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Abstract. In p-noisy coin-tossing, Alice and Bob obtain fair coins which are of opposite values with
probability p. Its Oblivious-Transfer (OT) complexity refers to the least number of OTs required by
a semi-honest perfectly secure 2-party protocol for this task. We show a tight bound of Θ(log 1/p)
for the OT complexity of p-noisy coin-tossing. This is the first instance of a lower bound for OT
complexity that is independent of the input/output length of the function.
We obtain our result by providing a general connection between the OT complexity of randomized
functions and the complexity of Secure Zero Communication Reductions (SZCR), as recently de-
fined by Narayanan et al. (TCC 2020), and then showing a lower bound for the complexity of an
SZCR from noisy coin-tossing to (a predicate corresponding to) OT.

1 Introduction

Consider two parties trying to do a “p-noisy coin-toss” such that each one gets a uniformly random
bit, but with probability p < 1/2 the bits they obtain are different.4 They would like to do this with
semi-honest information-theoretic security (so that each one has no information about the other’s bit,
beyond what it learns from its own bit), using as few instances of Oblivious Transfer (OT) as possible.

An easy upper bound on the number of OTs needed is O(log 1/p), because they can obtain the desired
outputs by evaluating a boolean circuit with that many binary gates on O(log 1/p) uniformly random
bits from each party; the upper bound follows from the semi-honest GMW protocol [13,14,15] (requiring
a couple of OTs for each non-linear gate). But it is a priori not at all clear if this is the only way to carry
out this computation. In particular, a protocol can rely on the semi-honest parties to sample non-uniform
bits and use them as inputs in a protocol, and more generally, employ a protocol that does not involve
a circuit evaluation at all.

Information-theoretic measures have been used to reason about the complexity of randomized func-
tions in cryptographic and non-cryptographic settings. The most relevant technique to lower bound the
OT complexity of general randomized functions is to use the “tension” of the resulting correlation [24].
However, it only yields a lower bound of one OT for sampling a noisy coin. Further, for the amortized
setting, the lower bound on the rate degrades as the noise decreases.

In this work, we present for the first time an OT complexity lower bound that goes beyond the
input/output length of a function, by showing that the number of OTs required for noisy coin-tossing
is Θ(log 1/p). Further, our lower bound also has a “direct sum” version, showing that tossing n such
coins has OT complexity Θ(n log 1/p). Remarkably – and in contrast to the information-theoretically
derived lower bounds – our result shows that OT complexity increases as p decreases, although at the
limit when p = 0, the OT complexity is 0. Indeed, an information-theoretic complexity measure like
tension is unlikely to uncover this non-monotonic behavior of OT complexity.

Our main tool is Secure Zero Communication Reductions (SZCR) as defined recently in [23]. We
extend the connection between SZCR complexity and OT complexity to randomized functions (in [23]
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4 This functionality is sometimes referred to as sampling from a binary symmetric source. Note that for semi-
honest security, as we consider, this is a cryptographically trivial task without any noise (i.e., when p = 0).



this was limited to deterministic functions), and then show that the noisy coin-flip functionality has a
large SZCR complexity of Ω(log 1/p). Along the way, we develop a relaxation of SZCR complexity –
which we term the balanced embedding complexity of a function – which is easier to interpret (especially
for randomized functions) and which is sufficient to derive our lower bound.
OT Complexity and Randomized Functions. OT complexity of a (two-input) function – namely,
the minimum number of instances of OT that is required by an information-theoretically secure5 two-
party computation protocol for evaluating the function – is a fundamental complexity measure. It follows
from the results in the pioneering work in the 80’s [13,15,14] that the OT complexity is upper bounded
by the circuit complexity of the function. More recently, Beimel et al. [5] gave non-trivial upper bounds
on OT complexity of all functions based on Private Information Retrieval (PIR) protocols, which become
sub-exponential when instantiated using state-of-the art PIR results [11]. On the other hand, the few
lower bounds that we do have – in terms of communication complexity [6] and “tension” [24] – are no
larger than the (smaller) input and output length. Making further progress on OT complexity lower
bounds faces major barriers, by implying lower bounds for circuit complexity (for explicit functions) or
PIR (even existentially). Showing an existential lower bound that is super polynomial in the input length
will imply super-logarithmic lower bounds for the client computational complexity of 2-server PIR [5],
and consequently lower bounds for codes on which PIR can be based. However, these barriers do not
apply to randomized functions, motivating the current work.

Unfortunately, secure computation of randomized functions is relatively less well-understood, com-
pared to deterministic functions. Indeed, even the characterization of which randomized functions are
trivial (i.e., have 0 OT complexity) remains open.

While upper bounds on OT complexity of randomized functions can be obtained via upper bounds on
OT complexity of appropriate deterministic functions (evaluated on randomized inputs), this connection
does not apply to lower bounds. As an illustrative example, we present an inputless randomized function
f which corresponds to evaluating a deterministic function g on random inputs, such that g has a positive

OT complexity and f has 0 OT complexity!6 For x, y ∈ [3], let g(x, y) = Mx,y where M =

1 1 2
4 5 2
4 3 3

. One way

to compute this function would be for Alice and Bob to pick x and y respectively, and then use secure
function evaluation to compute g(x, y). Now, being an “undecomposable function”, the function g cannot
be securely computed without using any OTs [21,3]. However, f has a protocol that uses no OTs at all:
one party can sample Mx,y (without sampling x, y) and send it to the other one; then, independently,
Alice samples x and Bob samples y conditioned on Mx,y.

Our result establishes, for the first time, a non-trivial lower bound technique for OT complexity of
randomized functions. While this possibility was alluded to as a motivation in [23], the actual connection
between SZCR and OT complexity established there was restricted to deterministic functions.
Our Contributions. We summarize our contributions as follows:

– The main result of this work is to show, for the first time, that the OT complexity of a randomized
function can grow independent of the input/output size of the function. Specifically, we show that
the OT complexity of securely sampling a noisy coin with flip probability p is Θ(log 1/p). Further,
this result has a “direct sum” version, so that sampling n independent copies of such a coin has OT
complexity Θ(n log 1/p).

– While proving this, we develop a more generally applicable tool, which shows that the complexity of
an SZCR for a randomized function is a lower bound on the OT complexity of that function (denoted
as |f |szcr ≤ |f |OT). We do this by carefully generalizing the analysis in [23] where the same result was
shown for deterministic functions.

– As a contribution towards facilitating future work on SZCR, we present a relaxation of SZCR com-
plexity of randomized functions, namely, balanced embedding complexity, so that our result can be
summarized as

|f |emb ≤ |f |szcr ≲ |f |OT,

where the balanced embedding complexity |f |emb is simpler to reason about. Indeed, our tight result
on noisy coin-tossing is obtained by establishing a lower bound for balanced embedding complexity.

5 Throughout this paper, we consider semi-honest and perfect security, which arguably gives the cleanest notion
of OT complexity.

6 This phenomenon occurs whenever g is undecomposable [21] but “simple” [22].
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Related Work. There is a rich line of work in information-theoretic cryptography that studies the
complexity of functions through the lens of secure 2-party computation. Starting with the seminal results
in the 80’s [20,21], complete and trivial functionalities for 2-party computation have been thoroughly
characterized, for various levels of security (semi-honest, standalone, UC-secure) (see [22] for a survey).
However, quantitative complexity results have been much sparser. The question of OT complexity was
explicitly discussed by [4]. [6] presented a general lower bound in terms of the one-way communication
complexity of the function. Important upper bounds of OT complexity follow from the semi-honest GMW
protocol [13,14,15] and via PIR protocols [5]. Separate from the lower bound arguments in [6], a long line
of works used information-theoretic tools for showing various complexity lower bounds for reductions
in information-theoretic cryptography [4,10,26,19,27,18,16,17,9,25,24]; however, we may not expect such
information-theoretic tools to uncover the non-monotonic behavior of OT complexity that we report
here.

A similar sounding concept, called Secure Non-Interactive Reduction (SNIR) was introduced in [1]
(also called Secure Non-Interactive Simulation or SNIS in [2]). It is instructive to compare both SNIR
and SZCR with the standard notion of (semi-honest) secure reduction (SR) to a correlation like OT (i.e.,
the notion of OT complexity). Roughly put,

SNIR⇒ SR⇒ SZCR

indicating that SNIR is a “stronger” primitive than SR, which is in turn stronger than SZCR. While
every function has an SR to the OT correlation (i.e., it is a complete correlation), that is not the case
for SNIR: Indeed, there are no complete correlations for SNIR [1]. Both SNIR and SZCR are motivated
by approaching the notoriously hard lower bound questions for SR, but they do it in different ways.

– Lower bounds (or impossibility results) for SNIR are an “easier” target than those for SR, and would
provide a platform for nurturing new techniques; as and when we completely settle a question for
SNIR (as is done in [7]),we can approach SR by relaxing the model (e.g., allow one-directional com-
munication).

– Lower bounds for SZCR are formally (but not necessarily conceptually) harder than those for SR. In
this case, one seeks to develop new techniques by asking simpler variants of the lower bound question:
e.g., existential questions (a la the “invertible rank conjecture” of [23]) or lower bounds for randomized
functions (as in this work) Also, the new perspective provided by SZCR may lead to fresh approaches
to the original hard lower bound problems of SR.

2 Technical Overview

Our overall plan to obtain a lower bound on the OT complexity of a randomized function is to show
that |f |emb ≲ |f |OT, where |f |emb is a new “balanced embedding complexity” that we define for functions,
and then directly derive a lower bound for |f |emb. The significance of this connection is that, a priori,
OT complexity is difficult to lower bound due to the complex possibilities in a protocol. On the other
hand, a balanced embedding has a relatively simple structure that could allow us to easily derive a lower
bound on |f |emb.

