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Abstract. In this paper, we show that it is inaccurate to apply the hy-
pothesis of independent round keys to search for differential characteris-
tics of a block cipher with a simple key schedule. Therefore, the derived
differential characteristics may be invalid. We develop a SAT-based al-
gorithm to verify the validity of differential characteristics. Furthermore,
we take the key schedule into account and thus put forward an algorithm
to directly find the valid differential characteristics. All experiments are
performed on Midori64 and we find some interesting results.
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1 Introduction

Midori [2] presented at ASIACRYPT 2015 is a family of lightweight block ciphers
with low energy consumption. The family is composed of two versions Midori64
and Midori128, which encrypt 64-bit and 128-bit plaintexts, respectively. Due to
the small state space of Midori64, we focus on Midori64 in this paper.

The most critical step of differential cryptanalysis is to obtain the differen-
tial characteristics with high probability. In general, automatic search methods
based on MILP and SAT/SMT are utilized to find them under the hypothesis of
independent round keys [1, 3, 8]. However, for Midori64, its round keys are not
independent because of its simple key schedule. Furthermore, there are no right
pairs that follow the expected propagation of the differential characteristic [4].
That is, the differential characteristic is invalid.

This inspires us to develop an accurate SAT-based method for verifying the
validity of the differential characteristics and encourages us to improve the ex-
isting algorithms for directly finding the valid differential characteristics. Our
main contributions are listed in the following:

• Using the SAT-based method under the hypothesis of independent round
keys, see Algorithm 1, we obtain the upper bounds on the probability of the
best differential characteristics for full-round Midori64.
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• We propose a SAT-based method to verify the validity of a differential char-
acteristic, see Algorithm 2. For Midori64, we apply this method to test
whether the differential characteristics obtained by Algorithm 1 are valid.

• In knowing the upper bounds on the probability of the best differential char-
acteristics, we take the key schedule into account and thus put forward an
algorithm to directly search for valid characteristics of a block cipher, see
Algorithm 3. As a result, we improve some previous results.

The rest of this paper is organized as follows. In Section 2, we give a brief de-
scription of Midori64. In Section 3, the SAT-based method under the hypothesis
of independent round keys is used for Midori64. In Section 4, we present an ac-
curate SAT-based algorithm to verify the validity of differential characteristics.
In Section 5, we give the algorithm directly finding the valid differential charac-
teristics with application to Midori64. In Section 6, we conclude this paper.

2 A Brief Description of Midori64

Midori64 has a SPN structure, whose state size is 64 bits, key size is 128 bits
and round number R is 16.

Each round function of Midori64 is composed of the following four operations.
SubCell (SC) is the only nonlinear operation where 16 4-bit S-boxes are applied
to each nibble of the state in parallel. ShuffleCell (SFC) applies a nibble-wise
permutation to the state. MixColumn (MC) performs a linear transformation on
each 4-nibble column of the state. KeyAdd (KA) uses a XOR operation, which
bitwise XORs the i-th 64-bit round key RKi to each bit of the state.

The data encryption process of Midori64 is as follows: Firstly, using KA, a
64-bit whitening key WK is XORed to each bit of the state. Then, the round
function is performed R− 1 times. Finally, SC is executed, and again KA using
WK is carried out.

The key schedule of Midori64 is relatively simple and uses a 128-bit master
key K that is composed of two 64-bit keys K0 and K1: K = K0||K1. The
whitening key WK is computed as WK = K0 ⊕ K1 and the round key is
RKi = Ki mod 2 ⊕ αi, 0 ≤ i ≤ 14, where αi is the round constant. More details
about Midori64 are depicted in design documentation [2].

3 The Method Proposed by Sun et al. with Application
to Midori64

In this section, we apply the SAT-based method proposed by Sun et al. to find
the upper bounds on the probability of the best differential characteristics for
full-round Midori64. We use the SAT solver called Cryptominisat [6] to do our
work. It accepts CNF (Conjunctive Normal Form) files as the standard input,
which is equivalent to the product-of-sum representation of Boolean functions.

