
Key-Recovery Fault Injection Attack on the
Classic McEliece KEM

Sabine Pircher1,2, Johannes Geier3, Julian Danner4, Daniel
Mueller-Gritschneder3, Antonia Wachter-Zeh1

1Technical University of Munich, Institute for Coding and Cryptography
{sabine.pircher, antonia.wachter-zeh}@tum.de

2HENSOLDT Cyber GmbH, Research & Development, Taufkirchen
3Technical University of Munich, Chair of Electronic Design Automation

{johannes.geier, daniel.mueller}@tum.de
4University of Passau, Chair of Symbolic Computation

julian.danner@uni-passau.de

Abstract. We present a key-recovery fault injection attack on the Clas-
sic McEliece Key Encapsulation Mechanism (KEM). The fault injections
target the error-locator polynomial of the Goppa code and the validity
checks in the decryption algorithm, making a chosen ciphertext attack
possible. Faulty decryption outputs are used to generate a system of
polynomial equations in the secret support elements of the Goppa code.
After solving the equations, we can determine a suitable Goppa polyno-
mial and form an alternative secret key. To demonstrate the feasibility
of the attack on hardware, we simulate the fault injections on virtual
prototypes of two RISC-V cores at register-transfer level.

Keywords: Post-Quantum Cryptography · Key Recovery · Fault At-
tack · Laser Fault Injections · Classic McEliece · Key Encapsulation
Mechanism

1 Introduction

Post-Quantum Cryptography (PQC) is an important research topic due to the
imminent development of large-scale quantum computers. If capable quantum
computers become available, cryptographic systems based on the integer factor-
ization problem and the discrete logarithm problem over finite fields and elliptic
curves can be attacked in polynomial time due to the work of Shor [23] in 1997.
Therefore, the currently employed public-key cryptographic schemes like RSA
and ECC are no longer secure. In 2017, the U.S. National Institute of Standards
and Technology (NIST) initiated a competition for post-quantum cryptogra-
phy to replace their current FIPS 186 and SP 800-56A/B recommendations
[16]. PQC includes algorithms that run on classical computers but are resis-
tant against attacks from quantum computers. The hardness of PQC is based
on computationally hard problems that are expected to be resistant against at-
tacks performed by quantum computers for the next tens or hundreds of years.

2 S. Pircher et al.

Currently proposed algorithms rely on, e.g., lattice problems, the syndrome de-
coding problem of error-correcting codes, the solving of multivariate equations
and isogenies between elliptic curves.

The McEliece cryptosystem is a code-based public-key encryption (PKE) scheme
that relies on the syndrome decoding problem (SDP) for decoding error-correcting
codes [14]. The McEliece cryptosystem was introduced in 1978 [14] and its dual
version, the Niederreiter cryptosystem, in 1986 [18]. In general, every PKE can
be transformed into a key encapsulation mechanism (KEM) that encapsulates
and decapsulates a symmetric secret session key for a key exchange procedure
and is IND-CCA2 secure. The Classic McEliece KEM [3] is a code-based cryp-
tosystem among the finalists of the PQC competition based on the Niederreiter
PKE. It needs a large public key size compared to lattice-based KEMs, but is
free from decryption failures and has a long history of research. With the efforts
towards standardization, the security of implementations is an important issue
and fault attacks are an interesting field of research. Fault injections are physi-
cal attacks on hardware which lead to computation errors that are exploited to
extract secret information from the device. To produce such errors one may use
highly focused laser beams that achieve good spatial and temporal precision in
order to set and reset single and adjacent bits on a chip [22].

Cayrel et al. [4] present a message-recovery fault attack on Classic McEliece
by attacking the syndrome computation that changes the syndrome from F2 to
the integers N. The resulting syndrome decoding problem in N can be easily
solved by integer linear programming. In [5] they present a similar message-
recovery attack using only side-channel information on power consumption of
the chip. This attack also gathers information on the syndrome in N but is
more tolerant to noise. Very recently, Guo et al. [10] published a key-recovery
side-channel attack on Classic McEliece KEM. They use chosen ciphertexts and
exploit a side-channel leakage in the additive Fast Fourier Transform (FFT) that
evaluates the ELP during decoding. Xagawa et al. [27] demonstrate a single-fault
injection attack that works for all NIST PQC Round 3 KEM candidates except
Classic McEliece. The single-fault injection attacks presented in [27] are executed
by skipping instructions on a chip using glitching of the power supply. The
skipping circumvents the IND-CCA2 security of the KEM and enables chosen-
chiphertext attacks on the vulnerable PKE. In the course of this work, we found
useful relations for completing partially known support sets of a Goppa code, as
independently reported by [11].

In this paper, we show that we can obtain an alternative secret key of Classic
McEliece by adapting and combining the skipping attacks of Xagawa et al. [27]
with the fault injection attack on the PKE by Danner and Kreuzer [6]. We ad-
ditionally investigated our fault attack on two Open Source RISC-V processors.

The structure of the paper is as follows: Section 2 reviews the Classic McEliece
KEM. In Section 3 we define our hardware fault model and give a mathematical
description of the key-recovery attack. In Section 4 we present our implemen-
tation details and simulation results that validate our attack, together with a

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 3

feasibility study for two RISC-V processors using RTL simulations. We conclude
in Section 5. All algorithms can be found in the Appendix.
We use the following notation: The finite field of size q is denoted by Fq. Row
vectors are denoted by bold lower-case letters (e.g., e) and column vectors by e⊤.
Denote supp(e) := {i ∈ {1, . . . , n} | ei ̸= 0} for e ∈ Fn

q , and the Hamming weight
of e by wt(e). We denote matrices by bold capital letters (e.g., H). We consider
the Hamming metric for weight and distance. Let Fq[x] denote the univariate
polynomial ring in x with coefficients in Fq. For a polynomial f ∈ Fq[x] we
denote its degree by deg(f), and the ideal generated by f with ⟨f⟩.

2 Classic McEliece KEM

The Classic McEliece KEM specified in [3] is designed as a quantum-resistant
public-key encapsulation mechanism based on the Niederreiter cryptosystem [18].
The security relies on the syndrome-decoding problem (SDP) which is NP-
complete for random linear codes [2]. The core idea of the Niederreiter cryp-
tosystem in the KEM is to choose a binary irreducible Goppa code which allows
efficient correction of errors when the algebraic structure is known, while a sys-
tematic parity check matrix of the code appears to be random. The algebraic
structure is part of the secret key and the legitimate user thereby has access to
an efficient decoder. For everyone else, the linear code appears to be a random
code. It is believed that not only traditional computers, but also quantum com-
puters require an exponential number of operations to correct errors without
knowledge of the underlying algebraic structure.
Classic McEliece is extremely efficient in encoding and decoding at the cost
of a large public key. For the CAT-5 proposed parameters the public key size
is about 1 MB. This large public key makes its generation and storage more
expensive compared to other PQC cryptosystems. We work with the Classic
McEliece KEM implementation [3] submitted to NIST Round 3 and explain
its key functionalities in the remainder of this section.1 The current proposed
parameter sets for Classic McEliece are listed in Table 4 in the appendix.
Classic McEliece consists of three main functions: key generation, encapsulation
and decapsulation. They use the public parameters n,m, t ∈ N with n ≤ 2m,
and a monic irreducible polynomial f(z) ∈ F2[z] of degree m. The latter is
used to fix a representation of elements in the field F2m

∼= F2[z]/⟨f(z)⟩ as bit-
tuples, i.e., elements in Fm

2 . The identification is given by the bijective map
φ : Fm

2 → F2[z]/⟨f(z)⟩ ∼= F2m where (c0, . . . , cm−1) 7→ c0+c1z+ · · ·+cm−1z
m−1.

Classic McEliece uses the SHA-3 Keccak SHAKE-256 hash function, defined
in [17]. We denote it by H, and its output is always 256 bits long, independent
of its input length. In particular, we write H(2,v) and H(i,v, C) for the hash
of the concatenation of an initial byte valued i ∈ {0, 1} or 2, vector v ∈ Fn

2 and
ciphertext C, see also [3, Sec. 2.5.2].
1 In this paper we do not consider the accelerated variant of the key generation in

Classic McEliece that also accepts a semi-systematic form of the parity-check matrix.
We expect the attack to work also on this variant after minor modification.

4 S. Pircher et al.

2.1 Key generation

In this paper we understand the secret key2 as a tuple (s, γ) where s is a bit-
vector in Fn

2 and γ = (g, α) ∈ F2m [x]× Fn
2m is a generator tuple of the binary

irreducible Goppa code

Γ (α, g) =

{
(c1, . . . , cn) ∈ Fn

2 |
∑

i∈supp(c)

(x− αi)
−1 = 0 in F2m [x]/⟨g⟩

}
⊆ Fn

2 ,

with deg(g) = t and α = (α1, . . . , αn).
Then g is a monic irreducible polynomial and called the Goppa polynomial of
the code, and α = (α1, . . . , αn) ∈ Fn

2m satisfies αi ̸= αj for i ̸= j and g(αi) ̸= 0
and is called the support of the code. Key generation ensures that the linear
code Γ (α, g) has dimension k = n−mt, length n and allows efficient correction of
up to t errors. Moreover, one can compute a parity-check matrix in systematic
form Hsys = (In−k|T), where In−k is the identity matrix of size n − k. The
public key is then given by the matrix T ∈ F(n−k)×k

2 . Note that in particular the
code Γ (α, g) itself is public knowledge since T is public. However, the algebraic
structure, i.e., the Goppa polynomial and the support, are part of the secret
key. Algorithm 1 summarizes the construction of the secret and public keys in
Classic McEliece.