As such, the main technical contribution of this work is to define |f |emb and to show that |f |emb ≲
|f |OT. This involves a few different steps:

– Defining balanced embedding.
– Obtaining an easy lower bound on |f |emb, where f is the p-noisy coin-tossing functionality.
– Showing that |f |emb ≤ |f |szcr, where |f |szcr refers to the “SZCR complexity” of f .
– The final (and main) technical challenge is to show |f |szcr ≲ |f |OT.

Below, we expand on each of these steps.
Balanced Embedding. Identifying randomized functions as weighted bipartite graphs, we define a
form of weighted embedding of one such graph into another. The embedding is a “fuzzy” embedding that
assigns weights relating how much one node in one graph is associated with a node in the other graph.
In fact, there are two such weights (π and θ) which “balance” each other – hence the name balanced
embedding.
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Definition 1. Let G = (S, T ,ω) be a weighted bipartite graph, where S, T form a bi-partition of the
nodes of G and ω : S × T → R≥0 is the weight function. We define a balanced embedding of G into
another bipartite graph H = (U ,V,ϕ) as (π, θ) where π, θ : (U×S)∪(V×T )→ R≥0 are weight functions
such that the following hold, for all (α, β) ∈ S × T :∑

v∈V
π(v, β) ·ϕ(u, v) = θ(u, α) ·ω(α, β) ∀u ∈ U (1)∑

u∈U
π(u, α) ·ϕ(u, v) = θ(v, β) ·ω(α, β) ∀v ∈ V (2)∑

u∈U
π(u, α) · θ(u, α) = 1

∑
v∈V

π(v, β) · θ(v, β) = 1 if ω(α, β) > 0 (3)

Given a randomized function f : X × Y → A × B, we define its characteristic bipartite graph as
Gf = (X × A,Y × B,ω), where ω((x, a), (y, b)) = Pr[f(x, y) = (a, b)]. We will be interested in the
balanced embedding of Gf into the weighted graph Hϕ := (U ,V,ϕ), where ϕ : U × V → {0, 1} is a
predicate. In fact, we are specifically interested in predicates that correspond to multiple copies of OT:

ϕm
OT((u1, . . . , um), (v1, . . . , vm)) =

m∧
i=1

ϕOT(ui, vi)

where ϕOT(u, v) = 1 iff ∃(x0, x1, b) ∈ {0, 1}3 such that u = (x0, x1) and v = (b, xb).

Definition 2. The balanced embedding complexity of f , |f |emb is the smallest m such that Gf has a
balanced embedding into Hϕm

OT
.

We remark that for our current result, the lower bound on the balanced embedding complexity of noisy
coin-toss (sketched below) does not need to fully exploit all the conditions of a balanced embedding (e.g.,
in (3), = 1 can be replaced by > 0). However, for facilitating potential applications to other functions
in the future, we retain the above version. For the sake of explicitness, we detail two constructions of
balanced embedding of any Boolean function to OT predicate–from its truth table and from a Boolean
circuit of the function–in Appendix A.
A Lower Bound for a Balanced Embedding of Noisy Coin-Tossing. Below we summarize the
short argument to show that |f |emb = Ω(log 1/p), where f is the p-noisy coin-toss functionality with
p < 1

2 ; i.e., if Gf has a balanced embedding into Hϕm
OT

, then m = Ω(log 1/p).
Let Gf = ({0A, 1A}, {0B , 1B},ω), where ω(bA, bB) = (1 − p)/2 and ω(bA, (1 − b)B) = p/2 for all

b ∈ {0, 1}. Let Hϕm
OT

= (U ,V,ϕm
OT). Suppose (π, θ) is a balanced embedding of Gf to Hϕm

OT
.

Now, we choose (u∗, α∗) ∈ U × {0A, 1A} such that π(u∗, α∗) ≥ π(u, α) for all (u, α). W.l.o.g, let
α∗ = 0A (as the other case is symmetric). Using (1)-(3) we can argue that for some v∗ ∈ V such that
ϕm

OT(u
∗, v∗) = 1, θ(v∗, 1B) > 0. Then, applying (2) to both (α, β) = (1A, 1B) and (0A, 1B), and taking

their ratio, we get ∑
u π(u, 1A) ·ϕm

OT(u, v
∗)∑

u π(u, 0A) ·ϕm
OT(u, v

∗)
=
ω(1A, 1B)

ω(0A, 1B)
=

1− p

p
.

Since π(u, 1A) ≤ π(u∗, 0A) for all u, and since ϕm
OT(u

∗, v∗) = 1,

|{u : ϕm
OT(u, v

∗)}| ≥
∑

u π(u, 1A) ·ϕm
OT(u, v

∗)∑
u π(u, 0A) ·ϕm

OT(u, v
∗)

=
1− p

p
.

Since |{u : ϕm
OT(u, v

∗)}| = 2m, we have m ≥ log(1/p)− 1.
Virtually the same argument holds for the case of n noisy coin-flips, but with the ratio of probabilities

used to obtain the bound being
(

1−p
p

)n
, leading to a bound of m = Ω(n log 1/p).

Recap of SZCR. We start with a quick recap of SZCR, as introduced in [23]. A µ-SZCR from a 2-
party function f (which takes two inputs and produces two outputs, possibly randomized) to a predicate
ϕ, is a minimalistic computation model, in which Alice and Bob, on being given respective inputs x
and y, produce respective outputs (a, u) and (b, v) without any communication, with the guarantee that
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(a, b) is distributed as f(x, y) (or, in the case of deterministic functions, (a, b) = f(x, y)) conditioned on
ϕ(u, v) = 1. It is required that ϕ(u, v) = 1 with a fixed probability (irrespective of (x, y)) which is at
least 2−µ. The security condition captures the idea that Alice’s view (which is considered to include the
predicate’s outcome ϕ(u, v), as well as her input x and output (a, u)) reveals nothing about Bob’s input
and output (y, b), beyond what is revealed by (x, a); similarly, Bob’s view reveals nothing more about
(x, a) than (y, b) itself reveals.

SZCR leads to a pair of natural complexity measures associated with a (possibly randomized) function
f : smallest possible µ and m for which there is a µ-SZCR from f to ϕm

OT. In [23], the minimum such
µ+m was suggested as a convenient complexity measure of a function f . In this work, for simplicity, we
shall use the smallest m for which there is a µ-SZCR from f to ϕm

OT for any (finite) µ as the complexity
measure |f |szcr.7

Balanced Embedding and SZCR. Given an SZCR that reduces f to ϕ, we obtain a balanced
embedding of Gf into Hϕ. This amounts to assigning weights π(u, α) and θ(u, α) for all u ∈ U and
α ∈ X ×A, and π(v, β) and θ(v, β) for all v ∈ V and β ∈ Y × B in a way that satisfies (1), (2), and (3).
Let Θ(A,B) be an SZCR from f to ϕ. For α = (x, a) and u, we choose π(u, α) ∝ PrA(u, a|x) and θ(u, α)
such that π(u, α) · θ(u, α) = PrŜA

(u|x, a,D = 1), where ŜA is the simulator for Alice in the SZCR. For
β = (y, a) and v, π(v, β) and θ(v, β) are chosen analogously. Having chosen the product of π(u, α) and
θ(u, α) in this manner, ∑

u

π(u, α) · θ(u, α) =
∑
u

PrŜA
(u|x, a,D = 1) = 1,

ensuring (3). Since D = 1 whenever A and B choose u and v, respectively, such that ϕ(u, v) = 1, with
π defined as above, and α = (x, a) and β = (y, b),∑

v

π(v, β)ϕ(u, v) ∝ PrΘ(D = 1, b|y, x, a, u) = PrΘ(b|x, y, a) ·
PrΘ(D = 1, u|x, y, a, b)

PrΘ(u|x, y, a, b)
.

Using the correctness of Θ conditioned on the event D = 1 and the fact that (u, a) and (v, b) are sampled
depending only on x and y, respectively,

PrΘ(b|x, y, a) ·
PrΘ(D = 1, u|x, y, a, b)

PrΘ(u|x, y, a, b)
∝ PrΘ(u|x, y, a, b,D = 1)Prf (a, b|x, y)

PrA(u, a|x)
.

At this point, noting that PrΘ(u|x, y, a, b,D = 1) = PrŜA
(u|x, a,D = 1) for all (y, b) and choosing the

proportionality constant to be
√
PrΘ(D = 1|x, y), we get (1). (2) is shown analogously.

We remark that in translating an SZCR to a balanced embedding, we ignore the SZCR security
requirements related to the simulatability of views when the computation is rejected by the predicate.
OT Complexity and SZCR. In [23], it was shown that a 2-party secure function evaluation protocol
ΠOT for a deterministic function f , using m OTs can be transformed into a µ-SZCR from f to the
predicate ϕOT corresponding to m instances of OT,8 where µ = O(m). The high-level idea is for Alice
and Bob to sample candidate pairs of views in ΠOT such that conditioned on ϕOT accepting the OTs in
these views, these views are distributed correctly as in the protocol. Also, it would be ensured that the
acceptance probability of the predicate is constant independent of x, y. Then the security guarantee of
ΠOT translates to the security requirement of SZCR.