In the following, we give a general framework of the SAT-based method
proposed by Sun et al. [8], see Algorithm 1. However, we emphasize that this
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approach is based on the hypothesis of independent round keys. If this hypothesis
of a block cipher is weak, the derived differential characteristics may be invalid.
Thus, the probability of the best differential characteristics is only the upper
bound. It depends on whether the derived characteristics are valid. If valid, the
bound is tight; otherwise, is not tight.

Algorithm 1 The SAT-based search algorithm under the hypothesis of inde-
pendent round keys

Require: the total round R
Ensure: the upper bounds bound on the best probability for a R-round primitive
1: bound ← list([0,0,· · · ]) ▷ store R-round information
2: result ← - 1 ▷ the weight of the best probability
3: for r ← 0 to R− 1 do
4: flag ← false
5: while flag is false do
6: result ← result + 1
7: model1 ← ()
8: model1 ← BuildModel1(r, model1, result,bound)
9: Flag ← the result obtained by solving the model1
10: if Flag is ”SAT” then
11: flag ← true
12: end if
13: end while
14: bound [r] ← result
15: end for
16: return bound
17:
18: function BuildModel1(r, model1, result, bound)
19: for i← 0 to r - 1 do
20: model1 += the differential propagation rules for the i-th round primitive
21: end for
22: model1 += the model of objective function about the weight result
23: model1 += the model of Matsui’s bounding conditions created with bound
24: return model1
25: end function

In lines 7-9 of Algorithm 1, the process of searching with the SAT solver can
be summarized as follows: Firstly, the search problem is expressed as a set of
CNF clauses, and thus the SAT model is established. Then, the model is solved
by the solver. Finally, if there is a solution, then the solver returns ”SAT” and
a solution is extracted; otherwise, returns ”UNSAT”.

For different block ciphers, BUILDMODEL1() is the only different part. To
apply Algorithm 1 to Midori64, we need to establish the differential propagation
models for all the operations that include XOR, S-box, SFC, and MC.

For bitwise XOR operation α0 ⊕α1 ⊕ · · · ⊕αn−1 = β, we define a (n+1)-bit
Boolean function f(α0||α1|| · · · ||αn−1||β) as

f(α0||α1|| · · · ||αn−1||β) =
{
1, if α0 ⊕ α1 ⊕ · · · ⊕ αn−1 = β
0, else

.
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For 4-bit S-box operation, let x ∈ F 4
2 and y ∈ F 4

2 be the input and output
differences of differential distribution table (DDT) of S-box, respectively. And p
is the probability of a differential propagation in the DDT. We introduce 3 extra
binary variables w0, w1, w2 to encode the weight of probability, as follows:

w = (w0, w1, w2) =

 (0, 0, 0), if p = 2−0

(0, 1, 1), if p = 2−2

(1, 1, 1), if p = 2−3
.

We define a 11-bit Boolean function f(x||y||w) as

f(x||y||w) =

1, if x → y is a possible propagation with− log2 p =
2∑

k=0

wk

0, else
.

For SFC operation, we only need to change the positions of bits, which indi-
cates that the extra CNF clauses are not required.

For MC operation, we can find its primitive representation [7]. Thus, the 4×4
involutive matrix over field F 4

2 can be converted to a 16×16 binary matrix. And
the MC operation is converted to 64 XOR operations.

Use the software Logic Friday [5] to obtain the minimum product-of-sum
representations of all operations and thus generate a set of smaller CNF clauses.

Our goal is the r-round upper bounds of probability. Express the extra vari-

able of the j-th S-box in the i-th round as w
(i,j)
k , where 0 ≤ i ≤ r−1, 0 ≤ j ≤ 15,

and 0 ≤ k ≤ 2. Thus, the objective function is expressed as
r−1∑
i=0

15∑
j=0

2∑
k=0

w
(i,j)
k . It

can be abstracted as the Boolean cardinality constraint
n−1∑
i=0

xi ≤ z, where z is a

non-negative integer. This requires the solver to find such a differential charac-
teristic that the weight of differential probability is less than or equal to z. For
more information about the modeling of this constraint, see [8].