2.2 Encapsulation

The encapsulation (Algorithm 3) takes a random plaintext and uses the public
key to generate a ciphertext from which only the holder of the secret key can
extract the random plaintext again. This can be used to establish a common
secret session key. In particular, the encapsulation party chooses a vector e ∈ Fn

2

of Hamming weight t at random. The ciphertext C = (c0, C1) is generated by
encoding the vector e using the public key such that c0 = eHsys

⊤ and by
calculating the hash C1 = H(2, e). The secret session key K is then the hash of
H(1, e, C). Details can be found in Algorithm 2 and Algorithm 3.

2.3 Decapsulation

The holder of the secret key can compute the same session key using Algorithm 5.
This is done by splitting the received ciphertext into the two parts c0 ∈ Fn−k

2

and the hash C1, decoding c0 to a vector e′ ∈ Fn
2 of weight t using knowledge

of the generator tuple (α, g) of the Goppa code. Then the result is checked
by calculating C ′

1 = H(2, e′) and ensuring that C ′
1 and C1 are equal. (If no

errors occurred during transmission and the computation is not faulted, this is
the case.) Then the output is given by the (reconstructed) session key K ′ =
H(1, e′, C). In this way both parties conclude with the same session key.
2 In the actual implementation the secret key does not contain the support α explicitly,

but instead the seed of the random function that is used to generate it.

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 5

In case the input C1 or C2 is no valid ciphertext, the decoding step will fail,
or the check of C ′

1 = C1. In this case a predefined output K ′ = H(0, s, C) is
returned, where s ∈ Fn

2 is part of the secret key (see line 7 in Algorithm 1).
Our fault injections target the decapsulation algorithm in order to gain poly-
nomial equations in the support α of the Goppa code. To decode a syndrome
c0 = eHsys

⊤ ∈ Fn−k
2 Algorithm 4 first forms the word v ∈ Fn

2 by appending
zeros to c0. By construction the syndrome of v w.r.t. Hsys is exactly c0, i.e., v
and e are in the same coset. This means that there is a codeword c ∈ Γ (α, g)
such that v = c+ e. This word is computed in Line 2. Different algorithms have
been suggested in literature for this decoding step: the Sugiyama Algorithm [25],
the Berlekamp-Massey Algorithm [1,13], and the Patterson Algorithm [21]. All
of them explicitly compute the error-locator polynomial (ELP) of e ∈ Fn

2

defined as
σe(x) =

∏
i∈supp(e)

(x− αi) ∈ F2m [x].

The error e can then be reconstructed directly from the zeros of σe(x), since
we have for all i ∈ {1, . . . , n}: ei = 1 if and only if σe(αi) = 0. For more
details on Goppa codes we refer the reader to [12, Ch. 12]. Figure 1a depicts the
corresponding steps that are executed in the Classic McEliece implementations,
which use the Berlekamp-Massey algorithm to find the ELP.

2.4 Implementation

The implementations submitted to NIST [3] contain a reference implementa-
tion, as well as several hardware accelerated implementations for x86/AMD64
processors. For our software simulation of the attack, we adapt the hardware ac-
celerated implementation that makes use of vector arithmetics on the processor
for faster runtime. To simulate the faut injections on RISC-V cores, we use the
reference implementation.
The ELP σe(x) ∈ F2m [x] is represented differently in the reference and hardware
accelerated code. The following remark summarizes how the implementations
handle invalid inputs, i.e., syndromes corresponding to errors of smaller weight.

Remark 1 (ELP Implementation Details).

(a) For any valid syndrome c0 = eHsys
⊤ with wt(e) ≤ t, the coefficients of

the corresponding ELP σe(x) are stored in such a way that it is read as the
polynomial σe(x) · xt−deg(σe) of degree t.

(b) This does not affect error correction as long as no αi is zero, or wt(e) =
deg(σe(x)) = t. But, if there is i ∈ {1, . . . , n} with αi = 0 and wt(e) < t,
then the output e′ ∈ Fn

2 of line 2 in Algorithm 4 is indeed changed and we
get supp(e′) = supp(e) ∪ {i}.

(c) In particular, e ̸= e′ only if there is an i ∈ {1, . . . , n} with αi = 0 and ei = 0,
and we have wt(e′) ≤ wt(e) + 1.

Later, this allows us to quickly find the index i ∈ {1, . . . , n} with αi = 0, if there
is such (see Remark 4).

6 S. Pircher et al.

Input

Byte Splitting Algorithm 5, Line 1

Extension to codeword Algorithm 4, Line 1

Error Locator Polynomial Algorithm 4, Line 2

Root Finding Algorithm 4, Line 2

Error Vector Algorithm 4, Line 3

Validity Checks Algorithm 4, Line 4,
Algorithm 5, Line 5

Failed Output Valid Output

C, (s, γ)

c0, γ

v

ELP

supp(e′)

e′

K′ = H(0, s, C) K′ = H(1, e′, C)

(a) Normal operation

Input

Byte Splitting Algorithm 5, Line 1

Extension to codeword Algorithm 4, Line 1

Error Locator Polynomial Algorithm 4, Line 2

Root Finding Algorithm 4, Line 2

Error Vector Algorithm 4, Line 3

Validity Checks Algorithm 4, Line 4,
Algorithm 5, Line 5

Valid Output

C, (s, γ)

c0, γ

v

ELP

supp(ẽ′)

ẽ′

K̃′ = H(1, ẽ′, C)

(b) Faulty operation

Fig. 1: Flowchart showing the decapsulation and decoding steps indicating the
differences between normal and faulty operation. Fault injections target the steps
marked in red.

3 Key-Recovery Attack

This section describes our key-recovery attack. It targets the decapsulation func-
tion and can find an alternative secret key. This key can be used in place of the
original secret key, i.e., it can be used to find session keys generated with the cor-
responding public key. Three steps are necessary: First, we inject a fault in the
decoding procedure on the ELP coefficients so that it leaks information about
the secret key, adapting the work of [6]. Second, we inject a fault to bypass the
validity check (VCB) ensuring the faulty decoding result is not rejected. This
is done similar to [27]. Third, we demonstrate that under given circumstances
the information about the secret key contained in the hashed output can be
retrieved. The injections in the decapsulation algorithm necessary for the at-
tack are illustrated in Figure 1b. We describe two kinds of faults in the ELP
coefficients: ELP coefficient bit corruption (ELPb) and ELP coefficient zeroing
(ELPz). Both lead to successful key recovery, with ELPz being more efficient.
ELPz further has synergy with the validity check bypass (VCB), as both can be
achieved by fault injections at the same position on the chip (see Section 4.3).

3.1 Fault Model

We consider the setting that the secret key is stored in a Trusted Execution
Environment (TEE) so that its memory location is well protected. Only the TEE
itself has access to the secret key, i.e., the key cannot be physically accessed or
retrieved by any other means.

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 7

Assumption 1 The attacker has access to the input and output of the decapsu-
lation function (Algorithm 5). We can freely choose the input of the decapsulation
function (chosen ciphertext attack).

Assumption 2 We can inject faults on the physical device during decapsulation
changing the transistor states at specific positions and times. To be precise, we
assume that single and adjacent bits can be set or reset.

Such faults are achievable e.g. by a laser fault injection [22].
On the computational level, the following is achieved by fault injections: The va-
lidity check in line 4 of Algorithm 4 and line 5 of Algorithm 5 is bypassed (VCB),
and the ELP is corrupted either by setting or resetting one or more adjacent bits
in a single coefficient (ELPb) or by setting a coefficient to zero (ELPz).
To simplify the theoretic analysis of fault injections into the ELP, consider the
following remark.

Remark 2. We model the faults on a coefficient a ∈ F2m of the ELP as an
addition in the field F2m , i.e., write the faulty coefficient ã ∈ F2m as ã = a + ξ
for some appropriately chosen ξ ∈ F2m . Note that for our attack we do not need
to know the fault value ξ.