Being able to carry out the rejection sampling of views using ϕOT relies on the fact that protocols
(secure or not) admit transcript factorization: i.e., the probability of a transcript q occurring in an
execution of ΠOT, given inputs (x, y) and OT correlation (r, s) to the two parties respectively, can be
written as

PrΠOT(q|x, y, r, s) = ρ(x, r, q) · σ(y, s, q),
7 Our connection between SZCR and OT-based 2-PC does extend to both µ and m. But our formulation of

balanced embedding complexity |f |emb omits µ, and lower bounds on |f |emb yield lower bounds on m rather
than only on m+ µ.

8 That is, ϕOT(u, v) = 1 iff u = (r1, · · · , rm), v = (s1, · · · , sm) and each (ri, si) is in the support of the OT
correlation. Looking ahead, ϕOT in fact uses m + 1 instances of OT, where the extra instance is used as an
“abort switch.” Following the notation in [23], later, we denote ϕOT as ϕsupp(OT+).
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for some functions ρ and σ. Given a particular transcript q (say, as a common reference string),9 each
of the two parties can locally sample its views from OTs (r or s, respectively), conditioned on its own
input and q, with probability proportional to ρ(x, r, q) or σ(y, s, q), respectively with a proportionality
constant independent of x or y; then, the probability that the parties end up with a valid joint view in
the protocol (for which ϕOT(r, s) = 1, and where all such (r, s) have the same probability) is proportional
to that in the protocol, conditioned on (x, y, q).

Above, using proportionality constants that are independent of x and y runs into a problem since∑
r ρ(x, r, q) and

∑
s σ(y, s, q) can depend on x, y. To resolve this, the parties are allowed to output an

invalid r or s with some probability (implemented by setting u = (u0, r) and v = (v0, s), so that Alice or
Bob can unilaterally force ϕOT(u, v) = 0 by choosing a special value ⊥ for u0 or v0, respectively).

To get a µ-SZCR, with µ = O(m), it is important to keep the probability with which the parties
force aborting bounded. A key aspect in ensuring this turns out to be how the transcript q is chosen.
As detailed in [23], if the function is “common-information-free,”–i.e., its characteristic bipartite graph is
connected– then a single fixed transcript can be used. But otherwise, if the graph has multiple connected
components, a transcript is chosen from among a small set of transcripts q∗1 , · · · , q∗k, indexed by the
different values that the common information can take. An additional rejection step is introduced (see
below), corresponding to rejecting a choice of this index that is not consistent with the input-output
pair. A somewhat lengthy analysis shows that with appropriately chosen transcripts, the probability of
the SZCR accepting is at least 2−O(m).
Extending to Randomized Functions. We first notice that the construction in [23] is no longer an
SZCR when f is randomized and is not common-information free. To see this, we need to recall more
details of the rejection step mentioned above for rejecting the wrong transcript index. Firstly, common
information that Alice and Bob obtain when evaluating f(x, y) to obtain outputs a and b respectively,
corresponds to the connected component containing the edge ((x, a), (y, b)) in a bipartite graph Gf

representing f .10 Now, in the SZCR of [23], given x and a common index ℓ, Alice checks if there is at
least one a′ such that the node (x, a′) lies in the component specified by ℓ, and if so she samples r as
described above, and computes an output a using the protocol Π on the view (x, r, q∗ℓ ). (Otherwise, she
sets u = (⊥, r) to force the predicate to fail.)

But when f is randomized, it is possible that the same transcript, and the same pair of inputs (x, y),
could correspond to two different outputs (a1, b1) and (a2, b2), such that the edges ((x, a1), (y, b1)) and
((x, a2), (y, b2)) are in two different connected components of Gf .11 So when the parties sample (r, s)
conditioned on (x, y, q), it could correspond to either output. This breaks a crucial invariant in the
analysis that when the predicate accepts, the outputs produced (a, b) will be such that ((x, a), (y, b)) is
in the connected component corresponding to the common index ℓ.

To fix this, we make a subtle change in the SZCR: Alice and Bob will first sample their respective
outputs a and b (rather than computing them from r and s), and then check that the nodes (x, a) and
(y, b) are in the connected component corresponding to the common index ℓ. This restores the invariant
mentioned above, but necessitates a careful reanalysis. Our new analysis closely follows the original
analysis, but needs to accommodate the above modification in the protocol, as well as the fact that Gf

can have multiple edges (possibly in multiple connected components) of the form ((x, ·), (y, ·)) for the
same (x, y).

Our new proof incorporates an additional minor refinement. In [23], the SZCR constructed used a
CRS, as this was a part of the model. Here, motivated by simplifying the (already minimalistic) SZCR
model further, we restrict ourselves to a version which does not involve a CRS. Instead, the two parties
guess a value of the CRS, and use the predicate ϕOT to check if their guesses match. This does result
in a slight quantitative degradation in the acceptance probability (when there are multiple connected
components in Gf ), but asymptotically, the result remains unchanged.
9 The general definition in [23] allowed a CRS, or even more general correlations in an SZCR. For simplicity, we

omit this from our adaptation, as we shall not need it for our specific result.
10 For randomized functions, Gf is a weighted bipartite graph with the weight of an edge ((x, a), (y, b)) being

Pr[f(x, y) = (a, b)].
11 Note that the common information that Alice and Bob obtain in an execution of the protocol ΠOT is not

solely determined by the transcript, but also by their views of the OT correlation. Indeed, a protocol could
use OTs to carry out an information-theoretically secure secret-key agreement protocol, and then use the key
as a one-time pad for the rest of the transcript, so that the transcript by itself is distributed identically for all
input-output pairs.
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Finally, we remark that our result (as well as the one in [23]) is not only for an SZCR to OTs, but is
shown for any “regular” complete correlation.

3 Preliminaries

Probability Notation. We adhere mostly to the notations used in [23]. In general, we denote a finite
set by X ,Y, . . . and so on. A member of X is denoted by x and a random variable taking values in X is
denoted by X. The probability assigned by a distribution D (or a probabilistic process D) to a value x
is denoted as PrD(x), or simply Pr(x), when the distribution is understood. Sampling x according to the
distribution D is denoted as x← D.
Functionalities and Correlations. A (potentially randomized) two party functionality f : X × Y →
A×B takes inputs x and y, respectively, from Alice and Bob and returns a and b, respectively, to them,
where (a, b) = f(x, y). We write fA : X × Y → A to indicate the function obtained by projecting the
output of f to the first coordinate (i.e., retaining only Alice’s output). Similarly, fB : X ×Y → B denotes
the function obtained from f by retaining only Bob’s output.

A correlation ψ over a domain R × S is a 2-party functionality without inputs, i.e., ψ : {⊥} ×
{⊥} → R× S. The support of ψ is supp(ψ) = {(r, s)|Prψ(r, s) > 0}. A correlation is said to be regular
if (1) ∀(r, s) ∈ supp(ψ), Prψ(r, s) = 1

|supp(ψ)| , (2) ∀r ∈ R,
∑

s∈S Prψ(r, s) = 1
|R| , and (3) ∀s ∈ S,∑

r∈R Prψ(r, s) = 1
|S| . Common examples of regular correlations are those corresponding to Oblivious

Transfer (OT) and Oblivious Linear Function Evaluation (OLE), and their n-fold repetitions. For t ∈ N,
t independent copies of a correlation ψ is denoted by ψt.

Definition 3. For a randomized function f : X × Y → A × B we define its evaluation graph, Gf as
the bipartite graph on vertices (X × A) ∪ (Y × B) such that the edge weight of an edge ((x, a), (y, b)) is
Prf (a, b|x, y).

Two vertices u and v in Gf are said to be connected if there is a path from u to v consisting of edges
with non-zero edge weight. Let C ⊆ Gf be a connected component of Gf ; we define:

XC = {x : ∃a, y, b((x, a), (y, b)) ∈ C} YC = {y : ∃b, x, a((x, a), (y, b)) ∈ C}

Predicates. A predicate is any deterministic function ϕ : U × V → {0, 1} with boolean output. The
predicate ϕ(=l) takes a pair of l-bit strings u, v as input and accepts if u = v. Given a correlation ψ over
U × V, we define the predicate ϕsupp(ψ) so that ϕsupp(ψ)(u, v) = 1 iff (u, v) ∈ supp(ψ). The predicate
ϕsupp∗(ψ) is defined identically, except that we allow the domain of ϕsupp∗(ψ) to be (U ∪{⊥})× (V ∪{⊥})
where ⊥ is a symbol not in U ∪ V. Specifically, the predicate ϕsupp(OTm) allows a domain of {0, 1}2m ×
{0, 1}2m and accepts u, v if PrOTm(u, v) > 0 and rejects otherwise; whereas, ϕsupp∗(OTm) behaves the
same way but the input domain is now ({0, 1}2m ∪ {⊥})× ({0, 1}2m ∪ {⊥}).

