/2021/609
https://doi.org/10.1109/Blockchain53845.2021.00078
https://doi.org/10.1109/SP.2015.23

18 C. McMenamin et al.

stability in decentralized exchanges. https://arxiv.org/abs/1904.05234 (2019),
retrieved: 19/01/2022

17. Etherscan: https://etherscan.io/gastracker
18. Flashbots: https://explore.flashbots.net
19. Flashbots: https://explore.flashbots.net/faq
20. Galal, H.S., Youssef, A.M.: Publicly verifiable and secrecy preserving periodic auc-

tions. In: Bernhard, M., Bracciali, A., Gudgeon, L., Haines, T., Klages-Mundt,
A., Matsuo, S., Perez, D., Sala, M., Werner, S. (eds.) Financial Cryptography and
Data Security. FC 2021 International Workshops. pp. 348–363. Springer Berlin
Heidelberg, Berlin, Heidelberg (2021)

21. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Advances in Cryptology - EUROCRYPT 2015. pp. 281–310.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

22. Gjøsteen K., Raikwar M., W.S.: Pribank: Confidential blockchain scaling us-
ing short commit-and-proof nizk argument. In: Topics in Cryptology – CT-
RSA 2022. CT-RSA 2022. Springer International Publishing, Cham (2022).
https://doi.org/10.1109/SP.2015.23

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof-systems. In: Proceedings of the Seventeenth Annual ACM Sympo-
sium on Theory of Computing. p. 291–304. STOC ’85, Association for Comput-
ing Machinery, New York, NY, USA (1985). https://doi.org/10.1145/22145.22178,
https://doi.org/10.1145/22145.22178

24. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016. pp. 305–326.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

25. Gurkan, K., Jie, K.W., Whitehat, B.: Community proposal: Semaphore: Zero-
knowledge signaling on ethereum (2020), https://github.com/appliedzkp/

semaphore, retrieved: 25/01/2022
26. Judmayer, A., Stifter, N., Schindler, P., Weippl, E.: Estimating (miner) extractable

value is hard, let’s go shopping! (2021), https://ia.cr/2021/1231
27. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consen-

sus. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO
2020. pp. 451–480. Springer International Publishing, Cham (2020)

28. Loesch, S., Hindman, N., Richardson, M.B., Welch, N.: Impermanent loss in
uniswap v3 (2021). https://doi.org/10.48550/ARXIV.2111.09192, https://arxiv.
org/abs/2111.09192

29. Massacci, F., Ngo, C.N., Nie, J., Venturi, D., Williams, J.: Futuresmex:
Secure, distributed futures market exchange. In: 2018 IEEE Symposium
on Security and Privacy (SP). pp. 335–353. IEEE, United States (2018).
https://doi.org/10.1109/SP.2018.00028

30. McMenamin, C., Daza, V., Pontecorvi, M.: Achieving State Machine Replication
without Honest Players, p. 1–14. Association for Computing Machinery, New York,
NY, USA (2021), https://doi.org/10.1145/3479722.3480986

31. McMenamin, C., O’Donoghue, P.: https://github.com/MEVProof/Contracts

(2022)
32. Merkle, R.C.: A digital signature based on a conventional encryption function.

In: Pomerance, C. (ed.) Advances in Cryptology — CRYPTO ’87. pp. 369–378.
Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

33. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-
cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy. pp. 397–411.
IEEE Computer Society, United States (2013). https://doi.org/10.1109/SP.2013.34

https://arxiv.org/abs/1904.05234
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://github.com/appliedzkp/semaphore
https://github.com/appliedzkp/semaphore
https://doi.org/10.48550/ARXIV.2111.09192
https://arxiv.org/abs/2111.09192
https://arxiv.org/abs/2111.09192
https://doi.org/10.1109/SP.2018.00028
https://doi.org/10.1145/3479722.3480986
https://github.com/MEVProof/Contracts
https://doi.org/10.1109/SP.2013.34

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 19

34. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Proceedings
of the 2005 International Conference on Topics in Cryptology. p. 275–292. CT-
RSA’05, Springer-Verlag, Berlin, Heidelberg (2005), https://doi.org/10.1007/
978-3-540-30574-3_19

35. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

36. Pass, R., Seeman, L., abhi shelat: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology –
EUROCRYPT 2017. pp. 643–673. Springer International Publishing, Cham (2017)

37. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How
dark is the forest? (2021). https://doi.org/10.48550/ARXIV.2101.05511, https:
//arxiv.org/abs/2101.05511

38. Roughgarden, T.: Transaction fee mechanism design for the ethereum blockchain:
An economic analysis of eip-1559. https://arxiv.org/pdf/2012.00854 (2020),
retrieved: 18/05/2021

39. of Tau, P.P.: https://zkproof.org/2021/06/30/setup-ceremonies/
40. Uniswap: https://app.uniswap.org/
41. Zhang, Y., Katz, J., Papamanthou, C.: An expressive (zero-knowledge) set accu-

mulator. In: 2017 IEEE European Symposium on Security and Privacy (EuroS P).
pp. 158–173. IEEE, United States (2017). https://doi.org/10.1109/EuroSP.2017.35

A Extended Related Work

Estimating (Miner) Extractable Value is Hard [26]

This paper paper attempts to formalise extractable value and generalise it be-
yond value extractable be miners. We also believe it is necessary to model the
decision of all rational players based on expected extractable value (EEV) that
can generated by particular orderings of transactions/blocks by any player in
the system, and not just the miner. The approach taken is to consider EEV as
the maximum of all non-protocol strategies, with protocols considered secure if
the EEV of following the protocol is strictly dominated by following the proto-
col strategy, which is further formalised in [30]. In our paper, we also consider
an additional case of EEV not necessarily considered in [26] which is preva-
lent in commit-reveal protocols such as [13]. In such protocols, honest behaviour
usually involves sending a valid second transaction (the reveal transaction in a
commit-reveal protocol), but where players can extract value in expectancy by
not sending these transactions. However, we believe the definition of EEV in
[26] can be extended to include these attacks. As such, we also move away from
the legacy use of MEV, and focus instead on the prevention of the more general
EEV.

Publicly Verifiable and Secrecy Preserving Periodic Auctions [20]

This protocol also attempts to implement an FBA, and as such has many simi-
larites to FairTraDEX. As in FairTraDEX, the protocol progresses in rounds of
Commit, Reveal and Resolution phases. In [20], there is a designated operator

https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.48550/ARXIV.2101.05511
https://arxiv.org/abs/2101.05511
https://arxiv.org/abs/2101.05511
https://arxiv.org/pdf/2012.00854
https://app.uniswap.org/
https://doi.org/10.1109/EuroSP.2017.35

20 C. McMenamin et al.

who is in charge of settling the auction. Players commit to orders in the Commit
phase, as well as providing cryptographic information, which is used to prove
correct settlement in the Resolution phase. Unlike FairTraDEX, these commit
messages are sent by players directly to the blockchain, revealing identity and
trade direction. In the Reveal phase, players encrypt their orders using the op-
erator’s public key, and send the encryptions to the operator. In the Resolution
phase, the operator then chooses a clearing price which intersects the buy and
sell liquidity, maximising the notional to be traded. The operator then publishes
a list of all matched orders to the blockchain, along with a range proof which is
used to verify the correct execution of orders, while not revealing any informa-
tion about unexecuted orders other than that already revealed in the commit
phase.

Block Auction [14]

This protocol attempts to implement an FBA, and is the most similar to FairTraDEX.
It is an improvement on [20], with a direct comparison of the two protocols form-
ing the main basis of the justification of [14]. As in [20], the protocol is overseen
by an operator who is in charge of receiving orders privately from players and
correctly executing the auction. As in FairTraDEX, the protocol progresses in
rounds of Commit, Reveal and Resolution phases. In the Commit phase, players
commit to orders and publish these commitments to the blockchain. Although
not revealing the trade direction as is the case in [20], these commit messages
are sent by players directly to the blockchain, and as such reveal identity In
the Reveal phase, players encrypt their orders using the operator’s public key,
and send these encryptions to the operator. The operator then publishes all ex-
ecuted orders, while revealing nothing about unexecuted orders. The validity of
execution depends on all players who submitted orders verifying that their order
should not have been executed given the list of executions.