3.2 Fault Attack on the Validity Checks (VCB)

The validity checks confirm whether the decoding function provides a valid out-
put and compares the corresponding hashes. If not, a predefined session key
is returned (“Failed Output” in Figure 1a). After fault injection into the ELP,
the faulty output ẽ′ in general does not pass the check ẽ′H⊤

sys = eH⊤
sys and

wt(ẽ′) = t in Algorithm 4 line 4 and the check H(2, e) = H(2, ẽ′) in Algorithm 5
line 5. Therefore, we need an additional fault injection to bypass these checks
such that we are able to retrieve the faulty session key K̃ ′ = H(1, ẽ′, C), which
contains information about ẽ′, see Figure 1b.
A faulty session key K̃ ′ = H(1, ẽ′, C) is a hash of the input ciphertext C =
(c0,H(2, e)) and the output ẽ′ ∈ Fn

2 of the decode algorithm. According to our
fault model the attacker has full control over C. It is feasible to extract ẽ′ from
K̃ ′ by exhaustive search if the weight of ẽ′ is small enough.

Remark 3 (De-hash Session Key).
(a) If C and hash K̃ ′ = H(1, ẽ′, C) are known for some ẽ′ ∈ Fn

2 with wt(ẽ′) ≤ 2,
then one can find ẽ′ with less than

(
n
2

)
+

(
n
1

)
+

(
n
0

)
hash computations and

comparisons via exhaustive search.
(b) The statement in (a) is also true if wt(ẽ′) ≤ 3 and one index i ∈ supp(ẽ′) is

known.
(c) For the parameters (Table 4), we have n ≤ 213, this means that less than

225 + 212 + 1 hash computations and comparisons are required to find the
output of the decoding algorithm ẽ′ from a faulty session key K̃ ′, given that
supp(ẽ′) contains at most two unknown indices.

8 S. Pircher et al.

3.3 Fault Attack on the ELP Coefficients

The goal is to inject faults into certain coefficients of the error-locator polyno-
mial (ELP) during the decoding process of chosen words e ∈ Fn

2 of Hamming
weight 2 such that the evaluation of that polynomial is erroneous. If we have
access to the faulty output ẽ′ ∈ Fn

2 of the decoding step, we can obtain polyno-
mial equations in the secret support α. A set of such equations eventually leads
to an alternative support α̃ ∈ Fn

2m for which there is an irreducible polynomial
g̃ ∈ F2m [x] of degree t with Γ (α, g) = Γ (α̃, g̃). This allows efficient correction of
up to t errors in the code Γ (α, g). Hence, for every s ∈ Fn

2 the tuple (s, (g̃, α̃))
can be used as an alternative secret key with Algorithm 5.
The fault injections on the ELP are mainly based on the ideas of the fault attack
presented in [6], but a handful of adjustments had to be made to accommodate
the different fault model and the peculiarities of the implementation. Also the
solving process was refined to decrease the number of required fault injections.
Before we discuss how corrupting coefficients of the ELP can lead to polynomial
equations in the unknown support α ∈ Fn

2m of the Goppa code, we show that one
can easily check if zero is one of the support elements and if so, find its index.

Locating zero in the support In the previous section we have seen that we
can choose the input of the decoding algorithm as well as read the output, if it
is of small weight (Remark 3). So instead of syndromes corresponding to errors
e ∈ F2 of weight t, we may select errors of smaller weight, e.g. the all-zero vector.
This allows us to decide whether zero is contained in the support, and if it is,
find the index i ∈ {1, . . . , n} for which αi = 0.

Remark 4 (Finding Zero). Let e = 0 ∈ Fn
2 , and consider c0 = eHsys

⊤ as input
for the decoding algorithm. If there is a j ∈ {1, . . . , n} with αj = 0, then the
decoding algorithm evaluates the polynomial xt and outputs e′ ∈ Fn

2 where
supp(e′) = {j} by Remark 1; otherwise we have e′ = e = 0. Since wt(e′) ≤ 1
we can quickly access e′ from the hash output of the decapsulation function, see
Remark 3, and from e′ read off whether there is j ∈ {1, . . . , n} with αj = 0 and
in that case deduce this index j.

From now on, we assume that we know j ∈ {1, . . . , n} with αj = 0, if there is
such an index; as this information can be gathered with just a single run of the
decapsulation algorithm where the validity checks are skipped.

Corrupting bits of coefficients (ELPb) For the fault injections on the ELP
that eventually provide the polynomial equations in the support α, we choose
syndromes corresponding to vectors e ∈ Fn

2 of weight 2 as input to the decoding
algorithm. This way the ELP has the form σe(x) = (x− αi1)(x− αi2) ∈ F2m [x]
for chosen i1, i2 ∈ {1, . . . , n} with i1 ̸= i2. The idea is to set or reset single or
adjacent bits in one of the two coefficients such that it is replaced by σ̃e(x) =
ξxd + σe(x) for d ∈ {0, 1} and some (unknown) ξ ∈ F2m (see Remark 2). Recall
that the output of the decode algorithm, say ẽ′ ∈ Fn

2 , is constructed not from

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 9

the zeros of σ̃e(x) but from the zeros of xt−2σ̃e(x), see Remark 1. The next
remark summarizes the information about the zeros of σ̃e(x) that can be obtained
from ẽ′.

Remark 5. Let e ∈ Fn
2 with supp(e) = {i1, i2} and i1 ̸= i2. Assume that a fault

ξ ∈ F2m is injected into the d-th coefficient of σe(x) with d ∈ {0, 1}. Let ẽ′ ∈ Fn
2

be the output of the decoding algorithm when the polynomial for the root finding
is given by xt−2σ̃e(x) where σ̃e(x) = ξxd + σe(x).
(a) If αj ̸= 0 for all j ∈ {1, . . . , n}, then we have wt(ẽ′) ≤ 2, and

supp(ẽ′) = {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)}.

(b) If there is j ∈ {1, . . . , n} with αj = 0, then wt(ẽ′) ≤ 3 and j ∈ supp(ẽ′) is
known. Moreover, we have

supp(ẽ′) = {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)} ∪ {j}.

By Remark 4 we can distinguish those two cases, and Remark 3 tells us how we
can then gain access to ẽ′ ∈ Fn

2 .

Definition 6. Let d ∈ {0, 1}, e ∈ Fn
2 with supp(e) = {i1, i2} ⊆ {1, . . . , n},

i1 ̸= i2, and let ẽ′ ∈ Fn
2 be the output of Algorithm 4 where

(1) a fault was injected such that the d-th coefficient of σe(x) is corrupted by
ξ ∈ F2m , i.e., the ELP is replaced by σ̃e(x) = ξxd + σe(x),

(2) the output ẽ′ is constructed from the roots of xt−2σ̃e(x) (see Remark 1), and
(3) a fault injection ensures that the validity checks in line 4 pass.
Then we call the tuple (e, ẽ′) a fault injection. If d = 0 it is also called a
constant injection, and a linear injection for d = 1, respectively.

Our fault model allows to generate arbitrary many such fault injections. Also
note that we assume no control over the unknown fault ξ.
Not all fault injections lead to polynomial equations, only those where the faulty
ELP has two zeros among the support α. In view of Remark 5, a sufficient
condition is given by the following definition.

Definition 7. A fault injection (e, ẽ′) is called successful, if
(1) for all j ∈ {1, . . . , n} we have αj ̸= 0 and wt(ẽ′) = 2, or
(2) there is j ∈ {1, . . . , n} with αj = 0 and wt(ẽ′) = 3.

For every successful fault injection the set {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)}
can be deduced from ẽ′ with Remark 5 and contains exactly two elements.
Next we explain why the term successful is adequate.

Proposition 8. Let (e, ẽ′) be a successful fault injection with supp(e) = {i1, i2}
and {i ∈ {1, . . . , n} | αi is a zero of σ̃e(x)} = {j1, j2}.
(a) If (e, ẽ′) is a successful constant injection, then αi1 + αi2 = αj1 + αj2 , and

α is a zero of the linear polynomial xi1 + xi2 + xj1 + xj2 ∈ F2m [x1, . . . , xn].

10 S. Pircher et al.

(b) If (e, ẽ′) is a successful linear injection, then αi1αi2 = αj1αj2 , and α is a
zero of the quadratic polynomial xi1xi2 + xj1xj2 ∈ F2m [x1, . . . , xn].

Proof. Denote the ELP by σe(x) = (x − αi1)(x − αi2) and the faulty ELP by
σ̃e(x) = ξxd+σe(x) for d ∈ {0, 1} and ξ ∈ F2m . By Remark 5 and Definition 7, we
get that αj1 and αj2 are the roots of σ̃e(x), i.e., σ̃e(x) = (x−αj1)(x−αj2). Both
statements are now shown by comparing the coefficients in ξxd+σe(x) = σ̃e(x):

ξxd + (x− αi1)(x− αi2) = (x− αj1)(x− αj2).

For (a) we get x2 + (αi1 + αi2)x+ (αi1αi2 + ξ) = x2 + (αj1 + αj2)x+ αj1αj2 , as
d = 0. Comparing the linear coefficients yields αi1 +αi2 = αj1 +αj2 . For (b) we
get x2 + (αi1 + αi2 + ξ)x+ αi1αi2 = x2 + (αj1 + αj2)x+ αj1αj2 , as d = 1. So in
particular αi1αi2 = αj1αj2 follows from the constant coefficients. ⊓⊔

Remark 9. The probability to have a successful fault injection increases with the
ratio n

2m . This follows simply from the fact that the number of support elements
increases with n and by that also the number of possible roots for the faulty
ELP σ̃e(x) increases.