Let ϕ : U × V → {0, 1} and ϕ′ : U ′ × V ′ → {0, 1} be two predicates. Their product ϕ · ϕ′ takes
(u, u′) ∈ U × U ′ and (v, v′) ∈ V × V ′ as inputs and accepts if ϕ(u, v) = 1 and ϕ′(u′, v′) = 1.
Secure 2-party Communication Protocols A communication protocol between Alice and Bob
using the correlation ψ, denoted by Πψ, proceeds as follows: Alice and Bob receive inputs x and y,
respectively, and, additionally, they get r and s, respectively, where (r, s)← ψ. They exchange messages
in rounds (message of a party in each round being a randomized function of their current view) to
generate a transcript q ∈ Q. Finally, Alice (resp. Bob) computes their output a (resp. b) by applying a
(randomized) map Πout

A (resp. Πout
B ) to their final view (x, r, q) (resp. (y, s, q)). Thus, the outcome of an

execution of Πψ on inputs (x, y) is the joint distribution described by

PrΠψ(r, s, q, a, b|x, y) = Prψ(r, s) · PrΠψ(q|x, y, r, s) · PrΠout
A

(a|x, r, q) · PrΠout
B

(b|y, s, q),∀r, s, q, a, b. (4)

The protocol Πψ is said to compute the functionality f : X × Y → A × B with perfect security if the
distribution PrΠψ(r, s, q, a, b|x, y) described above satisfies the following conditions:

Correctness: For all x, y,

PrΠψ(a, b|x, y) = Prf (a, b|x, y),∀a, b. (5)
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Privacy against Alice: There exists a randomized simulator ŜA : X × A → R×Q such that, for all
a, x, y, such that fA(a|x, y) > 0,

PrΠψ(r, q|x, y, a) = PrŜA
(r, q|x, a),∀r, q. (6)

Privacy against Bob: There exists a randomized simulator ŜB : Y × B → S × Q such that, for all
b, x, y, such that fB(b|x, y) > 0,

PrΠψ(s, q|x, y, b) = PrŜB
(s, q|y, b),∀s, q. (7)

Transcript Factorization. In any 2-party communication protocol Πψ, the probability of generating
the transcript, as a randomized function of the inputs (x, y) and the correlation (r, s), can be factorized
into separate functions of (x, r) and (y, s). A transcript q = (m1, . . . ,mN ) is generated by the protocol
if Alice produces the message m1 given (x, r) in round 1, and then Bob produces m2 given (y, s,m1) in
round 2, and so forth. That is,

PrΠψ(m1, . . . ,mN |x, y, r, s) = Pr(m1|x, r)× Pr(m2|y, s,m1)× . . .

× Pr(mi|y, s,m1, . . . ,mi−1)× . . . .

Hence, by collecting the products of odd factors as ρ(x, r,m1, . . . ,mN ) and even factors as σ(y, s,m1, . . . ,mN ),
we can write the transcript as a product of separate functions of (x, r) and (y, s).

Formally, there exist transcript factorization functions ρ : X×R×Q → [0, 1] and σ : Y×S×Q → [0, 1],
such that

PrΠψ(q|x, y, r, s) = ρ(x, r, q) · σ(y, s, q). (8)

It is worth noting that, for any x, y, r, s, functions ρ and σ by themselves are not probability mass
functions. We shall use this important and well-known transcript factorization property (e.g., [8]) of a
protocol in our constructions.

3.1 Zero-Communication Secure Reductions

A B

ϕ

x y

A B

U V

D

Fig. 1. The random variables involved in a szcr.

The zero-communication reduction Θ from a functionality f to predicate ϕ is specified by a pair of
randomized algorithms (A,B). The random variables involved in the reduction are illustrated in Figure 1.
The reduction proceeds as follows: Alice and Bob receive inputs x, y to the functionality f , respectively.
Alice samples (a, u)← A(x), where a is her proposed output for the functionality f , and u is her input to
the predicateϕ. Similarly, Bob samples (b, v)← B(y). On receiving u, v from Alice and Bob, respectively,
the predicate outputs d = ϕ(u, v). Thus, the outcome of an execution of Θ on inputs (x, y) is the joint
distribution described by

PrΘ(u, v, a, b, d|x, y) = PrA(u, a|x) · PrB(v, b|y) · Prϕ(d|u, v). (9)
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Definition 4. Let f : X × Y → A × B and ϕ : U × V → {0, 1} be randomized functions. For any
µ ≥ 0, a µ-secure zero-communication reduction (µ-szcr) Θ(A,B) from f to the predicate ϕ is a pair
of probabilistic algorithms A : X → U × A and B : Y → V × B such that the following holds for the
distribution described in (9).

Non-Triviality and Weak Security ∃µ′ ≤ µ, ∀(x, y) ∈ X × Y,

PrΘ(D = 1|x, y) = 2−µ′
. (10)

Correctness ∀x, y, a, b ∈ X × Y ×A× B,

PrΘ(a, b|x, y,D = 1) = Prf (a, b|x, y). (11)

Security against Alice There exists a randomized function SA : X×A×{0, 1} → U such that ∀x, y, a ∈
X × Y ×A such that PrfA(a|x, y) > 0,

PrΘ(u|x, y, a,D = 1) = PrSA
(u|x, a, 1). (12)

PrΘ(u|x, y,D = 0) =
∑
a

PrfA(a|x, y) · PrSA
(u|x, a, 0). (13)

Security against Bob There exists a randomized function SB : Y×B×{0, 1} → V such that ∀x, y, b ∈
X × Y × B such that PrfB (b|x, y) > 0,

PrΘ(v|x, y, b,D = 1) = PrSB
(v|y, b, 1). (14)

PrΘ(v|x, y,D = 0) =
∑
b

PrfB (b|x, y) · PrSB
(v|y, b, 0). (15)

In other words, in a szcr, Alice and Bob compute “candidate outputs” a and b, as well as two messages
u and v, respectively, such that correctness (i.e., f(x, y) = (a, b)) is required only whenϕ “accepts” (u, v).
To be non-trivial, we require a lower bound 2−µ on the probability ofϕ accepting. Weak security requires
that an “eavesdropper” who gets to observe whether the predicate ϕ accepts or not learns nothing about
the inputs x, y. This is ensured by require the probability of accepting to remain the same as the inputs
are changed. Note that as µ increases from 0 to ∞, the non-triviality and weak security constraint gets
relaxed.

Finally, the security condition corresponds to security against passive corruption of one of Alice
and Bob in a secure computation protocol (using ϕ) that realizes the following functionality fµ: After
computing (a, b) ← f(x, y), with probability 2−µ the functionality sends the respective outputs to the
two parties (“accepting” case); with the remaining probability, it sends the output only to the corrupt
party. In the above, (12) and (13) correspond to corrupting Alice, with the first one being the accepting
case. Note that in these cases the adversary’s view consists of U , in addition to the input x and the
boolean variable D (accepting or not), which are given to the environment as well. In the accepting case,
the environment also observes the outputs (a, b). In either case, ŜA is given (x, fA(x, y), D) as inputs; in
the accepting case, we naturally require that the simulated view has the same output a as fA(x, y) given
to ŜA. Security conditions against Bob are interpreted analogously.

4 Balanced Embedding

For a randomized function f : X × Y → A × B and a deterministic predicate ϕ : U × V → {0, 1}, we
study the balanced embedding, defined in Definition 1 in Section 2 of the evaluation graph Gf into the
evaluation graph Gϕ.

Theorem 1. If a randomized function f : X ×Y → A×B has a szcr to ϕ : U ×V → {0, 1}, then there
is a balanced embedding of the evaluation graph Gf into the predicate graph Gϕ.

Proof. For each α = (x, a) and β = (y, b), define

π(u, α) =
PrA(u, a|x)√

PrΘ(D = 1|x, y)
and θ(u, α) =

PrSA
(u|x, a,D = 1)

π(u, α)
∀u ∈ U
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π(v, β) =
PrB(v, b|y)√

PrΘ(D = 1|x, y)
and θ(v, β) =

PrSB
(v|y, b,D = 1)

π(v, β)
∀v ∈ V

Note that we set θ(u, α) = 0 whenever π(u, α) = 0 and θ(v, β) = 0 whenever π(v, β) = 0 since Pr(u|x, a)
and Pr(v|y, b) are going to be 0 in these cases.
For each u ∈ U , when β = (y, b), and α = (x, a) for any (x, a) such that PrA(u, a|x) > 0,

∑
v∈V

π(v, β) ·ϕ(u, v)
(a)
=

∑
v:ϕ(u,v)=1 PrB(v|y, b)PrB(b|y)√

PrΘ(D = 1|x, y)
(b)
=

PrΘ(D = 1|y, b, x, a, u)PrB(b|y)√
PrΘ(D = 1|x, y)

(c)
=

PrΘ(u,D = 1|y, b, x, a)PrB(b|y)
PrA(u|x, a)

√
PrΘ(D = 1|x, y)

=
PrΘ(u|x, y, a, b,D = 1)PrΘ(D = 1|x, a, y, b)PrB(b|y)

PrA(u|x, a)
√
PrΘ(D = 1|x, y)

(d)
=

PrSA
(u|x, a,D = 1)PrΘ(D = 1, a, b|x, y)PrB(b|y)

PrA(u|x, a)PrΘ(a, b|x, y)
√
PrΘ(D = 1|x, y)

(e)
=

PrSA
(u|x, a,D = 1)PrΘ(D = 1|x, y)PrΘ(a, b|x, y,D = 1)

PrA(u|x, a)PrA(a|x)
√

PrΘ(D = 1|x, y)
(f)
=

PrSA
(u|x, a,D = 1)Prf (a, b|x, y)

π(u, α)

(g)
= θ(u, α) ·ω(α, β). (16)

Here, (a) used the definition of π(v, β); (b) used the fact that, for all (x, a) such that PrA(u, a|x) > 0,

PrΘ(D = 1|y, b, x, a, u) =
∑

v:ϕ(u,v)=1

PrΘ(v|y, b, x, a, u) =
∑

v:ϕ(u,v)=1

PrB(v|y, b);

(c) used PrΘ(u|x, a, y, b) = PrA(u|x, a) as u is sampled locally by Alice in Θ; (d) follows from the privacy
condition (12); (e) used PrΘ(a, b|x, y) = PrA(a|x) · PrB(b|y); (f) follows from (11) - the correctness of Θ,
and the definition of π(u, α); finally, (g) follows from the definitions of θ(u, α) and ω(α, β).
Similarly, ∑

u∈U
π(u, α) ·ϕ(u, v) = θ(v, β) ·ω(α, β) ∀v ∈ V (17)

And finally, when ω(α, β) > 0,∑
u∈U

π(u, α) · θ(u, α) =
∑
u∈U

PrSA
(u|x, a,D = 1) = 1, and∑

v∈V
π(v, β) · θ(v, β) =

∑
v∈V

PrSB
(v|y, b,D = 1) = 1. (18)

Theorem follows from (16), (17) and (18).

