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Abstract. This paper provides necessary properties to algorithmically
secure first-order maskings in scalar micro-architectures. The security no-
tions of threshold implementations are adapted following micro-processor
leakage effects which are known to the literature. The resulting notions,
which are based on the placement of shares, are applied to a two-share
randomness-free PRESENT cipher and Keccak-f . The assembly imple-
mentations are put on a RISC-V and an ARM Cortex-M4 core. All de-
signs are validated in the glitch and transition extended probing model
and their implementations via practical lab analysis.

1 Introduction

In their seminal work, Kocher et al. [25] demonstrated that cryptographic prim-
itives —although mathematically secure in a black-box setting— can suffer from
attacks once deployed in the real world such as in embedded devices. Side chan-
nel analysis enables an adversary to recover secret data by observing physical
characteristics (e.g. power consumption) from such a device. In an attempt to
prevent these attacks, various countermeasures were designed. Masking is one of
the most prevalent countermeasures which aims to make computations indepen-
dent from the input and prevent its direct power consumption analysis. To do
so, a dth-order masking splits sensitive data into d+ 1 random shares such that
observation of up to d shares does not provide enough information to recover the
original value. Hence, provided certain assumptions such as independent leakage,
masking countermeasures are theoretically secure.

However, the assumptions on which masking relies to provide its security do
not hold in practice [27,26,34,2]. Hardware-based solutions suffer from glitches
and transitions effects which can be a source of leakages and extensive research
has been dedicated to design strategies and solutions to tackle these leakages.
Software-based countermeasures suffer from an even larger security-gap which
stems from unintended interactions between values in the CPU. While the origins
of some micro-architectural leakages have been analyzed, its analysis remains dif-
ficult due to the closed-source nature of many commercial processors. A typical



leakage in software implementations arises from a transition of values in a regis-
ter (or a memory cell) within the micro-controller which may be unknown to the
developer. On hardware platforms, an elegant masking countermeasure called
threshold implementations proposed by Nikova et al. [32] enabled first-order se-
cure maskings even in the presence of glitches. However, securing maskings on a
micro-architecture platform is not solved by this approach alone .

The difficulty of protecting a software masked implementation resulted in
various approaches to evaluate the security of a masking scheme. Leakage simu-
lators such as ELMO [29] or MAPS [11] aim to provide an easy-to-use tool for the
evaluation of a given assembly implementation while tools such as ROSITA [38]
can perform automatic algorithmic corrections based on the leakages simulated
by ELMO. However, these tools (and their resulting corrected algorithms) come
with the limitation of being as good as the leakage model from which the em-
ulator is constructed and tailored for a specific core (e.g. ARM Cortex) and
can of course not provide formal proofs. Instead, formal verification tools such
as MaskVerif [3], REBECCA [9], or SILVER [24] have mostly been applied to
hardware implementations although more recently the scVerif [5] tool allows for
a more precise verification by capturing detailed leakages from a target using
domain specific language. Gigerl et al. [19] bring together formal and empirical
verification by analyzing the security of a software masked scheme executed on
a CPU from its netlist and proposed a collection of (mostly hardware) modifi-
cations to apply on the design of a RISC-V core.

While threshold implementations were originally designed as a countermea-
sure for masked hardware implementations, Sasdrich et al. [35] studied the ef-
ficiency of such masking methodologies on a software environment. Their ex-
periment showed a first-order secure implementation of the PRESENT cipher
indicating that some properties of threshold implementations may also benefit
software masking schemes.

Contributions. In this work, we provide masking properties which are necessary
to algorithmically secure maskings, meaning that the properties can be achieved
without hardware modifications, in scalar cores with the goal of first-order prob-
ing security including glitch and transition effects. More specifically, this paper
provides the following points of contribution.

We go through the known literature and summarize a list of leakages due to
glitch and transition effects in various components of micro-architectures. In par-
ticular, the discussed components are standard among scalar micro-processors.

From the previous list of leakages, we propose masking notions, based on the
placement of the shares, which are necessary to secure against them. We extend
the notions of threshold implementations and propose stricter versions of non-
completeness and uniformity which are adapted to masked micro-architectures.

We discuss how to secure maskings using notions extended from threshold
implementations with td + 1 and d + 1 shares (where d = 1 the security order
and t the degree of the function), and provide a secure software masking of a
Toffoli gate using the minimal number of shares. The security of this operation
is formally proven in the glitch and transition extended probing model.



Finally, we secure a two-shared PRESENT cipher, two Keccak variants (i.e.
Keccak-f [800] and the standard Keccak-f [1600]), and the 4-bit quadratic classes
with the extended threshold implementation notions using no additional ran-
domness during the computation. To show the soundness and portability of
our methodology, these primitives are implemented on a RISC-V and an ARM
Cortex-M4 core where we show first-order resistance over practical measure-
ments up to one million traces. We emphasize the importance of our proposed
notions by showing leakage results when the placement and shifting of the shares
is done in a naive way.

2 Preliminaries

In this section, we introduce Boolean masking and threshold implementations
as well as the side-channel security model considered in this paper, namely the
probing model.

2.1 Boolean Masking

Boolean masking is a sound and widely-deployed countermeasure against side-
channel analysis which was first introduced independently by Chari et al. [10]
and Goubin-Patarin [22]. As a means to conceal a key-dependent variable x ∈
F2, a dth-order Boolean masking splits such a variable into d + 1 shares x̄ =
(x0, x1, . . . , xd) where shares x1, . . . , xd are drawn from a uniform distribution

and x0 is computed such that x =
⊕d

i=0 xi. More specifically, such a masking is
called a uniform masking.

Definition 1 (Uniform masking). A random masking X̄ over Fns
2 in s shares

is uniform if for all i ∈ {0, .., s− 1}

P ((X0, ..., Xi−1, Xi+1, ..., Xs−1) = (x0, ..., xi−1, xi+1, ..., xs−1)) = 2−n(s−1) .

In words, if every set of s−1 shares act as a set of uniform random variables.

2.2 Threshold Implementations

In 2006, Nikova et al. [32] introduced a specific case of Boolean masking called a
threshold implementation which secures the masking in the presence of glitches
in hardware circuits. In its essence, a threshold implementation takes as input a
uniform masking x̄ = (x0, . . . , xsx−1) of a secret value x with a masking F̄ (x̄) =
ȳ = (y0, . . . , ysy−1) of a function F (x) = y such that each coordinate function
fi of F̄ takes shares of x and produces a share yi as output. In the following, we
recall the properties of threshold implementations.

Definition 2 (Correctness [32]). The masking F̄ (x̄) is a correct masking of
F when

∑
i fi(x̄) = F (

∑
i xi).



Glitches in a hardware implementation can cause unexpected leakage be-
tween the shares of a secret variable, hence reducing the security of the Boolean
masking scheme (further explained in Section 2.3). In order to prevent this effect,
a threshold implementation makes use of non-complete coordinate functions.

Definition 3 (Non-completeness [32]). A function F̄ (x̄) is non-complete if
each of its coordinate functions fi uses at most sx − 1 input shares of x̄.