Zeroing Coefficients (ELPz). Instead of targeting the General Purpose Reg-
ister (GPR) holding the ELP coefficients directly, one may also aim at the in-
structions operating on them. For example, by skipping the instruction storing
the ELP coefficient to memory, the resulting coefficient will be equal to zero.
This is the case because the algorithm sets the ELP vector to zero before calcu-
lating its coefficients. Such fault injections also fit well with Definition 6, where
the fault value ξ ∈ F2m has the same value as the targeted coefficient of the ELP
such that the coefficient cancels out. Using coefficient-zeroing fault injections
can also provide polynomial equations as follows.

Proposition 10. Let (e, ẽ′) be a fault injection on the d-th coefficient of σe(x)
s.t. the d-coefficient of σ̃e(x) is zero. Write supp(e) = {i1, i2}, and let j ∈
supp(ẽ′) with αj ̸= 0.
(a) If (e, ẽ′) is a constant fault injection, then we have αi1 +αi2 = αj, and α is

a zero of the linear polynomial xi1 + xi2 + xj ∈ F2m [x1, . . . , xn].
(b) If (e, ẽ′) is a linear fault injection, then we have αi1αi2 = α2

j , and α is a
zero of the quadratic polynomial xi1xi2 + x2j ∈ F2m [x1, . . . , xn].

Proof. Note that we have σe(x) = (x−αi1)(x−αi2) = x2+(αi1 +αi2)x+αi1αi2 .
In the situation of (a) we have σ̃e(x) = x2 + (αi1 + αi2)x. By Remark 1 the
implementation constructs ẽ′ from the zeros of xt−2σ̃e(x) = xt−1(x+ αi1 + αi2)
which has only one non-zero root, αi1 +αi2 . Now j ∈ supp(ẽ′) and αj ̸= 0 imply
that αj is exactly this non-zero root. Thus we get αj = αi1+αi2 . For (b) we have
σ̃e(x) = x2 + αi1αi2 . Now we know that αj is non-zero and a zero of xt−2σ̃e(x),
i.e., it is a zero of σ̃e(x). This gives α2

j = αi1αi2 . ⊓⊔

Recall that the attacker knows exactly if there is j ∈ supp(ẽ′) with αj ̸= 0 by
virtue of Remark 4. As such the above proposition can be applied directly.

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 11

Remark 11. If the support elements α1, . . . , αn and e ∈ Fn
2 with wt(e) = 2 are

chosen uniformly at random, then the probability that there exists an αj with
αj = αi1 + αi2 or α2

j = αi1αi2 for supp(e) = {i1, i2} is n
2m . This means that

the success rate for obtaining a polynomial equation for a zeroing fault injection
(ELPz) is about n

2m .

This probability is significantly greater than the success rate of the injections
that directly target single or adjacent bits of the coefficients (ELPb), especially
if n≪ 2m. Our simulations confirm this observation.
The first step of the attack is now straightforward: generate constant and linear
fault injections (where each injection requires two fault injections to (1) cor-
rupt/zero a coefficient in the ELP and (2) skip the validity checks) and deduce
linear and quadratic equations which have the common zero α.

3.4 Computing Alternative Secret Keys

Using many fault injections, we collect polynomial equations using Proposition 8
and Proposition 10 in a so-called fault equation system L ⊆ F2m [x1, . . . , xn]
with the common zero α. Note that all these polynomials are either linear or
quadratic. We require both linear and quadratic equations, as shown in Propo-
sition 18. The first goal is to find a support candidate set SL ⊆ Fn

2m that
is a subset of the set of the common zeros of L and contains a support can-
didate α̃ ∈ SL for which an irreducible polynomial g̃ of degree t exists with
Γ (α, g) = Γ (α̃, g̃). To find such a support candidate set we follow the core solv-
ing process of the fault attack in [6, Section 6], summarized in the following
proposition. Denote the set of zeros of L ⊆ F2m [x1, . . . , xn] by

Z(L) = {a ∈ Fn
2m | f(a) = 0 for all f ∈ L}.

Proposition 12 (Solving Fault Equations). Let L ⊆ F2m [x1, . . . , xn] be a
fault equation system. Consider the following sequence of instructions.
(1) Reduce the linear polynomials in L (via Gaussian elimination).
(2) Substitute the leading terms in the quadratic polynomials, call the set of

reduced quadratic equations Lred ∈ F2m [xi1 , . . . , xis].
(3) Fix one of the remaining indeterminates to 1, i.e., for some i ∈ {i1, . . . , is}

add xi − 1 to Lred.
(4) Find the set of zeros Z(Lred) ⊆ Fs

2m of Lred via Gröbner basis techniques.
(5) Extend the zeros in Z(Lred) to elements of Z(L∪{xi − 1}) ⊆ Fn

2m using the
linear polynomials, construct and return

SL = {α̃ ∈ Z(L ∪ {xi − 1}) | α̃j1 ̸= α̃j2 for j1 ̸= j2 and α̃i = 1}.

This computes a support candidate set SL for L.

As soon as support candidates have been found, we check one by one, if they
can be extended with an irreducible Goppa polynomial g̃ to generate the Goppa

12 S. Pircher et al.

code Γ (α, g). One approach to do this, based upon [6, Algorithm 6.7], uses the
fact that for every c ∈ Γ (α, g) we have

g |
∑

i∈supp(c)

∏
j∈supp(c)\{i}

(x− αj).

Proposition 13 (Finding Goppa Polynomials). Let α̃ ∈ Fn
2m with α̃i ̸= α̃j

for i ̸= j. For s ≥ 1, consider the following sequence of instructions.
(1) Let g̃ = 0. Choose codewords c1, . . . , cs ∈ Γ (α, g), for j ∈ {1, . . . , s} set

fj =
∑

i∈supp(c)

∏
k∈supp(c)\{i}(x− αk), and compute h = gcd(f1, . . . , fs).

(2) Factorize h and collect all irreducible factors of degree t in a set G.
(3) For every ĝ ∈ G, check if Γ (α̃, ĝ) = Γ (α, g) by comparing parity check

matrices in systematic form. In that case let g̃ = ĝ.
(4) Return g̃.
This is an algorithm that returns a non-zero g̃ if and only if there exists an
irreducible polynomial g′ ∈ F2m [x] with Γ (α̃, g′) = Γ (α, g). In that case we have
Γ (α̃, g̃) = Γ (α, g).

Proof. In case g̃ is non-zero, by step (3), we have Γ (α̃, g̃) = Γ (α, g). Conversely,
if there is an irreducible g′ ∈ F2m [x] of degree t with Γ (α̃, g′) = Γ (α, g), then
g′ is an irreducible factor of h, i.e., g′ ∈ G. This g′ is processed in step (3) and
ensures g̃ ̸= 0. This proves the claim. ⊓⊔

With s = 5 our simulations showed that, in practice, we always have two cases
in step (2): either deg(h) = 2t and G contains exactly one element, or h = 1 and
G = ∅. Our implementation is optimized for this observation.

Improvements While the above already summarizes the overall solving proce-
dure, we make a few additional remarks and optimizations.
The first observation is that in the first two steps of the Algorithm in Propo-
sition 13 for finding Goppa polynomials only support elements α̃j where j ∈
supp(ci) with i ∈ {1, . . . , s} are used, i.e., to get a Goppa polynomial candi-
date g̃ not all elements α̃i need to be known.

Remark 14 (Support Candidate Completion). Let α̃ ∈ Fn
2m be a support candi-

date with irreducible Goppa polynomial g̃ ∈ F2m [x] where Γ (α, g) = Γ (α̃, g̃).
Let J ⊆ {1, . . . , n} be a set where α̃j is known for j ∈ J .
(a) Let c ∈ Γ (α, g) be a code-word with supp(c)\J = {i} for some i ∈ {1, . . . , n}.

Then one can determine α̃i as the unique zero of the linear polynomial

1 + (x− y) ·
∑

j∈supp(c)\{i}

(x− α̃j)
−1 ∈ (F2m [x]/⟨g̃(x)⟩)[y],

since
∑

j∈supp(c)(x− α̃j)
−1 = 0 in F2m [x]/⟨g̃⟩ by definition of Γ (α̃, g̃).

(b) In order to find (all) codewords c ∈ Γ (α, g) with supp(c) \ J = {i} one can
compute an affine F2-basis of the intersection of the (affine) vector subspaces
Γ (α, g) and {c ∈ Fn

2 | ci = 1, cj = 0 for j ̸∈ J ∪ {i}} by linear algebra.

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 13

(c) This allows us to exclude all indeterminates xik that do not occur in Lred

in step (2) of the solving procedure (Proposition 12) such that Z(Lred) de-
creases in size by a factor of 2m for every removed indeterminate. Then
we find Goppa polynomial candidates g̃ using the first two steps of Propo-
sition 13, where only known support elements are used (find appropriate
code-words c1, . . . , cs similar to (b)). Using part (a), one can now find the
missing support elements and construct support candidates α̃. Finally, one
can check if Γ (α, g) = Γ (α̃, g̃) as in Proposition 13, step (3).