Theorem 2. For the p-noisy coin-toss functionality f , the balanced embedding complexity |f |emb =
Ω(log 1/p), when p < 1

2 ; i.e., if Gf has a balanced embedding into Hϕm
OT

, then m = Ω(log 1/p).

Proof. Let Gf = (S, T ,ω), where S = {0A, 1A} and T = {0B , 1B}, and ω(bA, bB) = (1 − p)/2 and
ω(bA, (1−b)B) = p/2 for all b ∈ {0, 1}. Let Hϕm

OT
= (U ,V,ϕm

OT). Suppose (π, θ) is a balanced embedding
of Gf to Hϕm

OT
. Define (u∗, α∗) ∈ U × {0A, 1A} as

(u∗, α∗) = argmax
(u,α):θ(u,α)>0

π(u, α). (19)
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Note that π(u∗, α∗) > 0 since otherwise π(u, α) · θ(u, α) = 0 for all (u, α), which violates (3). W.l.o.g.,
let α∗ = 0A (the other case being symmetric).

Since θ(u∗, 0A) > 0 andω(0A, 1B) > 0, by (1), π(v∗, 1B) > 0 for some v∗ ∈ V such thatϕm
OT(u

∗, v∗) =
1. Further, by (2), θ(v∗, 1B) > 0 since π(u∗, 0A) > 0 and ϕm

OT(u
∗, v∗) = 1. Applying (2) to both

(α, β) = (1A, 1B) and (0A, 1B), and taking their ratio, we get∑
u π(u, 1A) ·ϕm

OT(u, v
∗)∑

u π(u, 0A) ·ϕm
OT(u, v

∗)
=
ω(1A, 1B)

ω(0A, 1B)
=

1− p

p
.

By (1), for all u such that ϕm
OT(u, v

∗) = 1, θ(u, 1A) > 0 since π(v∗, 0B) > 0. But then, by (19),
π(u, 1A) ≤ π(u∗, 0A) for all u. Therefore, noting that ϕm

OT(u
∗, v∗) = 1,∑

u

π(u, 1A) ·ϕm
OT(u, v

∗) ≤ π(u∗, 0A)|{u : ϕm
OT(u, v

∗)}|

≤ |{u : ϕm
OT(u, v

∗)}|
∑
u

π(u, 0A) ·ϕm
OT(u, v

∗).

Hence,

|{u : ϕm
OT(u, v

∗)}| ≥
∑

u π(u, 1A) ·ϕm
OT(u, v

∗)∑
u π(u, 0A) ·ϕm

OT(u, v
∗)

=
1− p

p
.

Since |{u : ϕm
OT(u, v

∗)}| = 2m, we have m ≥ log(1/p)− 1.

Virtually the same argument holds for the case of n noisy coin-flips, but with the ratio of probabilities
used to obtain the bound being

(
1−p
p

)n
, leading to a bound of m = Ω(n log 1/p).

5 SZCR from MPC protocols

In this section, we construct an szcr from a potentially randomized function to OT check predicate from
an MPC protocol for the function using OT; the complexity of the constructed szcr coincides with the OT
complexity of the MPC protocol. We will use this connection to obtain randomized functions that require
super-linear OT complexity. The following theorem states more generally for all regular correlations. This
is a generalization of one of the main results in [23] that proves this result for deterministic functions.

Theorem 3. If a protocol Πψ using a regular correlation ψ distributed over R×S computes a randomised
function f : X × Y → A × B with perfect security, then there exists a µ-szcr to ϕ(=⌈log k⌉) ·ϕsupp∗(ψ),

where k is the number of connected components in the evaluation graph Gf and µ ≤ log |R||S||X |2|Y|2|A||B|
|supp(ψ)| .

This theorem is proved through Claim 1-Claim 6. In the following section, we make some observations
and define some quantities that are used in the construction and analysis of the szcr we construct.

Let Q be the set of all transcripts that can be produced in the protocol Πψ. We observed that
communication protocols admit transcript factorization; i.e., there exist functions ρ : X ×R×Q → [0, 1]
and σ : Y × S × Q → [0, 1] such that, when x, y are the inputs to Alice and Bob, and (r, s) is the
realization of the correlation ψ, for any transcript q,

PrΠψ(q|x, y, r, s) = ρ(x, r, q)σ(y, s, q).

The following set of observations are about a protocol Πψ that uses a correlation ψ and computes
a given function f : X × Y → A × B with perfect security. We will exploit the perfect security of the
protocol to establish how the protocol behaves in each connected component of the evaluation graph Gf .

Lemma 1. For each connected component C of the evaluation graph Gf , if ((x1, a1), (y1, b1)) and ((x2, a2), (y2, b2))
belong to C, then

PrΠψ(q|x1, y1, a1, b1) = PrΠψ(q|x2, y2, a2, b2),∀q ∈ Q.
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Proof. Since Πψ is perfectly secure, there exists simulators ŜA and ŜB such that, for all x, y, a, b such
that Prf (a, b|x, y) > 0,

PrΠψ(q, r|x, y, a, b) = PrŜA
(q, r|x, a) PrΠψ(q, s|x, y, a, b) = PrŜB

(q, s|y, b).

Hence, if edges ((x, a), (y, b)) and ((x, a), (y′, b′)) belong to C, then, for all q ∈ Q,

PrΠψ(q|x, y, a, b) =
∑
r

PrŜA
(q, r|x, a) = PrΠψ(q|x, y′, a, b′).

A similar condition holds for edges ((x, a), (y, b)) and ((x′, a′), (y, b)) belonging to C. Hence, if edges
((x1, a1), (y1, b1)), ((x2, a2), (y2, b2)) belong to C, then applying the above two conditions alternatively
along a path that begins with the edge ((x1, a1), (y1, b1)) and ends with the edge ((x2, a2), (y2, b2)), we
get the statement of the lemma.

Lemma 2. If PrΠψ(a1, b1|x, y, r, s, q) > 0 and PrΠψ(a2, b2|x, y, r, s, q) > 0 then ((x, a1), (y, b1)) and
((x, a2), (y, b2)) belong to the same connected component of Gf .

Proof. For all (a, b) ∈ {(a1, b1), (a2, b2)}, we have

PrΠout
A

(a|x, r, q) · PrΠout
B

(b|y, s, q) = PrΠψ(a, b|x, y, r, s, q) > 0.

Hence, PrΠout
A

(a|x, r, q) > 0 for a ∈ {a1, a2} and PrΠout
B

(b|y, s, q) > 0 for b ∈ {b1, b2}. Thus, by the perfect
correctness of Πψ,

Pr(f(x, y) = (a2, b1)) > PrΠψ(a2, b1|x, y, r, s, q)
= PrΠout

A
(a2|x, r, q) · PrΠout

B
(b1|y, s, q) > 0.

This implies that ((x, a2), (y, b1)) has non-zero weight in Gf , consequently, (x, a1)−(y, b1)−(x, a2)−(y, b2)
is a path in Gf , implying the statement of the lemma.

In Lemma 1, we showed that for all connected component C of the evaluation graph Gf , and for all
edges ((x1, a1), (y1, b1)) and ((x2, a2), (y2, b2)) belonging to C,

PrΠψ(q|x1, y1, a1, b1) = PrΠψ(q|x2, y2, a2, b2).

By an abuse of notation, we denote PrΠψ(q|x, y, a, b) for all edges ((x, a), (y, b)) belonging to the connected
component C by PrΠψ(q|C).

To present our szcr protocol Θ(A,B) from f to ϕ, that is constructed from the secure computation
protocol for f , we need the following quantities.

Definition 5. For each connected component C in Gf , we define the following quantities:

ρ†C(q) = max
x∈XC

∑
r

ρ(x, r, q) σ†
C(q) = max

y∈YC

∑
s

σ(v, s, q)

Lemma 3. For every connected component C in Gf , there exists q∗ ∈ Q such that PrΠψ(q∗|C) > 0 and

ρ†C(q
∗)σ†

C(q
∗) ≤ |R||S||XC ||YC |PrΠψ(q∗|C)

Proof. Define ψ̃ to be the uniform distribution over R × S. Consider the protocol Πψ̃ obtained by
replacing the correlation ψ in Πψ with ψ̃. Hence,

Pr
Πψ̃

(q, r, s|x, y) = Pr
ψ̃
(r, s) · Pr

Πψ̃
(q|r, s, x, y) = ρ(x, r, q)σ(y, s, q)

|R||S|
(20)

Note that ρ, σ induced by Πψ is well-defined for (x, r, q) ∈ X × R × Q and (y, s, q) ∈ Y × S × Q,
respectively.
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By imposing a distribution over the inputs, namely the uniform distribution over XC × YC , for all
q ∈ Q, define:

Pr
Πψ̃

(q) =
∑

(x,y)∈XC×YC

∑
(r,s)∈R×S

Pr
Πψ̃

(q|x, y, r, s)
|XC ||YC ||R||S|

.

