
Threshold-Optimal
MPC With Friends and Foes

Nikolas Melissaris1∗, Divya Ravi1∗, and Sophia Yakoubov1∗†

1Aarhus University, Denmark; {nikolas, divya, sophia.yakoubov}@cs.au.dk

Abstract. Alon et. al (Crypto 2020) initiated the study of MPC with
Friends and Foes (FaF) security, which captures the desirable property
that even up to h∗ honest parties should learn nothing additional about
other honest parties’ inputs, even if the t corrupt parties send them extra
information. Alon et. al describe two flavors of FaF security: weak FaF,
where the simulated view of up to h∗ honest parties should be indis-
tinguishable from their real view, and strong FaF, where the simulated
view of the honest parties should be indistinguishable from their real
view even in conjunction with the simulated / real view of the corrupt
parties. They give several initial FaF constructions with guaranteed out-
put delivery (GOD); however, they leave some open problems. Their only
construction which supports the optimal corruption bounds of 2t+h∗ < n
(where n denotes the number of parties) only offers weak FaF security
and takes much more than the optimal three rounds of communication. In
this paper, we describe two new constructions with GOD, both of which
support 2t + h∗ < n. Our first construction, based on threshold FHE, is
the first three-round construction that matches this optimal corruption
bound (though it only offers weak FaF security). Our second construc-
tion, based on a variant of BGW, is the first such construction that offers
strong FaF security (though it requires more than three rounds, as well
as correlated randomness). Our final contribution is further exploration
of the relationship between FaF security and similar security notions. In
particular, we show that FaF security does not imply mixed adversary
security (where the adversary can make t active and h∗ passive corrup-
tions), and that Best of Both Worlds security (where the adversary can
make t active or t + h∗ passive corruptions, but not both) is orthogonal
to both FaF and mixed adversary security.

Keywords: Secure Computation, Friends and Foes, Guaranteed Output Deliv-
ery, Round Complexity

∗Funded by the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under grant agreement No 803096
(SPEC).

†Funded by the Danish Independent Research Council under Grant-ID DFF-2064-
00016B (YOSO).

Table of Contents

Threshold-Optimal MPC With Friends and Foes 1
Nikolas Melissaris, Divya Ravi, and Sophia Yakoubov

1 Introduction . 1
2 Definitions . 5
3 Relation of FaF to Other Notions . 8
4 Building Block: Decentralized Threshold FHE . 11
5 Three-Round MPC with Weak FaF and Guaranteed Output Delivery . 12
6 Optimal-Threshold MPC with Strong FaF and Guaranteed Output

Delivery . 15
A Decentralized Threshold FHE: Formal Definitions 21

1 Introduction

A set of n mutually distrusting parties who have secrets x1, . . . , xn can use se-
cure multi-party computation (MPC) [BGW88,Yao86] to compute a joint func-
tion f(x1, . . . , xn) of their secrets, without revealing anything more about those
secrets to one another. MPC is typically parametrized by a threshold t such that
as long as t or fewer participants collude, they cannot subvert the privacy and
correctness guarantees of the computation. However, if t parties deviate from the
protocol, no guarantees are made about what the remaining n− t parties learn.
Many MPC protocols (such as [IKP10,IKKP15,PR18]) make use of this by rely-
ing on fall-back protocols where, in the event of cheating, if one or more parties
are identified as definitely not being one of the t cheaters, they are entrusted
with the others’ secrets.

Of course, this is not what we would like to use in practice. We would like
even our honest peers — who do not collude with some central malicious ad-
versary — not to learn our secrets. Alon et. al [AOP20] introduce MPC with
Friends and Foes (or MPC with FaF security), which captures exactly this guar-
antee. Informally, a protocol achieves (t, h∗)-FaF security if, as in the standard
definition of MPC, for any (non-uniform) adversary A there exists a simulator
SA which produces a view indistinguishable from that of the t corrupt parties
without seeing the inputs of the honest parties. However, for FaF security, there
must additionally exist a simulator SAH∗ for every subset of up to h∗ of the hon-
est parties which produces a view indistinguishable from that of those honest
parties, without seeing the inputs of the remaining honest parties. This implies
that no matter what messages the corrupt parties send, they can not cause any
h∗ honest parties to learn more about their peers’ inputs than they should.

Alon et. al define two degrees of FaF security:

Weak FaF. Here, though the output of SA must be indistinguishable from
the real view of the t corrupt parties and the output of SAH∗ must be in-
distinguishable from the real view of the h∗ honest parties, taken together,

those views may be distinguishable from the set of real views. (That is, the
simulated views may not be mutually consistent.)
Strong FaF. Here, the outputs of SA and SAH∗ must be jointly indistin-
guishable from the real views of the t corrupt parties and h∗ honest parties.

One can think of strong FaF as modeling the case where the adversary re-
ceives some feedback about what the honest parties learned, and weak FaF as
modeling the case where there is no such feedback.

1.1 Prior Work

Alon et. al showed some inherent limitations on MPC with FaF security (Sec-
tion 1.1), and gave some initial constructions (Section 1.1). Their results pri-
marily focus on the notion of guaranteed output delivery (GOD) where corrupt
parties cannot prevent the honest parties from obtaining the output.

Limitations Alon et. al consider two parameters of MPC protocols: number
of rounds, and thresholds. They showed that two-round MPC with weak FaF
security (and thus also strong FaF security) is impossible even for the lowest
possible thresholds (t = h∗ = 1); so, three rounds is the best we could hope to
achieve. They then showed that even weak FaF security (and thus also strong
FaF security) is unachievable for certain thresholds irrespective of the number
of rounds. In particular, let n be the number of participants, t the bound on the
number of corrupt parties, and h∗ the bound on the number of honest parties
who should learn nothing about other honest parties’ secrets. Alon et. al show
the following:

– Weak FaF secure MPC with 2t+ h∗ ≥ n is impossible.
– Information theoretic (statistical) weak FaF secure MPC is impossible if:
• 2t+ 2h∗ ≥ n (even if broadcast is available).
• 2t+ 2h∗ ≥ n or 3t ≥ n (when broadcast is not available).

– Information theoretic (perfect) weak FaF secure MPC with 3t+ 2h∗ ≥ n is
impossible (even when broadcast is available).

Constructions Alon et. al give several initial constructions of FaF secure
MPC with GOD. They describe a round-optimal (three-round) construction
that achieves strong FaF security, but only for 5t + 3h∗ < n. They also de-
scribe a threshold-optimal (2t + h∗ < n) construction that only achieves weak
FaF security. Finally, they show several information theoretic constructions. We
summarize all of the constructions in Figure 1.

1.2 Our Contributions

In this paper, we close two of the gaps left open by the constructions of Alon
et. al . We also extend the study of how FaF security relates to other security
notions. The focus of our work is FaF security with GOD.

2

Construction FaF Level Security Threshold Rounds Assumptions Preprocessing?