A typical threshold implementation will consist of a collection of Boolean
functions where the outputs of one masked function will be used as inputs in
another one. To ensure each function is given a uniform input masking as per
Definition 1, we require that a masked function outputs a uniform output mask-
ing.

Definition 4 (Uniformity [32]). A masked function F̄ (x̄) = ȳ is uniform if
∀x ∈ F, ∀ȳ ∈ Sh(F (x)) :

∣∣ {x̄ ∈ Sh(x)
∣∣ F̄ (x̄) = ȳ

} ∣∣ = |F|sx−1

|F|sy−1
,

where Sh(x) denotes the set of valid share vectors x̄ of the secret x.

2.3 The Probing Model

In the probing model introduced by Ishai, Sahai, and Wagner [23], an adversary
A is allowed to observe a set of at most t (predefined) wires of a circuit at each
execution of the masking. The security of a given implementation is proven by
showing that a simulator S can perfectly simulate any set of at most t probes
without any knowledge of the input shares (x0, . . . , xn−1). A circuit ensuring this
condition for any set of size t is said to be t-probing secure. Dhooghe et al. [14]
showed that a threshold implementation achieves first-order probing security.

While the probing model is a helpful tool to formalize the security of a circuit,
its model remains abstract and lacks the incorporation of physical defaults such
as transition-based leakages or glitches which can alter the security order of a
masking scheme. In the work by Faust et al. [16], a new model is introduced
called the robust probing model which extends the probing model in order to
capture physical defaults of a circuit. As a result, specific models are defined
which enable an adversary A to use ϵ−extended probes revealing additional
information from a probed wire.

The first effect introduced by Faust et al., which is relevant to this work,
pertains to glitches. In a circuit, combinatorial logic cells are connected to each
other such that the input of one cell is the output of another. During each
cycle of execution, the circuit will be evaluated and the result of cells will be
updated until the last cell stores its result into a register. Because of different
wire length, wire speed, or gate propagation time, the result of each cell might
change multiple times before the overall signal stabilizes. Regarding masked
implementation, glitches pose a serious risk of information leakage on a secret



value. Following the work by Faust et al., the probing model is extended to
capture this effect as follows.

“Specific model for glitches. For any ϵ-input circuit gadget G, combina-
torial recombinations (aka glitches) can be modeled with specifically ϵ-extended
probes so that probing any output of the gadget allows the adversary to observe
all its ϵ inputs.”

The second effect relevant to this work is on transition leakage. This effect
originates from the fact that the power consumption of a CMOS circuit is dom-
inated by its dynamic power consumption. When a value stored in a memory
cell is overwritten with a different one, an adversary can measure a peak in the
power consumption which can be modeled as the Hamming distance between
the two values. The probing model is extended in the work by Faust et al. to
capture this effect as follows.

“Specific model for transitions. For a memory cell m, memory recombi-
nations (aka transitions) can be modeled with specifically 2-extended probes so
that probing m allows the adversary to observe any pair of values stored in 2 of
its consecutive invocations.”

3 Micro-architectural Leakage Sources

Central Processing Units (CPUs) and Micro-Controller Units (MCUs) follow a
multi-pipeline design which splits data execution into three main stages (see
Figure 1) namely: the fetch stage, the decode stage, and the execute stage. The
Instruction Fetch (IF) stage retrieves the instruction from memory held by the
Program Counter (PC) and supplies it to the Instruction Decode (ID) stage.
The latter stage interprets the fetched instruction and passes it to the EXecu-
tion stage (EX) which will forward the operation to the appropriate functional
component. Each stage internally relies on specific hardware units in order to
carry out a stage’s tasks.
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Fig. 1: Ibex RISC-V Core [1].

Even though instruction set architectures are well defined, processors embed
a collection of undocumented micro-architectural features which generate unex-
pected recombinations of data. It should be noted that the leakage sources differ



from core to core, as each target will have a specific implementation — hence
different behavior — which might change the way data is internally handled.
However, aside some variations, CPUs commonly mask sensitive components
that produce unintended recombination of shares. In this section, we aim to pro-
vide a classification of the three main types of leakage impacting masked software
implementations on low to mid range scalar cores such as ARM Cortex-M de-
vices or RISC-V scalar cores. This classification is mainly based on the results
of previous works. For each of these types of leakage namely: transition, glitch,
and bitwise interaction related leakages, we detail the CPU components from
which these leakages stem. It is important to note that we consider the effects of
glitches and transitions throughout the micro-architecture separately, meaning
that we ignore the potential combined effects of glitches and transition effects
as detailed by Faust et al. [16].

3.1 Transition Leakage

The first effect studied on the level of micro-architectures are transition leakages
as explained in Section 2.3. Multiple components of the CPU are subject to
transition leakage. We go over these components.

Register File The register file holds the general purpose registers of the micro-
processor which consists of n m-bit registers (e.g. 31 32-bit registers in the
Ibex core) available to read and write a given number of values within one
clock cycle (e.g. the Ibex core has two read ports and one write port). In a
software masked implementation, this unit will hold shares of secret values used
in the current computation which makes it a sensitive component of the CPU
from which transition leakage can occur [2,34,38]. Hence, in the case of masked
implementations this can be a significant issue if the old value of a register
(e.g. x⊕m) is overwritten by a new one using the same mask (e.g. m) as such
operation will leak secret information (e.g. HD(x⊕m,m) = HW (x)).

Pipeline Registers The Arithmetic Logic Unit (ALU) is the combinatorial block
which implements bitwise operations and integer arithmetic. It operates in the
execution stage and receives its instruction’s operands from the decode stage. In
order to propagate data through the different stages, CPUs use specific registers
known as “pipeline registers” serving as intermediate registers holding data from
one stage to the other. The update of the values held in these registers in case
of sequential instructions might generate unexpected transition-based leakages
between the operands of the instructions [38,28,11,34]. For example, assume
an initial ALU instruction such as add rA rB is executed (where rX defines a
register which contains a value X). After the decode stage, operand rA might
be stored in pipeline register P0 while operand rB is stored in pipeline register
P1. A consecutive instruction such as add rC rD will update register P0 and
P1 leading to leakage of HD(rA, rC) and HD(rB, rD). Note that the storage
of an instruction’s operands in these internal registers will vary from core to
core as detailed in [18]. Such micro-architectural components can be a source



of unexpected leakage. As recently observed by Gao et al. [18] and Marshall et
al. [28], instructions will not always follow the same distribution of operands in
the pipeline registers: some instructions may overwrite the first pipeline register
with an operand (i.e. the first) while some do not.

It is assumed that in an n-stage pipeline scalar core, there are n instructions
in flight per cycle (one in each stage). Control-flow instructions create changes at
different stages. For example, a conditional branch can occur during the decode
or execute stage while an unconditional branch can happen during the decode
or fetch stage. Hence, while a given instruction might never actually be executed
due to control-flow changes, its operands may already reside within some pipeline
registers resulting in their leakage as observed by Marshall et al. [28]. From the
same work, we learn that while leakage between operands of instructions sepa-
rated by control-flow is expected in cores using branch delay slots optimization,
recombinations also unexpectedly appear in some ARM cores.