Since PrΠψ(q|C) and Pr
Πψ̃

(q) are distributions over Q, there exists q∗ ∈ Q such that

PrΠψ(q
∗|C) ≥ Pr

Πψ̃
(q∗) > 0.

Hence,

PrΠψ(q
∗|C) ≥ Pr

Πψ̃
(q∗) =

∑
(x,y)∈XC×YC

∑
(r,s)∈R×S

Pr
Πψ̃

(q∗|x, y, r, s)
|XC ||YC ||R||S|

≥
∑

(r,s)∈R×S Pr
Πψ̃

(q∗|x, y, r, s)
|XC ||YC ||R||S|

,∀(x, y) ∈ XC × YC . (21)

Choose (x∗, y∗) ∈ XC × YC such that

x∗ = argmax
x∈XC

∑
r

ρ(x, r, q∗) y∗ = argmax
y∈YC

∑
s

σ(y, s, q∗).

Then, by Definition 5, ρ†C(q
∗) =

∑
r ρ(x

∗, r, q∗) and σ†
C(q

∗) =
∑

s ρ(y
∗, s, q∗). Hence,

ρ†C(q
∗)σ†

C(q
∗) =

∑
r,s

ρ(x∗, r, q∗)σ(y∗, s, q∗)

(a)
= |R||S|

∑
r,s

Pr
Πψ̃

(q∗, r, s|x∗, y∗)

(b)

≤ |R||S||XC ||YC | · PrΠψ(q∗|C),

where (a) follows from (20) and (b) follows from (21). This concludes the proof.

Definition 6. Let C1, . . . , Ck be the set of all connected components of the evaluation graph Gf . For
each Ci, i ∈ [k], Lemma 3 guarantees that there exists q⋆i ∈ Q such that PrΠψ(q⋆i |Ci) > 0 and

ρ†C(q
⋆
i )σ

†
C(q

⋆
i ) ≤ |R||S||XC ||YC |PrΠψ(q⋆i |C).

We define the distribution λ over [k] as:

Prλ(i) =

√
ci∑

t∈[k]

√
ct
,where ci =

ρ†Ci
(q⋆i ) · σ

†
Ci
(q⋆i )

PrΠψ(q
⋆
i |Ci)

.

Now we present our szcr protocol in Figure 2, which is analyzed below.

Proof of correctness. In the sequel, we will consider x, y, i, j, r, s as defined in Figure 2. R,S, I, J are
the random variables corresponding to r, s, i, j, respectively. Recollect that, we shorten Pr(R = r, S =
s, I = i, J = j) as Pr(r, s, i, j), whenever there is no scope for confusion. We first make the following
claims that will be later used to prove the correctness in Claim 2.

Claim 1. If j ̸= i or ((x, a), (y, b)) /∈ Ci, then PrΘ(a, b,D = 1|x, y, i, j) = 0.

Proof. Let E be the event (D = 1, A = a,B = b). If j ̸= i, then ϕ(=⌈log k⌉)(i, j) = 0, hence D = 0, hence
we consider the case where j = i. Towards a contradiction, suppose j = i and ((x, a), (y, b)) /∈ Ci and E
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Let C1, . . . , Ck be the connected components in the evaluation graph Gf . Let the inputs to f be x ∈ X and
y ∈ Y; for i ∈ [k], choose q⋆i as defined in Definition 6 with respect to the protocol Πψ; choose ρ†i = ρ†Ci

(q⋆i ) and
σ†
i = σ†

Ci
(q⋆i ) as defined in Definition 5; finally, let the distribution λ over [k] be as defined in Definition 6.

A(x): Sample i ← λ and r ∈ R with probability ρ(x,r,q⋆i )

ρ
†
i

, and with remaining probability set r = ⊥. If r ̸=

⊥, sample a ← Πout
A (x, r, q⋆i ) and set A = a, otherwise A = ⊥. If r ̸= ⊥ and there exist y′, b′ such that

((x, a), (y′, b′)) ∈ Ci then set U = (I, R) to (i, r), else to (i,⊥).

B(y): Sample j ← λ and s ∈ S with probability
σ(y,s,q⋆j )

σ
†
j

, and with remaining probability set s = ⊥. If s ̸= ⊥,

sample b ← Πout
B (y, s, q⋆j ) and set B = b, otherwise set B = ⊥. If s ̸= ⊥ and there exist x′, a′ such that

((x′, a′), (y, b)) ∈ Cj then set V = (J, S) to (j, s), else to (j,⊥).

ϕ(=⌈log k⌉) ·ϕsupp∗(ψ): Returns D = 1 if ϕ(=⌈log k⌉)(i, j) = 1 (i.e., j = i) and ϕsupp∗(ψ)(r, s) = 1 (i.e., r ∼ s).

Fig. 2. An szcr protocol Θ(A,B) from f to ϕ constructed from the secure computation protocol Πψ using the
correlation ψ that computes f with perfect security.

occurs with non-zero probability. Event E occurs only if there exist r, s such that r ∼ s, ρ(x, r, q⋆i ) > 0,
σ(y, s, q⋆i ) > 0, PrΠout

A
(a|x, r, q⋆i ) > 0, and PrΠout

B
(b|y, s, q⋆i ) > 0.

PrΠψ(a, b|x, y)
≥ PrΠψ(q

⋆
i , a, b, r, s|x, y)

= Prψ(r, s) · PrΠψ(q⋆i |x, y, r, s) · PrΠψ(a, b|x, y, r, s, q⋆i )

=
ρ(x, r, q⋆i ) · σ(y, s, q⋆i ) · PrΠout

A
(a|x, r, q⋆i ) · PrΠout

B
(b|y, s, q⋆i )

|supp(ψ)|
> 0.

Thus, by the perfect correctness of Πψ, Prf (a, b|x, y) = PrΠψ(a, b|x, y) > 0. Additionally, by the con-
struction of Θ, E occurs only if there exist b′, y′ such that ((x, a), (y′, b′)) ∈ Ci since, otherwise, Alice
would have aborted by sending ⊥ (instead of sending some u ∈ U). Hence, the edges ((x, a), (y, b)) and
((x, a), (y′, b′)) have non-zero weights in Gf and ((x, a), (y′, b′)) ∈ Ci. But then, ((x, a), (y, b)) ∈ Ci, a
contradiction. This proves the claim.

Claim 2. The probability of acceptance for any inputs x, y is independent of the inputs, and is given by:

PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
l∈[k]

√
cl

)2 (22)

Proof. Fix inputs x, y. We have,

PrΘ(D = 1|x, y) =
∑
i,j,a,b

PrΘ(D = 1, i, j, a, b|x, y)

=
∑
i,j,a,b

PrΘ(i, j|x, y) · PrΘ(D = 1, a, b|x, y, i, j).

If j ̸= i, then D = 0, furthermore, PrΘ(i, j|x, y) = Prλ(i) · Prλ(j). Hence,

PrΘ(D = 1|x, y)

=
∑

i∈[k],j=i

∑
a,b

Prλ(i) · Prλ(j) · PrΘ(D = 1, a, b|x, y, i, j)

=
∑

i∈[k],j=i

Pr2λ(i)
∑
a,b

∑
r∼s

PrΘ(r, s|x, y, i, j) · PrΘ(a, b|x, y, i, j, r, s)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

ci
∑
a,b

∑
r∼s

PrΠout
A

(a|x, r, q⋆i ) · PrΠout
B

(b|y, s, q⋆i )
ρ(x, r, q⋆i ) · σ(y, s, q⋆i )

ρ†iσ
†
i

14



But, PrΠout
A

(a|x, r, q⋆i )·PrΠout
B

(b|y, s, q⋆i ) = PrΠψ(a, b|x, y, q⋆i , r, s) and, by transcript factorization property,

ρ(x, r, q⋆i ) ·σ(y, s, q⋆i ) = PrΠψ(q
⋆
i |x, y, r, s). Furthermore, ci =

ρ†
iσ

†
i

Pr
Πψ

(q⋆i |Ci)
. Applying these observations to

the RHS,

PrΘ(D = 1|x, y)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

ρ†iσ
†
i

PrΠψ(q
⋆
i |Ci)

∑
a,b

∑
r∼s

PrΠψ(a, b|x, y, q⋆i , r, s) · PrΠψ(q⋆i |x, y, r, s)
ρ†iσ

†
i

.

By Claim 1, PrΘ(D = 1, a, b|x, y, i, j) = 0 if ((x, a), (y, b)) is not an edge in Ci (or j ̸= i). Furthermore,
by definition,

0 < PrΠψ(q
⋆
i |Ci) = PrΠψ(q

⋆
i |x, y, a, b), for all ((x, a), (y, b)) ∈ Ci.

Applying both these facts to the RHS,

PrΘ(D = 1|x, y)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

∑
r∼s

PrΠψ(a, b, q
⋆
i |x, y, r, s)

PrΠψ(q
⋆
i |x, y, a, b)

=
1( ∑

t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

∑
r∼s

PrΠψ(a, b, q
⋆
i , r, s|x, y)

PrΠψ(q
⋆
i |x, y, a, b)PrΠψ(r, s|x, y)

For all r, s such that r ∼ s, Prψ(r, s) = 1
|supp(ψ)| . Applying this to the RHS,

PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

∑
r∼s

PrΠψ(a, b, q
⋆
i , r, s|x, y)

PrΠψ(q
⋆
i |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

PrΠψ(a, b, q
⋆
i |x, y)

PrΠψ(q
⋆
i |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
i∈[k]

∑
(a,b):((x,a),(y,b))∈Ci

PrΠψ(a, b|x, y).