P2DEX [4]

The P2DEX protocol is an off-chain MPC protocol run by servers where players
can submit orders to exchange tokens from one blockchain to another (although
it also appears applicable to one blockchain with many tokens). The orders are
encrypted using a threshold secret-sharing scheme with each server receiving a
unique share. The protocol has mechanisms to identify double-spending of player
funds sent to the servers, and deviation (failure/ misbehaviour) of servers, as
the MPC matching protocol is publicly verifiable. As such, all players in the
blockchain can verify that a set of orders have been matched correctly, or some
of the servers deviated from the protocol. The exchange depends on all servers
participating in a secret-sharing protocol to match orders, with at least one server
being honest/not colluding with other servers. As with [20,14], an emphasis is
placed on not revealing unmatched orders.

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 21

FairMM [13]

Clients submit orders to a single (monopolistic) MM in an off-chain Σ-protocol.
Clients contact the MM with a size, direction (communicated on-chain) and
price (communicated off-chain). If the MM accepts, the MM then publishes the
trade on the blockchain, otherwise aborts. Client orders are sequentialized so
only one order can be executed at a time, preventing the MM from reordering
client orders.

FuturesMEX [29]

The FuturesMEX protocol is an MPC version of a DEX with claims of anonymity.
In [29], client token balances are kept privately by owners in an off-chain database,
so the protocol has limited applicability to a blockchain-based setting. Further-
more, orders are submitted publicly to all participants before being settled. For
smaller clients with less connectivity, this is equivalent to showing the order
to more-connected counterparties before it is executed. This is a typical source
of EEV in existing blockchain protocols (through front-running attacks), and
something which is protected against in FairTraDEX.

B Terminology and Useful Definitions

This section contains additional financial and game-theoretical terms used in this
paper. Although not mandatory for all readers, this section serves as a useful
reference point towards understanding the results and discussions that follow.

– Decentralized Exchange (DEX): A distributed marketplace which allows play-
ers to swap one token for another.

– Limit Order : Specifies an amount of tokens to be bought (sold), and a max-
imum (minimum) price at which to buy (sell) these tokens. This price is
known as the limit price.

– Market Order : Specifies an amount of tokens to be sold, but no limit price.
Market orders are to be executed immediately at the best available price
based on the liquidity of buy orders.

– Direction: With respect to an order on a market quoted from token Atkn to
Btkn, if the order is trying to buy token Btkn, the direction is buying, while
if the order is trying to sell token Btkn, the direction is selling.

– Forward Price: This is the price at which a seller delivers a token to the
buyer at some predetermined date. In any exchange protocol without in-
stantaneous delivery, the forward price at expected delivery time is the price
at which trades should happen. The difference between current (spot) price
and forward price is known as carry, and can be due to storage/opportunity
costs, interest rates, etc. In this paper, we set carry to 0 for complexity and
ease-of-notation purposes.

The following definition of expected extractable value is translated from [26]
using the terminology of this paper.

22 C. McMenamin et al.

Definition 2. The expected extractable value EEVi, describes the total value
in value units, which is transferred to player Pi in expectation using a certain
strategy which produces a transaction, sequence of transactions, or blocks that
later become part of the main chain with some probability.

B.1 Frequent Batch Auctions

As stated in Section 1, FairTraDEX is based on an FBA [9]. FBAs are used in
many of the largest centralised exchanges 8. As FBAs were initially intended
for a centralised setting, we consider them being run by a trusted third party
(TTP) who enforces the correct participation of all players. In FairTraDEX, the
key TTP functionalities needed to instantiate an FBA are replicated using ZK
set-membership proofs, incentivisation and a blockchain as a censorship-resistant
bulletin-board. We define an FBA here using the terminology of our paper.

Definition 3. A frequent batch auction (FBA) (sometimes referred to as a pe-
riodic auction) involves clients and MMs privately submitting either limit or
market orders to the TTP. These orders are collected until a specified deadline.
After this deadline, the orders are settled at the clearing price. A single clearing
price is chosen which maximises the total notional traded based on the specified
sizes and prices of all orders. If there is more supply (quantity of tokens being
sold) at the clearing price than demand (quantity of tokens being bought), all sell
orders offered at the highest price at or below the clearing price are pro-rated
based on size such that supply equals demand at the clearing price. Similarly,
if there is more demand than supply at the clearing price, all buy orders bid at
the lowest price at or above the clearing price are pro-rated based on size such
that demand equals supply at the clearing price. Any limit buy orders below/sell
orders above the clearing price are not executed.

There are two key differences between this definition and the specification in
[9]:

1. In our definition, if an order is not fulfilled, it is revealed with any tokens
not being sold returned to the seller. This does not affect the game-theoretic
guarantees of the paper, as the results in [9] only depend on the hiding of
order information while players are submitting orders to the auction.

2. As every order in our auction must be submitted independently for each
auction, there is no time priority applied when pro-rating orders in case of a
supply-demand imbalance. This is a sub-case of the FBAs as defined in [9],
and consequently, our protocol retains the same game-theoretic guarantees.

8 FCA https://www.fca.org.uk/publications/research/periodic-auctions,
CBOE https://www.cboe.com/europe/equities/trading/periodic_auctions_

book/, ESMA https://www.esma.europa.eu/sites/default/files/library/

esma70-156-1035_final_report_call_for_evidence_periodic_auctions.pdf

https://www.fca.org.uk/publications/research/periodic-auctions
https://www.cboe.com/europe/equities/trading/periodic_auctions_book/
https://www.cboe.com/europe/equities/trading/periodic_auctions_book/
https://www.esma.europa.eu/sites/default/files/library/esma70-156-1035_final_report_call_for_evidence_periodic_auctions.pdf
https://www.esma.europa.eu/sites/default/files/library/esma70-156-1035_final_report_call_for_evidence_periodic_auctions.pdf

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 23

Game-Theoretic Guarantees of a Frequent Batch Auction In this section
we investigate the properties of an FBA between rational MMs and rational
clients, where MMs do not know the desired trade direction of the clients.

We first restate, using the terminology from this paper, the main result from
[9] which applies to our game-theoretically equivalent definition of an FBA. To do
this, we let D represent the net trade imbalance of clients in a particular instance
of an FBA in terms of B. A positive D indicates a client buy imbalance (more
client buyers than sellers of the swap), while a negative D indicates a client sell
imbalance. We require a finite bound on the absolute imbalance, which we denote
Qnot <∞, for the existence of optimal MM strategies. As in [9], we assume that
|D| ≤ Qnot, and in-keeping with the notion of an MIFP, D is symmetric around
0 at the MIFP.

Theorem 3. [9] For an FBA with at least two non-cooperative MMs, there is a
strict Nash equilibrium where clients only submit market orders and MMs show
a market of width 1 (bid = offer) centred around the MIFP in size greater than
Qnot.

This is a useful result in the case of at least two non-cooperative MMs, with
clients receiving a game-theoretic guarantee that they can exchange one token
for another at the MIFP in expectancy in an FBA. Furthermore, as MM liquidity
is greater than the net client trade size, the implicit impact to these trades in [9]
is bounded by the width, which is 1. As clients have a strictly positive utility for
exchanging tokens, this is equivalent to clients always having positive expectancy
to participate in an FBA. However, it is also shown in this equilibrium that MMs
have 0 expected utility. A basic adjustment to the protocol in that setting would
then be to charge clients a fee for the service and pro-rate these fees to the MMs
to ensure the long-term participation of MMs.

B.2 Relayers

A fundamental requirement for transaction submission in blockchains is the
payment of some transaction fee to simultaneously incentivise block producers
to include the transaction, and to prevent denial-of-service/spamming attacks.
However, in both the UTXO- and account-based models, this allows for the link-
ing of player transactions, balances, and their associated transaction patterns.
With respect to DEX protocols, if clients are required to deposit money into a
UTXO/account before initiating a trade, any other player in the system can in-
fer who the client is, what balances the client owns, what transactions the client
usually performs, etc., and use this information to give the client a worse price.

