
Endemic Oblivious Transfer via Random Oracles, Revisited*

Zhelei Zhou† Bingsheng Zhang‡ Hong-Sheng Zhou§ Kui Ren¶

March 11, 2023

Abstract

The notion of Endemic Oblivious Transfer (EOT) was introduced by Masny and Rindal (CCS’19). EOT offers a
weaker security guarantee than the conventional random OT; namely, the malicious parties can fix their outputs
arbitrarily. The authors presented a 1-round UC-secure EOT protocol under a tailor-made and non-standard
assumption, Choose-and-Open DDH, in the RO model.

In this work, we systematically study EOT in the UC/GUC framework. We present a new 1-round UC-secure
EOT construction in the RO model under the DDH assumption. Under the GUC framework, we propose the first
1-round EOT construction under the CDH assumption in the Global Restricted Observable RO (GroRO) model
proposed by Canetti et al. (CCS’14). We also provide an impossibility result, showing there exist no 1-round GUC-
secure EOT protocols in the Global Restricted Programmable RO (GrpRO) model proposed by Camenisch et al.
(Eurocrypt’18). Subsequently, we provide the first round-optimal (2-round) EOT protocol with adaptive security
under the DDH assumption in the GrpRO model. Finally, we investigate the relations between EOT and other
cryptographic primitives.

As side products, we present the first 2-round GUC-secure commitment in the GroRO model as well as a
separation between the GroRO and the GrpRO models, which may be of independent interest.

*Corresponding authors: Bingsheng Zhang bingsheng@zju.edu.cn, and Hong-Sheng Zhou hszhou@vcu.edu.
†Zhejiang University, and ZJU-Hangzhou Global Scientific and Technological Innovation Center.
‡Zhejiang University, and ZJU-Hangzhou Global Scientific and Technological Innovation Center. Work supported by the National Key

R&D Program of China (No. 2021YFB3101601), the National Natural Science Foundation of China (Grant No. 62072401), and “Open Project
Program of Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province”. This project is also supported by Input Output
(iohk.io).

§Virginia Commonwealth University. Work supported in part by NSF grant CNS-1801470, and a Google Faculty Research Award.
¶Zhejiang University, and ZJU-Hangzhou Global Scientific and Technological Innovation Center.

1

Contents
1 Introduction 1

1.1 Problem Statement . 1
1.2 Our Results . 3

1.2.1 Constructing EOT in the (Global) Random Oracles . 3
1.2.2 Understanding the Power/Limits of Different Global Random Oracles . 4
1.2.3 Understanding the Relation between EOT and Other Cryptographic Primitives 5

1.3 Related Work . 6
1.4 Organization . 6

2 Preliminaries 6
2.1 Notations . 6
2.2 Universal Composability . 7
2.3 Sigma Protocols . 9
2.4 Non-Interactive Arguments in the Random Oracle Model . 10

2.4.1 NIWH Arguments in the Random Oracle Model . 10
2.4.2 NIZK Arguments in the Random Oracle Model . 10
2.4.3 Straight-Line Extractability in the Random Oracle Model . 11

2.5 Ideal Functionalities . 11
2.5.1 Coin-Tossing . 12
2.5.2 OT, UOT and EOT . 12
2.5.3 Commitment . 14
2.5.4 Random Oracles . 14

2.6 Computational Assumptions . 16

3 UC-Secure Endemic OT via Random Oracles 16

4 The Relations between Endemic OT and Other Primitives 18
4.1 From Endemic OT to Commitment . 18
4.2 From Endemic OT to Uniform OT . 18

5 GUC-Secure Endemic OT via Global Random Oracles 20
5.1 Feasibility Results in the GroRO Model . 20

5.1.1 Our EOT Protocol . 20
5.1.2 Our Commitment Protocol . 22

5.2 Impossibility and Feasibility Results in the GrpRO Model . 23
5.2.1 Our Impossibility Result . 23
5.2.2 Our EOT Protocol . 24

A Additional Preliminaries 28
A.1 Pedersen Commitment . 28
A.2 ElGamal Encryption . 29

B Building Blocks of (Straight-Line Extractable) NIZK/NIWH Arguments 30
B.1 Concrete Examples of Sigma-Protocols . 30
B.2 Randomized Fischlin Transform . 31

C Additional Security Proofs 32
C.1 Proof of Theorem 1 . 32
C.2 Proof of Theorem 2 . 35
C.3 Proof of Theorem 3 . 36
C.4 Proof of Theorem 4 . 37
C.5 Proof of Theorem 6 . 40

2

1 Introduction

The security of a cryptographic protocol is typically analyzed under the simulation paradigm [GMW87], where
the “formal specification” of the security requirements is modeled as an ideal process, and a real-world protocol
is said to securely realize the specification if it “emulates” the ideal process. In the past decades, many variants
were proposed: Initially, protocol security was considered in the standalone setting, in the sense that the chal-
lenged protocol is executed in isolation. Later, Universal Composibility (UC) [Can01] was introduced to analyze
protocol security in arbitrary execution environments; in particular, multiple protocol sessions may be executed
concurrently in an adversarially coordinated way. Note that protocols in the UC framework must be subroutine
respecting, in the sense that all the underlying subroutines are only created for the challenged protocol instance
and cannot be directly accessed by any other protocols or even the other instances of the same protocol. To address
this drawback, Canetti et al. [CDPW07] proposed the Generalized Universal Composibility (GUC) framework.

Endemic Oblivious Transfer. The notion of Endemic Oblivious Transfer (EOT) was introduced by Masny and
Rindal [MR19a] as a weaker version of Random OT (ROT). In an EOT protocol, the sender has no input, and
the receiver inputs a choice bit b ∈ {0, 1}; at the end of EOT, the sender outputs two random elements (m0,m1),
and the receiver outputs mb. Although EOT looks similar to the conventional ROT, EOT offers a weaker security
guarantee — the malicious sender can fix its output (m0,m1) arbitrarily, and the malicious receiver can fix its
output mb arbitrarily. The first 1-round1 (a.k.a. non-interactive) EOT/ROT protocol was proposed by Bellare and
Micali [BM90]. It achieves standalone security against semi-honest adversaries under the DDH assumption in
the Common Reference String (CRS) model. As shown in [GS17], this scheme can also be transformed to achieve
malicious security using the Groth-Sahai proof [GS08]. Later, Garg et al. proposed several 1-round UC-secure
EOT protocols under the well-understood assumptions, (e.g., Decisional Diffie-Hellman (DDH), Quadratic Resid-
uosity (QR) and Learning With Errors (LWE)), in the CRS model [GIS18a]. Recently, Masny and Rindal [MR19a]
demonstrated a generic construction for 1-round EOT by using any non-interactive key exchange scheme in the
Random Oracle (RO) model; however, their generic construction only achieves standalone security. Masny and
Rindal [MR19a, MR19b] then provided a 1-round UC-secure EOT protocol but under a tailor-made computational
assumption called “Choose-and-Open DDH (CODDH)”, in the RO model. We remark that, different from the DDH,
the CODDH is a new assumption, and its hardness is yet to be further studied.