Since PrΠψ(a, b|x, y) = Prf (a, b|x, y) by perfect correctness, and⋃
i∈[k]

{(a, b) : ((x, a), (y, b)) ∈ Ci} = {(a, b) : Prf (a, b|x, y) > 0},

we get,

PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
(a,b)

Prf (a, b|x, y) =
|supp(ψ)|( ∑
t∈[k]

√
ct

)2 .

This proves the claim.

Claim 3. The reduction Θ is perfectly correct; i.e.,

PrΘ(a, b|D = 1, x, y) = Prf (a, b|x, y)
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Proof. Consider (x, y, a, b) such that Prf (a, b|x, y) > 0. If ((x, a), (y, b)) ∈ Cℓ, by Claim 1, if i ̸= ℓ or
j ̸= ℓ, PrΘ(a, b,D = 1|x, y, i, j) = 0. Hence,

PrΘ(a, b,D = 1|x, y) =
∑

i,j∈[k]

PrΘ(a, b,D = 1, i, j|x, y)

= PrΘ(I = J = ℓ|x, y) · PrΘ(a, b,D = 1|x, y, I = J = ℓ)

= Pr2λ(ℓ) · PrΘ(a, b,D = 1|x, y, I = J = ℓ).

Expanding this, we get

PrΘ(a, b,D = 1|x, y) = Pr2λ(ℓ)
∑
r∼s

PrΘ(r, s|x, y, I = J = ℓ) · PrΘ(a, b|x, y, r, s, I = J = ℓ)

= Pr2λ(ℓ)
∑
r∼s

ρ(x, r, q⋆ℓ )σ(y, s, q
⋆
ℓ )

ρ†ℓσ
†
ℓ

· PrΠψ(a, b|x, y, q⋆ℓ , r, s)

= Pr2λ(ℓ)
∑
r∼s

PrΠψ(q
⋆
ℓ |x, y, r, s)
ρ†ℓσ

†
ℓ

· PrΠψ(a, b|x, y, q⋆ℓ , r, s)

=
∑
r∼s

Pr2λ(ℓ)
PrΠψ(a, b, q

⋆
ℓ |x, y, r, s)

ρ†ℓσ
†
ℓ

.

Since Prψ(r, s) =
1

|supp(ψ)| , multiplying and dividing each term with Prψ(r, s), and expanding Pr2λ(ℓ),

PrΘ(a, b,D = 1|x, y) = |supp(ψ)| · Pr2λ(ℓ) ·

∑
r∼s

PrΠψ(a, b, r, s, q
⋆
ℓ |x, y)

ρ†ℓσ
†
ℓ

=
|supp(ψ)| · ρ†ℓσ

†
ℓ

PrΠψ(q
⋆
ℓ |Ci)

( ∑
t∈[k]

√
ct

)2 ·
PrΠψ(a, b, q

⋆
ℓ |x, y)

ρ†ℓσ
†
ℓ

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

PrΠψ(a, b|x, y) · PrΠψ(q⋆ℓ |x, y, a, b)
PrΠψ(q

⋆
ℓ |Ci)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2Prf (a, b|x, y). (23)

The final equality follows from the fact that PrΠψ(q
⋆
ℓ |Cℓ) = PrΠψ(q

⋆
ℓ |x, y, a, b) since ((x, y), (y, b)) ∈ Cℓ.

Hence,

PrΘ(a, b|D = 1, x, y) =
PrΘ(a, b,D = 1|x, y)
PrΘ(D = 1|x, y)

(a)
=

|supp(ψ)|( ∑
t∈[k]

√
ct

)2Prf (a, b|x, y) ·

( ∑
t∈[k]

√
ct

)2

|supp(ψ)|
= Prf (a, b|x, y), (24)

where (a) follows from Claim 2. If Prf (a, b|x, y) = 0, then, by Claim 1, PrΠψ(a, b,D = 1|x, y) = 0, and
hence PrΘ(a, b|D = 1, x, y) = 0. This concludes the proof.

Proof of security. To prove the security of Θ, we need to show that there exists simulators S′
A :

X ×A×{0, 1} → (R∪{⊥})× [k] and S′
B : Y×B×{0, 1} → (S ∪{⊥})× [k] such that if Prf (a, b|x, y) > 0,

PrΘ(r, i|x, y, a, b,D = 1) = PrS′
A
(r, i|x, a,D = 1),

PrΘ(s, j|x, y, a, b,D = 1) = PrS′
B
(s, j|y, b,D = 1),
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and,

PrΘ(r, i|x, y,D = 0) =
∑
a

PrfA(a|x, y) · PrS′
A
(r, i|x, a,D = 0),

PrΘ(s, j|x, y,D = 0) =
∑
b

PrfB (b|x, y) · PrS′
B
(s, j|y, b,D = 0).

We prove the first two statements in Claim 4 and the last two in Claim 5.

Claim 4. There exists a randomized function S′
A : X×A×{0, 1} → U×[k] such that, if Prf (a, b|x, y) > 0,

PrΘ(r, i|x, y, a, b,D = 1) = PrS′
A
(r, i|x, a,D = 1).

Similarly, there exists a randomized function S′
B : Y×B×{0, 1} → V× [k] such that, if Prf (a, b|x, y) > 0,

PrΘ(s, j|x, y, a, b,D = 1) = PrS′
B
(s, j|y, b,D = 1).

Proof. Consider (x, y, a, b) such that Prf (a, b|x, y) > 0; let ((x, a), (y, b)) ∈ Cℓ. By Claim 1,

PrΘ(r, i, a, b,D = 1|x, y) = 0 if i ̸= ℓ or r = ⊥. (25)

We focus on PrΘ(r, i, a, b,D = 1|x, y), when r ̸= ⊥ and i = ℓ. Noting that PrΘ(D = 1, I ̸= J |x, y) = 0,

PrΘ(r, I = ℓ, a, b,D = 1|x, y)

=
∑
j∈[k]

∑
s:r∼s

PrΘ(r, s, I = ℓ, j, a, b|x, y)

= PrΘ(I = J = ℓ|x, y)
∑
s:r∼s

PrΘ(r, s|x, y, I = J = ℓ) · PrΘ(a, b|x, y, r, s, I = J = ℓ)

= Pr2λ(ℓ)
∑
s:r∼s

PrΠψ(q
⋆
ℓ |x, y, r, s)
ρ†iσ

†
i

PrΘ(a, b|x, y, r, s, I = J = ℓ).

We have,

PrΘ(a, b|x, y, r, s, I = J = ℓ) = PrΠout
A

(a|x, r, q⋆ℓ ) · PrΠout
B

(b|y, s, q⋆ℓ ) = PrΠψ(a, b|x, y, r, s, q⋆ℓ ).

Substituting for Prλ(ℓ) from Definition 6 and noting that PrΠψ(q⋆ℓ |Cℓ) = PrΠψ(q
⋆
ℓ |x, y, a, b) since ((x, a), (y, b)) ∈

Cℓ,

PrΘ(r, I = ℓ, a, b,D = 1|x, y) =
∑
s:r∼s

ρ†iσ
†
i

PrΠψ(q
⋆
ℓ |Cℓ)

( ∑
t∈[k]

√
ct

)2

PrΠψ(a, b, q
⋆
ℓ |x, y, r, s)

ρ†iσ
†
i

=
∑
s:r∼s

PrΠψ(a, b, q
⋆
ℓ |x, y, r, s)

PrΠψ(q
⋆
ℓ |x, y, a, b)

( ∑
t∈[k]

√
ct

)2 .
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Since Prψ(r, s) =
1

|supp(ψ)| , multiplying and dividing each term with Prψ(r, s),

PrΘ(r, I = ℓ, a, b,D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2

∑
s:r∼s

Prψ(r, s) · PrΠψ(a, b, q⋆ℓ |x, y, r, s)
PrΠψ(q

⋆
ℓ |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2

PrΠψ(a, b, q
⋆
ℓ , r|x, y)

PrΠψ(q
⋆
ℓ |x, y, a, b)

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2PrΠψ(a, b|x, y)PrΠψ(r|x, y, a, b, q
⋆
ℓ )

=
|supp(ψ)|( ∑
t∈[k]

√
ct

)2Prf (a, b|x, y)PrΠψ(r|x, y, a, b, q
⋆
ℓ ).

Hence, by (23),

PrΘ(r, I = ℓ|a, b, x, y,D = 1) =
PrΘ(r, I = ℓ, a, b,D = 1|x, y)

PrΘ(a, b,D = 1|x, y)
= PrΠψ(r|x, y, a, b, q⋆ℓ ).

By perfect privacy of Πψ, there exists a simulator ŜA such that

PrΘ(r, I = ℓ|a, b, x, y,D = 1) = PrΠψ(r|x, y, a, b, q⋆ℓ ) = PrŜA
(r|x, a, q⋆ℓ ).

Since Cℓ is determined by (x, a), we can set PrS′
A
(x, a, 1) = PrŜA

(r|x, a, q⋆ℓ ). The first statement in the
claim follows from this observation and (25). The second statement can be proved analogously.

Claim 5. There exists a randomized function S′
A : X ×A× {0, 1} → (R× {⊥})× [k] such that

PrΘ(r, i|x, y,D = 0) =
∑
a

PrfA(a|x, y) · PrS′
A
(r, i|x, a,D = 0).

Similarly, there exists a randomized function S′
B : Y × B × {0, 1} → S × [k] such that

PrΘ(s, j|x, y,D = 0) =
∑
b

PrfB (b|x, y) · PrS′
B
(s, j|y, b,D = 0).