To counteract this, we utilise the concept of transaction relayers9. In the
smart-contract encoding of FairTraDEX (App. G.5), clients must publicly regis-
ter to a smart contract, and in doing so, deposit some escrow. In addition to this

9 Ox https://0x.org/docs/guides/v3-specification, Open Gas Station Network
https://docs.opengsn.org/, Rockside https://rockside.io/, Biconomy https:

//www.biconomy.io/

https://0x.org/docs/guides/v3-specification
https://docs.opengsn.org/
https://rockside.io/
https://www.biconomy.io/
https://www.biconomy.io/

24 C. McMenamin et al.

escrow, we also require the clients to deposit a relayer fee. When the client wishes
to submit a transaction anonymously to the blockchain, the client publishes a
proof of membership in the set of registered clients to the relayer mempool, as
well as the desired transaction and a signature of knowledge cryptographically
binding the membership proof to the transaction, preventing tampering. As the
relayer can verify the proof of membership, the relayer can also be sure that if
the transaction is sent to the FairTraDEX contract, the relayer will receive the
corresponding fee. With this in mind, a relayer observing the client transaction
includes it in a normal blockchain transaction, with the first relayer to include
the transaction receiving the fee. As such, relayers are a straightforward exten-
sion of the standard transaction-submission model. Furthermore, if the proof
of membership is NIZK and the message is broadcast anonymously (using the
onion routing (Tor) protocol10 for example), the relayer can only infer that the
player sending the transaction is a member of the set of clients.

C Background on Zero-Knowledge Primitives

Proving membership has been traditionally solved using cryptographic accumu-
lators [6], where the prover P computes a value (the accumulator) and, based on
it, a set of short membership proofs that the verifier V can easily verify. Three
are the approaches to construct set membership proofs: Merkle trees [32], RSA
accumulators [3,8], and pairing-based accumulators [34,41].

Each approach has its own benefits for public parameters, accumulator or
witness size or need of trusted setup. The exact choice depends on the resource
constraints of the system. We direct interested readers to [7] for a nice review of
the main features of each of the approaches.

When the prover P does not want to reveal the value of x, the member-
ship proof should not leak any information on the value of x. At a high level,
the general approach is to guarantee privacy using zero knowledge proofs. Zero
knowledge proofs [23] are powerful cryptographic primitives that allow a prover
P to prove knowledge of the truth of some statement without revealing the state-
ment contents, to some honest verifier V who needs to be convinced of the truth
of the statement provided by the prover. Special mention for its applicability
should be made of zero-knowledge proofs that are also non-interactive, that is,
proofs that only depend on the prover’s private information about the statement
and publicly available information11. As such, proofs do not depend on interac-
tion with the verifier. The main features in a NIZK argument are completeness,
soundness, and zero-knowledge. Completeness guarantees that if the statement
is true, the prover behaving honestly can convince the verifier that the state-
ment is true, while soundness ensures that a dishonest prover cannot convince an

10 https://www.torproject.org/
11 This public information can come in many forms, but in [33,5,24,7], it must be

generated honestly in a process known as a trusted setup. If a prover knows the private
information used to generate public proof parameters, the knowledge extraction
property cannot exist.

https://www.torproject.org/

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 25

honest verifier. Zero-knowledge maintains that the only information learned by
the verifier is that the statement is true. However, in practice it is required that
the prover knows a witness for the statement, that is, a zero-knowledge proof of
knowledge. In this case, soundness is not enough and is required that a prover
cannot produce a valid proof unless she knows a witness, even if the prover
has seen an arbitrary number of simulated proofs. This is what is known, as
simulation intractability. Furthermore, NIZK arguments are interesting for con-
structing other cryptographic primitives, such as signature of knowledge (SoK)
[11].

In literature, there are several constructions that add the privacy layer using
zero knowledge proofs for set membership based on RSA Accumulators or Merkle
Trees are [10,33,5]. In these works the prover proves statements about values that
are committed, that is, they follow what is known as a commit-and-prove zero
knowledge proof. More recent approaches propose new commit-and-prove for
set-membership based on SNARKs [15,7] or Bulletproofs [22].

D Proofs

Lemma 1. For an MM in a WSFBA between Atkn and Btkn with MIFP equal
to yA→B = yB

yA
and a client order of notional XB > 0, she strictly maximizes

her expected utility by showing a market with reference price yref = yA→B for
any fixed width w ≥ 1.

Proof. Let us define the market in terms of yref and w as described in Section 3,
namely,

yref√
w
@
√
wyref. In the cases of a client buyer and client seller of the swap,

we convert client notional orders into the tokens being sold, mark the trades to
their respective MIFPs using a multiplicative market-impact coefficient for the
token swap of δ, then reconvert the tokens into notional.

If the client is a buyer of the swap, the client is selling Atkn, with trade size

of XByA in Atkn. The trade occurs on the token swap offer of
√
wyref, resulting in

the sale of XByA
1√
wyref

token Btkns by the MM. Finally, the Btkns bought by the

client have an expected per-token value of
√
δyB , while the notional acquired by

the MM (Atkns) has an expected value of XB√
δ
. This is an expected net profit for

the MM measured in notional of:

XB√
δ
− XB

yA
√
wyref

√
δyB =

XB√
δ
−
√
δXB√
w

yA→B
yref

. (1)

If the client is a seller of the swap, the client is selling Btkn, with trade size

of XByB in Btkn. The trade occurs on the token swap bid of
yref√
w
, resulting in the

sale of XB
yB

yref√
w

token Atkns by the MM. Finally, the Atkns bought by the client

have an expected per-token value of
√
δyA, while again, the notional acquired

26 C. McMenamin et al.

by the MM (Btkns) has an expected value of XB√
δ

This is an expected net profit

for the MM of:
XB√
δ
−
√
δXB√
w

yref
yA→B

. (2)

We know the expected buying and selling ofXB notional at yA→B are equally
likely by the definition of an MIFP as a perfectly-informed signal. Therefore, the
total expected profit is:

XB
(1
2
(
1√
δ
−
√
δ√
w

yA→B
yref

) +
1

2
(
1√
δ
−
√
δ√
w

yref
yA→B

)
)
. (3)

To find the maximum with respect to yref, we take the first derivative of this
formula, and let it equal to 0:

yA→B
y2ref

− 1

yA→B
= 0. (4)

Solving for yref gives yref = yA→B , which is equivalent to the MM strictly max-
imizing her expected profits by letting yref = yA→B .

Theorem 1. For a WSFBA, the strict Nash equilibria strategies given the num-
ber of non-cooperative MMs submitting markets being N are:

– N = 1: Clients submit market orders of requested width fmcf and the MM
shows a market of width at most fmcf with reference price equal to the MIFP.

– N ≥ 2: Clients submit market orders of requested width greater than 1 and
MMs show a market of width 1 with reference price equal to the MIFP.

Proof. We now investigate each of the cases described in the theorem statement
in terms of the number of non-cooperative MMs N .

N = 1: Consider first the strategy of a client. Although clients are not nec-
essarily aware of the MIFP, let us consider their strategies taking the MIFP p
as a variable with an arbitrary distribution. For buy orders, the strategy of sub-
mitting a limit order with price p less than

√
fmcfy is dominated by all prices

greater than p and less than or equal to
√

fmcfy. For limit sell orders, this limit
is y√

fmcf

. As such, the equilibrium for clients involves submitting orders equiv-

alent to a market of width equivalent to at least fmcf with reference price equal
to the MIFP. If a client knows a MM submits a market of width less than or
equal to fmcf with reference price equal to the MIFP, this strategy is further
dominated by submitting a market order with requested width fmcf , as mar-
ket orders strictly increase the client’s probability of trading. Furthermore, any
strategy for a client which involves trading on a price outside [y√

fmcf

,
√

fmcfy]

is strictly dominated by not trading. As such, the only possibilities for equilib-
ria can occur on a market of y√

fmcf

@
√
fmcfy. Furthermore, the submission of

market orders (increasing probability of trading) with requested width fmcf is

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 27

strictly dominant if the MM shows a market with reference price equal to the
MIFP in sufficient size to fill all clients’ orders. As Qnot > |D|, this would be the
case given the appropriate reference price. In Lemma 1, we have seen that a MM
trading on a market against a random client shows a market with reference price
equal to the MIFP. Therefore clients submit market orders with requested width
fmcf . Moreover, this strategy does not require the client to know the MIFP..

Consider now the MM strategy. As only the tightest market in every auction
is included for settlement, the MM only submits one market. Any MM order
bidding above/offering below the MIFP has negative expected utility, and as
such, no rational MM does this this. Also, by definition, the MM must show a
market in size Qnot ≥ |D|, meaning the MM has sufficient notional on the bid and
offer to trade all client orders and as such the clearing price must be inside the
provided MM market. Next, we have seen in Lemma 1 that a MM trading on a
market against a random client shows a market with reference price equal to the
MIFP. Furthermore, from Equation 3 we can see that the expected utility of a
MM is strictly increasing in width. Any strategy involving a market with width
greater than fmcf cannot be an equilibrium as clients strictly prefer to trade
on markets of lesser width, as argued above. Therefore, the MM maximises her
expectancy against a random client by showing a market of width fmcf with
reference price equal to the MIFP. Against multiple clients, a positive notional
imbalance at the MIFP is decreasing in price (resp. a negative notional imbalance
is increasing as price decreases), which may cause the MM to provide a market
of width less then fmcf .