This optimization only works if codewords as in (b) actually exist. Since many
linear equations are required to make the solving of the quadratic polynomials
in Lred feasible in the first place, only a few elements of the support candidates
need to be found in the above way, i.e., the set J is rather large in practice.
This also makes the existence of the required codewords highly likely. Recently,
[11] followed the same approach, and showed that it suffices to know as little as
mt+1 support elements to find both - the corresponding Goppa polynomial and
the remaining support elements - under mild conditions.
Denote the Frobenius automorphism by ψ : F2m → F2m , a 7→ a2 and consider the
related automorphism Ψ : F2m [x1, . . . , xn] → F2m [x1, . . . , xn] where Ψ(xi) = xi
for i ∈ {1, . . . , n} and Ψ |F2m

= ψ. For α ∈ F2m we also write in the following
φ(α) := (φ(α1), . . . , φ(αn)).

Remark 15. Let L ⊆ F2m [x1, . . . , xn] be a fault equation system. Then all poly-
nomials in L are homogeneous, their coefficients are contained in F2, and α ∈
Z(L) is a common zero. In particular Ψ(f) = f for all f ∈ L.
(a) For a ∈ F2m we have a·α ∈ Z(L), as for all f ∈ L: f(a·α) = adeg(f)f(α) = 0.
(b) For i ∈ {0, . . . ,m− 1} we have ψi(α) ∈ Z(L), since for all f ∈ L:

0 = ψi(0) = ψi(f(α)) = Ψ i(f)(ψi(α)) = f(ψi(α)).

This highlights that Z(L) contains quite many elements derived from α, and in
fact all these are as useful to us as the support itself. This is a direct consequence
of the following remark, proven in [9]. Let Ψ now operate on F2m [x].

Remark 16. Remember that Γ (α, g) is a binary irreducible Goppa code with
deg(g) = t as before.
(a) For every a ∈ F2m \ {0} we have Γ (α, g(x)) = Γ (a · α, g(a−1x)).
(b) For every i ∈ {0, . . . ,m− 1} we have Γ (α, g(x)) = Γ (ψi(α), Ψ i(g))

Moreover, g(a−1x) and Ψ i(g) are both irreducible polynomials of degree t.

Of all these zeros in Z(L) only a single one of them is sufficient to construct an
alternative secret key, as for all of those α̃ there is an irreducible g̃ of degree t with
Γ (α, g) = Γ (α̃, g̃). In the following we discuss how one can decrease the size of the
support candidate set SL while still ensuring that one of these support candidates
is present. Note that step (3) of our solving procedure (Proposition 12) already
uses part (a) of the above remarks by fixing the coordinate of xi1 to 1. This
shrinks the support candidate set by a factor of 2m. The next observation allows
us to reduce this set by another factor of almost m.

14 S. Pircher et al.

Remark 17. Let U ⊆ F2m such that for every a ∈ F2m there exists u ∈ U and
i ∈ {0, . . . ,m− 1} with a = ψi(u). By Remark 15.(b) and Remark 16.(b) there
is α̃ ∈ Z(L) with α̃i ̸= α̃j for i ̸= j and α̃s ∈ U for every s ∈ {1, . . . , n}.
Instead of Z(Lred) we can thus compute⋃

u∈U

Z(Lred ∪ {xi1 − u}) = {α̃ ∈ Z(Lred) | α̃1 ∈ U}

in step (4) of Proposition 12.

To find such a set U ⊆ F2m consider the following greedy algorithm: Choose
u ∈ F2m and add it to U . Then repeat with F2m \ {u, u2, . . . , u2m−1 | u ∈ U}.
For the proposed parameter sets, this gave sets U of size very close to 2m

m .
Our implementation computes each individual set of zeros with Gröbner basis
techniques, to be precise it uses the SageMath function variety.
The following proposition indicates the necessity of the quadratic equations in
our solving procedure by showing that it is impossible to find a small set of
support candidates only from linear fault equations.

Proposition 18. Assume that n > 2m−1. Let L ⊆ F2m [x1, . . . , xn] be a fault
equation system consisting only of linear polynomials. Then L contains less than
n−m linearly independent polynomials.

Proof. We know from Remark 15 that for all j ∈ {0, ...,m − 1} the tuple zj =
ψj(α) is a zero of the polynomials in L. We show that (z0, ..., zm−1) is F2-linear
independent in Fn

2m . The rank theorem then shows that L contains less than
n −m linearly independent polynomials. Let b0, ..., bm−1 ∈ F2 with b0z0 + ... +

bm−1zm−1 = 0. Then we have b0αi + ... + bm−1α
2m−1

i = 0 for i ∈ {1, . . . , n}.
Consider the polynomial f(x) = b0x+b1x

2+...+bm−1x
2m−1 ∈ F2m [x]. Suppose f

is non-zero, then it has at most deg(f) ≤ 2m−1 roots, but f(αi) = 0 for all
i ∈ {1, . . . , n}. With n > 2m−1 we get a contradiction. This shows f = 0, and
thus b0 = · · · = bm−1 = 0 and the linear independence follows by definition. ⊓⊔

Note that the condition n > 2m−1 is satisfied by all proposed parameter sets (see
Table 4). So for the set of reduced quadratic polynomials Lred ∈ F2m [xi1 , . . . , xis]
in step (2) of Proposition 12 we have s ≥ m.

4 Fault Attack Implementation and Simulation

In this section, we demonstrate the viability of the key-recovery attack. We
first use a C-implementation to simulate the attack (Section 4.1). For this we
inject faulty variable values directly in software. We simulate the inputs and
corresponding hashed outputs of the faulty decapsulation procedure. The de-
hashing of these is described separately in Section 4.2, leading to the system
of polynomial equations. This is solved to obtain an alternative secret key as
described in Section 3.4 by a program written in Python3 using SageMath [26].

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 15

An attacker cannot directly modify the software execution. Instead, there are
different ways to conduct a fault attack, e.g., using a laser to corrupt hardware
memory elements in a processor. To investigate whether this allows to inject the
specific faults required for the presented attack as were identified at software-
level, we execute the cryptosystem as software on a virtual prototype (VP) (Sec-
tion 4.3). The VP implements the RISC-V Instruction Set Architecture (ISA)
and allows us to inject faults into the hardware of the processor in order to
study how they impact the executing software. For our software-error-model-
based fault injection attack, we first analyze the binary to find the program sec-
tions calculating the ELP and processing the validity checks. The disassembly
and its required alteration gives us the fault positions necessary to produce the
identified faulty variable values. The necessary hardware fault attacks are then
simulated on two levels; First, a fast ISA-level simulation assures that the hard-
ware faults produce exploitable output. Second, a Register Transfer Level (RTL)
simulation yields practicability of the fault attack w.r.t. a real CPU core’s micro-
architecture.

4.1 Key-Recovery Simulation

We simulated the attack of Section 3 in C and SageMath code. To speed up that
simulation at C-level we work on AMD64 machines with the vector-accelerated
AVX-2 implementation. An overview of the software simulation is given in Al-
gorithm 6.
To model the attack, we adapt the implementation of the cryptosystem to in-
clude the effects of the ELPb, ELPz and VCB faults. For the fault injections on
the ELP, we have identified the following lines of code as injection points. The
fault injection on the ELP happens between the function calls bm(locator, s)
and root(images, locator, L) in decrypt.c. Fault injections on the ELP are
modelled as bitwise operations on one of its coefficients. This way, the ELPb
fault injection that sets two adjacent bits is implemented by setting one coeffi-
cient a→ aOR ζ, where ζ is an m-bit array containing only zeros except for two
adjacent entries. The ELPz fault injection is implemented by replacing all entries
of one ELP coefficient with zeroes. Note that the fault value ξ corresponding to
these injections as defined in Remark 2 is unknown, as it depends on the value
of a. To skip the validity checks the variable m in file operations.c and in func-
tion crypto_kem_dec_faulty in the line m = ret_decrypt | ret_confirm are
forced to 0. This gives H(1, ẽ′, C) as output of the C-code for further analysis
(see next Section 4.2).3

The simulation code is called repeatedly for different chosen ciphertexts and
faults ζ to build a system of equations using Propositions 8 and 10, that can
be solved with the methods from Section 3.4 to obtain an (alternative) se-
cret key. To obtain linear equations in the support elements, faults are in-
jected into the constant term of the ELP. In ELPb mode, we start with ζ

3 For the purposes of verifying the fault attack, the simulator also directly gives ẽ′ as
output, sparing us the computational effort of de-hashing H(1, ẽ′, C)→ ẽ′.