Load-store Unit The Load–Store Unit (LSU) operates during the execution stage
and handles instructions between memory and the registers. The LSU embeds
a storage element that stores the most recent value stored or loaded from the
memory [34,28,38]. Hence, when loading from or storing to memory, the value
of this storage element is overwritten, leaking the Hamming distance between
the previous and the new value. As observed in [28,19,38], the load (resp. store)
operation on a byte or halfword will fill the memory bus by the whole word that
contains the wanted byte (or half word) which will generate unintended memory
interaction potentially leading to recombination of shares.

Data Memory Similar to a register overwrite, writing data to memory interacts
with data already stored in the same location [38,28]. Hence, overwriting one
masked value with another may remove the mask.

3.2 Glitch Related Leakage

The second effect we consider is a glitch as explained in Section 2.3. We go over
the components on a software platform where glitches can cause harmful leakage.

Register File Address Decode Logic While software masked implementations were
often thought to be free of glitches due to their software nature, the design of the
register file is however susceptible to glitches leading to unexpected recombina-
tions of shares [19,34]. Figure 2 illustrates a generic design of a register file where
a 5-bit address signal connected to a multiplexer tree of depth five controls the
selection of registers to be read or written during an instruction. As the address
signals result from combinatorial logic performed at the same time as a given
read (or write) instruction, they are subject to glitches which lead to potential
sequential access to multiple registers within one clock cycle until the signals
stabilize which —in software masked implementation— may result in shares re-
combination. Moreover, a simple bit-value change from the address signal will
show transition from one register to another on the wire connecting two layers of



the multiplexer tree. For example, sequential access to register x1 and to x4 will
switch the value of Addr[5] from 0 to 1 leading to a transition (e.g. HD(x1, x2))
of value wire L0 of the first multiplexer. Finally, the micro-controller might per-
form unintended reads from registers due to its interpretation of instruction bits
at specific indices as operand addresses (e.g. “lw x1, 5(x20) will result in a
read to registers x20 and x5 because bits 15-19 and 20-26 of an instruction are
always interpreted as operand addresses.”[19]).

Fig. 2: Register file [19]

Load-store Unit In addition to transition-based leakages during a load/store
byte/word instruction, a multiplexer is used in order to output the wanted byte
(or halfword) and —due to possible glitches in the multiplexer selector— bytes
(or halfwords) within a word may also interact unintentionally [20].

Data Memory Data memory suffers similar glitch issues as for the register
file [19]. Hence, storing shares within data memory without special care might
lead to unintended access.

3.3 Bitwise Interaction Leakage

In previous works, the assumption was made that the values in a register leak
separately. This allowed designers to store all shares of a secret in a single reg-
ister. This assumption is called the “bitwise independent assumption” and is
formally given in the work by Gao et al. [17].

In this section, we go over the leakage effect where the bits in a single register
get combined. In other words, an effect which violates the bitwise independent
assumption. This leakage effect is in its essence not different from the effects of
the previous section, it originates from the architecture of an ALU (the parallel
execution of many operations where only one operation is chosen as the output)
and from potential glitch effects which occur in this component.



Always-active Computation Units Computation units within the ALU such as
bitwise operations (such as SUB, AND, ADD, OR, XOR, SHIFT, . . . ) are always
active during the execute state. The results produced are given as input to a
multiplexer which will select the appropriate result of the current instruction [19].
While bitwise operations such as AND or XOR only operate on individual bits,
ADD or SHIFT will create interactions between the bits within one operand
violating the bit-independence assumption required in some masking schemes
storing all the shares into one register [4]. Hence, when using such a masking
scheme, the execution of a simple bitwise instruction leaks. For example an
always active barrel shifter can undermine share-slicing techniques as described
in the work by Gao et al. [17].

4 Adapting Threshold Implementations for Software

Having described a list of leakage effects in Section 3, we provide necessary
properties how to secure a masking against them. More specifically, we extend
the non-completeness notion from threshold implementations as defined in Sec-
tion 2.2. In Section 5, we back up our new notions with a two-shared masked
Keccak whose security is verified in practice.

4.1 Register Non-completeness

Given the effects listed in Section 3, extended notions of non-completeness are
required to secure maskings. For that purpose, we consider operations as Boolean
functions which take registers as input and provide a register as output. We refer
to a bit in a register at “index” i as the ith bit in that register.

From Section 3.3, we find that the ALU recombines bits within a single
operand (register). As a result, we cannot place all shares of a variable in a
single register. The notion of non-completeness therefore needs to necessarily
span all values in a single register.

Definition 5 (Horizontal non-completeness). A masked operation with in-
put registers R0, ..., Rℓ is horizontal non-complete when the set of all values in
R0, ..., Rℓ do not contain all shares of a variable.

To achieve the above notion, it is necessary that each register in the register
file contains a non-complete set of shares. In the case of a two-shared imple-
mentation, we thus enforce that each registers only holds at most one share per
secret value.

From Section 3.2, we find that glitches in the address decode logic of the
register file (or memory unit) can cause recombinations of values between regis-
ters. Since the multiplexer trees decode every bit of the registers separately, such
recombinations only happen at the same index between registers. Similarly, due
to the effect of transitions as described in Section 3.1, values at a fixed index
between separate registers can leak due to them being overwritten. Due to the
glitches in the address decode logic, all values in registers on a specific index



have dependent leakage. As a result, we cannot place all shares of a variable on
the same index over separate registers. The notion of non-completeness therefore
needs to necessarily span across the separate registers at a fixed index.

Definition 6 (Vertical non-completeness). A masked operation computing
on m-bit registers R0, ..., Rℓ is vertical non-complete when the set of all values
at index 0 ≤ i ≤ m of R0, ..., Rℓ do not contain all shares of a variable.

Again, at minimum the above notion also needs to hold for the memory
and register file. Therefore, given an n m-bit register file, all values at index
0 ≤ i ≤ m of the n registers are non-complete. In the case of a two-shared
implementation, we thus enforce that for any set of registers, the set of values
at index 0 ≤ i ≤ m holds at most one share per secret value. Similarly, every
separate register can hold at most one share per secret value.

We can also extend the notion of a uniform masking from Definition 1.
Whereas the notions of horizontal and vertical non-completeness were necessary
for security, the following notion on uniformity is neither necessary nor sufficient.
However, the notion allows for a secure sequential composition of functions sim-
ilar to the regular notion of uniformity.

Definition 7 (Register uniform masking). Given a masking in s shares, a
set of ℓ+1 registers R0, ..., Rℓ are a register uniform masking when for every set
of s− 1 indices the set of shares at those indices jointly act as uniform random
variables. Similarly, for every set of s− 1 registers, the shares in those registers
jointly act as uniform random variables.

A register uniform function is then one which maps a register uniform input
masking to a register uniform output masking.

The above definition of uniformity essentially requires the regular notion of
uniformity and for the different shares to be vertically separated. Take for ex-
ample a uniform three-shared x̄ = (x0, x1, x2), if we would store the three shares
in three three-bit registers R0 = [x0, 0, 0], R1 = [x1, 0, 0], and R2 = [0, x2, 0]
then the masking would still be uniform (from Definition 1) and horizontal and
vertical non-complete but it would not be register uniform (since it essentially
compressed a three-sharing to a two-sharing). Instead, we need to store the
three shares in three three-bit registers such that R0 = [x0, 0, 0], R1 = [0, x1, 0],
and R2 = [0, 0, x2]. Similarly, the shares also need to be horizontally separated.
Coming back to the previous example, storing shares in two registers such as
R0 = [x0, x1, 0] and R1 = [0, 0, x2] would also not be register uniform.