Consider the strategy of a MM providing a market of width less than or
equal to fmcf with reference price equal to the MIFP, and the strategy of clients
submitting market orders with requested width fmcf . We have shown that any
player deviation strictly decreases that player’s expectancy, making this a strict
Nash Equilibrium.

N ≥ 2: As MMs in a standard FBA provide markets of width 1 when
the width is not a restriction, applying the requested width adjustments of a
WSFBA, further incentivising tighter markets, does not change the unique equi-
librium of Theorem 3. Similarly, as there is a unique clearing price when a
width-1 market is submitted, it must also minimise the imbalance over prices
that maximise total notional traded. The restriction on the notional of markets
in a WSFBA is in line with the inequality of Theorem 3. Furthermore, any re-
quested width > 1 in this equilibrium ensures a client’s order trading through the
MIFP is included in the final auction settlement, with the maximum allocation
occurring when a client submits a market order.

Lemma 2. At least one player runs Resolution() in every round.

Proof. Consider a Resolution phase where at least one player has not called a
CommitClient() or CommitMM() instance in the preceding Commit phase. This
player is indifferent to the settlement of orders, and as such the only payoff for
that player by running Resolution() correctly is the receipt of resBounty ∈ R+.

Consider instead the case where all players in the system called at least
one instance of CommitClient() and/or CommitMM() in the preceding Commit

28 C. McMenamin et al.

phase. In this case, all players have an additional payoff for receipt of the tokens
currently locked in the protocol. As at least one of the buyers or sellers of the
swap must receive a non-zero amount of tokens, the receipt of which having at
worst 0 utility. This, in addition to the receipt of resBounty makes the calling of
Resolution() positive expectancy for at least one player in the system.

Lemma 3. A rational client who correctly runs an instance of Register() also
runs correct corresponding instances of CommitClient() and RevealClient().

Proof. By correctly running Register(), a player deposits escrowclient. The only
way to receive escrowclient back is to correctly run a RevealClient() instance,
which itself can only be run after having run a CommitClient() instance in the
previous phase. By construction, escrowclient is greater than any incurrable losses
by running CommitClient() and RevealClient(), with maximal losses occurring
where the client’s order is settled for tokens that have 0 notional (price goes to
0). As the client’s initial deposit had notional value strictly less than escrowclient,
so must the incurred loss. The result follows.

Lemma 4. A rational MM who correctly runs an instance of CommitMM() also
runs a correct instance of RevealMM() in the proceeding phase.

Proof. By correctly running CommitMM(), a player deposits escrowMM. The
only way to receive escrowMM back is to correctly run a RevealMM() instance
in the proceeding. By definition, as the MM’s bid and offer has notional value
greater than or equal to the total notional in the auction, Qnot, so must the
incurred loss of not revealing a market. Therefore, players running CommitMM()
always correctly run RevealMM().

Lemma 5. Consider an instance of FairTraDEX between Atkn and Btkn. A ra-
tional client Pi with bali(B) > escrowclient runs an instance of Register().

Proof. Consider such a client Pi with minimum client utility fmcf to exchange
one token for another. To execute the swap, Pi must first call Register(). Given
Pi calls Register(), we know from Lemma 3 that Pi also calls CommitClient()
and RevealClient(). We know from Lemma 2, Resolution() will be run in every
round, meaning Pi either trades or the tokens are returned. Given a trade occurs,
Pi realises the utility of trading given the restrictions of the order generated by
Pi in CommitClient(), which can be chosen to be any value with positive utility
(buy below the MIFP/sell above the MIFP). If no trade occurs, Pi’s realised
utility (of 0) does not change. Therefore, Pi runs Register().

Lemma 6. Consider an instance of FairTraDEX between Atkn and Btkn, and
at least 1 previously called instance of Register(). Any rational MM Pi with
bali(B) ≥ escrowMM and bali(Atkn), bali(Btkn) > 0 runs an instance of Com-
mitMM().

Proof. Consider such a player Pi. Given Register() was called by some player
Pj , Pi knows Pj must call CommitClient() and RevealClient(). Furthermore, Pi

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 29

knows the total order size is bounded by Qnot (Section 4). Given MIFP yA→B
and the definition of a MM, there is some market market← (bid@offer) at which
Pi observes positive utility to trade with Pj . Therefore, Pi submits market to the
auction. We must now ensure Pi submits the order by calling CommitMM(). By
the calculation of order settlement, if Pi submits market through the necessary
Register() and CommitClient() calls and Pi submits a market order with finite
requested width, no trade happens. As such, Pi runs CommitMM().

With these lemmas in hand, we have it that rational clients and rational
MMs correctly execute all algorithms as outlined by FairTraDEX. This can be
expressed concisely in the following corollary. In this corollary, and the theorem
that follows, we assume clients and MMs satisfy the token-balance requirements
as described in Lemmas 5 and 6 respectively.

Corollary 1. Rational clients and MMs always follow the FairTraDEX protocol.

Observation 5 It can be seen that FairTraDEX with at least nψ previous Reg-
ister() calls implements a WSFBA when all players follow the protocol. In the
Commit phase, CommitClient() specifies a client order which is committed to,
while CommitMM() specifies a market which is also committed to. As clients
commit to these orders and sign this commitment using a NIZKSoK, nothing is
revealed about the client’s order, as there are are least nψ Register() calls. This
is equivalent to privately submitting the order.

CommitMM() and RevealMM() ensure MMs provide the equivalent of at least
Qnot notional on the bid and offer. Furthermore, as MMs are indistinguishable
(see Section 3), a MM commitment reveals nothing about the liquidity on the bid
or offer12.

When the Commit phase is finished, no further orders or markets can be sub-
mitted for that auction round, and as such, the clearing price is predetermined.
During the Reveal phase, RevealClient() and RevealMM() reveal the orders cor-
responding to CommitClient() and CommitMM() instances from the previous
phase, which are settled in the Resolution phase according to clearing price rules
which maximise the amount of notional to be traded, as is in a WSFBA.

Theorem 2. Consider an instance of FairTraDEX between Atkn and Btkn with
MIFP yA→B and at least nψ previously called instances of Register(). For N
non-cooperative MMs, the following strategies form strict Nash equilibria:

– N = 1: Clients run Register(), followed by CommitClient() producing market
orders of width fmcf . The MM runs CommitMM() producing a market of
width at most fmcf with reference price equal to yA→B in size Qnot. Clients
and MMs then run RevealClient() and RevealMM() respectively.

12 MMs are also allowed to participate as clients if privacy is a concern. CommitMM()
provides professionals with a functionality to efficiently provide liquidity in a de-
centralised setting. It is possible to introduce a RegisterMM() function analogous
to Register(), allowing MMs to relay markets in ZK. We believe this has negligible
benefit for professionals who already have price and market-size hidden through the
commitment scheme.

30 C. McMenamin et al.

– N ≥ 2: Clients run Register(), followed by CommitClient() producing market
orders of width greater than 1. MMs run CommitMM() producing markets
of width 1 with reference price equal to yA→B in size of at least Qnot. Clients
and MMs then run RevealClient() and RevealMM() respectively.

Proof. From Corollary 1, we know the running of FairTraDEX is a strictly dom-
inant strategy for clients and MMs. Furthermore, from Observation 5, we have
seen that FairTraDEX with at least nψ previously called instances of Register()
implements a WSFBA. Given FairTraDEX is a WSFBA, the statement follows
by applying Theorem 1.

E FairTraDEX Algorithms

Fig. 1: FairTraDEX phases before order settlement. B : indicates the transfer of
some tokens, but not necessarily in the same denomination.

We now describe in detail the algorithms which together form FairTraDEX,
and then describe the main differences between FairTraDEX and a WSFBA.

– Setup(κ,Qnot)→ [params, yA, RegIDs, MMCommits, clientCommits, revealedOrders,
revealedMkts]: For a given cryptographic-security parameter κ, output the
necessary public cryptographic and ZK parameters in params. Set yA ∈ R+

as the indicative price of token Atkn (used to convert restrictions based
on escrows into token amounts). Choose escrowclient ∈ R+ such that the
notional of any client order is bounded by escrowclient, and escrowMM ←

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 31

c · Qnot, for some c > 1, with Qnot as described in Section 4. Choose a
bounty resBounty ∈ R+ to reward players for successfully calling Resolu-
tion(). Add escrowclient, escrowMM,Qnot, resBounty to params. Set RegIDs,
clientCommits, MMCommits, revealedOrders, revealedMkts← [].