Matsui’s bounding conditions are encoded to the SAT model for accelerat-
ing the search. These conditions take full advantage of the fact that the upper
bounds on the probability of short characteristics are known. Similarly, for more
information about the modeling of those conditions, see [8].

Table 1. The weight of the upper bounds on the probability of the best differential
characteristics for full-round Midori64.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−log2 p 2 8 14 32 46 60 70 76 82 100 114 124 134 144 150

Thus, the involved SAT model has been completed. Using Algorithm 1, we
find the upper bounds on the probability of the best differential characteristics
for full-round Midori64, as shown in Table 1. It more accurately evaluates the
security of Midori64 against single-key differential cryptanalysis, which is roughly
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estimated by the low bounds on the number of differential active S-boxes in
the design document of Midori64 [2]. Notice the fact that the block size for
Midori64 is 64 bits. From Table 1, 7-round Midori64 is sufficient to resist single-
key differential cryptanalysis, because 2−70 ≤ 2−64 ≤ 2−60.

4 Verifying the Validity of Differential Characteristics
Based on SAT

In this section, we show that the derived differential characteristics under the
hypothesis of independent round keys may be invalid because round keys of
Midori64 are not independent. As the work in [4], we only focus on whether a
differential characteristic is valid and ignore the value of its non-zero probability.
If the characteristic Q with non-zero probability is invalid, the work based on Q
cannot reflect the security of a block cipher against differential cryptanalysis.

Algorithm 2 The SAT-based algorithm to verify the validity of a differential
characteristic
Require: a r-round differential characteristic Q
Ensure: The validity of Q
1: model2 ← ()
2: model2 ← BuildModel2(r, model2 )
3: Flag ← the result obtained by solving the model2
4: if Flag is ”SAT” then
5: solution ← a valid key and the corresponding right pair following Q
6: return [”SAT”, solution] ▷ Q is valid
7: else
8: return ”UNSAT” ▷ Q is invalid
9: end if
10:
11: function BuildModel2(r, model2 )
12: for i← 0 to r - 1 do
13: model2 += the constraint rules of characteristic Q on intermediate states

of a pair of plaintexts in the i-th round
14: model2 += the value propagation rules of the encryption part for a pair of

plaintexts in the i-th round
15: model2 += the value propagation rules of the key schedule part for a pair

of plaintexts in the i-th round
16: model2 += the rules of linking both parts via the round key ki
17: end for
18: return model2
19: end function

Therefore, we present an accurate SAT-based algorithm to verify the validity
of a differential characteristic, see Algorithm 2. It encrypts separately a pair
of plaintexts with a key for the primitive and thus it can be used to check
whether the XOR value of two plaintexts in each round satisfies the difference
value in each round. If the SAT model has a solution, then a valid key and
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the corresponding right pair following the differential characteristic are output;
otherwise, the differential characteristic will be invalid, which also indicates that
there are no valid keys that follow the propagation of Q.

Next, we give a specific description of BUILDMODEL2() for Midori64. We
need to establish the value propagation models for all operations. Then, accord-
ing to the structure of the block cipher, the model of each operation is connected
to establish the r-round propagation model of a pair of plaintexts. XOR, SFC,
and MC of all operations are linear and can be modeled similarly to the cor-
responding differential propagations in Section 3. Here, we introduce the SAT
model for the value propagations of the non-linear operation S-box.

For 4-bit S-box operation y = S(x), where x ∈ F 4
2 and y ∈ F 4

2 are the input
and the output values of S-box, respectively. We define a 8-bit Boolean function
f(x||y) as

f(x||y) =
{
1, if x → y is a possible propagation with y = S(x)
0, else

.

Similarly, use Logic Friday to generate a set of smaller CNF clauses. So far, the
SAT model of each operation of Midori64 has been completed. Thus, we can use
Algorithm 2 to verify some of the characteristics obtained by Algorithm 1.