16 S. Pircher et al.

having the two least significant bits non-zero. Then we generate faulty session
keys from ciphertexts corresponding to plaintext vectors e with wt(e) = 2 and
supp(e) ∈ {{n− 1, 0}, {0, 1}, {1, 2}, . . . }. This is repeated for faults ζ with non-
zero bits in other adjacent positions, until the resulting system of equations con-
tains equations involving all the support elements. In ELPz mode, there is only
one way of injecting a fault, so that instead of different fault values ζ, ciphertexts
corresponding to plaintext vectors e with wt(e) = 2 with increasing distance be-
tween the non-zero support elements supp(e) ∈ {{n−1, 1}, {0, 2}, {1, 3}, . . . } are
used to obtain a sufficiently large system of equations (this is also done in the
ELPb-case if the number of possible ζ is exhausted before finding sufficiently
many equations). The same procedure is used to inject faults on the linear term
of the ELP in order to obtain quadratic equations in the support elements, finish-
ing after an empirically determined fixed number of equations has been obtained.
To confirm that the attack is working, we ran simulations of 100 random pub-
lic/private key pairs, for several sets of parameters where n ∈ {3488, 6688, 8192}
(see Table 4). The average number of required fault injections for a successful
attack on the different parameter sets are shown in Tables 1 and 2 for the fault
modes ELPb and ELPz respectively. The ELPz-mode requires significantly
fewer fault injections to complete the attack (compare with Remark 11). Pa-
rameter sets with smaller ratio n

2m also require more injections, as indicated by
Remark 9. We find that the SageMath code usually takes only minutes to obtain
an alternative secret key from the system of polynomial equations on an office
computer.

Table 1: Arithmetic Mean out of 100 simulations for ELPb
CAT I

n=3488, m=12, t=64
CAT V

n=6688, m=13, t=128
CAT V

n=8192, m=13, t=128

nr of constant injections 31759 70700 56991
nr of linear equations 8627 17649 21343

nr of linear injections 293 564 266
nr of quadratic equations 80 140 100

Table 2: Arithmetic Mean out of 100 simulations for ELPz
CAT I

n=3488, m=12, t=64
CAT V

n=6688, m=13, t=128
CAT V

n=8192, m=13, t=128

nr of constant injections 8030 16516 8944
nr of linear equations 6836 13482 8941

nr of linear injections 94 121 100
nr of quadratic equations 80 100 100

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 17

4.2 De-hashing: Obtaining the faulty error vector from hash output

As output of the simulation in Section 4.1 we generate two files containing hashes
K̃ ′ = H(1, ẽ′, C) with (e, ẽ′) defining linear or quadratic equations in the support
elements. Thanks to the small weight of the error vectors ẽ′, we can determine
them from the hashes in a brute-force manner as follows.
First, we determine whether the zero element is part of the support set (Re-
mark 1) and determine its index if present, according to Remark 4. This requires
only one fault injection, giving the output H(1, e′, C) for C = (0,H(2,0)), with
wt(e′) ∈ {0, 1}. The support supp(e′) specifies the index of the zero element in
the support set, if it is present. It is determined from the hash by calculating all
n+ 1 possible hashes until the match with the output is found. Next, for every
K̃ ′ we calculate the hashes H(1,v, C) for the chosen ciphertext C = (c0,H(2, e))
and all possible ẽ′, as described in Remark 3. When a match is found, ẽ′ has
been determined.
We run the de-hashing on a computer with AMD EPYC 7543P processor running
up to 3.3 GHz using 32 cores (64 threads) on Arch Linux with kernel 5.19.7. For
the ELPb case we have about

(
n
2

)
different ẽ′ to check for every hash output

(number of constant injections plus number of linear injections in Table 1).
Depending on the cryptosystem and its parameters, the total runtime on our
system spans a few hours up to a few days. For the ELPz case we have about(
n
1

)
= n different ẽ′ to check for every hash output (number of constant injections

plus number of linear injections in Table 2). The running time on our system is
a few seconds.

4.3 Simulation at Register Transfer Level

A fault injection simulation campaign and its cost w.r.t. simulation time is de-
pendent on the abstraction level, such that limiting the fault space is crucial.
Figure 2a shows our approach to identify the fault injection points to further
evaluate the feasibility of an attack by exhaustive search campaign on RTL.
Exhaustive search means applying the fault model (single bit set/reset) to all
possible bits at all possible simulation steps (clock cycles). To gain more detailed
results quicker, we align the simulation abstraction level with the fault abstrac-
tion level: We start by formulating a software test for Exploit, so that we have
a defined faulty reference output of the targeted system. This can be directly
manipulated to the source code on C-level. We continue on the ISA Error Model
level where we run the attacked system on the VP with a fast ISA Level Simula-
tion (RISC-V) to transfer the source code faults into ISA specific errors. This is
basically assembly level. From there we gain a more narrow timing information
as to where faults in the processor core can result in the wanted exploit, e.g., in-
struction data manipulations or register value modifications. After that, we take
this set of narrow program sections and feed it into an RTL fault simulation,
a specific micro architecture, to evaluate the Manifestation. This gives us the
benefit to do an exhaustive search on bit level to reproduce the exploits while
focusing on program sections that were earlier identified as critical. Depending

18 S. Pircher et al.

on the Physical Attack we want to mimic, we can directly transfer the findings
from the RTL simulation (Laser Fault analogue) or make predictions (vulnera-
ble micro architecture) that could become an attack scenario for other physical
attacks, e.g., clock or voltage glitches.

Extraction of secret
cryptographic information

(algorithm/source)
Exploit

Corruption of opcodes,
ISA registers, or mem-
ory transactions (asm)

ISA Error
Model

Corruption of sequen-
tial logic (verilog)

Manifes-
tation

Change of transistor states
(register bit set/reset)

Physical
Attack

(a) Fault Attack Effect Abstraction

uart

RTL ISS
 TLM

CV32E40P
CV32E40S
FI-RTL

…

clint plic

timermemory
UART
trace

TLM
trace

RTL
trace

binary

interrupt
signals

RTL
signals

TLM bus

ETISS
RV32GC
ISS

ISS
trace

(b) Register Transfer or Instruction Set
Level Fault Injection Virtual Prototype

Fig. 2: Experimental Setup for ISS/RTL Fault Injection Evaluation

Figure 2b shows the fault injection VP used to evaluate the vulnerability of
two open source RISC-V cores, the OpenHWGroup’s CV32E40P [19], formerly
known as RI5CY [8,7], and its security focused derivative CV32E40S [20]. The
RTL model is generated with the open source Verilog hardware description lan-
guage to C++/SystemC synthesis tool Verilator [24]. The generated RTL is then
modified with a LLVM-based automated source code transformation tool. The
modified RTL yields a clock cycle accurate simulation with fault injection capa-
bility into sequential storage elements, i.e., flip-flop and latch equivalents. The
RTL’s SystemC ports are connected to the Transaction Level Modeling (TLM)
peripherals and memory through an RTL to TLM transactor that implements
the required bus protocol. The VP’s memory may host any cross-compiled RISC-
V binary suitable for the used core and is initialized before simulation start by an
binary loader. TLM transactions, certain RTL signals, and the peripheral output
are logged in respective trace files. This allows to evaluate the effect an injected
fault has on the system’s behavior compared to a reference simulation executing
the same binary without fault injection. Through the RTL fault injection, we are
able to simulate faults on the manifestation level of our fault attack abstraction
model as shown in Fig. 2a. We deem a fault attack experiment as successful in
a security scenario, if its manifestation results in an undetected exploit defined
by the first step of our simulations, see Section 4.1.
Table 3a shows the simulation results for the output mask fault attack to bypass
the cryptosytem’s validity check. For CV32E40P, in total 4, 351 micro archi-
tectural and 1, 650 ISA related bits were faulted over a clock cycle period of

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 19

Table 3: Single-Bit RTL Fault Injection Results

(a) Validity Check Fault Scenario

core: CV32E40- P S

clock cyclesa 301 301
micro-arch. bits 4,351 12,938
ISA register bitsb 1,650 3,648
nr experiments 1,806,301 4,992,386

exploits output
mask reset NVCB

114 57

nr unique faulty bits 93 39

a identified by ISA simulation
b without performance counters

(b) ELP Coefficient Fault Scenario

core: CV32E40- P S

clock cyclesa 521 521
micro-arch. bits 4,351 12,938
ISA register bitsb 1,650 3,648
nr experiments 3,126,521 8,641,306

nr experiments coeff.
bit corruption NELPb

69 57

nr unique faulty bits 35 29

nr experiments
coeff. zeroing NELPz

508 212

nr unique faulty bits 225 94

301 cycles. The cycle range reflects vulnerable sections of the cryptosystem.
93 unique bits were found to be capable to result in a bypass of the validity
check in 114 experiments. None of which resemble ISA registers, e.g. RISC-V
GPRs. Although CV3240S contains more sequential logic, thus, injectable bits,
the number of successful fault experiments is much lower at 57. Table 3b shows
the simulation results for the ELP fault attacks over a clock cycle period of 521
cycles. 69 experiments on 35 unique bits resulted in a faulted ELP coefficient of
which a small number was directly injected into GPRs. For the ELP coefficient
zeroing exploit, 225 unique bits were the reason for a total number of 508 faulty
scenarios in CV32E40P. Most of these fault injections, all of which in the core’s
micro architecture, manifested as manipulation of the memory store instructions
for the respective ELP coefficient. Furthermore, 47 bits and 17 bits, for CV3240P
and CV32E40S respectively, are equal for the validity check bypass and the ELP
coefficient zeroing attack. This can result in a significantly less complex fault
injection setup, e.g., by only requiring one laser injection source.