From GMW [AOP20] Weak Comp 2t+ h∗ < n Dependent on κ OT, OWP no
From DI [AOP20] Strong Comp 5t+ 3h∗ < n 3 PRG no

BGW emulation [AOP20] Strong Statistical IT 2t+ 2h∗ < n Dependent on κ Broadcast no
BGW emulation [AOP20] Strong Perfect IT 3t+ 2h∗ < n Dependent on κ None no

Ours
TFHE-FaF Weak Comp 2t+ h∗ < n 3 Lattices no

BGW-BT-Comp Strong Comp 2t+ h∗ < n O(κ) Enhanced
Trapdoor

Permutations

Beaver triples

Fig. 1: Constructions. n denotes the number of participants, t denotes the bound
on the number of corruptions, h∗ denotes the bound on the number of honest
parties against whom we want privacy, and κ denotes the multiplicative depth
of the circuit being evaluated.

First, we give a three-round construction that achieves weak FaF security
for 2t + h∗ < n in the CRS (common reference string) model. This is the first
construction that is optimal both in terms of the number of rounds and in terms
of the threshold (even though it does not achieve the stronger notion of FaF).
Second, we give a construction that achieves strong FaF security for 2t+h∗ < n.
This is the first strong FaF construction to achieve the optimal threshold (though
the number of rounds depends on the multiplicative depth of the function being
computed). A caveat of our second construction is that it relies on correlated
randomness.

Finally, we further the study of the relationship between FaF security and
other related notions of security. Recalling the standard notions, while actively
corrupt parties are completely controlled by the adversary and may deviate
arbitrarily from the protocol; passively corrupt parties follow the protocol steps
but leak their internal states to the adversary. Alon et. al showed that Mixed
Adversary security (where the adversary can make t active corruptions and h∗

passive ones) does not imply FaF security in the computational setting. We show
the other direction; that FaF security does not imply mixed adversary security.
We additionally consider Best of Both Worlds (BoBW) security [IKLP06,Kat07]
(where the adversary can either make t active corruptions or t+h∗ passive ones,
but not both). We show that FaF security does not imply BoBW security, and
vice versa. These results are summarized in Figure 2.

Technical Overview

Three-Round Weak FaF Construction Our three-round construction is based on
decentralized threshold FHE (described in Section 4), and follows the blueprint
of Gordon et. al [GLS15]. In the first round, the participants exchange public
keys. They then encrypt their inputs to the set of all participants’ public keys,
and broadcast the resulting ciphertexts in the second round. Once they receive
one another’s ciphetexts, they perform the homomorphic computation of the
function locally, and broadcast their individual partial decryptions in the third

3

round. Everyone is then able to locally combine these partial decryptions and
obtain the output. Gordon et. al show that this construction achieves guaranteed
output delivery in the presence of a dishonest minority. We show that it has weak
FaF security as long as 2t+ h∗ < n.

Strong FaF Construction Our strong FaF construction is based on BGW [BGW88].
We proceed in three steps; first, we show that BGW with Beaver triple pre-
processing [Bea92] achieves guaranteed output delivery in the presence of an
adaptive mixed adversary making t fail-stop corruptions (where fail-stop cor-
ruptions are similar to passive corruptions, except that the parties may addi-
tionally choose to abort at any step) and h∗ passive corruptions, as long as
2t+h∗ < n. We then apply the compiler of Canetti et. al [CLOS02], which relies
on adaptively secure commitments and zero knowledge proofs, to instead allow
our mixed adversary to make t active corruptions and h∗ passive corruptions.
Finally, we rely on the observation of Alon et. al that adaptive security implies
strong FaF security to obtain our result.

Relation of FaF to Other Notions We consider FaF security, BoBW security
and mixed adversary security. We describe several protocols that achieve some
of these notions but not others, which, taken together with the results of Alon
et. al , shows that all three notions are incomparable. In Figure 2 we summarize
what we know about the relationship of FaF, BoBW and mixed adversaries.

(t, h∗)-FaF

(t, t + h∗)-
BoBW

(t, h∗)-MA

T
he
or
em

1

/

T
h
e
o
re
m

2
/

T
heorem

3
/

[A
O
P2

0]

/

T
h
e
o
re
m

5
/

T
heorem

4
/

Fig. 2: Relationships of FaF to other notions. MA denotes security against mixed
adversaries; BoBW denotes (active / passive) best of both worlds security.

4

1.3 Organization

In Section 2, we recall the definitions of FaF security. In Section 3, we describe
our results about the relationship of FaF, BoBW and mixed adversary security.
In Section 4, we describe decentralized threshold fully homomorphic encryption
(dTFHE), which we use in one of our constructions. In Section 5 and Section 6,
we describe our round optimal weak FaF and strong FaF constructions, respec-
tively.

1.4 Notation

We use λ to denote the security parameter. By poly(λ) we denote a polynomial
function in λ. By negl(λ) we denote a negligible function; that is, a function f
such that f(λ) < 1

p(λ) holds for any polynomial p(·) and sufficiently large λ. We

denote the set {1, . . . , k} by [k] (or, equivalently, by [1, . . . , k]).

2 Definitions

In this section, we recall the definitions given by Alon et. al [AOP20] of Friends
and Foes security. They consider a classical adversary A corrupting t of parties,
who would like to leak unauthorized information to some honest parties. So, we
really have two separate adversaries in this setting:

1. The adversary A who actively corrupts a subset I ⊆ [n] of the parties,
meaning that she can instruct the parties in I to arbitrarily deviate from
the protocol. (A is given auxiliary input yA.)

2. An adversary AH∗ who passively corrupts a subset H∗ ⊆ [n]\I of the honest
parties. (AH∗ is given auxiliary input yH∗ .)

For security parameter λ, inputs x = (x1, . . . xn) and auxiliary inputs yA, yH∗ ,
we define the following random variables for a real-world execution of protocol
Π that computes a function f :

OUTREAL
A,Π (1λ,x) is the output of the non-active parties (where, non-active

refers to the honest and passively corrupt parties) H = [n] \ I.
VIEWREAL

A,Π (1λ,x) is A’s view during an execution of the protocol.

VIEWREAL
A,AH∗ ,Π(1λ,x) is AH∗ ’s view during an execution of the protocol. Since

A’s best strategy in order to leak information is to send her entire view, we
assume that AH∗ ’s view includes A’s view.

We can now formalize the global view of the real world execution of Π:

REALΠ,A,AH∗
1λ,x,yA,yH∗

=
(

VIEWREAL
A,Π (1λ,x),VIEWREAL

A,AH∗ ,Π(1λ,x),OUTREAL
A,Π (1λ,x)

)
It is useful to define the following projection of the global view to the view

of each of the adversaries and the non-active parties’ output:

REALΠ,A,AH∗
1λ,x,yA,yH∗

(A) =
(

VIEWREAL
A,Π (1λ,x),OUTREAL

A,Π (1λ,x)
)

5

and

REALΠ,A,AH∗
1λ,x,yA,yH∗

(AH∗) =
(

VIEWREAL
A,AH∗ ,Π(1λ,x),OUTREAL

A,Π (1λ,x)
)
.