As opposed to hardware operations, operations on micro-controllers are often
done sequentially. As a result, we cannot make an operation which is correct, reg-
ister non-complete, and register uniform in a single instruction. Instead, we will
require the composition of several operations (implementing a masked function)
to be register uniform and its intermediate stages to be register non-complete
or, more strictly, robust probing secure considering the effects from Section 3.

Together, the two notions of register non-completeness and register unifor-
mity protect micro-processors against the effects listed in Section 3. However,



in practice, due to each micro-processor being of a different (and unknown) de-
sign, we often cannot ensure register uniformity as values might be stored in
unaccounted registers and kept throughout longer periods of the computation.
Nevertheless, the above notions can help a designer to attain some necessary
properties for a secure masking. Independently to this work, a public repository
on Github containing a software masking of ASCON [36] also rotates the shares
against each other to reduce leakage. In the repository, two and three shares
masked ASCON software implementations as well as TVLA results are avail-
able. While these ad-hoc implementations show interesting results for the three-
shared implementations, the two-shared variants require device specific fixes in
order to ensure practical security. Indeed, as opposed to our work, shares are left
unrotated during specific operations (e.g. non-linear operations). We emphasize
that keeping such a rotation present throughout the nonlinear operations can
secure the implementation without additional measures specific to the platform.

4.2 Register Non-completeness with td + 1 Shares

We start with the traditional setting from threshold implementations where we
have td + 1 shares to protect a function of degree t against dth-order probing
adversaries. Since we focus only on first-order protection, we take d = 1. In order
to achieve a masking with registers which is horizontal non-complete (Def. 5),
we separate the registers in t + 1 domains. Each share is assigned to a single
domain. In order to fulfill vertical non-completeness (Definition 6), we require
that no vertical alignments of related shares between any of the domains occur
during the computation. To this end, we store shares in the registers shifted by a
unique value depending on which domain they belong to. An example is shown
in Figure 3 where the input (or output) is separated by share and shifted.

Given an arbitrary masked function F̄ : Fn(t+1)
2 → Fn(t+1)

2 : x̄ 7→ F̄ (x̄) which
is non-complete and uniform given the traditional notions from Section 2.2, the
function can be made register non-complete and register uniform by dividing
x̄ in t + 1 registers each holding one share and shifting each domain such that
they are not vertically aligned. As a general methodology, this masked function
can be computed by shifting the needed input shares underneath each other and
calculating the respective output share. The input shares are then shifted back
into place and the process is repeated until all output shares are calculated.
Once the calculation is complete, we remove or overwrite the inputs shares x̄ as
the input concatenated with the output is not register uniform. For example, for
three shares and the non-complete and uniform masked function F̄ , the input
(e.g. x1) is rotated to the left so that the first output F0(x0, x1) share can be
calculated. Afterwards, x1 is rotated back at its original position and the process
is repeated to get all the outputs. Finally, the inputs are then cleared for the
state to be register uniform (see Figure 3).

Finding a methodology or maskings of specific functions which do not require
the clearing of input variables or which require fewer temporary registers is left
as an open problem.
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Fig. 3: Methodology for td + 1 shares. In this masking, registers R0, R1, R2
belong to domain A, B and C respectively and R3-R5 are temporary registers
in domain T.

4.3 Register Non-completeness with d + 1 Shares

Working with fewer shares makes the extended notions of non-completeness less
trivial to achieve. In order to satisfy Definition 5, we again separate registers
into several domains. In addition, we are required to use a “temporary domain”
(called domain T) which can hold any cross-products which do not belong to
the main domains. A depiction of the layout is given in Figure 4. Similar to
the td+ 1 shared case, each domain (including the temporary domain) is again
shifted to ensure vertical non-completeness (Definition 6). For example, for two-
shared implementations, shares held within domain A will all be stored at index
0 while the shares in domain B will all be stored at index 1.

When performing nonlinear operations, cross products (e.g. aibj) will be
created which —if stored in the same register holing either ai or bj— will cause
harmful leakage due to the effect listed in Section 3.3 on bitwise interactions.
Instead, domain T is allocated to hold these cross products until the products
are recombined such that the result can be stored in the main domains again, in
which case the values in the temporary register can be cleared or overwritten by
independent data. Similarly, to avoid harmful leakage from the effect listed in
Section 3.2 on glitches in the decode logic, the cross products in domain T are
stored at separate indices (e.g. for two-shared implementations a0b1 is stored at
index 2 and a1b0 at index 3. Note that cross products a0b0 and a1b1 can be held
at the same index as the first and second share, respectively).

It is possible to find a register non-complete masking of an arbitrary function.
Given a function F : Fn

2 → Fn
2 consisting of u variables, from the original paper

on threshold implementations [32, Corrolary 1] we find that there exists a non-
complete masking of F with 1 + 2nu output shares. By allocating a total of
1+ 2nu temporary registers and storing each output share in a separate register
and index, the output is horizontal and vertical non-complete.

Finding a masking which achieves register non-completeness and uniformity
is more complex. However, the d + 1 non-complete and uniform maskings pro-
vided in the work by Shahmirzadi and Moradi [37] can easily be transformed to
be register non-complete and uniform by storing each cross-product in a separate
register and index.

For example, take the masking of the AND gate from [37]. The required
inputs are rotated back and forth to compute each cross product in a separate



temporary register at a unique index. The inputs are cleared from the register
file in order to enable the construction of the compressed and uniform outputs
from the cross product components which are then rotated to the regular indices
(see Figure 4).
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R4 a0b0 + b0

R5 a1b1

R6 a0b1

R7


Domain A

0 1 2 3

R0 a0

R1 b0

R2 a1

R3 b1

R4 a0b0 + b0

R5 a1b1

R6 a0b1
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 a1b0 + b0

Domain T

Domain B

0 1 2 3

R0

R1

R2

R3

R4 a0b1 + a0b0 + b0

R5 a1b1

R6 a0b1
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0 1 2 3

R0

R1

R2

R3

R4 a0b1 + a0b0 + b0

R5 a1b1 + a1b0 + b0

R6 a0b1

R7
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0 1 2 3

R0 a0b1 + a0b0 + b0

R1

R2 a1b1 + a1b0 + b0

R3

R4

R5

R6

R7


Initial placement of the shares. Compute a0b0 + b0  at index 0. Compute a1b1 at index 1. Rotate R0 and R3 at index 2.
Compute a0b1.

Clear R0, R1, R2, R3. Rotate R6 at index
0. Compute a0b1 + a0b0 + b0.

Rotate R1 and R2 at index 3.
Compte a1b0 + b0.


Rotate R7 at index 1. Compute a1b1 +
a1b0 + b0.

Place output shares in R0 and R2.

