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Abstract—We focus on the problem of efficiently deploying
a federated learning training task in a decentralized setting
with multiple aggregators. To that end, we introduce a number
of improvements and modifications to the recently proposed
IPLS protocol. In particular, we relax its assumption for di-
rect communication across participants, using instead indirect
communication over a decentralized storage system, effectively
turning it into a partially asynchronous protocol. Moreover, we
secure it against malicious aggregators (that drop or alter data) by
relying on homomorphic cryptographic commitments for efficient
verification of aggregation. We implement the modified IPLS
protocol and report on its performance and potential bottlenecks.
Finally, we identify important next steps for this line of research.

Index Terms—Federated Learning, Decentralized Storage, In-
terPlanetary File System, Verifiable Aggregation, Homomorphic
Commitments

I. INTRODUCTION

With the emergence of data privacy laws in Europe and
the USA, parties that wish to perform computations and
analyses on top of users’ sensitive data need to ensure they
do not compromise their privacy. Federated Learning (FL) is
a relatively new paradigm of distributed machine learning,
where data stay “on-the-edge” and never leave the user’s
device. Instead, users download a global model, train it on
their data, and send the locally computed gradients back to
an aggregation server. The latter, collects the gradients from
the users, aggregates them, and updates the global model. The
process is repeated until model convergence is reached.

Although FL has significant success and has been adopted
in several applications by various actors (e.g., see [1, 2]), it
remains a centralized process where the coordinator of the
learning process is the aggregator server. Its responsibilities
can range from downloading and aggregating updates to select-
ing which devices will train the model in the next iteration, etc.
However, centralization can lead to serious problems affecting
both the performance of the machine learning model and the
privacy of the users. To be more specific, a malicious server
has the power to alter the global model into a less accurate one
in order to perform simpler but faster computations or deny
downloading updates from some clients to save bandwidth and
power. Prior attempts to address such issues in FL [3, 4],
cannot prevent the server from creating “forks” providing
different views of the training process to different trainers. For
the reasons described above, enterprises or individuals who

want to set up their federated learning process may hesitate to
trust a single server to be responsible for the learning process.
Decentralized Federated Learning. An alternative approach
for federated learning is based on decentralization. Decen-
tralized federated learning can be classified into two main
categories: (i) purely decentralized schemes where peers com-
municate directly with others and perform the learning pro-
cess via gossiping (e.g., [5, 6, 7]), and (ii) blockchain-based
approaches where, at a high level, a blockchain takes up
the role of the aggregator in centralized federated learning
(e.g., [8, 9, 10, 11, 12, 13, 14, 15, 16]). Purely decentralized
FL seems tempting, as it does not need any “centralized”
authority. However, it may not always achieve the same
performance in model accuracy and convergence as centralized
FL, and this highly depends on the nature of the dataset and
loss function. The blockchain-based approach offers the same
convergence guarantees as centralized FL, but does not achieve
its scalability, storage requirements, and efficiency. That is
because miners have to store all updates into the blockchain,
and those who serve as aggregators have to download and
aggregate every single update.

Pappas et al., recently proposed IPLS [17] a decentral-
ized FL protocol that is more efficient and lightweight than
blockchain-based ones while avoiding the issues of other
purely decentralized schemes discussed above. However, IPLS
requires the establishment of direct communication links be-
tween peers, which, as we elaborate on Section II, may not
always be realistic in a cross-device FL setting.
This work. In this paper, we consider the scenario of an
individual or a small enterprise that intents to launch an FL
task (e.g., using its customers’ data for training). Due to
scarcity of resources, such a party may not be able to play
the role of the aggregator but, due to security and trust issues,
does not wish to outsource the aggregation task to a third-party
cloud service. A reasonable solution is to launch the task using
a decentralized FL service and let the task launcher (owner)
devote its limited resources to strictly necessary, lightweight
operations. To this end, we propose a solution based on the
IPLS protocol, modified in two crucial ways.

First, our protocol eliminates the need for direct peer-to-
peer communication among FL participants, relying instead on
indirect communication via a decentralized storage network.
We base our solution on IPFS [18], a widely used p2p
distributed file system that offers fast and reliable content
routing and retrieval. In this way, communication between



mobile and resource-constrained devices is possible while
ensuring the liveness and availability of the gradients uploaded
by the trainers and the updates computed by the aggregators.
We also exploit the decentralized storage network to make the
aggregation of gradients much faster and bandwidth-efficient,
via a merge-and-download optimization (Section III).