Similarly we can define the following random variables for an ideal-world
execution:

OUTIDEAL
A,f (1λ,x) is the output of the non-active parties in H.

VIEWIDEAL
A,f (1λ,x) is A’s simulated view.

VIEWIDEAL
A,AH∗ ,f (1λ,x) is AH∗ ’s simulated view.

As before we can formalize the global view of the ideal world execution:

IDEALf,A,AH∗
1λ,x,yA,yH∗

=
(

VIEWIDEAL
A,f (1λ,x),VIEWIDEAL

A,AH∗ ,f (1λ,x),OUTIDEAL
A,f (1λ,x)

)
We define the following projections:

IDEALf,A,AH∗
1λ,x,yA,yH∗

(A) =
(

VIEWIDEAL
A,f (1λ,x),OUTIDEAL

A,f (1λ,x)
)

and

IDEALf,A,AH∗
1λ,x,yA,yH∗

(AH∗) =
(

VIEWIDEAL
A,AH∗ ,f (1λ,x),OUTIDEAL

A,f (1λ,x)
)
.

2.1 FaF Security.

We say that a protocol Π computes a functionality f with (t, h∗) -FaF security
if the two following simulators exist for any adversary A that statically corrupts
at most t parties:

– A simulator SA which simulates A’s view in the real world, and
– A simulator SAH∗ which simulates the view of any subset H∗ of size at most
h∗ of the honest parties, such that when given SA’s entire state, SAH∗ can
generate a view that is indistinguishable from the real world view of H∗.

We say that SAH∗ is given the entire state of SA because in the real world,
nothing stops an adversary from sending her entire view to one (or more) honest
parties.

FaF Functionality with GOD In an ideal evaluation of the function f , the parties
interact with the functionality as follows:

Inputs. Each party Pi is given input xi. Adversary A is given auxiliary
input yA ∈ {0, 1}∗ and xi for all i ∈ I. Adversary AH∗ is given auxiliary
input yH∗ ∈ {0, 1}∗ and xi for all i ∈ H∗.

6

Parties Send Input. All non-active parties (i.e. the honest and passive
parties) i ∈ [n] \ I send their inputs xi to the functionality. A chooses in-
puts x′i for i ∈ I as the input of each corrupt party and sends it to the
functionality. For non-active parties i, we define x′i := xi.

Computation. The functionality computes z = (z1, . . . , zn) = f(x′1, . . . , x
′
n)

and sends zi to each party i.

AH∗ receives A’s state. AH∗ receives A’s randomness, inputs, auxiliary
input, and zi for i ∈ I.

Output. Each non-active party i outputs zi, while the corrupted parties
output nothing. AH∗ and A output some function of their view.

Weak and Strong FaF Definitions In the following, we use ≡ to denote compu-
tational indistinguishability.

Definition 1 (Weak FaF). Let Π be a protocol for computing f . We say that
Π computes f with computational weak (t, h∗)-FaF security (with GOD), if the
following holds. For every non-uniform PPT adversary A controlling a set I ⊂
[n] of size at most t in the real world, there exists a non-uniform PPT simulator
SA controlling I in the ideal world; and for every subset of the remaining parties
H∗ ⊂ [n]\I of size at most h∗ controlled by a non-uniform passive PPT adversary
AH∗ there exists a non uniform PPT simulator SAH∗ , controlling H∗ in the ideal
world such that

IDEAL
SA,SAH∗
1λ,x,yA,yH

(
SA
)
≡ REALA,AH

1λ,x,yA,yH

(
A
)

and

IDEAL
SA,SAH∗
1λ,x,yA,yH

(
SAH∗

)
≡ REALA,AH

1λ,x,yA,yH

(
AH∗

)
for any set of inputs x ∈ ({0, 1}∗)n, any auxiliary inputs (yA, yH∗) ∈ ({0, 1}∗)2,

and any large enough security parameter λ ∈ N.

Definition 2 (Strong FaF). For A,SA,SAH∗ defined as in Definition 1, we
say that Π computes f with computational strong (t, h∗)-FaF security (with
GOD), if

IDEAL
SA,SAH∗
1λ,x,yA,yH

≡ REALA,AH
1λ,x,yA,yH

for any set of inputs x ∈ ({0, 1}∗)n, any auxiliary inputs (yA, yH∗) ∈ ({0, 1}∗)2,
and any large enough security parameter λ ∈ N.

The main difference is that in the strong notion of FaF security we want the
simulated views of A and AH∗ to be indistinguishable from the real views even
when taken together.

7

3 Relation of FaF to Other Notions

Somewhat surprisingly, Alon et. al show that standard security against a static
adversary making t+ h∗ active corruptions does not imply (t, h∗) FaF security.
Informally, this is because the simulator SAH∗ for the honest parties is not
allowed to choose which input to send to the ideal functionality, so it does not
have as much power as the standard security simulator S. Security against a
(t, h∗) mixed adversary making t active corruptions and h∗ passive corruptions
also does not imply (t, h∗) FaF security. This is because the mixed adversary
simulator can decide the active parties’ inputs based on the passive parties’
inputs; however, the FaF simulator SA does not know any of the honest parties’
inputs when simulating.

On the other hand, Alon et. al show that security against an adaptive ad-
versary making t+h∗ active corruptions does imply (t, h∗) FaF security. This is
because a simulator for an adaptive adversary needs to be able to handle cor-
ruptions which occur after the end of the protocol execution, at which point it
cannot choose the input even for actively corrupt parties. We observe that the
proof given by Alon et. al also shows that security against an adaptive mixed
(t, h∗) adversary making t active corruptions and h∗ passive corruptions implies
(t, h∗) FaF security, and we use this in our strong FaF construction.

Here, we further explore the relationship between FaF security and other se-
curity notions. First, we show the other direction: that (t, h∗) FaF security does
not imply security against a (t, h∗) mixed adversary making t active corruptions
and h∗ passive corruptions, making the FaF and mixed adversary models incom-
parable. We do so by giving an example (Example 1) of a protocol that achieves
(t, h∗) FaF security but not (t, h∗) mixed adversary security. We also consider
(t, t+ h∗) Best of Both Worlds (BoBW) security, where the same protocol must
tolerate either t active corruptions or t+h∗ passive corruptions (but not both).
We show that BoBW is incomparable to both FaF and mixed adversaries.

Example 1 (Π¬MA). Consider a function f(x1, . . . , xn), and a protocol ΠFaF that
computes any function with (t, h∗) FaF security. Now, consider a function g((x1, ρ1),
. . . , (xn, ρn)), where each party Pi has an additional input ρi. g returns (x1, . . . , xn)
to everyone if at least t + 1 of the ρi’s are equal, and returns f(x1, . . . , xn) to
everyone otherwise. The following protocol Π¬MA computes f(x1, . . . , xn) with
(t, h∗) FaF security but not with security against a (t, h∗) mixed adversary.