Fig. 4: Methodology for d + 1 shares. In this masking, registers R0-R1, R2-R3
belong to domain A and B respectively and R4-R7 are temporary registers in
domain T.

f0(a0, b0) = a0b0 → x′
0

f1(a0, b1, r) = a0b1 + r → x′
1 x′

0 + x′
1 = x0

f2(a1, b0, r) = a1b0 + r → x′
2 x′

2 + x′
3 = x1

f3(a1, b1) = a1b1 → x′
3

,

Investigating maskings of functions which achieve register non-completeness
and uniformity using minimal temporary registers is left as future work.

A Secure Toffoli Gate To illustrate register non-completeness in d+1 shares, we
detail the computation of a Toffoli gate using two shares, namely the function
which maps the three bits (a, b, c) to (a, b, c+ ab). The masking of this function
can be safely achieved using only one temporary register.

In domain A, registers R0 to R2 will store a0, b0, c0 at index 0 while reg-
isters R3 to R5 of domain B will hold the second shares a1, b1, c1 at index 1.
Quadratic terms using shares of similar domain fulfill vertical non-completeness
(Definition 6) and can be stored safely in a temporary register in domain T
under the same index as their domain (e.g. aibi can be placed in a temporary
register at index i). However, care must be taken regarding the cross-domain
quadratic terms of the function. Since the computation of a0b1 combines shares
of the domains A and B, the result has to be stored in a temporary register at an
index i where i > 1. Practically, in order to compute such a term, the two reg-
isters holding the shares will have to be aligned (e.g. shifted) at the same index



position i. Figure 5 illustrates the eight main steps required for the construction
of the outputs c0 and c1. In Table 1 we provide a step by step execution of
this Toffoli gate on 1-bit size shares which requires 1 temporary register and 21
cycles (compared to 9 cycles in the unshifted variant). Note that in such exam-
ple, we enforce that any shifted register of domain A or B to be shifted back at
their original position which counts for 4 additional cycles. In addition, for the
operation to be register uniform (Definition 7) we need to clear the temporary
register (R6) at the end of the operation. However, we note that repeating the
same operation would safely overwrite R6 by the cross product a0b0 at index 0
thus this clearing operation is not always needed when optimization is required.
Note that storing in memory the updated results of the Toffoli gate would still
be insecure due to transition leakage from the original and updated value in
memory (e.g. HD(c0 + a0b0 + a0b1, c0)).

This example is made with a CPU using a simple ISA (such as RV32I).
However, CPUs such as Cortex-M3 which support a larger instruction set such
as the Thumb-2 might benefit from “free” shift operation which would reduce
the total cycle count. In addition, by working over 32-bit words such as in the
Keccak-f [800] masking in Section 5, we can simultaneously compute 32 of such
Toffoli gates.

# Operation Reg. Index # Operation Reg. Index

0 a0b0 R6 0 11 a1b1 + c1 R5 1

1 c0 + a0b0 R2 0 12 shift R3 R3 2

2 shift R0 R0 2 13 shift R1 R1 2

3 shift R4 R4 2 14 a1b0 R6 2

4 a0b1 R6 2 15 shift back R3 R3 1

5 shift back R0 R0 0 16 shift back R1 R1 0

6 shift back R4 R4 1 17 shift R5 R5 2

7 shift R2 R2 2 18 c1 + a1b1 + a1b0 R5 2

8 c0 + a0b0 + a0b1 R2 2 19 shift back R5 R5 1

9 shift back R2 R2 0 20 clear R6 R6 2

10 a1b1 R6 1

Table 1: Toffoli gate executed in 21 cycles using one temporary register.

Robust Probing Security We show that the Toffoli gate is correct, register uni-
form, and glitch and transition-extended probing secure considering the leakage
effects from Section 3. In other words, we consider a probing adversary who can
read all values in a register or a value at a fixed index from all registers in the
register file.

Consider the output of the Toffoli gate (a0, a1, b0, b1, c0 + a0b0 + a0b1, c1 +
a1b1 + a1b0), it is clear that a0 + a1 = a, b0 + b1 = b, and that c0 + c1 = c+ ab.
Thus, the computation is correct. Additionally, since the masking can be seen as a
Feistel operation adding computations on (a0, a1, b0, b1) to the shares (c0, c1), it is
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R4 b1

R5 c1
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cycle 1:
compute a0b0

cycle 2:
compute c0 + a0b0

cycles 3-7:
compute a0b1

cycles 8-10:
compute c0 + a0b0 + a0b1
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cycle 11:
compute a1b1

cycle 12:
compute c1 + a1b1

cycles 13-17:
compute a1b0

cycles 18-20:
compute c1 + a1b1 + a1b0

Fig. 5: Outputs c0 and c1 of the Toffoli gate. In this masking, registers R0-R2
belong to domain A, R3-R5 belong to domain B, and R6 is a temporary register
in domain T.

clear that the output is also uniform (following Definition 1) since it is invertible.
Since the output is again separated into the same domains and correctly shifted,
the output masking is register uniform (following Definition 7).

It is sufficient to show that the computation is probing secure including the
extensions from Section 3. This means we have to show that a simulator can
simulate the probed result from scratch. In other words, that the probed values
behave randomly.

First, note that the AND-XOR operation requires only three indices (bits) of
seven registers. In the following table, we denote the shares in the first, second,
and third position on these registers.

Second, note that each register only holds a single value and that each double-
input operation always calculates on values which are vertically aligned. As a
result, the leakage from Section 3.3 on bitwise interaction is already captured
by the leakage from Section 3.2 on glitches in the address decode logic. In other
words, a glitch-extended probe can only see one cell of Table 2. Due to transition
leakage, this probe will also view the shares from the same position in the cell
above.

We now claim that there is a simulator which is capable of simulating the
probed values in the operation from scratch. From Table 2, we can categorize
the following types of probed information.

1. A probe views subsets of a0, b0, c0 or a1, b1, c1.
2. A probe views subsets of c0 + a0b0, a0, b1 or c1 + a1b1, a1, b0.
3. A probe views subsets of a0, b0, c0 + a0b0 + a0b1 or a1, b1, c1 + a1b1 + a1b0.

We define our simulator as follows.



# Position 0 Position 1 Position 2

0 a0, b0, c0 a1, b1, c1
1 a0, b0, c0, a0b0 a1, b1, c1
2 b0, c0 + a0b0, a0b0 a1, b1, c1 a0

3 b0, c0 + a0b0, a0b0 a1, c1 a0, b1
4 b0, c0 + a0b0 a1, c1 a0, b1, a0b1
5 a0, b0, c0 + a0b0 a1, c1 b1, a0b1
6 a0, b0, c0 + a0b0 a1, b1, c1 a0b1
7 a0, b0 a1, b1, c1 c0 + a0b0, a0b1
8 a0, b0 a1, b1, c1 c0 + a0b0 + a0b1, a0b1
9 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 a0b1
10 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1, a1b1 a0b1
11 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1, a1b1
12 a0, b0, c0 + a0b0 + a0b1 b1, c1 + a1b1, a1b1 a1

13 a0, c0 + a0b0 + a0b1 b1, c1 + a1b1, a1b1 a1, b0
14 a0, c0 + a0b0 + a0b1 b1, c1 + a1b1 a1, b0, a1b0
15 a0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1 b0, a1b0
16 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1 a1b0
17 a0, b0, c0 + a0b0 + a0b1 a1, b1 c1 + a1b1, a1b0
18 a0, b0, c0 + a0b0 + a0b1 a1, b1 c1 + a1b1 + a1b0, a1b0
19 a0, b0, c0 + a0b0 + a0b1 a1, b1, c1 + a1b1 + a1b0 a1b0
Table 2: Probed variables per cycle of the Toffoli gate masking.