– Register(params,Pi,RegIDs)→ [(S, r), regID, RegIDs]: If {bali(B)≥ escrowclient},
set bali(B)← bali(B)−escrowclient. Then, randomly generate S, r ∈ {0, 1}O(κ),
and compute regID← h(S, r). Add regID to RegIDs.

– CommitClient(params, regID,RegIDs, S, r, clientCommits, yA) → [(order),
π, S, com,
clientCommits]: If {regID ∈ RegIDs}: select a token tkn ∈ {Atkn,Btkn}, a
trade price p ∈ R+, and a trade size amount size ∈ R+. If token tkn =
Atkn, set y ← yA. Otherwise, set y ← yA · p (used to verify client or-
der is less than the escrow given the indicative price for Atkn). If {size ≤
bali(tkn),

escrowclient

y }: select a minimum trade width w ≥ 1. Set order ←
(tkn, size, p,w) and com← h(order). Finally, generate the signature of knowl-
edge π ← NIZKSoK [com]{(regID, r) : MemVerify (RegIDs, regID) = 1 &
regID = h(S, r) }. If no proof corresponding to S has been computed before,
add S to clientCommits. Otherwise, output ⊥.

– CommitMM(params,Pi,MMCommits, yA) → [(market), com,MMCommits]
: If {bali(B) ≥ escrowMM}: select a bid size sizebid ∈ R+, offer size sizeoffer ∈
R+ and prices 0 ≤ bid ≤ offer such thatQnot ≤ sizebid·yA ≤ escrowMM, (bali(Atkn)·
yA) ∧ Qnot ≤ sizeoffer ·yA ·offer ≤ escrowMM, (bali(Btkn) ·yA ·offer) (ensures
the bid, offer prices, and sizes fall within the bounds of the minimum size re-
quired by aWSFBA and the escrow). Setmarket← (bid, sizebid, offer, sizeoffer)
and compute com ← h(market). Finally, set bali(B) ← bali(B) − escrowMM

and add com to MMCommits. Otherwise, output ⊥.
– RevealClient(params, π,S, r, order ← (tkn, size, p, w, yA) , clientCommits,

revealedOrders, Pi)→
[revealedOrders]: If token tkn = Atkn, set y ← yA. Otherwise, set y ←
yA · p. If {π ∈ clientCommits ∧ π = NIZKSoK [h(order)]{(regID, r) :
MemVerify(RegIDs, regID) = 1 & regID = h(S, r) } ∧ size ≤ bali(tkn),

escrowclient

y

(Repeat checks from CommitClient()): set bali(tkn)← bali(tkn)−size, bali(B)←
bali(B)+ escrowclient (return escrow), and add order to revealedOrders. Oth-
erwise, output ⊥.

– RevealMM(params, com,market← (bid, sizebid, offer, sizeoffer), yA,MMCommits,
revealedMkts, Pi)→ [revealedOrders]: If {com ∈MMCommits, com = h(market)
∧ Qnot ≤ sizebid · yA ≤ escrowMM, (bali(Atkn) · yA) ∧ Qnot ≤ sizeoffer ·
yA · offer ≤ escrowMM, (bali(Btkn) · yA · offer) (Repeat checks from Com-
mitMM()): set bali(Atkn) ← bali(Atkn) − sizebid, bali(Btkn) ← bali(Btkn) −
sizeoffer, bali(B) ← bali(B) + escrowMM (return escrow), and add the or-
ders (Atkn, sizebid, bid, any), (Btkn, sizeoffer, offer, any) to revealedMkts. Oth-
erwise, output ⊥.

– Resolution(params, revealedOrders, revealedMkts, clientCommits,MMCommits,Pi)
→ [CP,
imbalance, wtight clientCommits,MMCommits, revealedOrders, revealedMkts]:
If this is not the first time Resolution() was called, output ⊥. Otherwise,

32 C. McMenamin et al.

calculate the tightest market width wtight of a market in revealedMkts. Re-
move all markets in revealedMkts except one with width equal to wtight,
chosen using revealedMkts as a random seed to h() 13. Remove all orders in
revealedOrders with requested width greater than wtight. Calculate the clear-
ing price CP which first maximises notional of orders traded from revealedOrders∪
revealedMkts, and then minimises the imbalance imbalance.
If CP does not maximise notional traded, and then minimise imbalance,
output ⊥. Otherwise, if imbalance > 0 at CP, pro-rate all buy orders with
the lowest bid price above CP based on order size. If imbalance < 0, pro-
rate all sell orders with the highest offer price below CP based on order
size. Then, settle all other buy orders with price greater than or equal
to CP, and all other sell orders with price less than or equal to CP. Set
clientCommits,MMCommits, revealedOrders, revealedMkts← [], and bali(B)←
bali(B) + resBounty.

E.1 FairTraDEX vs. WSFBA

The main differences between FairTraDEX and a WSFBA are as follows:

– Escrows are used to enforce the correct revelation of players who commit
to orders or markets. Escrows are only returned to players if orders are
revealed and correspond to a valid commit. Furthermore, escrows are chosen
large enough to ensure the reclamation of escrows has strictly higher utility
than not, ensuring rational players follow the protocol.

– An algorithm involving deposits and/or withdrawals updates the set of bal-
ances for all players, identifying the player calling the algorithm.

– FairTraDEX separates the depositing of client escrow and client order com-
mitments. This is a key functionality necessary to preserve client anonymity
and the guarantees of a WSFBA. If a client deposits an escrow in the same
instance as committing to an order, that information can be used to identify
the player, and imply information about the player’s order. By separating
the two, commitment does not require the update of global variables that
can be used to identify the client.

– Set-membership proofs in ZK in the CommitClient() algorithm are used
to prove that a player committing to a client order has deposited a client
escrow. As FairTraDEX separates the deposit and commitment steps, these
proofs allow a client who deposited an escrow to generate one (and only
one, as ZK proofs reveal S) order per escrow, while only revealing that the
order corresponds to a deposited escrow. As the number of deposited escrows
increases, the probability that an order commitment matches any particular
escrow approaches 0. This replicates the anonymous order submission of a
WSFBA.

13 Given all markets are revealed, the final value of revealedMkts, and as such
h(revealedMkts||∗), is unpredictable in the presence of two or more non-cooperative
MMs. We prove in Lemma 4 that all MMs running CommitMM() also run Re-
vealMM(). The blockchain based implementation of this function is described in
App. G.3

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 33

– Tokenised incentives are used to ensure some player in the blockchain calcu-
lates the clearing price, and settles orders correctly.

F Clearing Price Verification

The protocol in Algorithm 4 checks that a given clearing price CP clears the
highest notional with respect to Atkn. To do this, it checks the imbalance and
total notional that would be settled at CP. Note, that the statements that fol-
low are true given some volume trades at the proposed clearing price, which is
asserted in the protocol (line 92).

If the imbalance is 0 (line 97), it can be seen that this price must maximise
the volume trade while minimising the absolute value of the imbalance. Higher
prices reduces the buying notional/ strictly increases the selling notional, while
lower prices strictly reduces the selling notional/increases the buying notional,
which creates an imbalance without increasing the notional traded.

If the imbalance is positive (line 99), this implies there will be buy orders
(partially) unfilled at or above CP. We can see that the only prices at which
more notional can trade must be greater than CP. Thus, the contract checks
the next price increment above (line 100), and verifies the total notional traded
at that price is less than at CP, or equal, but with a larger absolute imbalance
(line 109). If the notional traded is lower at this higher price, the clearing price is
correct as a lower price reduces the value of the selling notional, and increases the
value of the buying notional. If the notional traded is the same, but the absolute
value of the imbalance is higher, this imbalance must be a sell imbalance by
the same reasoning (buying notional decreases, selling notional increases). If the
absolute value of the imbalance is higher (although negative), the imbalances
at all price points above that price are increasing (buying notional decreases,
selling notional increases).

The same holds for sell imbalances at a proposed clearing price (line 105).
Checking the price point below (line 106) and ensuring the notional is lower, or
that the notional traded is the same but with a large absolute imbalance (line
109) guarantees that the proposed clearing price is valid.