(Global) Random Oracle Models. Random oracle (RO) model [BR93] is a popular idealized setup model that
has been widely used to justify the security of efficient cryptographic protocols. In spite of its known inability
to provide provable guarantees when RO is instantiated with a real-world hash function [CGH98], RO is still a
promising setup since it is generally accepted that security analysis in the RO model does provide strong evidences
to the resilience of the protocol in question in the presence of practical attacks [CJS14]. In fact, RO model draws
increasing attention along with recent advancement of the blockchain technology.

Local RO Model vs. Global RO Models. The “local” RO model is often used in the UC framework where the simula-
tor is allowed to simulate it in the ideal world, and it grants the simulator two advantages: (i) observability: the
simulator can see what values the parties query the RO on; (ii) programability: the simulator can program RO
query responses as long as they “look” indistinguishable from the real ones. In the GUC framework [CDPW07],
a “global” RO is external to the simulator; to facilitate simulation, some “extra power” needs to be granted to
the simulator. In the literature, two main strengthened variants of the global RO model were proposed: global
RO with restricted observability (GroRO) model proposed by Canetti et al. [CJS14] and global RO with restricted
programmability (GrpRO) model proposed by Camenisch et al. [CDG+18]. Here, the restricted observability and
programmability stand for the “extra power” that the simulator has but the adversary does not have.

1.1 Problem Statement

Constructing EOT in (Global) RO Models. As mentioned above, it is known that one can build a 1-round UC-
secure EOT protocol under the well-known assumptions in the local CRS model [GIS18a]; however, in the local
RO model, the recent construction by Masny and Rindal [MR19a, MR19b] was based on a non-standard assumption

1In this work, we consider the simultaneous communication model with a rushing adversary, where both parties can send messages to
each other within the same round. The rushing adversary can delay sending messages on behalf of corrupted parties in a given round until
the messages sent by all the uncorrupted parties in that round have been received. Note that this is different from the simultaneous messaging
requirement in [Kat07], which deals with a non-rushing adversary.

1

i.e., the CODDH assumption. A natural question to ask is: can we construct a 1-round UC-secure EOT protocol
under well-understood assumptions (e.g., DDH assumption) in the local RO model?

Compared to local setups (e.g., local CRS and local RO), global setups are more practical in real life applica-
tions. However, very little research work has been done for constructing EOT protocols under a global setup. Our
main goal here is to construct a 1-round EOT protocol using global setups. We emphasize that local setups are
helpful for us to construct a provably secure 1-round EOT protocol. For example, in the local CRS model, both
parties can utilize the shared string, i.e., the CRS, to generate the correlated information for the remaining protocol
execution. In other words, the CRS can be viewed as an extra round of communication messages during the protocol
execution. Intuitively, the security analysis can go through: the simulator is allowed to generate the CRS along
with the trapdoor; then the trapdoor information will help the simulator to complete the simulation. In the local
RO model, the situation is similar: in the protocol execution, the protocol players may query the RO at certain
predefined points to obtain corresponding responses; in a very fuzzy way, it also can be viewed as an extra round
of communication messages. In the security analysis, the simulator is allowed to program the RO on those pre-
defined points; this gives the simulator advantages over the adversary which will help the simulator to complete
the simulation.

The situation is very different when we use a global setup for constructing 1-round EOT protocols. First,
we remark that, as already proven in [CDPW07], it is impossible to construct a non-trivial two-party computation
protocols (including EOT) using a global CRS. To bypass this impossibility, Canetti et al. proposed the Augmented
CRS (ACRS) model [CDPW07]; however, known technique of building non-trivial two-party computation proto-
cols in the ACRS model requires coin-flipping [CDPW07, DSW08], which increases round complexity. The good
news is that it might be possible to construct a 1-round EOT protocol using a global RO model; note that, different
global RO models (e.g., the GroRO [CJS14] and the GrpRO [CDG+18]) have been introduced for constructing non-
trivial two-party computation protocols. We must remark that, technical difficulty remains. Typically, a global RO
is instantiated with a predefined hash function. It seems that the aforementioned design and analysis ideas using
local ROs still work: both parties may still be able to utilize the shared hash function on some predefined points
to generate the corresponding responses for the remaining protocol execution; unfortunately, it is not true. Below,
we provide our elaboration: (1) in the GroRO model, the simulator is not allowed to program the global RO and
thus cannot obtain the “trapdoor” of the corresponding responses; as a result, it is unclear how we will be able to
complete the security analysis; (2) in the GrpRO model, the simulator is only allowed to program the unqueried
points, and the simulator may not be able to program the global RO on those predefined points since the envi-
ronment may have already queried them before the protocol execution. Given the technical difficulty, we ask the
following major research question:

In the GUC framework, does there exist a 1-round EOT protocol under well-understood assumptions in the
GroRO/GrpRO model?

For completeness, we also construct new 1-round UC-secure EOT protocols in the local RO model.

Understanding the Complexity of EOT. n addition to the concrete protocol constructions, we are also interested
in understanding the complexity, including the power and the limits, of the cryptographic task of EOT. More
precisely, what are the relations between EOT and other well-known secure computation tasks? For example, is
EOT fundamentally different from ROT or (1-out-of-2) OT? In [MR19a], Masny and Rindal have already initialized
the investigation of this interesting problem: They proposed a new OT notion called Uniform OT (UOT) which
also looks similar to the conventional ROT, except that it offers a strong security guarantee that no adversary can
bias the distribution of the ROT outputs. They showed that it is possible to build UOT based on an EOT and a
coin-tossing protocol; however, it is unclear if the coin-tossing protocol can be built from an EOT protocol. We
thus ask the following question:

What is the relation between the EOT and other cryptographic primitives (such as coin-tossing and UOT etc.)?

Understanding the Complexity of Global RO Models. Finally, let us go back to the global setups we used in this
work. Recall that, the GroRO and the GrpRO models provide different aspects of “extra power” to the simulator.
Are these two different global RO models, essentially equivalent? Or one is strictly stronger than the other? It
raises our last question:

What is the relation between the GroRO model and the GrpRO model?

2

Our goal is to provide a comprehensive and thorough investigation of constructing EOT via ROs. From a
practical point of view, if the above questions could be answered, we would see highly efficient constructions
for EOT. From a theoretical point of view, if (some of) the above questions could be answered, we would have
a better understanding of the relation between EOT and many secure computation tasks; we could also have a
better understanding of the power and limits of different global RO models.