We modified Algorithm 1 to output multiple differential characteristics of r-
round Midori64, where 1 ≤ r ≤ 6. Usually, the solver only outputs one solution.
To find multiple solutions, we utilize its incremental property, which allows the
solver to record the current information. After the solver outputs a solution,
an additional CNF clause is added to the SAT model to prohibit this solution.
Then, the solver is asked to give a solution again, and so on, until the solver
returns ”UNSAT”. Specifically, for a n-bit variable (x0, x1, · · · , xn−1) with its

specific solution (k0, k1, · · · , kn−1), the CNF clause
n−1∨
i=0

(xi⊕ki) = 1 is appended.

We apply Algorithm 2 to verify the validity of these differential character-
istics. The results show that some of them are valid, which indicates that the
upper bounds of 1 ≤ r ≤ 6 rounds obtained by Algorithm 1 are tight. However,
some of them are invalid, which also indicates that the hypothesis of independent
round keys is inaccurate for Midori64.

Such experimental results remind us that we can use this hypothesis to
roughly assess the resistance of a block cipher against differential cryptanal-
ysis. However, when we want to obtain specific differential characteristics for
differential attacks, we should pay attention to the validity of characteristics.

5 Our New Algorithm for Finding Valid Differential
Characteristics

The first two sections explain that the derived differential characteristics under
the hypothesis of independent round keys may be invalid. In the following, we
build a SAT model that involves both the differential and value propagations of
a primitive to directly search for valid differential characteristics.
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In knowing the upper bounds on the best probability of the r-round primitive,
we take the key schedule into account and thus propose an improved search
method for directly finding a valid characteristic, see Algorithm 3.

Algorithm 3 The improved SAT-based search algorithm for directly finding a
valid r-round characteristic
Require: the target round r
Ensure: a valid r-round differential characteristic
1: bound ← list(R) ▷ store the known upper bounds on the probability of R rounds
2: result ← bound [r] ▷ the weight of the best r-round probability
3: MAX WEIGHT ← 10000
4: while result < MAX WEIGHT do
5: model3 ← ()
6: model3 ← BuildModel3(model3, result, bound)
7: Flag ← the result obtained by solving the model3
8: if Flag is ”SAT” then
9: solution ← a valid r-round characteristic
10: return [”SAT”, solution]
11: end if
12: result ← result + 1
13: end while
14:
15: function BuildModel3(model3, result, bound)
16: BuildModel1(r, model3, result, bound) ▷ the differential propagations
17: BuildModel2(r, model3 ) ▷ the value propagations
18: return model3
19: end function

To improve efficiency of the search, we use the upper bounds obtained by
Algorithm 1 to avoid the search in the probability space for which no charac-
teristics exist, as shown in the 1-th row of Algorithm 3. The BUILDMODEL3()
part not only searches for a characteristic but also verifies its validity. Simi-
larly, incremental property of the solver can be used to obtain multiple valid
characteristics.

The greater probability of two 5-round characteristics was 2−52 in [9]. Us-
ing our Algorithm 3, we search for the best valid differential characteristics of
Midori64. We find some 5-round characteristics with probability 2−46, which in-
creases a factor of 26 than the probability 2−52. Furthermore, we also find some
6-round characteristics with probability 2−60, which means that we may attack
Midori64 with one more round than the result of [9].

These multiple valid characteristics may be used to launch better differential
attacks than the existing ones. And for Midori64, the fewer active nibbles of the
input and output differences of a characteristic, the more conducive to a differen-
tial key recovery attack. Note that we do not consider this factor when searching
for characteristics. Thus, we can continue the study of selecting advantageous
ones among these multiple valid characteristics.
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6 Conclusion and Future Work

In this paper, we show by experimentation that the derived characteristics for
Midori64 under the hypothesis of independent round keys may be invalid. Fur-
thermore, we propose a new algorithm to directly search for valid characteristics.
Using it, we obtain some better valid characteristics, which may improve the
complexity of existing key recovery attacks of Midori64.

In the future, on the one hand, we can search for advantageous characteristics
to perform better differential key recovery attacks on Midori64. On the other
hand, we need to be careful in presuming that the hypothesis of independent
round keys applies to a block cipher.
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