Second, in the scenario explained above, it is plausible that
the task launcher would rather not have to “blindly” trust the
task participants. To that end, our protocol achieves verifiable
aggregation, i.e., it ensures that malicious aggregators cannot
cheat by dropping or altering some of the trainers’ updates.
We achieve this by using cryptographic vector commitments
with homomorphic properties that allow fast verification of
the fact that all gradients have been taken into account for the
next iteration of the global model (Section IV).

Overall, our contributions can be summarized as follows:
1) We propose a decentralized FL system where communica-

tion between participants takes place over a decentralized
storage network.

2) We extend our system to be secure against malicious
aggregators, ensuring the new model correctly encompasses
all the gradients uploaded by trainers in each FL iteration.

3) We introduce a merge-and-download mechanism, exploit-
ing the features of the underlying decentralized storage, to
further reduce aggregation time by letting storage nodes
pre-aggregate gradients.

4) We implement a prototype of the proposed system, report
on its performance, and identify possible bottlenecks. Our
code is publicly available.1

5) We discuss next steps and future directions towards effi-
cient and verifiable decentralized FL.

Related works in Decentralized FL. Wang et al. [19]
present an extensive survey on blockchain-based FL (BCFL),
classifying works based on their architecture into two cate-
gories: fully coupled BCFL [12, 13, 14], where trainers are
also nodes in the blockchain and participate actively in the
block generation and model aggregation, and flexibly coupled
BCFL [8, 9, 10, 11] where trainers just upload their updates to
the blockchain, while miners are responsible for aggregating
the trainers’ updates and producing the global model. In the
majority of these papers, the federated learning process follows
the same pattern. First, trainers upload their gradients to the
blockchain, and then the blockchain takes the role of the
server in the spirit of the centralized FL approach and is
responsible for aggregating these gradients. For the first step,
usually trainers or their selected blockchain nodes broadcast
the gradients to all other blockchain nodes blowing up com-
munication. Some notable exceptions can be found in [11, 13],
where gradients are stored in the IPFS storage (similar to what
we do as part of our non-blockchain approach). Finally, there
is a plethora of decentralized federated learning protocols over
D2D networks (e.g., see [20, 21, 22]). Since these operate in
different network topologies, they are not directly applicable
to our target scenario.

1https://github.com/ChristodoulosPappas/IPLS-Java-API

II. BACKGROUND ON IPLS

The InterPlanetary Learning System (IPLS) [17] is a de-
centralized federated learning (FL) framework. In particular,
participants cooperate with each other to train a machine
learning model in a federated manner, without using a cen-
tralized server. The main idea behind IPLS is to segment
the parameters vector of the machine learning model into
smaller partitions, which are then separately aggregated by
different participants that are made responsible for these
partitions, based on the received gradients. More specifically,
IPLS participants can assume the following roles:
1) Bootstrappers. In IPLS, a bootstrapper is the initiator of
a federated learning task. Whenever a peer wants to join
the task, it must initially communicate with its bootstrapper.
Bootstrappers are assumed to have good network connectivity
as they are required to have periodic activity, e.g., to maintain
peer registration for the tasks they have launched.
2) Aggregators are participants who are in charge of main-
taining specific partitions of the model parameters vector. An
aggregator receives from the trainers only the gradients for
the partitions it is responsible for, and aggregates them (using
summation). It then communicates the aggregated gradients
to all the trainers. Note that, for efficiency and robustness
purposes, it may be useful to assign multiple aggregators
to the same partition. In this case, each such aggregator
computes a “partial” aggregation for the partition based on
gradients they receive from a subset of the trainers. Then,
in a synchronization phase, these aggregators communicate
with each other to further aggregate the partially aggregated
gradients into the the global updated parameters vector for the
partition, which is then communicated back to the trainers.
3) Trainers are the main protocol participants who are respon-
sible for iteratively training the model on their respective data.
In each iteration, each trainer produces a gradients vector, it
splits it into the specified partitions, and sends each gradient
partition to one of the designated aggregators. It then receives
updates for all model partitions, forms the updated model
(by concatenation of the updated partitions), and the process
repeats until convergence.