1.2 Our Results

In this work, we investigate the above problems. Our results can be summarized as follows.

1.2.1 Constructing EOT in the (Global) Random Oracles

Table 1 depicts a selection of our new constructions.

Protocol #Round Security
Computational

Assumption
Setup

Assumption
Garg et al. [GIS18a, GIS18b]a 1 UC+Static DDH CRS

Masny and Rindal [MR19a, MR19b] 1 UC+Static CODDHb RO
Canetti et al. [CSW20] 1 UC+Adaptive DDH GrpRO+CRS

ΠEOT-RO(Sec. 3) 1 UC+Static DDH RO
ΠEOT-GroRO(Sec. 5.1.1)c 1 GUC+Static CDH GroRO
ΠEOT-GrpRO(Sec. 5.2.2)d 2 GUC+Adaptive DDH GrpRO

a Garg et al’s constructions can be instantiated from different assumptions (e.g., DDH, LWE and QR); but in this
table, we focus on constructions using (cyclic) group based assumptions.

b Here, CODDH refers to the “Choose-and-Open DDH” assumption which is not known to be reducible to the DDH
assumption.

c Although protocol ΠEOT-GroRO uses a weaker computational assumption and a less idealized setup than protocol
ΠEOT-RO does, the former is less efficient than the latter.

d This construction is round-optimal due to Theorem 5, below.

Table 1: Comparison with state-of-the-art round-optimal EOT protocols under computational assumptions that
related to the cyclic groups.

Next, we provide the technical overview for our EOT protocol constructions in the (global) RO models. We first
show how to construct a 1-round UC-secure EOT protocol under DDH assumption in the RO model against static
adversaries. After that, we turn to the global RO models and show how to construct a 1-round GUC-secure EOT
protocol under CDH assumption in the GroRO model. Note that, the situation in the GrpRO model is complicated:
We find that there exists no 1-round GUC-secure EOT protocols in the GrpRO model even with static security, and
we give a round-optimal (2-round) EOT protocol under DDH assumption against adaptive adversaries.

New technique: 1-round UC-secure EOT protocol in the RO model. We present a new technique that enables
the first UC-secure 1-round EOT protocol in the RO model under the DDH assumption (cf. Section 3). The basic
scheme achieves static security. Intuitively, our technique is as follows. We start with the two-round standalone
ROT/EOT protocol in the RO model proposed in [CO15]. In the 1st round, the sender sends h := gs to the receiver;
in the 2nd round, the receiver uses sender’s message to compute B := grhb and sends B back, where b ∈ {0, 1} is
the choice bit; finally, the sender outputs m0 := Hash(Bs) and m1 := Hash((Bh)s), where Hash is a predefined hash
function and it is modeled as a RO; the receiver outputs mb := Hash(hr). Although this protocol is simple and
efficient, it cannot achieve UC security [LM18, GIR20].

Our technique is presented as follows. The dependence of the sender’s message in [CO15] can be eliminated
such that the receiver’s message can be produced simultaneously in the same round. The idea is to let the receiver
produce the commitment key h instead of waiting it from the sender. How to generate a random group element
and be oblivious to its discrete logarithm? This can be achieved by setting h := Hash(seed), where seed is some
randomly sampled string. Similar technique can be found in [CSW20]. Now the 1-round (non-interactive) version
of [CO15] roughly works as follows. The sender sends z := gs to the receiver; meanwhile, the receiver picks
h := Hash(seed) and computes B := grhb, and then it sends (seed, B) to the sender; finally, the sender computes
h := Hash(seed) and outputs m0 := Hash(Bs) and m1 := Hash((Bh)s); the receiver outputs mb := Hash(zr).

Further, to make the protocol UC-secure, certain extractability is needed: (i) when the sender is malicious, the
simulator should be able to extract the sender’s private randomness s, so the simulator can compute both m0

3

and m1; (ii) when the receiver is malicious, the simulator should be able to extract the receiver’s choice bit. In
order to extract the sender’s s, we let the sender additionally generate a RO-based straight-line extractable NIZK
argument [Pas03, Fis05, Ks22]. In order to extract the receiver’s choice bit b, we let the receiver computes the
ElGamal encryption of b instead of the Pedersen commitment. We then let the receiver additionally generate a
NIZK argument to ensure the correctness of the ElGamal encryption. Note that, we do not need the straight-
line extractability here, since the simulator can program the RO to obtain logg h and thus be able to decrypt the
ElGamal ciphertext to extract b.

1-round GUC-secure EOT protocol in the GroRO model. Turning to the GUC setting, we propose the first 1-
round EOT construction under the CDH assumption in the GroRO model (cf. Section 5.1.1). Compared to our
UC-secure construction, this one requires weaker a computational assumption.

Recall that, in our UC-secure EOT protocol, we let the sender send z := gs together with a straight-line ex-
tractable NIZK argument. The straight-line extractable NIZK argument gives the simulator the ability to extract
s. However, Pass showed that it is impossible to construct NIZK arguments in observable RO model [Pas03],
let alone NIZK arguments with straight-line extractability. The good news is that straight-line extractable NIWH
argument is sufficient for our purpose, and it exists in the GroRO model [Pas03]. Therefore, we let the sender
generate a straight-line extractable NIWH argument of s such that z = gs instead. Next, to extract the receiver’s
choice bit, our UC-secure construction utilizes the programmability of RO; however, GroRO does not offer program-
ability, so a different approach shall be taken. In particular, we let the receiver compute a Pedersen commitment
to the choice bit B := grhb, and generate a straight-line extractable NIWH argument of (r, b) such that B = grhb.
Analogously to the sender side, the straight-line extractable NIWH argument gives the simulator extractability.

1.2.2 Understanding the Power/Limits of Different Global Random Oracles

A separation between the GroRO model and the GrpRO model. To show this separation, we first give a new
impossibility result, showing that there exists no 1-round GUC-secure EOT protocol in the GrpRO model even
with static security (cf. Section 5.2.1). By combining this negative result in the GrpRO model and the afore-
mentioned positive result in the GroRO model, we demonstrate a separation between the GroRO model and the
GrpRO model. More precisely, let GroRO,GrpRO be the functionalities of the GroRO and the GrpRO model, we
present the relation of these global RO models in Figure 1.

GrpRO GroRO

?

Figure 1: The relation between the GroRO model and the GrpRO model. Here, “A 9 B” denotes that A does not

imply B. In addition, “A ?→ B” denotes that whether A implies B remains unknown.