1. Each party Pi chooses ρi uniformly at random from a large space.

2. The parties use ΠFaF to compute g((x1, ρ1), . . . , (xn, ρn)).

3. Each party outputs the value returned by ΠFaF.

Theorem 1. Protocol Π¬MA (Example 1) computes f(x1, . . . , xn) with (t, h∗)
FaF security but not with security against a (t, h∗) mixed adversary making t
active corruptions and h∗ passive corruptions.

8

Proof. Π¬MA achieves FaF security, because the adversary cannot possibly guess
the honest parties’ randomly chosen values ρi, and so cannot exploit the addi-
tional leakage given by the output of g.

However, the mixed adversary knows h∗ passive party inputs and randomly
chosen ρi’s, and can choose one of those to set corrupt parties’ ρi’s to. This
allows the mixed adversary to learn all parties’ inputs, and is clearly insecure.

Remark 1. We observe that since the above reduction (Example 1) is information-
theoretic, plugging in the statistically-secure FaF protocol of [AOP20] to instan-
tiate ΠFaF would yield a statistically-secure protocol Π¬MA that satisfies (t, h∗)
FaF security but not (t, h∗) mixed security. This shows a separation between
statistical FaF and mixed security at the protocol level, which was left as an
open question in [AOP20] (the only known separation at the protocol level was
for computational security).

Theorem 2. If ΠFaF from Example 1 is replaced with a protocol ΠBoBW which
has (t, t+h∗) BoBW security, then protocol Π¬MA (Example 1) computes f(x1, . . . , xn)
with (t, t+ h∗) BoBW security, but not with security against a (t, h∗) mixed ad-
versary making t active corruptions and h∗ passive corruptions.

Proof. Π¬MA achieves BoBW security, since an adversary making just t corrup-
tions cannot guess honest parties’ ρi values and thus cannot exploit the addi-
tional leakage, and an adversary making t + h∗ corruptions cannot dishonestly
choose passive parties’ values ρi to be equal.

However, as in the proof of Theorem 1, the mixed adversary knows h∗ passive
party inputs and randomly chosen ρi’s, and can choose one of those to set corrupt
parties’ ρi’s to.

We next show that BoBW security does not imply FaF security, by giving
an example (Example 2) of a protocol that achieves (t, t + h∗) BoBW security
but not (t, h∗) FaF security.

Example 2 (Π¬FaF). Consider a function f(x1, . . . , xn), and a protocol ΠBoBW

that computes any function with (t, t+h∗) BoBW security. The following proto-
col Π¬FaF computes f(x1, . . . , xn) with (t, t + h∗) BoBW security, but not with
(t, h∗) FaF security.

1. The parties use ΠBoBW to compute f(x1, . . . , xn).

2. If a party Pi receives a special “attack” message from t parties, it sends it’s
input xi to the other n− t parties. (Note that sending an “attack” message
is not part of the instructions.)

3. Each party outputs the value returned by ΠBoBW.

Theorem 3. Protocol Π¬FaF (Example 2) computes f(x1, . . . , xn) with (t, t+h∗)
BoBW security, but not with (t, h∗) FaF security.

9

Proof. Π¬FaF achieves (t, t + h∗) BoBW security: if there are only passive cor-
ruptions, no party will send an “attack” message, and thus the second step of
Π¬FaF will never come into play. If there are only t active corruptions, they are
able to trigger the attack, but will not learn the honest parties’ inputs because
those inputs are only sent to parties who didn’t send attack messages. Π¬FaF

does not achieve (t, h∗) FaF security: the t corrupt parties can easily trigger an
attack, causing all the honest parties to learn one another’s inputs.

It remains to show that neither FaF or mixed adversary security imply BoBW
security. This follows from the fact that in both FaF and mixed adversary secu-
rity, the simulator can choose the inputs of the actively corrupt parties. However,
in BoBW security, in the case where the adversary only makes passive corrup-
tions, the simulator is unable to choose the inputs of any parties.

Example 3 (Π¬BoBW). Consider a function f(x1, . . . , xn), and a protocol ΠFaF

that computes f with (t, h∗) FaF security. Now, consider a function g((x1, y1),
. . . , (xn, yn)), where each party Pi has an additional input yi. g returns yi ∧
f(x1, . . . , xn) to each party Pi. It returns ⊥ to everyone else. The following
protocol Π¬BoBW computes g((x1, y1), . . . , (xn, yn)) with (t, h∗) FaF security but
not with (t, t+ h∗) BoBW security.

1. The parties use ΠFaF to compute z = f(x1, . . . , xn).

2. Each party Pi outputs yi ∧ z.

Theorem 4. Protocol Π¬BoBW (Example 3) computes g((x1, y1), . . . , (xn, yn))
with (t, h∗) FaF security but not with (t, t+ h∗) BoBW security.

Proof. Π¬BoBW achieves (t, h∗) FaF security: a simulator can always set one of
the actively corrupt parties’ auxiliary inputs yi to be 1 to learn the output of f .

However, it does not achieve BoBW security: in the case where the adversary
can only make passive corruptions, if all parties’ auxiliary inputs yi are 0, the
simulator does not learn the output of f , which it needs in order to simulate
successfully.

Theorem 5. If ΠFaF from Example 3 is replaced with a protocol ΠMA which has
(t, h∗) mixed adversary security, then protocol Π¬BoBW (Example 3) computes
g((x1, y1), . . . , (xn, yn)) with (t, h∗) mixed adversary security but not with (t, t+
h∗) BoBW security.

The proof is the same as the proof of Theorem 4.

Remark 2. We design the function g in such a way that any party can learn
the output of f by setting their auxiliary input yi to 1. This gives us FaF and
mixed adversary security; no matter whom the adversary actively corrupts, the
simulator can use that party to learn the output of f , and simulate for the rest.

10

4 Building Block: Decentralized Threshold FHE

We recap the definitions of d-out-of-n decentralized threshold fully homomorphic
encryption (dTFHE) as presented by Boneh et al. [BGG+18].

Syntax A dTFHE scheme is a tuple of PPT algorithms (DistGen,Enc,Eval,PDec,
Combine,SimPDec) with the following syntax:

DistGen(1λ, 1κ, i; ρi)→ (pki, ski): On input the security parameter λ, a depth
bound κ, party index i and randomness ρi, the distributed setup outputs a
public-secret key pair (pki, ski) for party i. The public key of the scheme is
denoted by pk = (pk1 ‖ pk2 ‖ . . . ‖ pkn).

Enc (pk,m; ρ)→ c: On input a public key pk and a plaintext m in the mes-
sage space M, the randomized algorithm outputs a ciphertext c.

Eval (pk, C, c1, . . . , ck)→ c: On input a public key pk, a circuit C : Mk →
M of depth at most κ, and a set of k ciphertexts c1, . . . , ck (where k =
poly(λ)), the evaluation algorithm outputs an encrypted evaluation c.

PDec (pk, ski, c)→ di: On input the public key pk, a ciphertext c and a se-
cret key ski the algorithm outputs a partial decryption di.