Figure 3 shows a plot of the three scenarios for both cores. Overall, the more se-
cure CV32E40S is harder to fault. Reasons for this can be found in its hardware-
based countermeasures, such as an ECC protected register file eliminating all bit
errors up to two by raising a security alert. The remaining faults can be mostly
traced back to in-pipeline faults, e.g., modified instruction code or operands for
which no error protection is deployed. Furthermore, in both cores faulting the
fetch instruction address can result in replacing the original instruction code
without modifying the in-pipeline program counter, thus, bypassing the pro-
gram counter validity checks of CV32E40S. Here, configuring the Memory Pro-
tection Unit (MPU) with executable memory ranges can help to mitigate this
easy instruction replacement. For our RTL fault analysis, we did not make use
of CV32E40S’s side-channel countermeasure that randomly inserts dummy in-

20 S. Pircher et al.

Fig. 3: Single-Bit RTL Fault Injection Results

structions in the executed code, but would consider it as viable countermeasure.
Feeding this unit with a true random seed, would make our proposed attack
significantly harder. The attack requires delicate timing of the fault injection
which would become harder due to the unpredictable execution time.

5 Summary

We have presented a key-recovery fault injection attack on Classic McEliece. Two
fault injections are necessary for the attack. CCA2-security is bypassed by one
fault injection in combination with brute-force de-hashing of possible faulty ses-
sion keys. The other fault injection targets the error-locator polynomial (ELP)
to find the support set of the Goppa code, which is part of the secret key. We
use the faulty output of the decapsulation function to construct a polynomial
system of equations whose unknowns are the elements of the support set. Solving
these equations, we obtain their values, which can be used with the public key to
generate a matching Goppa polynomial. Together, this can be used as an alter-
native secret key that generates valid session keys. We have verified the attack,
simulating it using C and SageMath code. Simulations for several instances of
Classic McEliece show that parameters with n close to 2m are particularly easy
to attack. We evaluated the vulnerability of two RISC-V cores, simulating the
fault injections on virtual prototypes at RTL. On specific hardware and with
knowledge of the core structure, the two required faults may be injected at the
same location, simplifying the execution of the attack. The next steps are to
deploy our attack on real hardware.
The simulation code in C and SageMath can be found online at GitHub: https:
//github.com/sahpir/attackFI-ClassicMcEliece.

Acknowledgements This research was partly funded by the Bavarian State
Ministry for Economic Affairs as part of the funding program Information and
Communication Technology through the project MITHRIL, grant number IUK623.

https://github.com/sahpir/attackFI-ClassicMcEliece
https://github.com/sahpir/attackFI-ClassicMcEliece

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 21

A Appendix

A.1 Classic McEliece KEM Algorithms and Parameters

Here we show the parameters and algorithms used in Classic McEliece KEM [3].
In Algortihm 6 we list the steps executed for the attack simulation.

Table 4: Parameter sets of Classic McEliece KEM [3]
Security Category4 n m t

CAT 1 3488 12 64
CAT 3 4608 13 96
CAT 5 6688 13 128
CAT 5 6960 13 119
CAT 5 8192 13 128

Algorithm 1 Key Generation
Input: Parameters m, t, n ≤ 2m, f(z) ∈ F2[z] irreducible of degree m.
Output: Secret key (s, γ), public key T.

1: Generate a uniform random monic irreducible polynomial g(x) ∈ F2m [x] of degree t.
2: Select a uniform random sequence L = (α1, α2, . . . , αn) of n distinct elements

in F2m .
3: Compute the t × n matrix H = {hij} over F2m where hij = αi−1

j /g(αj) for i ∈
[t], j ∈ [n], i.e.,

H =

1

g(α1)
1

g(α2)
· · · 1

g(αn)
α1

g(α1)
α2

g(α2)
. . . αn

g(αn)

...
...

. . .
...

αt−1
1

g(α1)

αt−1
2

g(α2)
· · · αt−1

n
g(αn)

 .

4: Form matrix Ĥ ∈ Fmt×n
2 by replacing each entry c0 + c1z + ... + cm−1z

m−1 ∈
F2[z]/⟨f(z)⟩ ∼= F2m of H ∈ Ft×n

2m with a column of m bits c0, c1, ..., cm−1.
5: Reduce Ĥ to systematic form (In−k|T) where In−k is an identity matrix of (n −

k)× (n− k) and k = n−mt
6: If Step 5 fails, go back to Step 1
7: Generate a uniform random n-bit string s (needed if decapsulation fails).
8: Output secret key: (s, γ) with γ = (g(x), α1, α2, ..., αn)

9: Output public key: T ∈ F(n−k)×k
2

4 NIST defines security categories in [15] with the requirement “Any attack that breaks
the relevant security definition must require computational resources comparable to
or greater than those required for key search on a block cipher with a 128-bit key (e.g.
AES128)” with 128/192/256-bit key size corresponding to CAT-1/3/5, respectively.

22 S. Pircher et al.

Algorithm 2 Encoding
Input: Weight-t row vector e ∈ Fn

2 , public key T
Output: Syndrome c0
1: Construct Hsys = (In−k|T).
2: Compute and output c0 = eHsys

⊤ ∈ Fn−k
2

Algorithm 3 Encapsulation
Input: Public key T
Output: Session key K, chiphertext C
1: Generate a uniform random vector e ∈ Fn

2 of Hamming weight t.
2: Use the encoding subroutine defined in Algorithm 2 on e and public key T to

compute c0
3: Compute C1 = H(2, e) (input to hash function is a concatenation of 2 and e as a

1-byte and ⌈n/8⌉-byte string representation).
4: Put C = (C0, C1) .
5: Compute K = H(1, e, C) (input to hash function is a concatenation of 1, e and C

as a 1-byte, ⌈n/8⌉-byte and ⌈mt/8⌉+ ⌈ℓ/8⌉ string representation).

Algorithm 4 Decoding

Input: vector c0 ∈ Fn−k
2 , private key (s, γ)

Output: Weight-t vector e′ ∈ Fn
2 or Failure

1: Extend c0 to v = (c0, 0, ..., 0) ∈ Fn
2 by appending k zeros.

2: Find the unique codeword c in the Goppa code defined by γ that is at distance ≤ t
from v. If there is no such codeword, return failure.

3: Set e′ = v + c.
4: If w(e′) = t and c0 = e′Hsys

⊤, return e′, otherwise return Failure.

Algorithm 5 Decapsulation
Input: Ciphertext C, Private key (s, γ)
Output: Session key K′

1: Split the ciphertext C as (c0, C1) with c0 ∈ Fn−k
2 and hash C1.

2: Set b← 1.
3: Use the decoding subroutine defined in Algorithm 4 on c0 and private key γ to

compute e′. If the subroutine returns Failure, set e′ ← s and b← 0.
4: Compute C′

1 = H(2, e′) (input to hash function is concatenation of 2 and e′ as a
1-byte and ⌈n/8⌉-byte string representation).

5: If C′
1 ̸= C1, set e′ ← s and b← 0.

6: Compute K′ = H(b, e′, C) (input to hash function is concatenation of b, e′ and C
as a 1-byte, ⌈n/8⌉-byte and ⌈mt/8⌉+ ⌈ℓ/8⌉ string representation).

7: Output session key K′.

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 23

Algorithm 6 Attack Simulation on C-level
1: Specify a ciphertext C as input for the decapsulation function as follows:

i. Choose a plaintext e of Hamming weight wt(e) = 2.
ii. Calculate the ciphertext C = (c0, C1) = (eHsys

⊤,H(2, e))
2: Inject a fault into the error locator polynomial (ELP) as follows:

i. Fix a fault value of ζ ∈ F2m

ii. Start the decapsulation process and let the Berlekamp-Massey algorithm cal-
culate the ELP (in file decrypt.c).

iii. Inject a constant or quadratic fault into the ELP (see Definition 6).
3: Inject a fault and reset the variable called m during decapsulation such that the

following comparisons are bypassed (in file operations.c)
a) Skip the comparison ẽ′Hsys

⊤ = eHsys
⊤ (Alternative: in file decrypt.c clear

8-bit variable ret_decrypt during decapsulation).
b) Skip the comparison C′

1 = H(2, ẽ′) = H(2, e) = C1 (Alternative: in file opera-
tions.c clear 8-bit variable ret_confirm).

4: Reconstruct ẽ′ from the output K̃′ = H(1, ẽ′, (eHsys
⊤,H(2, e))) of the decapsula-

tion function as described in Section 4.2.
5: Calculate an alternative secret key as described in Section 3.4.