New impossibility and feasibility results in the GrpRO model. Here we will present more details about the
aforementioned impossibility result in the GrpRO model. Furthermore, to complete the picture, we also provide
a round-optimal GUC-secure EOT protocol with adaptive security in the GrpRO model.
New impossibility results in the GrpRO model. The impossibility is proven by contradiction (cf. Section 5.2.1). Sup-
pose that there exists such a 1-round GUC-secure EOT protocol in the GrpRO model. Let us first consider the case
where the receiver is corrupted, and the simulator needs to extract the choice bit of the receiver from its message.
Recall that, the GrpRO only grants the simulator the restricted programmability: the simulator can program the
unqueried points without being detected. More importantly, unlike local RO, the simulator cannot program a
global RO on the fly, as it cannot see which point is queried at this moment. Thus, the simulator needs to find a
way to enforce the corrupt receiver to query the simulator’s programmed points. However, in a one simultane-
ous round protocol, the messages between parties have no dependency. Hence the simulator cannot enforce the
corrupt receiver to produce its message on the programmed points, and has no advantages. If the simulator still
succeeds to extract the corrupted receiver’s choice bit, then we have the following attack. The adversary corrupts
the sender, and instructs the sender to run the simulator algorithm above to extract the choice bit from the mes-
sage sent by the receiver/simulator. However, the simulator has no idea about the real choice bit, thus with 1/2
probability the simulation would fail.

4

New feasibility: Round-optimal GUC-secure EOT protocol in the GrpRO model. To complete the picture, we also give a
round-optimal (2-round) EOT protocol with adaptive security under the DDH assumption in the GrpRO model
(cf. Section 5.2.2). Here, we do not consider simultaneous messaging in the same round. Our intuition comes
from the UC-secure EOT protocol in the CRS+GrpRO model proposed by Canetti et al. [CSW20]. In their protocol,
the CRS consists of two group elements g, h ∈ G, and the simulator knows logg h. The sender computes z := grhs,
while the receiver generates (G,H) := Hash(seed) and computes two Pedersen commitments to the choice bit
using two sets of the parameter, i.e., (g,G) and (h,H), and the same randomness.

To eliminate the CRS, we let the sender generate the first set of the parameter (g, h) := Hash(seed1) where
seed1 is an uniformly sampled string. At the same time, the sender computes z := grhs using random r, s ← Zq
and sends seed, z to the receiver in the first round. In the second round, the receiver first checks if seed1 is a
programmed point. If not, the receiver generates the second set of the parameter (G,H) := Hash(seed2) where
seed2 is an uniformly sampled string. Then the receiver can compute two Pedersen commitments to the choice
bit, i.e., (B1, B2) := (gxGb, hxHb) using random x ← Zq . Finally, we let the receiver send (seed2, B1, B2) to the
sender. How to make the protocol simulatable in the GrpRO model? We show the simulation strategy as follows:
when the receiver is malicious (and the sender is honest), the simulator can extract the receiver’s choice bit b
by programming the GrpRO (the simulator always succeeds to program the GrpRO since seed1 is sampled by the
honest sender itself) and knowing α such that h = gα; when the sender is malicious (and the receiver is honest), the
simulator can compute both m0 and m1 by programming the GrpRO (the simulator always succeeds to program
the GrpRO since seed2 is sampled by the honest receiver itself) such that (g, h,G,H) is a DDH tuple.

1.2.3 Understanding the Relation between EOT and Other Cryptographic Primitives

EOT implies UOT and commitment. In [MR19a], the authors showed that UOT implies EOT. But the work
on the opposite direction is incomplete. Let FEOT, FUOT and FCoin be the ideal functionalities of EOT, UOT and
coin-tossing protocol, respectively. They showed that a UOT protocol can be constructed in the {FEOT,FCoin}-
hybrid world with unconditional security, and they constructed FCoin via only FUOT. However, it remains unclear
whether FCoin can be constructed via only FEOT; therefore, it is still an open question on whether EOT implies
UOT? We present the relations that they claimed in Figure 2(a).

It is known that bit commitment can be constructed via 1-out-of-2 OT with unconditional security [Kil88,
BFSK11]. What about EOT? Nevertheless, surprisingly, we show that bit commitment can be constructed via a
weaker primitive, i.e., EOT, with unconditional security (cf. Section 4.1). Our key observation is that the receiver’s
message can be viewed as the commitment to the choice bit b, and the locally computed messagemb together with
b can be viewed as the opening. Typically, a commitment protocol requires both hiding and binding properties.
The hiding property holds since the malicious receiver in the EOT cannot learn m1−b, even if it can influence the
distribution ofmb. The binding property holds since the malicious sender in the EOT cannot know which message
is received by the receiver, even if it can influence the distributions of both m0 and m1.

FEOT FUOT

FCoin

(a) The relations claimed in [MR19a]

FEOT FUOT

FCoinFCom

(b) The relations in this work.

Figure 2: The relations between EOT and other primitives. “A→ B” denotes that A implies B. “A 99K B” denotes
that A can be transformed into B.

Since it is well-known how to construct FCoin via only FCom, where FCom is the commitment functionality, we
show that EOT implies UOT and completes the relation between EOT and UOT (cf. Section 4.2). We present the
relations that explored in this work in Figure 2(b).

Furthermore, as a side product, we present the first 2-round GUC-secure commitment in the GroRO model (cf.
Section 5.1.2), which may be of independent interest. The previous state-of-the-art protocols need 3 rounds [MRS17,
ZZZR22]. Note that this result does not contradict Zhou et al.’s impossibility result [ZZZR22], as their work did
not consider simultaneous communication model.

5

1.3 Related Work

We first review the EOT (and 1-out-of-2 OT) protocols in the CRS model. For simplicity, we often use OT to refer
to the 1-out-of-2 OT in this work. Bellare and Micali gave an efficient and 1-round (standalone) EOT protocol
under DDH assumption in the CRS model against semi-honest adversaries [BM90]. Later, Garg and Srinivasan
compiled Bellare and Micali’s protocol to against malicious adversaries [GS17] by additionally utilizing Groth-
Sahai proofs [GS08]. As for the UC security, Canetti et al. proposed the first UC-secure OT protocol [CLOS02],
but their protocol is quite inefficient. Next, Peikert et al. provided a dual-mode framework for constructing
UC-secure OT protocols along with efficient instantiations under DDH, QR and LWE assumptions in the CRS
model [PVW08]. Basing on Peikert et al’s dual mode framework, Garg et al. proposed the 1-round UC-secure EOT
protocols under DDH, QR and LWE assumptions in the CRS model [GIS18a].

We mainly focus on the EOT (and OT) protocols in the different variants of RO models, i.e. the local RO model,
the GroRO model and the GrpRO model.