Combine (pk, {di}i∈S)→ m\⊥: On input a public key pk and a set partial
decryptions {di}i∈S where S ⊆ [n], the combination algorithm outputs a
plaintext m or the symbol ⊥.

SimPDec (c, pk, {ski}i∈I , z)→ {di}i∈[n]\I: On input a ciphertext c, the pub-
lic key pk, the secret keys of at most d parties, and the target plaintext z,
the simulated decryption algorithm outputs partial decryptions on behalf of
the rest of the parties which are consistent with c decrypting to z.

Properties As in a standard homomorphic encryption scheme, we require that
a dTFHE scheme satisfies correctness and security, which we describe informally
below. We give the formal definitions in Appendix A.

Correctness. Informally, a dTFHE scheme is said to be correct if combining
at least d+1 partial decryptions of any honestly generated ciphertext output
by the evaluation algorithm returns the correct evaluation of the correspond-
ing circuit on the underlying plaintexts.
Semantic Security. Informally, a dTFHE scheme satisfies semantic secu-
rity if no PPT adversary can distinguish between encryptions of a pair of
(adversarially chosen) plaintext messages m0 and m1 of the same length,
even given the secret keys corresponding to a subset I of the parties for any
set I of size at most d. Since we use the dTFHE scheme as a tool in our

11

semi-malicious MPC construction1, we define the notion with respect to a
semi-malicious adversary A.
Simulation Security. Informally, a dTFHE scheme satisfies simulation se-
curity if there exists an efficient algorithm SimPDec that takes as input a
ciphertext c, the public key pk, the secret keys of at most d parties and the
target plaintext z, and outputs a set of partial decryptions on behalf of the
rest of the parties such that its output is computationally indistinguishable
from the output of the real algorithm PDec that outputs partial decryptions
of the ciphertext c using the corresponding secret keys for the same subset
of parties. Similar to semantic security, we define this notion with respect to
a semi-malicious adversary A.

5 Three-Round MPC with Weak FaF and Guaranteed
Output Delivery

In this section, we present a three-round MPC construction in the CRS model
(where it is assumed that parties have access to a common reference string at
the beginning of the protocol execution) that achieves weak FaF security and
GOD when n > 2t + h∗. This is round-optimal, following the impossibility of
two-round MPC with weak FaF security and GOD shown in [AOP20] (which
holds even in the CRS model). Specifically, their result shows that there are
functionalities that cannot be computed with (1, 1) weak FaF security and GOD
in less than three rounds, for any n ≥ 3.

Our construction is based on the three-round construction of Gordon et. al
[GLS15] that achieves standard security with GOD against t < n/2 active cor-
ruptions. At a high-level, this construction uses the tool of distributed threshold
fully homomorphic encryption scheme (dTFHE) with threshold t and proceeds
as follows. First, the distributed setup allows the parties to obtain their individ-
ual public / secret key pairs. Each of them broadcasts their public key. Next,
the parties broadcast encryptions of their input, which can be homomorphically
evaluated to compute an encryption of the output. In the last round, the parties
compute and broadcast partial decryptions of the output ciphertext, which can
be combined to obtain the output.

We observe that the above construction admits (t, h∗) weak FaF security
and GOD when n > 2t+ h∗, if a dTFHE scheme with threshold (t+ h∗) is used
instead. Intuitively, security of such a dTFHE scheme ensures that the joint view
of the active and passively corrupt parties comprising of (t+h∗) secret keys does
not reveal any information about the inputs of the honest parties (beyond the
output of computation). Correctness of such a scheme ensures that even if up
to t parties abort, guaranteed output delivery is achieved because the partial
decryptions sent by the remaining n− t > t+ h∗ parties suffice to compute the
output.

1where semi-malicious security [AJL+12] refers to security against an adversary
who needs to follow the protocol specification, but has the liberty to decide the input
and random coins in each round.

12

Similar to the work of Gordon et. al [GLS15], we present a three-round con-
struction Πsm

wFaF that is secure against semi-malicious adversaries. Semi-malicious
security was introduced by Aashrov et. al [AJL+12] and subsequently used in
many works as a stepping-stone on the way to achieving active security. Recall
that a semi-malicious adversary needs to follow the protocol specification, but
has the liberty to decide the input and random coins in each round. Addition-
ally, the parties controlled by the semi-malicious adversary may choose to abort
at any time. To upgrade a semi-malicious construction to achieve active secu-
rity, the general round-preserving compiler of Asharov et. al uses UC NIZKs
(non-interactive zero-knowledge proofs) in the CRS model.

We give a formal description of the protocol Πsm
wFaF below.

Inputs: Each party Pi has an input xi ∈ {0, 1}λ.
Output: f(x1, . . . , xn), where the function f is represented by a circuit C.
Tools: A (t+h∗)-out-of-n dTFHE scheme (DistGen,Enc,Eval,PDec,Combine,
SimPDec). Such a scheme can be built based on LWE [BGG+18,GLS15].

Round 1: Each party Pi does the following:

– Computes (pki, ski)← DistGen(1λ, 1κ, i; ρi) using randomness ρi.
– Broadcasts pki.

Round 2: All parties set pk := (pk1|| . . . ||pkn) (where a default public key
is used corresponding to parties who have aborted in the first round).
Each party Pi does the following:

– Computes the encryption of its input as ci ← Enc(pk, xi).
– Broadcasts ci.

Round 3: Each party Pi does the following:

– Computes the homomorphic evaluation of the circuit C on the ciphertexts
as c← Eval(pk, C, c1, . . . , cn), where cj is computed using default input
and randomness if Pj aborted during the previous rounds.

– Computes her own partial decryption as di ← PDec(pk, ski, c).
– Broadcasts the partial decryption di.

Output Computation: Let S ⊆ [n] denote the set of parties who have
not yet aborted. Each party combines the partial decryptions broadcast by
parties in S to obtain the output as z ← Combine(pk, {dj}j∈S).

Protocol Πmal
wFaF. Let Πmal

wFaF denote the three-round construction obtained by ap-
plying the compiler of Asharov et. al [AJL+12] to the three-round protocol
Πsm

wFaF in the semi-malicious setting. In particular, in every round of Πmal
wFaF, each

party executes the actions of the corresponding round of Πsm
wFaF along with a

non-interactive zero-knowledge proving that she is following the protocol consis-
tently with respect to certain random coins. This compiler is round-preserving
and preserves security of the underlying construction (i.e. if the underlying pro-
tocol achieves GOD, so does the compiled protocol).

We state the formal theorem below.

13

Theorem 6. Let f be an efficiently computable n-party function and let n >
2t + h∗. Assuming a setup with CRS and the existence of a (t + h∗)-out-of-
n decentralized threshold fully homomorphic encryption scheme, the three-round
protocol Πmal

wFaF achieves (t, h∗) weak FaF security with guaranteed output delivery.