G Encoding of FairTraDEX

The following is an overview of the blockchain-based encoding of FairTraDEX,
as described algorithmically in Section 5 and encoded in Appendix G.5.

For an arbitrary bit-string m ∈ {0, 1}∗, relay(m) indicates broadcasting m
to the relay transaction mempool, where m is included as a transaction in the
blockchain if and only if it gives the including relayer access to a relayer fee fr.

G.1 Register

Clients randomly generate S, r ∈ {0, 1}n(κ), and compute regID ← h(S, r).
Then, the client sends a ⟨CLIENT-REGISTER, regID⟩ to the blockchain using

34 C. McMenamin et al.

the blockchains PKI. Upon addition to the blockchain, this deposits an escrow of
escrowclient and a relayer fee of fr to the blockchain (line 22), with regID added
to clients (line 23).

G.2 Commit

A client wishing to submit an order of the form order← (tkn, size, p,w), first gen-
erates a commitment to the order com← h(order). The client then generates a
NIZK signature of knowledge π ←NIZKSoK(com){(regID, r) : MemVerify(RegIDs, regID) =
1 & regID = h(S, r) } on the commitment. The client then relays a message of
the form ⟨COMMIT, com, S, π⟩ to the relayer mempool, which is then sent to
the smart contract by a relayer. The transaction is only valid if Verify(π) returns
1, and as such, a relayer cannot tamper with com. The contract first checks that
the maximum auction notional has not been reached (currAucNotional < Qnot,
line 24).

Furthermore, a valid ⟨COMMIT, com,S, π⟩ message must not reveal a serial
number S which has previously been added to blacklistedSNs (initialised line
18). Serial numbers in blacklistedSNs correspond to client commits that were
not revealed according to the protocol during a previous Reveal phase. The
escrow corresponding to serial numbers of blacklistedSNs are effectively burned
by the protocol, with clients permanently losing access to them. If S is not in
blacklistedSNs, the order commitment is recorded in clientCommits (line 26),
and the relayer who relays the transaction to the blockchain receives the fee
(line 27).

MMs who wish to participate generate a market of the form market ←
(bid, sizebid, offer, sizeoffer), and submit a transaction directly to the blockchain
of the form ⟨COMMIT, h(market)⟩. This transaction deposits an escrow of escrowMM

to the smart contract. The commitment is then recorded in MMCommits (line
30).

Client and MM Commit transactions are collected until the Commit phase
deadline, requestDeadline (line 11), has passed (line 31).

G.3 Reveal

A client who committed to trade through a ⟨COMMIT, com,S, π⟩ transaction in
the Commit phase submits a Reveal transaction directly to the blockchain of the
form ⟨CLIENT-REVEAL, tkn, size, p,w, S, r, regID regIDNew⟩ (line 34). If the
client intends to ren-enter the protocol as a client, regIDNew is a commitment
to a new serial number and randomness. Otherwise, it is the null value.

This ⟨CLIENT-REVEAL, ∗⟩ transaction reveals the token being sold, token
amount to sell, and requested width of the order. The p either reveals a limit
price at which the client is selling, that the order is the market order if p = mkt,
or that the client is withdrawing their escrow if p = withdraw. The contract
checks:

– S ∈ clientCommits to verify a commitment corresponding to that serial
number has been recorded.

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 35

– regID = h(S, r) to ensure that client was indeed the same player that gen-
erated the regID and that the client order is the same as that committed in
the Commit phase h(tkn, size, p,w) = clientCommits[S].com.

If the transaction is valid, the order is added to revealedBuyOrders or revealedSellOrders,
depending on direction. If the token being sold by the client is Atkn, the effective
order size for clearing price calculation and trade size allocation is the minimum
of size and escrowclient/yA, the maximum token Atkn order size allowable (line
37), with the order recorded in revealedOrders (line 38). If the token being sold by
the client is Btkn, the order size is the minimum of size and escrowclient/(yA·offer)
(line 45), with the order recorded in revealedOrders (line 46).

Finally, if regIDNew is the null value, the escrow is returned (line 41 or 48),
while if it is not, it corresponds to re-entering the protocol as a new client (saving
on an additional transaction to re-enter as a client).

A MM who committed to a market through a ⟨COMMIT, com⟩ transaction in
the commit phase submits ⟨MM-REVEAL,market← (bid, sizebid, offer, sizeoffer)⟩
(line 56). The contract verifies:

– The market market matches the previously commitment from the commit
phase (h(market) = MMCommits[MM].com) (line 56).

– For the bid, Qnot/yA ≤ sizebid, which verifies the MM has provided the
minimum notional required by a WSFBA (line 57).

– For the offer, Qnot/(yA · offer) ≤ sizeoffer, which again verifies the MM has
provided the minimum notional required by a WSFBA (line 57).

Any MM not revealing a market (line 84) loses their escrow (line 85) and is
prevented from participating in the Resolution phase. Otherwise, from the set
of all valid revealed markets revealedMkts, the tightest market is selected, in-
cluding a tie-breaking procedure for more than one market with width equal to
the tightest width. The tie-breaker used in our implementation of FairTraDEX
takes, for a MM MM (identified by a unique public key) and submitted mar-
ket market, the market corresponding to the largest value of h(h(revealedMkts)
||MM || market) (lines 64-80). Given the tightest market market← (bid, sizebid,
offer, sizeoffer) after tie-breaks, the two implicit limit orders are added to the
set of revealed orders revealedBuyOrders and revealedSellOrders. As was the case
with client orders, the effective order size for clearing price calculation and trade
size allocation of the bid is the minimum of sizebid and escrowMM/yA, while the
effective offer size is the minimum of sizeoffer and escrowMM/(yA · offer).

Reveal transactions are collected until the Reveal deadline, revealDeadline
(line 11), has passed (line 31).

G.4 Resolution

Once the protocol enters the Resolution phase, any player in the system can pro-
pose a clearing price by submitting a ⟨CP, ∗⟩ message. Players submitting such
a message must deposit a token amount (which we set as resBounty, although

36 C. McMenamin et al.

any significantly large value to prevent invalid calls to the smart contract will
do). This deposit, along with a bounty is returned to the player if CP is a valid
clearing price.

The orders are then settled based on the clearing price CP (lines 114-134).
If the quantity of Atkn being sold is greater than the quantity being bought,
the sell orders at the highest sell price below the clearing price are pro-rated
based on the quantity of Atkn being sold. If the quantity of token Atkn being
bought is greater than the quantity being sold, the buy orders at the lowest buy
price above the clearing price are pro-rated based on the quantity of Atkn being
bought. Remaining unexecuted order balances and escrows are returned to the
owners.

G.5 Protocol Encoding

In the following, for arrays containing array objects, the array objects are uniquely
identifiable by the first item in the array (i.e. client identifier, serial number,
ZKProof).

Algorithm 1 Register

1: players← generatePopulation()
2: RegIDs← []
3: clientCommits← []
4: MMCommits← []
5: phase←
6: wtight ← any
7: revealedBuyOrders, revealedSellOrders, revealedMkts← []
8: lastPhaseChange← 0 ▷ tracks the block number of last step update
9: fr ← getRelayerFee()
10: minTickSize← getMinimumTickSize()
11: requestDeadline, revealDeadline← T ▷ Deadline for responses equal to the maximal reveal

delay described in the Threat Model
12: escrowclient ← Y ▷ Escrow required to show each market, in line with the Threat Model
13: Qnot ← getMaxAuctionNotional()
14: c← random(R>1)
15: escrowMM ← c ·Qnot ▷ Escrow required to show each market, some amount greater than Qnot
16: yA ← getTokenAIndicativePrice()
17: currAucNotional← 0
18: blacklistedSNs← [] ▷ Tracks revealed serial numbers that misbehaved

19: function Initialise()
20: phase← Commit

21: upon ⟨CLIENT-REGISTER, regID⟩ from player ∈ players
with player.balance(B) > escrowclient + fr do ▷ register player as a client

22: player.transfer(escrowclient + fr,B, protocolContract) ▷ Add client deposit to the contract
account

23: clients.append(regID)

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 37

Algorithm 2 Commit

24: upon relay(⟨COMMIT, com,S, π⟩) from player ∈ players with
currAucNotional < Qnot ∧ Verify(π, com) = 1 ∧ phase = Commit ∧ ¬(S ∈ blacklistedSNs)
do

25: currAucNotional← currAucNotional + escrowclient

26: clientCommits.append([S, com])
27: protocolContract.transfer(fr,B, player)) ▷ Reward relayer