In terms of the local RO model, Chou and Orlandi proposed a 3-round OT protocol called “the simplest OT
protocol” [CO15]. This protocol and the protocol proposed in [HL17] have been found to suffer from a number of
issues [BPRS17, LM18, GIR20] and are not UC-secure. In the following, Masny and Rindal showed how to con-
struct EOT protocols from the key exchange schemes in the local RO model [MR19a]. In particular, they provided
a 1-round UC-secure construction under a non-standard assumption, i.e., Choose-and-Open DDH (CODDH) as-
sumption [MR19a, MR19b].

Regarding the GroRO model, Canetti et al. proposed a 2-round OT protocol under DDH assumption [CJS14],
but their protocol is only one-sided GUC-simulatable. Later, fully GUC-secure OT protocols in the GroRO model
are proposed [DKLs18, DD20]. Their protocols only need CDH assumption but require no less than 5 rounds
of communication. To achieve round-optimal, Canetti et al. proposed a 2-round GUC-secure OT protocol in the
GroRO model [CSW20], but their protocol requires a stronger assumption, i.e., DDH assumption.

As for the GrpRO model, Canetti et al. proposed an adaptive-secure 1-round EOT protocol in the GrpRO+CRS
hybrid model [CSW20], but their protocol is only UC-secure since their simulator must know the trapdoor of the
CRS. The lower bounds on round complexity in the GrpRO model have been explored by Zhou et al. [ZZZR22],
however, they mainly focused on commitments and ZK protocols and they did not consider the simultaneous
communication model.

1.4 Organization

In Section 2, we present the preliminaries that will be used in this work. We propose the first 1-round UC-secure
EOT protocol in the RO model against static adversaries in Section 3. We then investigate the relations between the
EOT and other primitives in Section 4, showing EOT implies commitment and UOT in Section 4.1 and Section 4.2
respectively.

We also explore the feasibility and the impossibility for EOT in the global random oracle models. As for the
GroRO model, we propose the first 1-round GUC-secure EOT protocol in Section 5.1.1. Basing on that, we propose
the first 2-round GUC-secure commitment protocol in the GroRO model in Section 5.1.2. Regarding the GrpRO
model, we show that it is impossible to construct a 1-round GUC-secure EOT protocol even with static security in
Section 5.2.1 and subsequently propose the 2-round (round-optimal) GUC-secure EOT protocol in Section 5.2.2.

We put the formal description of Pedersen commitment and ElGamal encryption in Appendix A and put
the the building blocks of (straight-line extractable) NIZK/NIWH arguments in Appendix B. Finally, we put the
additional security proofs in Appendix C.

2 Preliminaries

2.1 Notations

We denote by λ ∈ N the security parameter. We say that a function negl : N → N is negligible if for every
positive polynomial poly(·) and all sufficiently large λ, it holds that negl(λ) < 1

poly(λ) . We use the abbreviation
PPT to denote probabilistic polynomial-time. For an NP relation R, we denote by L its associate language, i.e.
L = {x | ∃w s.t. (x,w) ∈ R}. We say that two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are identical
(resp. computationally indistinguishable), which we denote byX ≡ Y (resp., X c≈ Y), if for any unbounded (resp.,
PPT) distinguisher D there exists a negligible function negl such that |Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| = 0 (resp.,
negl(λ)).

6

We denote by y := Alg(x; r) the event where the algorithm Alg on input x and randomness r, outputs y. We
denote by y ← Alg(x) the event where Alg selects a randomness r and sets y := Alg(x; r). We denote by y ← S the
process for sampling y uniformly at random from the set S. Let q be a λ-bit prime, and p = 2q+ 1 also be a prime.
Let G be a subgroup of order q of Z∗p with the generator g.

2.2 Universal Composability

We formalize and analyze the security of our protocols in the Canetti’s Universal Composability (UC) frame-
work [Can01] and Canetti et al’s Generalized UC (GUC) framework [CDPW07].

UC Framework. The UC framework was proposed by Canetti [Can01], and it lays down a solid foundation for
designing the protocols and analyzing the security against attacks in an arbitrary and complex network execution
environment.

In the UC framework, a protocol Π is defined to be a computer program (or several programs) which is in-
tended to be executed by multiple interconnected parties. Furthermore, we call a protocol, the one for which we
want to prove security, the challenged protocol. We only consider the terminating protocols in this work which ter-
minates in polynomial time. Each party is identified by a unique identity pair (pid, sid), where pid is the Party ID
(PID) and sid is the Session ID (SID). Parties running with the same code and the same SID are said to be a part of
the same protocol session, and the PIDs are used to distinguish among the various parties in a particular protocol
session. Typically, all SIDs are unique, i.e. no two protocol sessions share the same SID. The adversarial behaviors
in the protocol are captured by a adversary Awho can control the network and corrupt the parties. When a party
is corrupted, the adversary A receives its secret input and its internal state.

The UC framework is based on the “simulation paradigm” (a.k.a., the ideal/real world paradigm). In the
ideal world, there is an ideal functionality F communicating a set of parties P = {P1, . . . , Pn} and an adversary
S (a.k.a., the simulator) and computing a task in a trusted manner. The corrupted parties are controlled by the
simulator S. In the real world, a set of parties P = {P1, . . . , Pn} communicate with each other and the adversary
A to execute the protocol Π. The corrupted parties are controlled by the adversary A.

The presence of arbitrary protocols running in the network is modeled via the concept of the environment
Z , which determines the inputs to parties and see the outputs generated by those parties. The environment Z
can also communicate with the adversary A/simulator S and corrupts parties through it. The crucial part of the
ideal/real world paradigm is that for every PPT adversaryA attacking an execution of Π, there is a PPT simulator
S attacking the ideal process that interacts with F (by corrupting the same set of parties), such that the executions
of Π with A and that of F with S makes no difference to the environment Z . We denote by EXECF,S,Z (resp.
EXECΠ,A,Z) the output of the environment Z in the ideal world (resp. real world) execution. Formally, we define
a protocol to be UC-secure through the following definition.

Definition 1. We say a protocol Π UC-realizes the functionality F , if for any PPT environment Z and any PPT adversary
A, there exists a PPT simulator S s.t. EXECΠ,A,Z

c≈ EXECF,S,Z .

Furthermore, we describe the modularity which is a crucial aspect of the UC framework: when a protocol calls
subroutines, these subroutines can be treated as separate entities and can be analyzed separately for their security
by way of realizing an ideal functionality. We here introduce the notion of “hybrid world”, and a protocol Π is
said to be realized “in the G hybrid world” if Π invokes the ideal functionality G as a subroutine.

Definition 2. We say protocol Π UC-realizes the functionality F in the G hybrid world, if for any PPT environment Z and
any PPT adversary A, there exists a PPT simulator S s.t. EXECGΠ,A,Z

c≈ EXECF,S,Z .