Proof. To prove the theorem, we construct the simulators SA and SAH∗ for Πsm
wFaF

in the semi-malicious setting. This suffices to complete the proof, since active
security would directly follow from the result of [AJL+12].

We begin with the description of SA. Let I and H∗ denote the set of indices
of the t semi-malicious corrupt parties and the remaining parties respectively.

First Round: SA simulates public keys of honest parties by honestly gen-
erating key pairs.
Second Round: SA simulates input ciphertexts by broadcasting cj ← Enc(pk, 0)
on behalf of Pj , where j ∈ [n] \ I.
Third Round: SA does the following:
– Computes c ← Eval(pk, C, c1, . . . , cn) honestly, where ci is computed

using default input and randomness if Pi (i ∈ I) aborted during the
previous rounds.

– Reads the witness tape of the semi-malicious adversaries to learn the
inputs xi and secret keys ski for each i ∈ I. If Pi has aborted, xi is set
as the default input.

– Invokes the ideal functionality F on inputs xi for i ∈ I and receives the
output z.

– Runs the simulated decryption algorithm to obtain partial decryptions
as {dj}j∈[n]\I ← SimPDec (c, pk, {ski}i∈I , z).

– Broadcasts the partial decryption dj on behalf of party Pj (j ∈ [n] \ I).

Consider the following sequence of hybrids:

Hyb0: Same as the real world execution of Πsm
wFaF.

Hyb1: Same as Hyb0, except that the partial decryptions for honest parties
are computed as SimPDec (c, pk, {ski}i∈I , z) instead of PDec(pk, ski, c). It
follows from simulation security of the dTFHE scheme that this hybrid is
indistinguishable from the previous hybrid.

Hyb2: Same as Hyb1, except that the input ciphertexts of honest parties are
computed as cj ← Enc(pk, 0) using a dummy input 0 for j ∈ [n]\I, instead of
using the actual input xj . It follows from the semantic security of the dTFHE
scheme that this hybrid is indistinguishable from the previous hybrid.

Since Hyb2 corresponds to the ideal execution and every pair of consecutive
hybrids are indistinguishable, this completes the proof that the view of A in the
real world is indistinguishable from her view in the ideal world execution.

Next, suppose we fix the adversary A corrupting the parties in I where I is
of size at most t, and let H∗ ⊆ [n] \ I of size at most h∗. The passive simulator
SAH∗ works very similarly to SA. The only difference is that the messages the

14

simulator sends to the adversary on behalf of the parties in H∗ are the actual
messages computed as per protocol specifications. For instance, the input cipher-
texts will be computed as encryptions of the real inputs of parties in H∗ (unlike
in SA where it was computed as encryptions of dummy input 0). Similarly, the
partial decryptions of the parties in H∗ would be computed honestly using their
secret keys (not as output of SimPDec). Lastly, the sequence of hybrids and
indistinguishability can be argued as above; it follows from the semantic and
simulation security of the dTFHE scheme having threshold (t+ h∗).

Remark 3. Note that the protocol described in this section is not strongly FaF
secure; this is because the simulator SA does not know the honest parties’ inputs,
and instead encrypts a default value on their behalf. However, this simulation
cannot then be consistent with an honest party’s simulated view, since their
view must include their real input and randomness that maps that input to the
ciphertext they broadcast.

6 Optimal-Threshold MPC with Strong FaF and
Guaranteed Output Delivery

Alon et. al [AOP20] showed that even weak FaF with GOD is impossible if
2t+h∗ ≥ n. Their proof holds even if arbitrary correlated randomness is available
to the parties. So, the best that we could possible hope for is strong FaF with
GOD and 2t+ h∗ + 1 = n.

In this section we prove that BGW with Beaver triple preprocessing and aug-
mented with adaptive zero knowledge proofs achieves exactly this. We do this in
three steps, as described in Figure 3. First, in Section 6.1, we prove that BGW
with Beaver triple preprocessing achieves security with GOD against adaptive
mixed (fail-stop / passive) adversaries. Second, in Section 6.2, we use the com-
piler of Canetti et. al [CLOS02] to show that our protocol against adaptive mixed
(fail-stop / passive) adversaries can be augmented with adaptive commitments
and zero knowledge proofs of correct behavior in order to achieve security against
adaptive mixed (active / passive) adversaries. Third, we invoke a theorem from
Alon et. al [AOP20] to argue that any such protocol achieves GOD with strong
FaF security.

Adaptive Mixed-
Adversary Security
(t fail-stop corrup-
tions, h∗ passive

corruptions)

Adaptive Mixed-
Adversary Security
(t active corrup-
tions, h∗ passive

corruptions)

(t, h∗)-FaF
[CLOS02] [AOP20]

Fig. 3: Getting (t, h∗)-FaF Security from BGW

15

We restate the theorem of Alon et. al [AOP20] which connects adaptive se-
curity to strong FaF below. Alon et. al prove that (t + h∗) adaptive security
implies (t, h∗) FaF; however, their proof can be strengthened (with no modifica-
tions necessary) to show that adaptive mixed security with a corruption budget
of t active corruptions and h∗ passive corruptions implies (t, h∗) FaF.

Theorem 7 ([AOP20], Theorem 5.3). Let type ∈ {computational, statistical,
perfect}, and let Π be an n-party protocol computing some n-party functional-
ity f with type adaptive mixed security with a corruption budget of t active
corruptions and h∗ passive corruptions. Then Π computes f with type strong
(t, h∗)-FaF-security.

6.1 Adaptive BGW Against Mixed (Fail-Stop / Passive)
Adversaries

We first recall BGW (Section 6.1), and how Beaver triples can be used to improve
the corruption threshold (Section 6.1).

Brief Overview of BGW Without Preprocessing Let F be a finite field. A
secret value s is secret shared using a polynomial fs(x) ∈ F[x] of degree d such
that fs(0) = s and each party Pi holds fs(i). The evaluation of the circuit then
proceeds gate by gate. In order to add two secret shared values x and y, each
party Pi can locally add the shares fx(i) and fy(i) that they are holding to get
fx+y(i) = fx(i) + fy(i). This is a valid sharing of x + y, because fx+y is of the
same degree as fx and fy and fx+y(0) = fx(0) + fy(0) = x + y. To reconstruct
an output z, all parties broadcast their share fz(i), and everyone interpolates
the polynomial.

Multiplication gates pose more of a challenge. If a party Pi computes f ′xy(i) =
fx(i)fy(i), she gets a point on a polynomial f ′xy such that f ′xy(0) = xy, which
is what we wanted. The caveat is that f ′xy is of degree 2d; if the degree keeps
growing in this way, it will be too high to admit interpolation given only n − t
points (which is necessary if we would like to withstand fail-stop corruptions).
Additional work needs to be done to reduce the degree of this polynomial: 2d+1
parties Pi need to reshare their points f ′xy(i) using a new d-degree polynomial
(that is, party Pi will pick a random polynomial ri of degree t such that ri(0) =
f ′xy(i) and send ri(j) to all other parties Pj). Each party Pj can locally compute
fxy(j) =

∑
i∈R λiri(j) where the λi’s are the appropriate Lagrange coefficients.