Formally, let Ai be the set of the aggregators responsible
for the i-th gradient partition, Aij be the j-th aggregator in
Ai, and Tij the set of trainers that send their i-th partition
to Aij . Note that ∀i, T =

⋃
j∈|Ai| Tij where T is the set of

all trainers, since every trainer must send its i-th partition to
an aggregator. Likewise, ∀i, ∅ =

⋂
j∈|Ai| Tij , as each trainer

sends its gradient partition i to only one aggregator. In practice,
these sets can be dynamically maintained by the bootstrapper
or through suitable communication among the participants.

III. BUILDING FEDERATED LEARNING ON TOP OF
DECENTRALIZED STORAGE

A. Adversarial Model / Security Assumptions

The IPLS framework operates under the assumption that all
three types of involved parties follow the protocol and have
no incentive to misbehave. This is a reasonable assumption



for the bootstrapper, who (as the task owner) naturally wants
the learning process to be successful, achieving as-good-as-
possible model performance. However, this is not necessarily
the case for the aggregators, who may have incentives (mon-
etary or otherwise) to hinder the training process or affect
the quality of the model [3, 4]. For instance, consider a lazy
aggregator who wants to reduce costs by performing less
accurate computations, or a competitor of the FL task that
purposefully alters its updates.

When designing our protocol we consider malicious aggre-
gators that can either drop or alter the gradients received by
trainers, e.g., to poison the updated model. Specifically, even in
the presence of such malicious behavior, we want to guarantee
that in each round the updated model is complete, i.e., no
gradient sent by a trainer has been omitted, and correct, i.e.,
all included gradients contain the values sent by the trainers.
Although malicious activity by the trainers is also possible
(e.g., poisoning their gradients resulting in degradation of the
model’s performance, or otherwise diverging from the protocol
to slow down the learning process), we do not focus on this
issue and it is left for future work. Finally, we assume an
underlying distributed storage protocol (e.g., IPFS) guarantees
data availability (e.g., via IPFS cluster or incentivized stor-
age [23]), however, we do not assume correctness of retrieved
data; this is up to the parties to check.

B. Indirect Communication between Participants

Similar to many other decentralized FL approaches [5, 6, 7],
IPLS assumes reliable direct communication among all par-
ticipants. However, this assumption might be unrealistic in
practice, especially for mobile and edge-based participants,
such as smartphones and IoT devices. Firstly, various technical
limitations, such as firewalls and volatile mobile IP addresses,
may make it impossible for participants to establish direct
communication links with each other over the Internet. Sec-
ondly, even if direct communication is possible, participants
may not be online at the same time due to intermittent connec-
tivity or energy limitations, requiring several attempts to con-
nect successfully. Furthermore, if aggregators face dropouts,
trainers have to re-send their gradients to alternative ones.

To address this issue, we modify IPLS so that a decentral-
ized storage network is used for reliable indirect communi-
cation between IPLS participants. In our implementation, we
adopt IPFS and we introduce a clean separation between IPLS
participants and IPFS nodes.2 That is, IPLS participants are
the trainers and aggregators that actively contribute to the FL
process, as described above. On the other hand, IPFS nodes
provide the distributed and highly available storage system
network, which is used to support the indirect communica-
tion between IPLS participants. In practice, IPLS participants
communicate indirectly by uploading and downloading their
data (gradients, partial updates or updates) to and from the
IPFS storage network. Below, we refer to specific parts of its

2The implementation of [17] also used the IPFS interface, but only as a
means of reliable communication (multicast and broadcast by explicitly using
pub/sub) and not for storage.

operations, as necessary, and we refer interested readers to [18]
for additional details about it.

C. Directory Service

In order to locate stored data (and verify their integrity),
IPFS relies on a secure hash function (by default, SHA-256),
by computing a hash address Cid = Hash(data). Parties that
wish to retrieve data must perform a lookup for Cid; without
knowing this hash, one cannot find data.

To solve this issue, we introduce a directory service that
operates as follows. Every piece of information uploaded to
the decentralized storage network is associated with some
”addressing” meta-information. For example the i-th gradient
partition from the trainer Tj , can be “addressed” by the tuple
addr = (uploader id, partition id, iter, type), where iter
is the number of training round and type is either ”gradient”,
”partial update” or ”global update”. The directory service will
thus maintain a map from this addressing information to the
Cid of the corresponding data in IPFS. This map is updated
when receiving hashes of gradients or updated partitions from
the trainers and the aggregators, respectively.