28: upon ⟨COMMIT, com⟩ from player ∈ players with player.balance(B) > escrowMM∧
¬(player ∈ MMCommits) phase = Commit do ▷ Allow only one market per player address

29: player.transfer(escrowMM,B, protocolContract) ▷ Transfer escrow to the protocol contract
account

30: MMCommits.append([player, com])

31: upon phase = Commit ∧ Blockchain.height() = lastPhaseChange + requestDeadline do
32: phase← Reveal
33: lastPhaseChange← Blockchain.height()

38 C. McMenamin et al.

Algorithm 3 Reveal

34: upon ⟨CLIENT-REVEAL, tkn, size, p,w, S, r, regID , regIDNew⟩ from player ∈ players
with S ∈ clientCommits ∧ regID = h(S, r) ∧ h(tkn, size, p = clientCommits[S].com
∧ phase = Reveal do

35: if p ̸= withdraw then
36: if tkn = Atkn ∧ player.balance(Atkn) ≥ size then
37: size← minimum(size, escrowclient/yA)
38: revealedBuyOrders.append([player, size, p,w]) ▷ Add client order to array of orders

to trade
39: player.transfer(size,Atkn, protocolContract)
40: if regIDNew = ∅ then
41: protocolContract.transfer(escrowclient,B, player))
42: else
43: clients.append(regIDNew)

44: else if tkn = Btkn ∧ player..balance(Btkn) ≥ size then
45: size← minimum(size, escrowclient/(yA · p))
46: revealedSellOrders.append([player, size, p,w]) ▷ Add client order to array of orders

to trade
47: if regIDNew = ∅ then
48: protocolContract.transfer(escrowclient,B, player))
49: else if player.balance(B) > fr then
50: player.transfer(fr,B, protocolContract)
51: clients.append(regIDNew)

52: else ▷ Client wants to withdraw
53: protocolContract.transfer(escrowclient,B, player))

54: clients.remove(regID)
55: clientCommits.remove(S)

56: upon ⟨MM-REVEAL,market← (bid, sizebid, offer, sizeoffer)⟩ from MM ∈
MMCommits with h(market) = MMCommits[MM].com ∧ phase = Reveal do

57: if (Qnot/(yA · offer) ≤ sizeoffer ≤ player.balance(Btkn))
∧ (Qnot/yA ≤ sizebid ≤ player..balance(Atkn)) then ▷ Check MM has provided the minimum
required liquidity, Qnot

58: revealedMkts.append(MM,market)
59: MMCommits.remove(MM)

60: upon phase = Reveal ∧ len(MMCommits) = 0 ∧ len(clientCommits) = 0 do ▷ All reveals
published

61: phase← Resolution
62: lastPhaseChange← Blockchain.height()

63: upon phase = Reveal ∧ Blockchain.height() = lastPhaseChange + revealDeadline do
64: tieBreaker← 0
65: tightMkt← ()
66: tieBreakSeed← h(revealedMkts) ▷ Generate seed for tie-breaks before revealed markets is

changed
67: for MM ∈ revealedMkts do ▷ Select the unique market corresponding to the tie-breaker in

the proceeding If statement
68: if (Qnot/(yA ·MM.offer) ≤ MM.sizeoffer ≤ MM.balance(Btkn))
∧ (Qnot/yA ≤ MM.sizebid ≤ MM.balance(Atkn)) then ▷ Check MM still has provided the
minimum required liquidity

69: protocolContract.transfer(escrowMM,B, MM))

70: if wtight = any ∨ (offer
bid < wtight)

∨ (offer
bid = wtight ∧ h(tieBreakSeed||MM||MM.market) > tieBreaker) then

71: wtight ← offer
bid

72: tieBreaker← h(tieBreakSeed||MM||MM.market)
73: tightMkt← [MM,market]

74: revealedMkts.remove(MM)

75: sizebid ← minimum(tightMkt.sizebid, escrowMM/yA)
76: sizeoffer ← minimum(tightMkt.sizeoffer, escrowMM/(yA · tightMkt.offer))
77: revealedBuyOrders.append([player← tightMkt.MM,

size← sizebid, p← tightMkt.bid,w← any]) ▷ Add tightest market to set of orders to be settled
78: revealedSellOrders.append([player← tightMkt.MM,

size← sizeoffer, p← tightMkt.offer,w← any])
79: tightMkt.MM.transfer(sizebid,Atkn, protocolContract)
80: tightMkt.MM.transfer(sizeoffer,Btkn, protocolContract)
81: for S ∈ clientCommits do ▷ Add all clients who did not reveal order to blacklist,

preventing further commitments
82: blacklistedSNs.append(S)
83: clientCommits.remove(S)

84: for MM ∈ MMCommits do ▷ MMs who did not reveal market in time
85: MMCommits.remove(MM) ▷ Remove from protocol without adding to revealedOrders,

effectively burning escrow

86: phase← Resolution
87: lastPhaseChange← Blockchain.height()

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 39

Algorithm 4 Resolution: Clearing Price Verification

88: upon ⟨CP, volumeSettled, imbalance⟩ fromplayer ∈ players with
player.balance(B) > resBounty ∧ phase = Resolution do

89: player.transfer(resBounty,B, protocolContract) ▷ To prevent Sybil attacks, player must
deposit funds which are returned if CP is valid

90: revealedSellOrders← revealedSellOrders[revealedSellOrders..width() >
wtight ∨ revealedSellOrders.width() = any] ▷ Remove sell orders that cannot trade due to
requested width

91: revealedBuyOrders← revealedBuyOrders[revealedBuyOrders..width() >
wtight ∨ revealedBuyOrders.width() = any]

92: Assert(volumeSettled > 0 ∨ minimum(revealedSellOrders.p) <
maximum(revealedBuyOrders.p)) ▷ If the indicated clearing price is below the lowest
offer/above highest bid, all of the proceeding checks pass.

93: buyVolume← sum(revealedBuyOrders[revealedBuyOrders.p ≥ CP].size)
94: sellVolume← sum(revealedSellOrders[revealedSellOrders.p ≤ CP].size)
95: Assert(minimum(buyVolume/CP, sellVolume) = volumeSettled))
96: Assert((buyVolume/CP)− sellVolume = imbalance)
97: if imbalance = 0 then ▷ We are done
98: SettleOrders(CP, buyVolume, sellVolume)

99: if imbalance > 0 then ▷ As the auction is bid at CP, check if next price increment above
clears higher volume OR smaller imbalance

100: priceToCheck← CP + minTickSize
101: buyVolumeNew← (buyVolume− sum(revealedBuyOrders[CP ≤

revealedBuyOrders.p < priceToCheck].size))/CP
102: sellVolumeNew← sellVolume + sum(revealedSellOrders[CP <

revealedSellOrders.p ≤ priceToCheck].size)
103: Assert((minimum(buyVolumeNew, sellVolumeNew) < volumeSettled) ∨

(minimum(buyVolumeNew, sellVolumeNew) = volumeSettled ∧
imbalance ≤ |buyVolumeNew− sellVolumeNew|)) ▷ If the next price clears less volume, or
clears the same volume with a larger imbalance, the proposed CP is valid

104: SettleOrders(CP, buyVolume, sellVolume)

105: if imbalance < 0 then ▷ As the auction is offered at CP, check if next price increment
below clears higher volume OR smaller imbalance

106: priceToCheck← CP−minTickSize
107: buyVolumeNew← (buyVolume + sum(revealedBuyOrders[CP >

revealedBuyOrders.p ≥ priceToCheck].size))/CP
108: sellVolumeNew← sellVolume− sum(revealedSellOrders[CP ≥

revealedSellOrders.p > priceToCheck].size)
109: Assert((minimum(buyVolumeNew, sellVolumeNew) < volumeSettled) ∨

(minimum(buyVolumeNew, sellVolumeNew) = volumeSettled
∧ imbalance ≤ |buyVolumeNew− sellVolumeNew|))

110: SettleOrders(CP, buyVolume, sellVolume)

111: protocolContract.transfer(2resBounty,B, player)) ▷ Return deposit, and reward player
for submitting valid clearing price

40 C. McMenamin et al.

Algorithm 5 Resolution: Settle Orders

112: function SettleOrders(CP, buyVolume, sellVolume)
113: buyVolume← buyVolume/CP ▷ Convert sell volume to equivalent in Atkn

114: if buyVolume > sellVolume then ▷ pro-rate buy orders at the min price above (or equal
to) the clearing price