Threshold Requirements Now, consider the (t, h∗)-FaF setting. In order to with-
stand fail-stop corruptions, even during degree reduction, we need 2d < n − t.
In order to have FaF security, we need t+ h∗ ≤ d. We thus need

t+ h∗ <
n− t

2

⇒ 3t+ 2h∗ < n,

which is not optimal.

16

Brief Overview of BGW With Preprocessing In order to approach the
optimal threshold, we change the way we do multiplication to rely on Beaver
triple pre-processing [Bea92]. We give each party shares fa(i), fb(i), fc(i) of a
randomly chosen a and b, and of their product c = ab. We use these shares in
order to multiply x and y as follows. Each party Pi computes fδ(i) = fx(i)−fa(i)
and fε(i) = fy(i) − fb(i) and broadcasts these values. All parties reconstruct
δ = x− a and ε = y − b, and compute fxy(i) = fc(i) + εfx(i) + δfy(i)− δε. We
can see that fxy has the same degree d, and that fxy(0) = c + εx + δy − δε =
c+(y−b)x+(x−a)y−(x−a)(y−b) = c+xy−xb+yx−ya−xy+xb+ya−ab = xy,
because c = ab.

Threshold Requirements As in Section 6.1, in order to have FaF security, we need
t + h∗ ≤ d. However, in order to withstand fail-stop corruptions, now we only
need d < n − t. Putting these together, we need t + h∗ < n − t ⇒ 2t + h∗ < n,
which is optimal.

Adaptive Security of BGW With Preprocessing We now prove that BGW
with Preprocessing with 2t+ h∗ < n and with d = t+ h∗ is adaptively secure.

Theorem 8. The construction summarized in Section 6.1 with 2t + h∗ < n
and with d = t + h∗ achieves security with guaranteed output delivery against
an adaptive adversary with a budget of t fail-stop corruptions and h∗ passive
corruptions.

We follow the blueprint of Damg̊ard and Nielsen [DN14] for proving the
adaptive security of BGW. We start by describing a simulator Sstatic for a static
adversary, who is given the inputs of the passive and the fail-stop corrupted
parties (which are similar to passive corruptions except that the adversary can
choose to abort them at any step in the real world and substitute their input
with a default input in the ideal world). Sstatic interacts with the adversary on
behalf of the set H of the n − t − h∗ honest parties. She shares the input 0 on
behalf of honest parties Pi ∈ H. If a fail-stop party Pi fails to share an input,
that party implicitly gives the degree 0 sharing of 0, where every share is 0
(thereby, its default input can be considered as 0). Sstatic forwards these inputs
to the ideal functionality to obtain the output. Sstatic follows the protocol on
behalf of the honest parties up until it’s time to reconstruct the output. When
it’s time to reconstruct the output, Sstatic computes the difference δ = z − z′,
where z′ is the computed output (shared on the polynomial fz′), and z is the
output dictated by the ideal functionality. Sstatic chooses a random polynomial
∆ of degree d such that ∆(0) = δ and ∆(i) = 0 for all i ∈ I. Notice that fz′ +∆
is a sharing fz of the desired output z = z′+δ. Sstatic uses shares fz(i) on behalf
of honest parties Pi ∈ H. (We make use of an assumption that the output z is
produced by a multiplication gate. This forces the polynomial fz used for the
output to be a random degree d polynomial with the only constraint being that
fz(0) = z.)

17

We now describe the simulator S for an adaptive adversary. S starts out
much like Sstatic, by interacting with the adversary on behalf of the initial set
H of honest parties, and maintaining a record of their views (including their
shares of all intermediate values). However, unlike Sstatic, at any point S may
be asked to explain the view of one of these honest parties Pi, in the event that
Pi becomes corrupt. It is insufficient for S to hand over the current simulated
view of Pi, since S used the input 0 on behalf of Pi; this makes the simulated
view clearly distinguishable from the real view, where the real input would have
been used. So, S must adjusts the shares she has stored to account for the use
of the real input. Upon the corruption of party Pi, the simulator makes the
following adjustments:

Shares of Input xi: When party Pi is corrupted, S learns the real input
xi. Let H be the set of parties who were honest before the corruption of party
Pi, and I be the set of parties who were corrupt. Note that |I| < t+h∗ = d;
so, the views of the parties in I contain no information about {fxi(j)}j∈H,
even if she knew xi. S cannot change the shares of parties in I, so she picks
a random difference polynomial ∆ s.t. ∆(0) = xi and ∆(i) = 0 for i ∈ I. S
updates the sharing polynomial as fxi := fxi +∆.

Addition or Multiplication by a Constant: In this case we only have
local computation, so S simply recomputes the shares of the honest parties
that were affected by the change to fxi .

Multiplication: Recall that for the multiplication of x by y each party j
has published her share of δ, which is fδ(j) = fx(j) − fa(j), and her share
ε, which is fε(j) = fy(j) − fb(j) (where a, b and c is the Beaver triple s.t.
c = ab). We will consider only x, a and δ; the case for y, b and ε is analogous.
Since the adversary already saw δ = x−a, and x might have changed, S must
adjust a accordingly. Let xold be the old value of x (shared on fxold), and aold
be the old value of a (shared on faold). S defines a := aold+(x−xold), and lets
fa := faold+fx−fxold . Observe that δ = xold−aold = xold−(a−(x−xold)) =
xold − a+ x− xold = x− a, as desired. The shares on fa are now consistent
with the shares of δ previously published.

Note that we have changed the values of a and b, but not the value of c; so, it
may no longer be the case that c = ab. However, this is not a problem, since
the view of the adversary has no information about c (as she has insufficient
shares).

Output Reconstruction: For an output z, the adversary has already seen
all of the points on fz. So, now we need to fix Pi’s view to be consistent with
fz(i). Recall that we assume that the output is produced by a multiplication
gate, which uses a Beaver triple a, b, c. Let cold be the old value of c (shared
on fcold). Let a (shared on fa) and b (shared on fb) be the rest of that Beaver
triple, and let x (shared on fx) and y (shared on fy) be the two inputs to the
multiplication gate. Recall that δ = x− a and ε = y − b are fixed. S defines

c := z −
(
εx + δy − δε

)
, and fc := fz − (εfx + δfy − δε). This is consistent

with what the adversary has seen.

18

As before, it may no longer be the case that c = ab; however, this is not a
problem, since the adversary will have seen too few shares to be able to tell.