One question that arises is how this directory will be instan-
tiated (both for efficiency and security). Since the directory
service receives orders of magnitude fewer data per iteration
than the aggregators combined do, we believe it is reasonable
to assume this will be run by the (trusted) bootstrapper of the
FL task. If this is not feasible, an alternative approach is to
use a distributed, blockchain-based directory service [24].

D. Implementation Details

Algorithm 1 shows the details of our proposed FL scheme.
We consider several aggregators responsible for a partition,
and assume that a set of trainers is allocated to each aggregator.
We explain the operations for the case of honest participants
for simplicity. The necessary changes to achieve security
against malicious aggregators are described in Section IV.

Participants (both trainers and aggregators) store data to
the decentralized storage via the UPLOAD function (lines
1-5). This sends data to an IPFS node via a put method
and receives an acknowledgment. It then sends the hash Cid
of the data and the corresponding addressing information to
the directory service. To retrieve gradient partitions or partial
updates, aggregators poll the directory service to receive the
hashes of the data they have to download (lines 28-34 and
37-42). Then, they download the actual data via the IPFS get
method. Likewise, trainers learn the hashes of the updated
partitions (16-22) and retrieve them. Note that the trainers,
before sending their gradient partitions, append the value 1 to
each partition to be used for averaging the received updated
partition (14, 20-21).

In each iteration (training round), participants receive a
schedule that contains the iteration (number) of the learning
process and two UTC timestamps, the ttrain and tsynch. The
first timestamp is a time threshold indicating when the trainers
have to upload their gradients. The latter one sets a maximum
threshold on when the iteration must finish. Knowledge about



the end of synchronization time is needed to prevent the stall
of the learning process if all the aggregators responsible for the
same partition are unavailable. However, with a great number
of Ai, this is highly unlikely. Finally, whenever an aggregator
from Ai does not respond, another aggregator downloads his
gradients on his behalf (not shown in Algorithm 1 for brevity).

Algorithm 1 Algorithms for one FL training iteration

1: function UPLOAD(addr, data)
2: cid← hash(data)
3: put(ipfs peer, data)
4: send(directory, [addr, cid])
5: end function
6:
7:
8: function TRAINER(M,At, ttrain, tsync)
9: gradU ← train(M) . train model and produce gradient updates

10: if tcurrent > ttrain then . Abort if didn’t train it in time
11: Abort iteration i
12: end if
13: for each i ∈M.parts do . Upload gradient updates ∀ partition
14: upload((id, i, iter, ”gradient”), [gradU [i], 1])
15: end for
16: for each i ∈M.parts do . get updated partitions
17: while cid == NILL do . check the DS until you get the Cids
18: cid← check directory(At[i], i)
19: end while
20: modU [i]← download(cid) . download updated partitions
21: modU [i]← modU [i][: size− 1]/modU [i][size− 1]
22: end for
23: M ← modU . build next fully updated model
24: end function
25:
26:
27: function AGGREGATOR(Ai, Ta, taggr, tsync)
28: while Tij 6= ∅ do . get gradient updates from my trainers
29: cids← check directory(a, i) . Check if new Cids commited
30: for each (t, cidt) ∈ Cids do
31: gradU i[t]← download(cidt) . Download gradients
32: Tij ← Tij − t
33: end for
34: end while
35: modelU i[a]←

∑
gradU i[t] . own updated partition

36: upload((id, i, iter, ”partial update”),modelU i[a])
37: while tcurr < tsync ∧Ai 6= ∅ do . sync with Ai −Aij

38: cids← check directory(a, i) . Check if new Cids commited
39: for each (a′, cidt) ∈ cids do
40: modelU i[a′]← download(cidt)
41: end for
42: end while
43: modelGlobU i ←

∑
modelU i[a′] . globally updated partition

44: upload((i, iter, ”update”),modelGlobU i)
45: end function

E. Merge and Download

As described above, each aggregator Aij has to download
data of size D = (|Tij | + |Ai| − 1) · Partition Size, hence
communication scales linearly with the number of trainers
from whom Aij has to download gradients partitions and the
number of the aggregators responsible for the same partition.
To reduce communication costs on the aggregators’ side, we
take advantage of the fact that some gradient partitions that
correspond to the same aggregator might be stored to the same
IPFS node. To exploit this, instead of explicitly downloading
each gradient from that IPFS node, the aggregator sends a
set of hashes and requests to “pre-aggregate” the gradient

partitions for those hashes and send only the aggregated result.
We call this mechanism merge-and-download. To make the
best out of this mechanism, we can assign to each aggregator
a set of IPFS nodes Pij , also called providers of this aggregator
(an IPFS node can be provider for multiple aggregators). Then
we require that for the i-th partition, a trainer T ∈ Tij is
required to to upload its gradients to a node from Pij , while
the remaining of the protocol proceeds as before but with
aggregators issuing merge-and-download requests.