– For a probe in the first category, the simulator either samples a0, b0, c0 or
a1, b1, c1 as random values.

– For a probe in the second category, the simulator either samples a0, b1, c0
or a1, b0, c1 as random values. We see that c0 (similarly c1) perfectly masks
a0b0 (similarly a1b1).

– For a probe in the third category, the simulator either samples a0, b0, c0 or
a1, b1, c1 as random values. We see that c0 (similarly c1) perfectly masks a0b1
(similarly a1b0).

Since we went over all probe position, we have shown the glitch and transition-
extended probing security of the masked Toffoli gate.

5 Software Threshold Implementation of Keccak

In this section, we detail the properties required for the implementation of our
two-shared first-order secure threshold implementation of Keccak. We first recall
the basic structure of Keccak. Afterwards, we discuss its masking and motivate
our approach based on the leakages discussed in Section 3.

5.1 Keccak

Keccak [7] is a family of sponge-based hash functions based on a permutation
Keccak-f [b] of state-size b = r + c where the rate r defines the input block size



and the capacity c determines the security level required. In a first absorbing
phase, the r-bit input blocks of a (padded) message M will iteratively be XOR’d
with the original state initialized at zero and passed to the Keccak-f permuta-
tion. Once all the blocks have been absorbed, the hash output is computed in a
squeezing phase from the bits of the state.

The state S is organized as a 3-dimensional 5 × 5 × w matrix with w = 2ℓ

bits where ℓ ∈ [0, 6]. Hence, a single bit in the state can be accessed via (x, y, z)
coordinates while a w-bit lane is obtain using (x, y) coordinates. A row is defined
as a 5 bits value given by coordinates (y, z), a column via (x, z), a sheet as 5
lanes for a fixed index x and a plane as 5 lanes for a fixed y coordinate. The
Keccak-f permutation consists of Nr (e.g 22 for w = 32) iterations of a sequence
of five operations (θ, ρ, π, χ, and ι) which manipulate the state S. θ is a linear
map which computes the XOR of each bit of the state with the parity of two
surrounding columns. ρ and π perform respectively a rotation and permutation
on the state. χ is the only non-linear operation of the permutation where a 5-bit
S-box is used on the entire state. ι adds a round constant to the first lane of the
state. More information can be found in the original reference [7].

5.2 Software Threshold Implementation of Keccak-f

In this section, we describe how we secure Keccak-f [800]. We detail on the
masking of the steps which require specific care, namely: the state storage, the
χ step, the θ, and the ρ step. We then provide arguments on its robust probing
security as per Section 2.3.

State Storage In order to enforce the properties defined in Section 4.1 on
the storage of the state, we follow a similar placement of the shares as in the
simple Toffoli gate example. More precisely, the second shares will be right-
rotated by one relative to the first shares. Figure 6 provides an illustration on
the placement of the bits in the two data blocks (represented as matrices of 5×5
lanes) corresponding to the first and second shares. Since the Keccak state is
initialized at zero we construct the masked default states with shifted shares of
zero values.

χ Step The χ step is the only non-linear function in Keccak-f and operates
on 5 bits (i.e. a row) of the state, updating the five planes of the state. To
compute the χ step, a full plane is loaded into the register file from memory
by filling the five registers of the domain A (resp. domain B) with the first
(resp. second) shares of the state. Since the computation is performed on 32-bit
lanes, 32 S-boxes are computed simultaneously. We base the masking of the χ
step on the masked χ given by Daemen et al. [13, Sect. 3.5]. In that work, the
Keccak S-box is calculated as the five times sequential application of a two-
shared Toffoli gate using an extra input which is recycled using a changing of
the guards construction [12]. More specifically, consider the “permuted AND-
NOT” function p(a, b, c) = (a + c + bc, b, c) and denote its masking by p̄ such



a640 a672 a704 a736 a768

a480 a512 a544 a576 a608

a320 a352 a384 a416 a448

a160 a192 a224 a256 a288

a0 a32 a64 a96 a128

a0 a1 a2 .  .  . a30 a31

(a) First shares.

b671 b703 b735 b767 b799

b511 b543 b575 b607 b639

b351 b383 b415 b447 b479

b191 b223 b255 b287 b319

b31 b63 b95 b127 b159

b31 b0 b1 .  .  . b29 b30

(b) Second shares.

Fig. 6: Placement of the first (left) and second (right) shares represented as
matrices of 5×5 lanes. The first 32-bit lane of each share is detailed in the lower
part of the figure with their respective (shifted) bit indices. The first share is
denoted by a and the second by b where we use subscript to indicate the separate
bits.

that pi(ā, b̄, c̄) = (ai + ci + bi(c0 + c1), bi, ci)
1. This operation is calculated in

the same manner as the Toffoli gate from Section 4.3. Consider the two-shared
5-bits (ā, b̄, c̄, d̄, ē) and an extra zero-sharing r̄, the two-shared χ is calculated as
follows

r̄ ← p̄(r̄, ē, ā) ā← p̄(ā, b̄, c̄) ,

c̄← p̄(c̄, d̄, ē) ē← p̄(ē, ā, b̄) ,

b̄← p̄(b̄, c̄, d̄) d̄← d̄+ r̄ ,

r̄ ← (a1, a1) .

In the last operation, we update the sharing of zero r̄ with the share a1. In order
to adhere to the rotations between domains A and B, the register holding r1 is
rotated.

θ Step In the θ step, each sheet has to be loaded in the register file in order
to compute the parity of its columns. Because of the limited number of registers
available in the register file, and the number of registers required for this step, the
execution is first performed solely on domain A (i.e. the first shares) and then on
domain B (i.e. the second shares). Table 3 shows a step-by-step execution of the
computation of θ for domain A as the same operation is performed for domain
B. The example makes use of ten registers in domain A and four temporary
registers in domain T.

1 We slightly adapted the masking from the work by Daemen et al. which originally
had p0(ā, b̄, c̄) = (a0+c+b0c, b0, c0) and p1(ā, b̄, c̄) = (a1+b1c, b1, c1). This adaptation
ensures improved transition leakage protection when writing back the results from
the masked χ to memory overwriting the original inputs.



ρ Step The linear step ρ performs a rotation on each lane of the state which
could —depending of the rotation value— result in a temporary realignment
of shares within the register file. As a consequence, we enforce this step to be
computed solely on one share at a time. While the evaluation of the θ step needs
to be done separately due to the limited number of available registers, the ρ step
requires this special care due to the nature of its operation (e.g. rotation) and
its potential effect on the placement of the shares.