6.2 Adaptive BGW Against Mixed (Active / Passive) Adversaries

We now discuss how the security of the construction in Section 6.1 can be boosted
to achieve guaranteed output delivery against a mixed adaptive adversary con-
trolling t parties actively and h∗ parties passively. This can be done by using the
generic compiler of Canetti et. al [CLOS02] that transforms a protocol secure
against adaptive fail-stop corruptions to a protocol secure against adaptive active
corruptions. At a high-level, this compiler follows the GMW compiler paradigm
[GMW87] where the parties (a) run an augmented coin-tossing protocol to ob-
tain their respective uniformly distributed random tapes and commitments to
other parties’ random tapes, (b) commit to their inputs, (c) run the underly-
ing fail-stop adaptively secure MPC protocol, while proving in each round using
zero-knowledge that the computations have been done correctly. We can use the
same compiler to upgrade security of the construction in Section 6.1 (achieving
adaptive security against t fail-stop corruptions and h∗ passive corruptions) to
adaptive security against t active corruptions and h∗ passive corruptions with a
minor simplification. Since our underlying protocol satisfies perfect correctness
(i.e. the protocol results in the correct output when everyone executes the pro-
tocol steps honestly, irrespective of the choice of random tapes of the parties),
the augmented coin-tossing protocol used to determine the random tapes of the
parties in the compiler of Canetti et. al can be avoided. The rest of the compiler
remains the same; it relies on adaptively secure commitment and zero-knowledge
tools (which can be based on enhanced trapdoor permutations).

We argue that this simplified compiler preserves guaranteed output delivery.
This is because, whenever an actively corrupt party misbehaves in the compiled
protocol (for instance, a party aborts or the zero-knowledge proof showing the
correctness of her actions in round r of the underlying protocol fails), such a
scenario can be translated to an analogous scenario in the underlying protocol
where the same party is fail-stop corrupt and stops communicating in round r.
It is now easy to see that since the underlying protocol achieved GOD against
t fail-stop and h∗ passive corruptions, the same guarantees must hold against t
active and h∗ passive corruptions in the compiled protocol as well.

We state the formal theorem below.

Theorem 9. The construction summarized in Section 6.2 with 2t+h∗ < n and
with d = t + h∗ achieves security with guaranteed output delivery against an
adaptive adversary with a budget of t active corruptions and h∗ passive corrup-
tions.

References

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In David

19

Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

AOP20. Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky. MPC with friends and
foes. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 677–706. Springer, Heidelberg, Au-
gust 2020.

Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–
432. Springer, Heidelberg, August 1992.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
565–596. Springer, Heidelberg, August 2018.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In 34th ACM
STOC, pages 494–503. ACM Press, May 2002.

DN14. Ivan Damg̊ard and Jesper Buus Nielsen. Adaptive versus static security
in the UC model. In Sherman S. M. Chow, Joseph K. Liu, Lucas C. K.
Hui, and Siu-Ming Yiu, editors, ProvSec 2014, volume 8782 of LNCS, pages
10–28. Springer, Heidelberg, October 2014.

GLS15. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with
fairness and guarantee of output delivery. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 63–82. Springer, Heidelberg, August 2015.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

IKKP15. Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-
Cherniavsky. Secure computation with minimal interaction, revisited. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 359–378. Springer, Heidelberg, Au-
gust 2015.

IKLP06. Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On com-
bining privacy with guaranteed output delivery in secure multiparty com-
putation. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 483–500. Springer, Heidelberg, August 2006.

IKP10. Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty com-
putation with minimal interaction. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 577–594. Springer, Heidelberg, August 2010.

Kat07. Jonathan Katz. On achieving the “best of both worlds” in secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM
STOC, pages 11–20. ACM Press, June 2007.

PR18. Arpita Patra and Divya Ravi. On the exact round complexity of secure
three-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 425–458.
Springer, Heidelberg, August 2018.

20

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

A Decentralized Threshold FHE: Formal Definitions

In this appendix, we present the formal definitions of decentralized threshold
FHE.

Correctness. A dTFHE scheme is correct if for all sufficiently large λ, all
k = poly(λ), circuits C : Mk → M of depth at most κ and mi ∈ M for
i ∈ [k], the following condition holds:

Let (pkj , skj) ← DistGen(1λ, 1κ, j) for all j ∈ [n], pk = (pk1|| . . . ||pkn); let
ci ← Enc(pk,mi) for all i ∈ [k]; compute c← Eval(pk, C, c1, . . . , ck). For any
S ⊆ [n], |S| > d,

Pr[Combine(pk, {PDec(pk, skj , c)}j∈S) = C(m1, . . . ,mk)] ≥ 1− negl(λ).

Semantic Security. A dTFHE scheme is semantically secure if for all suf-
ficiently large security parameters λ, all depth bound κ and any PPT semi-
malicious adversary A, there exists a negligible function negl such that the
probability that A wins the game below is less than 1

2 + negl(λ).

Adversary A Challenger C
I ⊂ [n], |I| ≤ d

I, {ρi}i∈I
(m0,m1) ∈M2

−−−−−−−−−−−−−−−−−−−−B
for i ∈ I:

(pki, ski)← DistGen(1λ, 1κ, i; ρi)
for i ∈ [n] \ I:

sample ρi
(pki, ski)← DistGen(1λ, 1κ, i; ρi)

Set pk = (pk1 ‖ pk2 ‖ . . . ‖ pkn)
Sample a bit b← {0, 1}
c← Enc (pk,mb)

pk, c, {ski}i∈I
C−−−−−−−−−−−−−−−−−−−−

b′−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

Simulation Security. A dTFHE scheme satisfies simulation security if there
exists a simulator SimPDec such that for all sufficiently large security param-
eters λ, all depth bound κ, and any PPT semi-malicious adversary A, the
probability that A wins the game below is less than 1

2 + negl(λ).

21

Adversary A Challenger C
I ⊂ [n], |I| ≤ d

I, {ρi}i∈I
(m1, . . . ,mk) ∈Mk

−−−−−−−−−−−−−−−−−−−−B
(ρ′1, . . . , ρ

′
k)

for i ∈ I:
(pki, ski)← DistGen(1λ, 1κ, i; ρi)

for i ∈ [n] \ I:
sample ρi
(pki, ski)← DistGen(1λ, 1κ, i; ρi)

Set pk = (pk1 ‖ pk2 ‖ . . . ‖ pkn)
ci ← Enc (pk,mi; ρ

′
i) ∀i ∈ [k]

pk, {ci}i∈[k]
C−−−−−−−−−−−−−−−−−−−−

C :Mk →M−−−−−−−−−−−−−−−−−−−−B
c← Eval (pk, C, c1, . . . , ck)
Sample a bit b← {0, 1}
if b = 0:

for i ∈ [n] \ I:
di ← PDec (pk, ski, c)

if b = 1:
z ← C(m1, . . . ,mk)
{dj}j∈[n]\I ← SimPDec (c, pk, {ski}i∈I , z)

{dj}j∈[n]\I
C−−−−−−−−−−−−−−−−−−−−

b′−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

22

	Threshold-Optimal MPC With Friends and Foes
	Introduction
	Definitions
	Relation of FaF to Other Notions
	Building Block: Decentralized Threshold FHE
	Three-Round MPC with Weak FaF and Guaranteed Output Delivery
	Optimal-Threshold MPC with Strong FaF and Guaranteed Output Delivery
	Decentralized Threshold FHE: Formal Definitions