Clearly, there is a trade-off between the number of an aggre-
gator’s designated providers, and the aggregation completion
time and its communication complexity. In the extreme case
where |Pij | = 1, aggregator Aij needs only one aggregated
partition (which is actually its partial update) but the IPFS
node might get congested, slowing down aggregation. On the
other extreme, if |Pij | = |Tij |, although the IPFS nodes will
not get congested, communication becomes expensive and
this again affects the aggregation time. The number of IPFS
providers Pij that appears to achieve the best aggregation
time is approximately

√
|Tij |, as we show next. Assuming

all IPFS nodes have roughly the same download speed d then
the time it takes for an aggregator Aij to download all its data
is τ = Partition Size · (|Tij |/(d|Pij |) + |Pij |/b), where b
is the download speed of the aggregator. To minimize τ , we
compute ∂τ

∂Pij
= 0, which results to b · |Tij |/d = |Pij |2, which

confirms our previous observation.

IV. SECURITY AGAINST MALICIOUS AGGREGATORS

In this section we describe the necessary modifications in
the above described algorithms in order to achieve verifiable
aggregation against malicious aggregators, as described in our
adversarial model in Section III-A. This is achieved by using
homomorphic commitments to succinctly represent gradients
in a secure way. We first describe the cryptographic scheme
we use, and then explain how it is used in our protocol. We
note that this approach has previously been used in FL for
verifiable aggregation [3], albeit in the centralized setting.

A. Pedersen Vector Commitments

Cryptographic vector commitments allow a party that holds
a vector v of values to produce a commitment C that has
constant size, independent of v. Subsequently, the vector
owner can “open” C to show that the pre-image was v.
Crucially, it should be impossible to produce two different
vectors v, v′ as valid openings for the same C, a property
known as vector binding. We focus on commitments with
homomorphic properties: Given only C1, C2 (for vector pre-
images v1, v2), one can efficiently compute commitment C
with pre-image v1 + v2. We consider the vector version of
the classic Pedersen commitment [25] (e.g., see [26]) that is
vector-binding under the discrete logarithm assumption.

Without going into all the technical details, a Pedersen
vector commitment C for v, is computed as C =

∏n−1
i=0 h

vi
i

where {hi}n−1i=0 ∈ Gn is a public parameters vector from a
cyclic prime-order group G. The commitment C itself is a
single group element. Given the vector and the commitment,



one can verify it is a valid pre-image by re-running this
computation. It is also easy to see that the above commitments
are homomorphic: if C1, C2 are commitments for vectors v1,
v2, then C = C1 · C2 is a valid commitment for v1 + v2,
where · is group multiplication in G.

B. Modifications in our Protocol

Utilizing the above commitment, we first require trainers to
include the commitment C for each gradient vector data to
the addressing information sent to the directory service. Then,
the directory service maps each partition of the model to the
total accumulated commitment for it, For example, consider
the i-th partition, for which the N trainers have sent commit-
ments Ci1, . . . , CiN . The directory stores the total accumu-
lated commitment for this partition Ci =

∏
k∈[N ] Cik ∈ G.

On the aggregator’s side, after collecting and aggregating all
committed gradients by the trainers, as part of uploading to
IPFS the updated partition, it sends to the directory service
its addressing information. The remaining step is to verify
that this updated partition is a pre-image of the independently
computed partition commitment Ci. This guarantees that no
trainer’s data has been left out or altered by the aggregators.
This can be performed by any participant (trainer or bootstrap-
per) but for simplicity we assume it will be performed by the
directory service. Even in this case, the directory service only
needs to access the updated model (much less than the total
size of gradients data sent by all the trainers).