# Operation Reg. # Operation Reg.

0 Load sheet 0 R5-R9 11 Store updated sheet 2 R5-R9

1 Sum of sheet 0 R10 12 Load sheet 4 R5-R9

2 Load sheet 1 R0-R4 13 Add R12 to sheet 3 R0-R4

3 Sum of sheet 1 R11 14 Sum of sheet 4 R12

4 Load sheet 2 R5-R9 15 Add shifted R12 to sheet 3 R0-R4

5 Sum of sheet 2 R12 16 Store updated sheet 3 R0-R4

6
Add R10 and shifted
R12 to sheet 1

R0-R4 17 Load sheet 0 R0-R4

7 Store updated sheet 1 R0-R4 18
Add R12 and shifted
R11 to sheet 0

R0-R4

8 Load sheet 3 R0-R4 19 Store updated sheet 0 R0-R4

9 Sum of sheet 3 R13 20
Add R13 and shifted
R10 to sheet 4

R5-R9

10
Add R11 and shifted
R13 to sheet 2

R5-R9 21 Store updated sheet 4 R5-R9

Table 3: Step-by-step execution of θ on domain A using four temporary registers.

Robust Probing Security In this section, we show that our masking adheres
to the properties given in Section 4 on the extended notions of non-completeness
and uniformity. Later in Section 6, a practical validation is performed via lab
experiments.

First, note that since the masked functions are register uniform (since the
function is uniform and its output shares are vertically separated), each step
starts from a register uniform input. We argue the linear layers (θ, ρ, π, ι) and
the nonlinear layer (χ) have register uniform inputs and outputs, and that their
computation is robust probing secure.

– Linear layer: The computation of the linear steps are performed share-wise
(in particular, ι only works on one share) where the register file only contains
one share of the state at a time. As a result, this computation automatically
is robust probing secure.

– Nonlinear layer: The computation of the χ step is the five-times sequential
application of the Toffoli gate from Section 4.3 whose register uniformity and
robust probing security was already proven in Section 4.3.



Because of each masked function being register uniform, the vertical non-
completeness protects against transition leakage between each masked function.
However, it is possible intermediate computational steps are stored (for example
in pipeline registers) invalidating register uniformity of the state. One such ex-
ample is the “Data Memory” from Section 3.1 where there is potential transition
leakage from results written back into memory. In particular, our masking of the
χ function was adapted to ensure this writing back does not cause transition
leakage. However, these cases still need manual work. The formal verification of
this manual work along with verification techniques for these pipeline registers
or memory write-backs are left as future work.

6 Evaluation

This section covers the first-order side-channel security analysis of various im-
plementations namely: two Keccak-f variants, the PRESENT cipher, and 4-bit
quadratic classes. In order to assess the soundness and portability of our method-
ology, we evaluate our implementations on two different micro-controllers, namely
a scalar RISC-V core and an ARM Cortex-M4 core. First, we detail specifics
about the assembly implementations and the measurement setup. Second, we
present results of the first-order t-test evaluations on the first-round using one
million measurements.

6.1 Keccak-f Implementations

Our implementations follow the FIPS PUB 202 Standard [33] (SHA-3) with
parameters b = 800 or b = 1600, c = 512, a delimited suffix value 0x06 and
32-bit output. In order to ensure complete control over the registers’ usage, the
Keccak-f implementations are realized in assembly. In order to optimize the
algorithms’ efficiency and ease implementation efforts, the rotation (ρ), permu-
tation (π), and round (ι) constant values are pre-computed and stored in static
arrays. Note that in the case of the Keccak-f [1600] variant, each lane is com-
posed of 64 bits. Hence, on a 32-bit processor each lane is coded following a bit
interleaving technique [6] where a 64-bit lane is represented as two 32-bit words
where the first register holds the even bits while the second register contains
the odd bits. Such an optimization is helpful regarding the 64-bit rotation re-
quired in the algorithm. In order to optimize such an encoding of the lanes, we
enforce the shift between the two shares to be made of an even value enabling
us to use the same χ assembly code as in the Keccak-f [800] by running it twice
(once for each of the 32-bit parts). Table 4 presents a comparison between the
masked and unmasked implementations on the two cores regarding execution
time (in milliseconds and clock cycles), code size, and memory usage (in bytes).
As masked implementations operate twice the linear steps (once for each share),
the clock cycles required for such steps are doubled compared to the unmasked
versions. The masked non-linear step χ requires more cycles and results in at
most three times the number of clock cycles compared to the unmasked variant.



These effects can be observed notably in the ARM variants. Implementations
rely on rotation instructions especially in the masked variant χ step. As opposed
to Cortex-M4, the RISC-V instruction set does not include rotate instructions,
hence its metrics are larger than the Cortex-M4.

Table 4: Implementation results of the Keccak hash function and Keccak-f per-
mutation. The first four rows detail Keccak-f [800] while the last four rows detail
Keccak-f [1600]. Time is given in milliseconds, and ROM and RAM are given in
bytes.

Variant Time Cycles ROM RAM

Keccak-f Keccak-f [θ, ρ, π, ι] χ Keccak Keccak

Cortex-M4 masked 2.510 60258 28754 31770 7964 2544
Cortex-M4 unmasked 1.148 27560 14580 13172 6868 2520
RISC-V masked 4.825 76874 31487 48084 32294 6348
RISC-V unmasked 2.184 34615 16885 20025 29858 6328

Cortex-M4 masked 4.903 117620 43436 74422 13792 2660
Cortex-M4 unmasked 2.323 55717 21997 33925 11972 2636
RISC-V masked 9.415 150815 43448 107654 40746 6452
RISC-V unmasked 4.937 73900 24486 49647 37690 6424

6.2 PRESENT Implementation

PRESENT is an ultra-lightweight block cipher which operates on 64-bit blocks
with a 80-bit (or 128-bit) key size. The non-linear part of the cipher is based on
a cubic 4-bit S-box which can be decomposed in a collection of affine transfor-
mations over the quadratic class Q4

12. Our construction of the S-box follows the
one described in the work of Sasdrich et al. [35] where the S-box is coded as

S = A′′ ◦Q4
12 ◦A ◦A′′′ ◦A′′ ◦Q4

12 ◦A,

with Q4
12: 0123456789CDEFAB, A: 01AB892345EFCD67, A

′
: 0B835ED61A924FC7,

and A
′′′
: 8FDACB9E43160752 from which we obtain the corresponding Algebraic

Normal Form (ANF). In order to perform parallel S-box computation, the 64-bit
block is encoded from two 32-bit registers into 4 registers holding respectively
the ith bit of each S-box. Since the linear steps of the algorithm are performed
share-wise and the non-linear step is based on the affine composition of the 4-bit
quadratic class Q4

12 which can be constructed using Toffoli gates [12, Table 1],
the robust probing security of the implementation follows the same reasoning as
in Section 5.2. Table 5 presents a comparison between the masked and unmasked
implementations on the two cores regarding execution time (in milliseconds and
clock cycles), code size, and memory usage (in bytes). The cycle count overhead
of the masked versions can be explained by the fact that unmasked variants



use lookup tables for the S-box and the masked variants change the state from
standard to bitsliced data representation between each S-box operation.