Proof. When r = ⊥, the predicate always rejects (D = 0), hence, for all i,

PrΘ(R = ⊥, i,D = 0|x, y) = PrΘ(R = ⊥, i|x, y) = PrΘ(R = ⊥, i|x).

The predicate accepts (D = 1) if and only if Alice and Bob choose i, j and r, s, respectively, such that
i = j and r ∼ s. Hence,

PrΘ(r, i,D = 0|x, y)

= PrΘ(r, i|x, y)− PrΘ(i, J = i|x, y)
∑
s:r∼s

PrΘ(r, s|x, y, i, J = i)

= PrΘ(r, i|x, y)− PrΘ(i, J = i|x, y)
∑
s:r∼s

ρ(x, r, q⋆i ) · σ(y, s, q⋆i )
ρ†iσ

†
i

= PrΘ(r, i|x, y)− Pr2λ(i)
∑
s:r∼s

PrΠψ(q
⋆
i |x, y, r, s)
ρ†iσ

†
i

.
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We focus on the second term in the RHS. Expanding Pr2λ(i) using Definition 6,

Pr2λ(i)
∑
s:r∼s

PrΠψ(q
⋆
i |x, y, r, s)
ρ†iσ

†
i

=
∑
s:r∼s

PrΠψ(q
⋆
i |x, y, r, s)

PrΠψ(q
⋆
i |Ci)

( ∑
t∈[k]

√
ct

)2

=
1

PrΠψ(q
⋆
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
s:r∼s

PrΠψ(q
⋆
i , r, s|x, y)

PrΠψ(r, s|x, y)

=
|supp(ψ)|

PrΠψ(q
⋆
i |Ci) ·

( ∑
t∈[k]

√
ct

)2PrΠψ(q
⋆
i , r|x, y)

The last equality used the fact that Prψ(r, s) =
1

|supp(ψ)| for all r ∼ s. Thus, when ŜA is the simulator
for Alice that witnesses the perfect security of Πψ,

PrΘ(r, i,D = 0|x, y)

= PrΘ(r, i|x)−
|supp(ψ)|

PrΠψ(q
⋆
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
a

PrΠψ(q
⋆
i , r|x, y, a) · PrΠψ(a|x, y)

(a)
= PrΘ(r, i|x)−

|supp(ψ)|

PrΠψ(q
⋆
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
a

PrΠψ(q
⋆
i , r|x, y, a) · PrfA(a|x, y)

(b)
= PrΘ(r, i|x)−

|supp(ψ)|

PrΠψ(q
⋆
i |Ci) ·

( ∑
t∈[k]

√
ct

)2

∑
a

PrŜA
(q⋆i , r|x, a) · PrfA(a|x, y).

Here, (a) and (b) follow from the perfect correctness and perfect security against Alice, respectively. The
first statement of the claim now follows from the fact that PrΘ(D = 0|x, y) is the same non-zero value
for all x, y as established in Claim 2 The corresponding statement for Bob (second statement) can be
shown analogously.

We conclude the proof of security by noting that the properties in Claim 4 and Claim 5 can be
satisfied by the same S′

A and S′
B .

Bound on Accept Probability. It remains to upper bound the probability with which the predicate
accepts (D = 1) for all inputs x, y.

Claim 6. The protocol Θ accepts with probability 2−µ where µ ≤ log |R||S||X |2|Y|2|A||B|
|supp(ψ)| .

Proof. By Claim 2, PrΘ(D = 1|x, y) = |supp(ψ)|( ∑
t∈[k]

√
ct

)2 . By Definition 6, ct =
ρ†
tσ

†
t

PrΠ(q⋆t |Ct)
and q⋆t is chosen

such that ρ†tσ
†
t ≤ |R||S||XCt ||YCt |PrΠψ(q⋆t |Ct) and PrΠψ(q

⋆
t ) > 0, hence, ct ≤ |R||S||XC ||YC |. Using

Cauchy-Schwartz,∑
t∈[k]

√
ct ≤

√∑
t∈[k]

ct ·
√
k ≤

√
k · |R||S|

∑
t∈[k]

|XCt
||YCt

| ≤
√
|R||S||A||B||X ||Y|

The final inequality used the fact that each (x, a) shows up in at most one of the connected components;
hence, k ≤

√
|X ||Y||A||B| and

∑
t∈[k] |XCt ||YCt | ≤ k · |XC ||YC | ≤ |X ||Y|

√
|A||B|.

PrΘ(D = 1|x, y) ≥ |supp(ψ)|
|R||S||X |2|Y|2|A||B|

⇒ µ ≤ log
|R||S||X |2|Y|2|A||B|

|supp(ψ)|
.
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Corollary 1. Consider a randomised function f : X × Y → A× B with k connected components in its
evaluation graph Gf . If a protocol ΠOTℓ

using ℓ copies of OT correlation computes f with perfect security,
then there exists a µ-szcr to ϕsupp(OTℓ+⌈log k⌉+1) such that µ ≤ log |R||S||X |2|Y|2|A||B|

|supp(ψ)| .

Proof. By Theorem 3, f has a µ-szcr to ϕ(=⌈log k⌉) ·ϕsupp∗(OTm). But, ϕ(=⌈log k⌉) can be realized using
ϕsupp(OT⌈log k⌉) (since 1-bit equality can be checked with 1 OT) and ϕsupp∗(OTm) can be realized using
ϕsupp(OTm+1) (by encoding the input symbol ⊥ in ϕsupp∗(OTm) using an extra OT). Consequently, the
predicateϕ(=⌈log k⌉) ·ϕsupp∗(OTm) can be realized usingϕsupp(OT⌈log k⌉) ·ϕsupp(OTm+1) = ϕsupp(OT⌈log k⌉+m+1).
This implies the corollary.
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A Basic Constructions

In this section, for the sake of explicitness, we detail two basic constructions of Balanced Embedding
from any function to the OT predicate – from a truth table and from a boolean circuit of the function.
The first construction is implied by the second one, which in turn is implied by the general construction
of balanced embedding from SZCR.

A.1 Balanced Embedding from Truth Table

Theorem 4. For any deterministic function f : {0, 1}n×{0, 1}n → {0, 1}×{0, 1}, there exists a balanced
embedding to ϕk

OT for k = 2n+1.

Proof. To define the balanced embedding (π, θ) we will define inputs uα and vβ to ϕk
OT such that

π(u, α) = θ(u, α) = 1 for u = uα and 0 for rest; and similarly π(v, β) = θ(v, β) = 1 for v = vβ and 0 for
rest. uα and vβ where α = (x, a) and β = (y, b) are defined as follows:

– For 0 ≤ i ≤ 2n − 1, ui = (1, a), if i = x and ui = (0, 0) otherwise, whereas vi = (0, fA(i, y)).
– For 2n ≤ i ≤ 2n+1 − 1, vi = (1, b), if i = 2n + y and vi = (0, 0) otherwise, whereas ui = (0, fB(x, i)).

It is straight forward to see that this definition satisfies the conditions of a balanced embedding as the
only compatible u, v pairs correspond to correct outputs being sampled at both the ends.

A.2 Constructing balanced embedding from circuit

Theorem 5. Given a circuit C with NAND gates that computes a function f , we can construct a balanced
embedding to ϕ2|C|

OT .

Proof. Let x and y be the inputs of Alice and Bob, respectively. For each wire w in C, Alice and Bob
sample wA and wB , respectively, as follows:

(i). If w is an input wire that reads xi, then wA = xi and wB = 0, and if w is an input wire that reads yi,
then wA = 0 and wB = yi

(ii). If w is the output wire computing fA(x, y), then wA ← {0, 1} and wB = 0, and if w is the output wire
computing fB(x, y), then wA = 0, and wB ← {0, 1}.

(iii). Otherwise, wA ← {0, 1} and wB ← {0, 1}.

For each gate g in C, we denote the two input wires by In1g, In2g and the output wire by Outg.
We define sets Ux and Vy corresponding to inputs x, y. Elements of these sets (ui ∈ {0, 1}2 : 1 ≤ i ≤

2|C|) and (vi ∈ {0, 1}2 : 1 ≤ i ≤ 2|C|) are be sampled as follows:
Enumerate the gates in C as g1, g2, . . . , g|C|; for 1 ≤ i ≤ 2|C|:

– Set u2i−1 = (αgi
A , In1giA ⊕ αgi

A ) and u2i = (βgi
A , In2giA ⊕ βgi

A ), where αgi
A , βgi

A are sampled uniformly at
random subject to:

αgi
A ⊕ βgi

A = OutgiA ⊕ (In1giA · In1
gi
A )⊕ 1. (26)
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– Sets v2i−1 = (In2giB , αgi
B ) and u2i = (In1giB , βgi), where αgi

B , βgi
B are sampled uniformly at random

subject to:

αgi
B ⊕ βgi

B = OutgiB ⊕ (In1giB · In1
gi
B ). (27)

Finally, set candidate outputs a = ŵB , where ŵ is the wire that outputs fA(x, y) in C, and b = w̃A, where
w̃ is the wire that outputs fB(x, y) in C. We use functions OA : U ×X → {0, 1} and OB : V ×Y → {0, 1}
to denote the a and b values generated for specific u, x and y, b pairs respectively.

We then define the embedding (π, θ) for α = (x, a) and β = (y, b) as π(u, α) = θ(u, α) = 2−|C| if
u ∈ Ux and a = OA(u, x) and 0 otherwise. Similarly, π(v, β) = θ(v, β) = 2−|C| if v ∈ Vy and b = OB(v, y)
and 0 otherwise. It is easy to check that this construction is indeed correct, owing to the correctness of
the circuit C.
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