In case multiple aggregators are assigned to each partition,
the directory would have to check each partial update, increas-
ing the performance overhead. This can be avoided as follows.
First, the directory also stores for each aggregator Aij that
has been assigned the i-th partition with corresponding set
of trainers Tij , the accumulated commitment

∏
Cik, where k

takes the values of the trainer indexes in [N ] that correspond
to trainers in Tij . Then, when the trainer upload time window
elapses, aggregators retrieve these accumulated commitments
from the directory for each aggregator responsible for common
partitions. Aggregators use the IPFS pub/sub functionality to
publish their IPFS hashes for their partial updates. When an
aggregator downloads a partial update it verifies that the partial
update is indeed the pre-image of its corresponding accumu-
lated commitment. Only the first aggregator who achieves the
true globally updated partition writes back to the directory.

Merge-and-download can be extended in a similar way.
When receiving an aggregation from an IPFS node, aggre-
gators check if the commitment of the aggregation equals to
the product of commitments that supposedly belong to it.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of our protocol, we conducted
a series of experiments to measure the aggregation time and
synchronization times and the communication sizes, as well
as the impact of adopting the homomorphic commitments
for verifiability. To accurately estimate these, we used the
mininet3 network emulator to simulate network conditions

3http://mininet.org/

assuming aggregators and trainers have the same network
bandwidth capabilities. Our testbed was a AWS c5ad.12xlarge
instance running Ubuntu 18.04 LTS with 48 virtual CPUs and
96GB RAM. For our implementation we modified the publicly
available IPLS code of [17] adding approximately 3000 Java
lines. For Pedersen commitments we used the Bouncy Castle4

implementation over elliptic curves secp256r1 and secp256k1.
Impact of merge-and-download. First, we examine the im-
pact of the merge-and-download optimization by measuring
the aggregation and gradient uploading delays for one iter-
ation. We measure aggregation delays as the time interval
between the write of the first gradient hash in the directory
until all uploaded gradients are aggregated. The upload delay
from the trainers’ perspective is measured as the time between
uploading the gradients to an IPFS node until the receipt of the
store acknowledgment from the IPFS nodes. The experiment
was run with 16 trainers, partition size 1.3MB, one aggregator
per partition, and variable number of IPFS node providers Pij .
Aggregator and trainers had 10Mbps of bandwidth.

The results are shown in Figure 1. As expected, more
providers implies smaller upload delays but larger aggregation
delays. The number of providers that offers the best trade-off
between aggregation and upload delay is roughly

√
16 = 4,

as expected from our analysis in Section III-E. Likewise, the
upload delay with 4 IPFS providers is roughly the same as
with 8 providers and also the aggregation delay is roughly
the same with that of 1 or 2 providers. Comparing our ap-
proach with IPLS from [17], in Figure 1(top) we also include
the overhead of our indirect communication imposes for 8
providers (labelled 8 (naive)) vs. the direct communication
that [17] requires (labelled 8 (direct)). This shows that if we
want to relax the strong direct communication assumption,
merge-and-download is an essential mechanism to maintain
efficiency.
Performance vs. variable |Ai|. To explore how aggregation
and synchronization delay change when multiple aggregators
are assigned to a partition, we conducted experiments with a
setup of 16 trainers, 8 IPFS nodes, and a variable number of
aggregators |Ai| per partition. We segmented the model into 4
partitions of 1.1MB each, making each aggregator responsible
for only 1 partition and setting the communication bandwidth
to 20Mbps. We first deploy 4 aggregators, so |Ai| = 1, then
8 aggregators for |Ai| = 2 for each partition, and so on. To
isolate the impact of |Ai| for this experiment we do not use
the merge-and-download mechanism.

Figure 2 shows that as the number of aggregators respon-
sible for a same partition increases, the gradients aggregation
delay decreases by almost half for each additional aggregator
responsible for the same partition. That is because each ag-
gregator has to download fewer gradients. On the other hand,
the synchronization overhead increases, as expected, because
increasing the number of aggregators for the same partition
entails increased data communication for synchronization.
That said, the total aggregation delay steadily decreased as |Ai|

4https://www.bouncycastle.org/



Fig. 1: Aggregation (top) and uploading (bottom) delays
with variable number of providers.

increases in our experiment, albeit at a progressively smaller
rate due to the increased overhead of synchronization as |Ai|
grows. Overall, increasing the number of aggregators not only
makes the system more robust, but also more efficient.