While the current literature does not provide many secure first-order imple-
mentations on software, a case study of masked PRESENT implementations has
been made by Sasdrich et al. [35]. They compared the security and efficiency of
first and second-order Boolean masked designs and a threshold implementation
using three shares on an 8-bit AVR MCU. Only the threshold implementation
was shown to be secure. Section 6.5 shows the secure implementation results for
our two-shared PRESENT. This shows that we directly improve the work by
Sasdrich et al. as we can reduce the number of shares. However, a more detailed
comparison in efficiency is not possible due to the difference between the AVR
core and our RISC-V and ARM cores. Moreover, our design uses vectorized in-
structions whereas the work by Sasdrich et al. uses a lookup table approach.
Finally, they only test the designs up to 100k traces whereas our designs are
tested for 1M traces.

Table 5: Implementation results of the PRESENT cipher on the Cortex-M4 and
RISC-V cores. Time is given in milliseconds, ROM and RAM are given in bytes.

Variant Time Cycles ROM RAM

Cortex-M4 masked 3.631 87166 17512 2256
Cortex-M4 unmasked 0.601 14467 6964 2264
RISC-V masked 5.965 95609 43398 6068
RISC-V unmasked 0.831 13296 30370 6080

6.3 4-bit Quadratic Classes Implementation

Since linear operations can be computed share-by-share, the difficulty of con-
structing a secure software masked implementation lies in the non-linear part.
Hence, to illustrate the generality and efficacy of our methodology, we provide
implementations of the six classes of quadratic 4-bit functions [8]. As detailed
in [12], those classes can be implemented using two-shared masked Toffoli gates
whose register uniformity and robust probing security was already proven in
Section 4.3. We evaluate the security of two-shared implementations of those
classes pipelined into each other namely:

Q4
300 ◦Q4

299 ◦Q4
294 ◦Q4

293 ◦Q4
12 ◦Q4

4 .

6.4 Measurement Setup

The first target platform is a FE310-G002 [39] SoC which embeds a RISC-
V E31 core. The E31 is a 32-bit single-issue, in-order, five-stage pipeline us-
ing the RV32IMAC instruction set architecture and an internal frequency of 16



MHz. The second target is a CW308T-STM32F target board [30] which embeds
a STM32F415RG [41] Cortex-M4 micro-controller using an internal 24 MHz
operating frequency. The acquisition was performed using a NewAE CW308
UFO board [31] and a Tektronix DPO70404C oscilloscope with a sample rate
of 625MS/s. An external 16 MHz and 8 MHz clock frequency was used for the
RISC-V and the Cortex-M4 cores respectively. We synchronized the oscilloscope
and the external clock for all our measurements. The RISC-V assembly code
is compiled from the Freedom Studio IDE using the pre-built RISC-V GCC
toolchain [40]. The Cortex-M4 assembly implementation is compiled using the
Arm GNU 2 toolchain.

6.5 Results

Our evaluation focuses on leakage detection using a non-specific, fixed vs. ran-
dom first-order t-test statistic [21] on the computation of the first round of the
primitives. We use the usual threshold value defined at t = 4.5 which provides a
confidence of roughly 0.99999. Note that since our measurements contain a large
number of sample points (e.g. the Keccak-f [800] and Keccak-f [1600] variants
respectively contain 170k and 270k sample points), the threshold value t could
be adapted to a higher value as discussed in [15, Table 1],[2, Appendix A]. The
generation of the input shares as well as the zero-sharings for the randomness
used in χ and for the initial state were computed externally and sent directly
to the micro-controllers. Only the generation of the masked round keys in the
PRESENT cipher were generated internally. We now discuss the t-test results
of the Keccak-f [800]. Figure 7a and 7b show the t-test results where the RNG
is activated. These results confirm our theoretical expectation as no significant
evidence of leakage was detected for one million measurements. As a second
scenario, we evaluated the permutation with the RNG deactivated (e.g. the ran-
dom values are set to zero). As expected, the implementation leaks with only
10k traces (see Figure 7c and 7d). Last, we assess the impact of the shifted
placement of the shares. In this scenario we evaluate the permutation with the
RNG activated but with all shares aligned (e.g. shares are aligned at index 0
and the assembly code is stripped from any rotation operations involved in our
methodology). Figure 7e and 7f show significant leakages in the non-linear step
χ which stem from the leakage sources defined in section 3. As a reference, we
provide the average plots of the power consumption in Figure 7g and 7h in which
we can distinguish the linear steps θ, ρ, π consecutively computed on one share
at a time followed by the non-linear step χ which is iterated on the five planes
of the state (producing the five repeated patterns on the right). Note that in
mean plots, the oscilloscope trigger functions account for the few cycles dis-
played on the extremities of the figures. Figure 8 shows the t-test results for the
PRESENT cipher, the Keccak-f1600 variant, and the quadratic 4-bit S-boxes
on the RISC-V and the Cortex-M4 core.

2 gcc-arm-11.2-2022.02-x86 64-arm-none-eabi
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(a) RISC-V RNG activated.
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(b) Cortex-M4 RNG activated.
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(c) RISC-V RNG deactivated.
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(d) Cortex-M4 RNG deactivated.
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(f) Cortex-M4 RNG activated shares
aligned.
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(h) Cortex-M4 Mean.

Fig. 7: First-order t-test results of a Keccak-f [800] round. The ±4.5 threshold is
marked by red lines. Experiments with RNG active use 1M traces, with RNG
inactive use 10k traces, and with aligned share evaluations use 100k traces.

7 Conclusion and Future Work

We provided necessary properties for a masking in order to be secure in scalar
micro-processors. These properties led to a first-order glitch and transition secure
methodology based on share placement. This methodology, in turn, was applied
to create two-shares randomness-free Keccak-f variants, the PRESENT cipher,
and implementations of the 4-bit quadratic classes. The masked primitives were
implemented on a RISC-V core and on an ARM Cortex-M4 core where their
security was practically validated.

In this work, we decided to focus on first-order and randomness-free mask-
ings, hence the decision to extend the notions of threshold implementations.
We believe this decision provided for a cleaner practical validation where we
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(a) RISC-V Keccak-f1600.
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(b) Cortex-M4 Keccak-f1600.
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(c) RISC-V PRESENT.
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(d) Cortex-M4 PRESENT.
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(f) Cortex-M4 quadratic classes.

Fig. 8: First-order non-specific, fixed vs. random t-test results on RISC-V and Cortex-
M4 cores with 1M traces. The ±4.5 threshold is marked by red lines.

could not use randomness for obfuscation or noise-increasing purposes (i.e. no
trick up your sleeve). However, we are very interested to see the same masking
techniques being applied to create higher-order and composable secure maskings
(e.g. non-interference secure) using fresh randomness. As such, we pose this line
of research as interesting future work.

The aim of this paper was to show the placement of the shares builds towards
algorithmic protection in micro-processors. We did not place efficiency as our top
priority and leave improvements on the efficiency of the designs as future work.

Finally, while in this work we provided some necessary measures to algorith-
mically protect masking schemes in typical scalar cores and we showed these
measures can lead to secure designs, the properties are not yet sufficient. There
are leakage sources which are not covered as-is by our technique such as transi-
tion leakage that stems from overwriting an old value in memory by its updated
version from the register file or glitch related leakages in case of a non-uniform
register file or memory due to unknown registers holding a temporary value.
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