We note that, in the UC framework, the environment Z cannot have the direct access to G, but it can do so
through the adversary. More precisely, in the real world (resp. ideal world), the adversary A (resp. the simulator
S) can access the ideal functionality G directly. It queries G for Z and forwards the answers. This implicitly means
that the ideal functionality G is local to the challenge protocol instance. Therefore, the simulator S is allowed to
simulate G in the ideal world as long as it “looks” indistinguishable from G hybrid world.

GUC Framework. In the UC framework, the environment Z is constrained: it cannot have the direct access to
the setup. In other words, the setups in the UC framework are not global. This is an impractical assumption in
real life applications, where it is more plausible that there is a global setup published and used by many protocol
instances.

7

Motivated by solving problems caused by modeling setup as a local subroutine, the Generalized UC (GUC)
framework was introduced by Canetti et al. [CDPW07], which can be used for properly analyzing concurrent
execution of protocols in the presence of global setups. Compared to the UC framework, the environment Z
in the GUC framework is unconstrained: it is allowed to access the setup directly without going through the
simulator/adversary. Furthermore, the environment Z can invoke arbitrary protocols alongside the challenge
protocol. Formally, Canetti et al. introduced the notion of shared functionality: it is completely analogous to an
ideal functionality, except that it may interact with more than one protocol sessions. The global setup can be
modeled as a shared functionality. This indeed captures the fact that any protocol in the network can use the same
global setup.

To distinguish from the basic UC execution, we denote the output of the unconstrained PPT environment Z in
the real world (resp. ideal world) execution as GEXECΠ,A,Z (resp. GEXECF,S,Z).

Definition 3. We say a protocol Π GUC-realizes functionality F , if for any unconstrained PPT environment Z and any
PPT adversary A there exists a PPT simulator S s.t. GEXECΠ,A,Z

c≈ GEXECF,S,Z .

Since the unconstrained environment Z we described above is granted a high-level of flexibility (i.e., Z is al-
lowed to invoke arbitrary protocols in parallel with the challenge protocol and cause arbitrary interactions with
shared functionalities), it becomes extremely difficult to prove the GUC security. Therefore, a simplified frame-
work called Externalized UC (EUC) framework was introduced in [CDPW07]. In the EUC framework, the envi-
ronment Z has direct access to the shared functionality G but does not initiate any new protocol sessions except
the challenge protocol session. We call such an environment is G-externalized constrained. We say a protocol Π is
G-subroutine respecting if it only shares state information via a single shared functionality G.

Definition 4. Let the protocol Π be G-subroutine respecting. We say a protocol Π EUC-realizes the functionality F with
respect to shared functionality G, if for any PPT G-externalized constrained environment Z and any PPT adversary A there
exists a PPT simulator S s.t. EXECGΠ,A,Z

c≈ EXECGF,S,Z .

Furthermore, Canetti et al. showed that for any G-subroutine respecting protocol Π, proving Π EUC-realizes F
with respect to G is equivalent to proving Π GUC-realizes F [CDPW07]. For that reason, when we want to prove
the GUC security of a protocol, we always turn to EUC security for the sake of simplicity.

Adversarial Model. In this work, we consider both static corruption (where the adversary corrupts the parties
at the beginning of the protocol) and adaptive corruption (where the adversary corrupts the parties at any time).
We also consider rushing adversaries, who may delay sending messages on behalf of corrupted parties in a given
round until the messages sent by all the uncorrupted parties in that round have been received [Kat07].

The functionality interacts with a set of the parties P = {P1, . . . , Pn} and an adversary S.

Send. Upon receiving (SEND, sid, Pj ,m) from Pi, do:

• Send (SEND, sid, Pi, Pj ,m) to the adversary S.

• Initialize a boolean corruption status s := 0.

• Upon receiving (OK, sid) from S: if not yet generated output, output (SEND, sid, Pi, Pj ,m) to Pj .

• Upon receiving (CORRUPT, sid,m′, Pk) from S, do:

– Set s := 1.

– If not yet generated output, output (SEND, sid, Pi, Pk,m
′) to Pk .

• Upon receiving (REPORTCORRUPTED, sid) from Pi, do:

– If s = 0, output (NO, sid) to Pi; else, output (YES, sid) to Pi.

• Ignore any subsequent messages.

Functionality FAuth

Figure 3: The Ideal Functionality FAuth for Authenticated Channel

Secure Communication Model. Many UC-secure protocols assume the parties are interconnected with secure
channels or authenticated channels [CLOS02, CDPW07, CDG+18]. The secure channel and authenticated chan-
nel can be modeled as ideal functionalities FSC and FAuth respectively [CK02, Can01]. In this work, most of our

8

protocols are designed in the simultaneous communication channel with rushing adversaries, which is different
from that [Kat07] deals with non-rushing adversaries. For this reason, we often assume the synchronous channel
which can be modeled as FSyn [Can01]. Note that, intuitively, FSyn can be viewed an authenticated communica-
tion network with storage, which proceeds in a round-based fashion [Can01, KMTZ13]. For readability, we will
mention which secure communication channel is used in the context and omit it in the protocol description. For
completeness, we will give the formal description of the communication channel that will be used in this work
(i.e., the authenticated channel and the synchronous channel) in the following. We present the ideal functionality
for authenticated channel FAuth in Figure 3 and ideal functionality for synchronous channel FSyn in Figure 4.

The functionality interacts with a set of the parties P = {P1, . . . , Pn} and an adversary S. It maintains an initial round counter
r := 1, an initial boolean sρP and an initially empty list Nρ

P for all ρ ≥ 0 and all P ∈ P .

Send. Upon receiving (SEND, sid,M) from Pi, where M is a list of pairs in the form of (Pj ,m), do:

• Set srPi := 1.

• For each pair (Pj ,m) ∈M , add (Pi,m) to Nr
Pj

.

• If all the uncorrupted parties in P have already provided their messages for round r (i.e., if srP = 1 for all uncorrupted
P ∈ P), then increment the round counter r := r + 1.

• Send (SEND, sid, Pi,M, r) to the adversary S.

Receive. Upon receiving (RECEIVE, sid, r′) from Pi, do:

• If r′ < r, output (RECEIVED, sid, Nr′
Pi

) to Pi; else, output (INCOMPLETE, r) to Pi.

Backdoor. Upon receiving a backdoor message (CORRUPT, sid, Pi) from Pi, mark Pi as corrupted.