115: ppro-rate ← minimum(revealedBuyOrders[revealedBuyOrders.p ≥ CP].p)

116: sizepro-rate ← sum(revealedBuyOrders[revealedBuyOrders.p = ppro-rate].size)/CP

117: for order ∈ revealedBuyOrders[revealedBuyOrders.p = ppro-rate] do

118: protocolContract.transfer(order.size · (1− buyVolume−sellVolume
sizepro-rate

),Atkn, order.player) ▷

return tokens not going to be exchanged

119: order.size← order.size · buyVolume−sellVolume
sizepro-rate

120: else if sellVolume > buyVolume then ▷ pro-rate sell orders at the max price below (or
equal to) the clearing price

121: ppro-rate ← maximum(revealedSellOrders[revealedSellOrders.p ≤ CP].p)

122: sizepro-rate ← sum(revealedSellOrders[revealedSellOrders.p = ppro-rate].size)

123: for order ∈ revealedSellOrders[revealedSellOrders.p = ppro-rate] do

124: protocolContract.transfer(order.size · (1− sellVolume−buyVolume
sizepro-rate

),Btkn, order.player) ▷

return tokens not going to be exchanged

125: order.size← order.size · sellVolume−buyVolume
sizepro-rate

126: for order ∈ revealedBuyOrders, revealedSellOrders do ▷ iterate through orders
127: if order ∈ revealedBuyOrders ∧ (order.p ≥ CP ∨ order.p = mkt) then ▷ execute

buy order if bid greater than clearing price
128: tokenTradeSize← order.size/CP
129: protocolContract.transfer(tokenTradeSize,Btkn, order.player)
130: else if order ∈ revealedSellOrders ∧ (order.p ≤ CP ∨ order.p = mkt) then ▷

execute sell order if bid greater than clearing price
131: tokenTradeSize← (order.size)/CP
132: protocolContract.transfer(tokenTradeSize,Atkn, order.player)
133: else ▷ Order not executed
134: protocolContract.transfer(order.size, order.tkn, order.player)

135: phase← Commit
136: currAucNotional← 0
137: revealedBuyOrders, revealedSellOrders← []
138: wtight ← any
139: lastPhaseChange← Blockchain.height()

G.6 Existence of irrational players and coalitions

When analysing the optimal strategies of rational players in WSFBAs, our results
are based on all players being rational and that nψ instances of Register() are
called. If we consider the presence of irrational players in the system, we can
apply the following adjustments:

– Irrational MM: In Lemma 1, it is shown that the optimal strategy for
a MM is to show markets centred around the MIFP. Any other (irrational)
strategy must therefore result in reduced expectancy for the MM, and higher
expectancy for clients. Therefore, given the presence of irrational MMs, sub-
mitting market orders maximises client expectancy (with greater expected
utility than in the presence of rational MMs, although with increased vari-
ance).

– Irrational client: Given the optimal strategy for rational clients is to sub-
mit market orders, a irrational client may then submit limit orders. This

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 41

merely reduces the irrational client’s chance of trading vs. other clients. This
would not change the strategy of non-colluding rational MMs, but may have
some affect on a monopolistic MM’s interpretation of fmcf .

Furthermore, if less than nψ instances of Register() are called, clients resort to
submitting limit orders. This can be seen in the proof of Theorem 1. In the proof,
if clients are not sure that a MM will show a market with reference price equal
to the MIFP, the case when less than nψ instances of Register() are called, the
optimal strategy for clients is to submit limit orders, which only stands to reduce
the clients’ probability of trading. As the number of non-cooperative players in
FairTraDEX decreases towards two, the guarantees of FairTraDEX approach
those of an AMM. However, as client price and order size remain hidden until
the counterparty chooses her strategy, and before the clearing price is fixed (end
of the Commit phase), FairTraDEX maintains advantages over AMMs against
client-based EEV attacks, such as price/order-size specific front-running and
selective participation.

H Practical Considerations for FairTraDEX

Practical approaches to ensure equivalent to nψ Register() calls are taken in ex-
isting anonymity protocols. For example, Tornado Cash 14 rewards players pro-
portionally to the (Tornado Cash equivalent of the) number of Register() calls,
as well as the length of time between calling Register() and CommitClient(). ,

Escrow choices

Choosing escrow amounts for clients and MMs should reflect the emergent use
cases of the protocol. It is possible to create different FairTraDEX instances
for the same pair of tokens based on trade size, both for liquidity purposes
(MMs will require wider markets for larger-sized orders, but the corresponding
increased escrow requirements might prevent smaller clients from participating)
and auction use-cases (day-trading vs. end-of-day balancing). Furthermore, as
the escrow denomination (B) in our description is different to at least one of the
tokens, there needs to be some way to translate the escrow amount into order
sizes. This will depend on the environment, but on Ethereum for example, price
oracles (existing AMMs, Chainlink15, etc.) can be used. It is also possible to
use previous clearing prices from within the FairTraDEX ecosystem, although
a self-referential oracle must be implemented carefully as there may be game-
theoretic implications. If a satisfactory price oracle exists, deposits can be made
in the respective tokens of the swap, further reducing the capital requirements
for players and encouraging adoption.

14 https://torn.community/t/anonymity-mining-technical-overview/15 Ac-
cessed: 20/07/2022

15 https://chain.link/

https://torn.community/t/anonymity-mining-technical-overview/15

42 C. McMenamin et al.

Incentive compatibility given transaction fees

In Section 5, we mention that our Nash equilibria are dependent on the utility
gained by clients and MMs being greater than the cost for participation. The
choice of smart-contract enabled blockchain on which to deploy will dictate the
barrier of entry for clients and MMs alike. Like existing attempts to implement
blockchain-based FBAs [20,14], we have an amortised number of transactions
per player of two. A naive comparison to AMMs, where this is reduced to 1 for
clients, and 0 for MMs, certainly has less direct costs than FairTraDEX. How-
ever, when factors like impermanent loss, slippage16, front-running, and EEV
attacks in general, the value being extracted from DEXs incurs a significant in-
direct cost for clients. Immediately, we can increase the expected cost of using
AMMs by the slippage required by AMMs (set to 0.5% as of writing in Uniswap
V3, but for larger orders this must increase by the nature of AMMs). We can in-
crease this further by the probability orders are not executed (where prices move
more than the slippage, potentially due to front-running) but are added to the
blockchain. As such, the indirect costs are substantial, are increasing in order-
size increases and proportionally to improvements in client trading ability as
strategies can be replicated/front-run. A thorough comparison of the monetary
costs of FairTraDEX vs. AMMs over various order-sizes, and trading scenarios
makes for interesting future work as FairTraDEX begins to be deployed and
tested in the wild.

It can be seen from the proof of Theorem 1 that the client strategies identified
are strong incentive compatible in expectation as the MM always shows markets
of width less than or equal to fmcf . However, the MM strategy of showing width
1 markets is not strong incentive compatible. In addition to the fees described
in the protocol, an additional fee can be applied within the protocol itself to
incentivise the participation of MMs. This can be a function of MM partici-
pation/market widths. As with all additional fees/rewards, the game-theoretic
implications of such an incentivisation scheme must be considered.

In our encoding of FairTraDEX, we do not explicitly introduce a cost for
clients and MMs in Commit/Reveal phases to reward the submission of the
clearing price. In reality, the result in Lemma 2 holds without the introduction of
an explicit reward, as there all participating clients and MMs will have positive
expectancy to receive tokens through correct order resolution. The use of an
explicit reward is for illustrative purposes, and to avoid complications regarding
transaction fees for running the clearing price checks. The costs of running the
Resolution contracts must be ensured to be less than the utility gained by at
least one player in the blockchain protocol for calling the contract.

Differences to previous versions of FairTraDEX

In a previous version of this paper, the notional amount Qnot was was also used
to upper-bound the notional of client orders allowable in an auction. This was

16 https://docs.uniswap.org/protocol/concepts/V3-overview/swaps

https://docs.uniswap.org/protocol/concepts/V3-overview/swaps

FairTraDEX: A Decentralised Exchange Preventing Value Extraction 43

intended to simplify the strategy analysis in the proof of Theorem 1, although
without adding any additional guarantees to the protocol. In the current version
of the paper, we manage to provide a simpler definition of a WSFBA without
significantly adding to the complexity of Theorem 1 by noting any MM order
through the MIFP must be negative in expectancy for the MM.

	FairTraDEX: A Decentralised Exchange Preventing Value Extraction