References

1. Berlekamp, E.R.: Nonbinary BCH decoding (Abstr.). IEEE Transactions on In-
formation Theory 14(2), 242–242 (1968). https://doi.org/10.1109/TIT.1968.
1054109 (Cited on page 5.)

2. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the Inherent Intractabil-
ity of Certain Coding Problems. IEEE Transactions on Information Theory 24(3),
384–386 (May 1978). https://doi.org/10.1109/TIT.1978.1055873 (Cited on
page 3.)

3. Bernstein, D.J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederha-
gen, R., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Wang,
W.: Classic McEliece: NIST submission (2020), https://classic.mceliece.org/
nist.html, (accessed Sep. 19, 2022) (Cited on pages 2, 3, 5, and 21.)

4. Cayrel, P.L., Colombier, B., Drăgoi, V.F., Menu, A., Bossuet, L.: Message-Recovery
Laser Fault Injection Attack on the Classic McEliece Cryptosystem. In: Advances
in Cryptology – EUROCRYPT 2021. pp. 438–467. Lecture Notes in Computer
Science, Springer International Publishing, Cham (2021). https://doi.org/10.
1007/978-3-030-77886-6_15 (Cited on page 2.)

5. Colombier, B., Dragoi, V.F., Cayrel, P.L., Grosso, V.: Message-recovery Profiled
Side-channel Attack on the Classic McEliece Cryptosystem. Cryptology ePrint
Archive, Paper 2022/125 (2022), https://eprint.iacr.org/2022/125 (Cited on
page 2.)

6. Danner, J., Kreuzer, M.: A Fault Attack on the Niederreiter Cryptosystem us-
ing Binary Irreducible Goppa Codes. Journal of Groups, Complexity, Cryptology
12(1), 2:1–2:20 (Mar 2020). https://doi.org/10.46298/jgcc.2020.12.1.6074,
https://arxiv.org/abs/2002.01455 (Cited on pages 2, 6, 8, 11, and 12.)

7. Davide Schiavone, P., Conti, F., Rossi, D., Gautschi, M., Pullini, A., Flamand, E.,
Benini, L.: Slow and steady wins the race? A comparison of ultra-low-power RISC-
V cores for Internet-of-Things applications. In: International Symposium on Power

https://doi.org/10.1109/TIT.1968.1054109
https://doi.org/10.1109/TIT.1968.1054109
https://doi.org/10.1109/TIT.1968.1054109
https://doi.org/10.1109/TIT.1968.1054109
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://classic.mceliece.org/nist.html
https://classic.mceliece.org/nist.html
https://doi.org/10.1007/978-3-030-77886-6_15
https://doi.org/10.1007/978-3-030-77886-6_15
https://doi.org/10.1007/978-3-030-77886-6_15
https://doi.org/10.1007/978-3-030-77886-6_15
https://eprint.iacr.org/2022/125
https://doi.org/10.46298/jgcc.2020.12.1.6074
https://doi.org/10.46298/jgcc.2020.12.1.6074
https://arxiv.org/abs/2002.01455

24 S. Pircher et al.

and Timing Modeling, Optimization and Simulation (PATMOS). vol. 27, pp. 1–8
(2017). https://doi.org/10.1109/PATMOS.2017.8106976 (Cited on page 18.)

8. Gautschi, M., Schiavone, P.D., Traber, A., Loi, I., Pullini, A., Rossi, D., Flamand,
E., Gürkaynak, F.K., Benini, L.: Near-Threshold RISC-V Core With DSP Ex-
tensions for Scalable IoT Endpoint Devices. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 25(10), 2700–2713 (2017). https://doi.org/
10.1109/TVLSI.2017.2654506 (Cited on page 18.)

9. Gibson, J.K.: Equivalent Goppa Codes and Trapdoors to McEliece’s Public Key
Cryptosystem. In: Advances in Cryptology — EUROCRYPT ’91. pp. 517–521.
Springer, Berlin, Heidelberg (1991) (Cited on page 13.)

10. Guo, Q., Johansson, A., Johansson, T.: A Key-Recovery Side-Channel Attack on
Classic McEliece. Cryptology ePrint Archive, Paper 2022/514 (2022), https://
eprint.iacr.org/2022/514 (Cited on page 2.)

11. Kirshanova, E., May, A.: Decoding McEliece with a Hint - Secret Goppa Key Parts
Reveal Everything. Cryptology ePrint Archive, Paper 2022/525 (2022), https:
//eprint.iacr.org/2022/525 (Cited on pages 2 and 13.)

12. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes, vol. 16.
North-Holland, 1st edn. (1983), isbn: 978-0-444-85193-2 (Cited on page 5.)

13. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory 15(1), 122–127 (1969). https://doi.org/10.1109/TIT.1969.
1054260 (Cited on page 5.)

14. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report 44, 114–116 (Jan 1978) (Cited on page 2.)

15. National Institute for Standards and Technology: Submission Re-
quirements and Evaluation Criteria for the Post-Quantum Cryp-
tography Standardization Process (Dec 2016), https://csrc.nist.
gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf, (accessed Sep. 19, 2022) (Cited
on page 21.)

16. National Institute for Standards and Technology - Computer Security Division, In-
formation Technology Laboratory: Post-Quantum Cryptography Standardization
(Jan 2017), https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization, (accessed Sep. 19, 2022) (Cited
on page 1.)

17. National Institute of Standards: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Tech. Rep. Federal Information Processing Stan-
dard (FIPS) 202, U.S. Department of Commerce (Aug 2015). https://doi.org/
10.6028/NIST.FIPS.202, https://csrc.nist.gov/publications/detail/fips/
202/final (Cited on page 3.)

18. Niederreiter, H.: Knapsack-type Cryptosystems and Algebraic Coding Theory.
Problems Control and Inf. Theory 15(2), 159–166 (1986) (Cited on pages 2 and 3.)

19. OpenHW Group: CV32E40P - GitHub, https://github.com/openhwgroup/
cv32e40p, (accessed Aug. 25, 2022) (Cited on page 18.)

20. OpenHW Group: CV32E40S - GitHub, https://github.com/openhwgroup/
cv32e40s, (accessed Aug. 25, 2022) (Cited on page 18.)

21. Patterson, N.: The algebraic decoding of Goppa codes. IEEE Transactions on In-
formation Theory 21(2), 203–207 (1975). https://doi.org/10.1109/TIT.1975.
1055350 (Cited on page 5.)

22. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA Protected AES by Simultaneous
Laser Fault Injections. In: Workshop on Fault Diagnosis and Tolerance in Cryptog-

https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://eprint.iacr.org/2022/514
https://eprint.iacr.org/2022/514
https://eprint.iacr.org/2022/525
https://eprint.iacr.org/2022/525
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/publications/detail/fips/202/final
https://csrc.nist.gov/publications/detail/fips/202/final
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40s
https://github.com/openhwgroup/cv32e40s
https://doi.org/10.1109/TIT.1975.1055350
https://doi.org/10.1109/TIT.1975.1055350
https://doi.org/10.1109/TIT.1975.1055350
https://doi.org/10.1109/TIT.1975.1055350

Key-Recovery Fault Injection Attack on the Classic McEliece KEM 25

raphy (FDTC). pp. 36–46 (Aug 2016). https://doi.org/10.1109/FDTC.2016.16
(Cited on pages 2 and 7.)

23. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–
1509 (1997). https://doi.org/https://doi.org/10.1137/S0097539795293172,
https://arxiv.org/abs/quant-ph/9508027 (Cited on page 1.)

24. Snyder, W.: Verilator, https://www.veripool.org/verilator/, (accessed Aug.
25, 2022) (Cited on page 18.)

25. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: A Method for Solving
Key Equation for Decoding Goppa Codes. Inform. Control 27(1), 87–99 (1975).
https://doi.org/https://doi.org/10.1016/S0019-9958(75)90090-X (Cited on
page 5.)

26. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.5) (2022), https://www.sagemath.org (Cited on page 14.)

27. Xagawa, K., Ito, A., Ueno, R., Takahashi, J., Homma, N.: Fault-Injection At-
tacks Against NIST’s Post-Quantum Cryptography Round 3 KEM Candidates.
In: Advances in Cryptology – ASIACRYPT 2021. pp. 33–61. Lecture Notes
in Computer Science, Springer International Publishing, Cham (2021). https:
//doi.org/10.1007/978-3-030-92075-3_2 (Cited on pages 2 and 6.)

https://doi.org/10.1109/FDTC.2016.16
https://doi.org/10.1109/FDTC.2016.16
https://doi.org/https://doi.org/10.1137/S0097539795293172
https://doi.org/https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/quant-ph/9508027
https://www.veripool.org/verilator/
https://doi.org/https://doi.org/10.1016/S0019-9958(75)90090-X
https://doi.org/https://doi.org/10.1016/S0019-9958(75)90090-X
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1007/978-3-030-92075-3_2

	Key-Recovery Fault Injection Attack on the Classic McEliece KEM