Functionality FSyn

Figure 4: The Ideal Functionality FSyn for Synchronous Channel

2.3 Sigma Protocols

A Sigma-protocol is a 3-move public coin protocol [Dam02], where both the prover P and the verifier V hold a
statement x, and the prover P additionally holds a private witness w such that (x,w) ∈ R. In the first move, the
prover P generates the message a by invoking (a, st)← P1(x,w) on a statement-witness pair (x,w). In the second
move, the verifier V samples an uniformly random string e ← V1(1λ) as the challenge. In the last move, the
prover P computes the response z ← P2(x,w, e, st) using the statement-witness pair (x,w), the received challenge
e and the previously computed state st. Finally, the verifier outputs a bit b := Verify(x, a, e, z) indicating acceptance
(b = 1) or rejection (b = 0).

The Sigma-protocol should satisfy the completeness, special soundness and Special Honest Verifier Zero-
Knowledge (SHVZK). The completeness requires that the honest prover will always make the verifier accept.
The special soundness requires that there exists a PPT extractor algorithm Ext that given two distinct accepting
transcripts (i.e., (a, e, z) and (a, e′, z′) where e 6= e′), it can output a valid witness w. The SHVZK property re-
quires that there exists a PPT simulator algorithm Sim that given the challenge e ahead, it can output (a, z) that
are computational indistinguishable from the real ones. Formally, we have the following definition.

Definition 5. Fix an NP relationR and its associate languageL. We say a protocol Π = (Π.P1,Π.V1,Π.P2,Π.Verify,Π.Ext,
Π.Sim) is a Sigma-protocol forR if the following conditions hold:

1. (Completeness) For any (x,w) ∈ R, we say it is complete if

Pr

[
(a, st)← P1(x,w); e← V1(1λ);
z ← P2(x,w, e, st)

: Verify(x, a, e, z) = 1

]
= 1

2. (Special Soundness) For any x ∈ L, we say it is special sound if for any PPT A,

Pr

[
(a, e, z, e′, z′)← A(x);
w ← Ext(x, a, e, z, e′, z′)

:
Verify(x, a, e, z) = Verify(x, a, e′, z′) = 1
∧ e 6= e′ ∧ (x,w) ∈ R

]
= 1

3. (Special Honest Verifier Zero-Knowledge) Given the challenge e ahead, for any (x,w) ∈ R, we say it is SHVZK if

{(a, z) | (a, st)← P1(x,w); z ← P2(x,w, e, st)} c≈ {(a, z) | (a, z)← Sim(x, e)}

9

2.4 Non-Interactive Arguments in the Random Oracle Model

In this section, we introduce different variants of non-interactive argument systems in the RO model. In a non-
interactive argument Π = (Π.ProveO,Π.VerifyO) in the RO model, both prover and verifier are allowed to query
the RO O at any time, during the protocol execution. A non-interactive argument system allow the prover to
generate the proof π using the statement-witness pair (x,w). Upon receiving the proof π, the verifier can decide
whether to accept or not. Formally, a non-interactive argument systems has the following algorithms:

• π ← ProveO(x,w) takes input as a statement-witness pair (x,w), and it outputs a proof π.

• b := VerifyO(x, π) takes input as a statement x and a proof π, and it outputs a bit b indicating acceptance
(b = 1) or not (b = 0).

The non-interactive argument systems should satisfies completeness and computational soundness. The for-
mer property requires that honest provers can always make the verifiers accept. The latter property requires that
any computationally bounded provers cannot convince the verifiers that a false statement is true.

Definition 6. Fix an NP relation R and its associate language L. Consider a random oracle O. We say Π = (Π.ProveO,
Π.VerifyO) is a non-interactive argument system forR in the RO model if the following conditions hold:

1. (Completeness) For any (x,w) ∈ R, we say it is complete if

Pr
[
π ← ProveO(x,w) : VerifyO(x, π) = 1

]
= 1

2. (Computational Soundness) For any x /∈ L, we say it is computational sound if for any PPT adversary A, there
exists a negligible function negl such that

Pr
[
π∗ ← AO(x) : VerifyO(x, π∗) = 1

]
≤ negl(λ)

2.4.1 NIWH Arguments in the Random Oracle Model

An Non-Interactive Witness Hiding (NIWH) argument Π = (Π.ProveO,Π.VerifyO) in the RO model is a non-
interactive argument in the RO model that additionally satisfies the witness hiding property. The witness hiding
property means that any computationally bounded adversary cannot extract the witness w from any accepting
proof π. Before giving the formal definition of witness hiding, we have to define the hard instance ensembles, as
in [Pas03].

Definition 7 (Hard Instance Ensembles). Let R be an NP relation and L be its associate language, and X = {Xλ}λ∈N
be a probability ensemble such that Xλ ranges over L ∩ {0, 1}λ. We say X a hard instance ensemble forR if for any PPT
adversary A and any x ∈ X , there exists a negligible function negl such that Pr[(x,A(x)) ∈ R] ≤ negl(λ).

Now we can formally define the NIWH argument in the RO model.

Definition 8. Fix an NP relation R and its associate language L. Consider a random oracle O. We say Π = (Π.ProveO,
Π.VerifyO) is an NIWH argument system for R in the RO model if it satisfies completeness, computational soundness and
the following property:

1. (Witness Hiding) For any (x,w) ∈ R and x ∈ X where X a hard instance ensemble for R, we say it is witness
hiding if for any PPT adversary A, there exists a negligible function negl such that

Pr
[
π ← ProveO(x,w);w′ ← A(x, π) : (x,w′) ∈ R

]
≤ negl(λ)

2.4.2 NIZK Arguments in the Random Oracle Model

Now let us consider another strengthened version of non-interactive argument in the RO model: Non-Interactive
Zero-Knowledge (NIZK) arguments Π = (Π.ProveO,Π.VerifyO,Π.Sim) in the RO model. It is known that the
NIZK argument systems imply NIWH argument systems in the RO model [Pas03]. An NIZK argument is a
non-interactive argument that additionally satisfies the zero-knowledge property. Here we adopt the definition
from [FKMV12], the zero-knowledge property requires that there exists a PPT stateful simulator algorithm Π.Sim

10

that can operate in two modes: (hi, st) ← Sim(1, st, qi) that takes care of answering the queries to RO, it takes
the mode number 1, the state st and the query qi as inputs, and it outputs the simulated RO’s answer hi and the
updated state st; (π, st) ← Sim(2, st, x) that simulates the actual proof, it takes the mode number 2, the state st
and the statement x as inputs, and it outputs the proof π and the updated state st. Note that, calls to Sim(1, ·, ·)
and Sim(2, ·, ·) share the common state st which is updated after each operation. Formally, we have the following
definition.