Impact of verifiability on performance. Next, we focus on
how performance deteriorates when we adopt the modifica-
tions from Section IV for verifiable aggregation. Figure 3
shows the time needed for a trainer to compute the commit-
ment of its gradients when varying the size of the model’s
parameters. We first note that this overhead can quickly be-
come the bottleneck for our protocol. Even for medium-sized
models (5M-10M parameters) like MobileNetV1, GoogleNet
and SuffleNet, the computation cost of the commitments
becomes severely expensive (≈ 4-9 min). On the other hand,
aggregators are in a much better position when they verify
the validity of partial updates from other aggregators for the
same partition, as a partition contains only a fraction of the
model’s parameters. Moreover, our Pedersen implementation is
rather straight-forward and there is plenty of room for further
optimizations (e.g., see [27, 28]), which we leave as future
work.

Convergence and Accuracy. Because we segment and dis-
tribute the aggregation task to multiple aggregators, it easily
follows that both the model’s convergence rate and final
accuracy will be exactly the same as that of traditional FL.
Therefore we omit relevant measurements.

Fig. 2: Total aggregation delay (top) and total size of data
received by an aggregator (bottom) in each iteration, vs. the
number of aggregators assigned to each partition.

Fig. 3: Time needed to compute the SHA-256 hash and
Pedersen commitment using secp256k1 and secp256r1 curves
vs. size of model parameters (in logarithmic scale).

VI. FUTURE WORK AND OPEN QUESTIONS

Our proposed protocol leaves plenty of room for further
improvement both in terms of efficiency and security, some of
which we briefly overview below.
Minimize the query load of the directory service. As shown
in Algorithm 1, the directory service receives hashes and
addressing information for each partition of the model and
for each trainer, while also replying to multiple queries. It is
possible to reduce its load by delegating the storage of its maps
to the IPFS network, making the IPFS nodes responsible for
replying to map queries. Moreover, instead of writing the hash
of each partition to the directory service, trainers only need to
send an accumulation over the hashes of gradient partitions.



Guarantee availability of gradients in IPFS network. Data
unavailability can lead to significant slowdown and perfor-
mance deterioration for the learning process. Hence we would
like to take measures to ensure it (an alternative direction
would be to extend our scheme to work with partially unavail-
able gradients or updates). This can be achieved by utilizing
storage-incentive mechanisms for IPFS such as the Filecoin
protocol [23]. However, since in our protocol both gradients
and updates only needed for a short period of time, it may
be sufficient to simply replicate them through a predetermined
number of IPFS nodes. In that direction, it would be preferable
to ensure a uniform allocation of gradients to nodes, to reduce
the possibilities of collusion between malicious participants
and potentially malicious IPFS nodes, e.g., based on the hash
of the gradients and the nodes id’s.
Delegating verification to the aggregators. In our current
protocol, the directory service needs to access the updated
partition and check if it matches the accumulated commit-
ment. To reduce the directory service overhead, we can
delegate the responsibility for proving this matching to the
untrusted aggregators themselves, e.g., using cryptographic
arguments [29, 30]. However, proving statements for a SHA-
256 pre-image is notoriously computation-intensive, hence it
would first make sense to replace it in IPFS with a proof-
friendly hash [31]. This would allow aggregators to efficiently
prove that the hash and Pedersen commitment come from the
same gradients and partial updates, respectively.
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[28] Fábio Borges, Pedro Lara, and Renato Portugal. Parallel algorithms for
modular multi-exponentiation. Applied Mathematics and Computation,
292:406–416, 2017.

[29] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Eurocrypt
2013, pages 626–645. Springer, 2013.

[30] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga
Ohrimenko, and Bryan Parno. Hash first, argue later: Adaptive verifiable
computations on outsourced data. In ACM CCS, pages 1304–1316, 2016.

[31] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for {Zero-
Knowledge} proof systems. In USENIX Security 2021, pages 519–535.


	Introduction
	Background on IPLS
	Building Federated Learning on top of Decentralized Storage
	Adversarial Model / Security Assumptions
	Indirect Communication between Participants
	Directory Service
	Implementation Details
	Merge and Download

	Security Against Malicious Aggregators
	Pedersen Vector Commitments
	Modifications in our Protocol

	Experimental Evaluation
	Future Work and Open Questions