Definition 9. Fix an NP relation R and its associate language L. Consider a RO O. We say Π = (Π.ProveO,Π.VerifyO,
Π.Sim) is an NIZK argument system for R in the RO model if it satisfies completeness, computational soundness and the
following property:

1. (Zero-Knowledge) Denote by (Õ1, Õ2) the oracles such that Õ1(qi) returns the first output of (hi, st)← Sim(1, st, qi)
and Õ2(x,w) returns the first output of (π, st)← Sim(2, st, x) if (x,w) ∈ R. For any (x,w) ∈ R, we say it is zero-
knowledge if for all PPT adversary A, there exists a negligible function negl such that∣∣∣Pr[AO(·),ProveO(·,·)(1λ) = 1]− Pr[AÕ1(·),Õ2(·,·)(1λ) = 1]

∣∣∣ ≤ negl(λ) ,

where A is given oracle access to either O,ProveO or Õ1, Õ2, and both ProveO(x,w) and Õ2(x,w) output ⊥ if
(x,w) /∈ R.

2.4.3 Straight-Line Extractability in the Random Oracle Model

Now let us consider a stronger security property, i.e. (straight-line) extractability, and our extractability definition is
adopted from that by Pass [Pas03]. The extractability means that there exists a PPT extractor algorithm Ext which
can extract the witness from a maliciously generated and accepting proof. To enable straight-line extractability,
typically, the extractor Ext can be developed by simulating the RO for the prover and the verifier, and thus Ext
has full control of the RO. Note that, by the simulating the RO, the extractor Ext is granted two advantages: (i)
observability: the simulator can see the query-answer list of the RO; (ii) programmability: the simulator can answer
the queries to the RO.

In this work, we consider the straight-line extractability in a much more restricted RO, that is, the extractor Ext
is granted only the observability of RO. For that reason, we denote by Q∗ the RO queries and answers posed by
the malicious prover, and we will feed the extractor Ext with Q∗. Now we can formally define the straight-line
extractability.

Definition 10 (Straight-line extractability). Fix an NP relation R and its associate language L. Consider a RO O, and a
non-interactive argument system forR in the RO model Π = (Π.ProveO,Π.VerifyO,Π.Ext). Denote byQ∗ the RO queries
and answers posed by the adversary A. For any x ∈ L, we say the non-interactive argument Π is straight-line extractable
if for any PPT adversary A, there exists a negligible function negl such that

Pr

[
π∗ ← AO(x); b := VerifyO(x, π∗);
w∗ ← Ext(x, π∗,Q∗) : b = 1 ∧ (x,w∗) ∈ R

]
≥ 1− negl(λ)

Note that, the NIWH argument and NIZK argument are developed on top of the non-interactive argument.
Hence the Definition 10 can be easily extended to the straight-line extractable NIZK (NIWH) argument in the RO
model.

Definition 11. Fix an NP relationR and its associate language L. Consider a RO O. We say Π = (Π.ProveO,Π.VerifyO,
Π.Ext) is a straight-line extractable NIWH argument system for R in the RO model if it satisfies completeness, compu-
tational soundness, witness hiding and straight-line extractability.

Definition 12. Fix an NP relationR and its associate language L. Consider a RO O. We say Π = (Π.ProveO,Π.VerifyO,
Π.Sim,Π.Ext) is a straight-line extractable NIZK argument system for R in the RO model if it satisfies completeness,
computational soundness, computational zero-knowledge and straight-line extractability.

2.5 Ideal Functionalities

In this section, we provide ideal functionalities that will be used in UC/GUC security analysis.

11

The functionality interacts with two parties P1, P2 and an adversary S.

Toss. Upon receiving (TOSS, sid, P1, P2) from P1 and P2, do:

• Sample r ← {0, 1}λ, send (PROCEED?, sid, P1, P2) to S.

• Upon receiving (PROCEED, sid, P1) from S, send (TOSSED, sid, P1, P2, r) to P1; Upon receiving (NO, sid, P1) from S, send
(ABORT, sid, P1) to P1. Upon receiving (PROCEED, sid, P2) from S, send (TOSSED, sid, P1, P2, r) to P2; Upon receiving
(NO, sid, P2) from S, send (ABORT, sid, P2) to P2.

• Ignore any subsequent TOSS command.

Functionality FCoin

Figure 5: The Ideal Functionality FCoin for Coin-Tossing

2.5.1 Coin-Tossing

Coin-tossing is one of the most minimal building blocks for cryptographic protocols. Coin-tossing is a two-party
protocol which allows each party to receive an uniformly random string at the end of the protocol execution.
Formally, we put the coin-tossing functionality FCoin in Figure 5.

2.5.2 OT, UOT and EOT

We start with the Oblivious Transfer (OT). We often use OT to refer to the 1-out-of-2 OT. In an OT protocol, there is
a sender S holding two private input m0,m1 ∈ {0, 1}λ and a receiver R holding a choice bit b ∈ {0, 1}. At the end
of the honest execution of the OT protocol, the receiver R will compute mb. At the same time, the sender should
learn nothing about b while the receiver should learn nothing about m1−b. We present the OT functionality FOT

in Figure 6.

The functionality interacts with two parties S, R and an adversary S.

Transfer. Upon receiving (SEND, sid, S,R,m0,m1) from the sender S, do:

• Record (sid, S,R,m0,m1), and send (SEND, sid, S,R) to R and the adversary S.

• Ignore any subsequent SEND commands.

Choose. Upon receiving (RECEIVE, sid, S,R, b) from R where b ∈ {0, 1}, do:

• Record (sid, S,R, b), and send (RECEIVE, sid, S,R) to the sender S and the adversary S.

• Ignore any subsequent RECEIVE commands.

Process. When both (sid, S,R,m0,m1) and (sid, S,R, b) are recorded, do:

• Send (PROCEED?, sid, S,R) to the adversary S.

• Upon receiving (PROCEED, sid, S) from the adversary S, output (RECEIVED, sid, S,R) to the sender S; Upon receiving
(NO, sid, S) from the adversary S, output (ABORT, sid, S) to the sender S. Upon receiving (PROCEED, sid, R) from the
adversary S, output (RECEIVED, sid, S,R,mb) to R; Upon receiving (NO, sid, R) from the adversary S, output
(ABORT, sid, R) to R.

Functionality FOT

Figure 6: The Ideal Functionality FOT for Oblivious Transfer

In [MR19a], Masny and Rindal proposed two notions that called Uniform OT (UOT) and Endemic OT (EOT).
Both of them are similar to OT, except that the senders have no inputs. The main difference between the UOT and
the EOT is that they provide different levels of security guarantees. We describe the UOT first. The UOT function-
ality samples two uniformly random stringsm0,m1, and outputs m0,m1 to the (potentially malicious) sender and
mb to the (potentially malicious) receiver. The UOT gives a strong security guarantee that any malicious party
cannot influence the distribution of the OT messages. Formally, we put the UOT functionality FUOT in Figure 7.

Now let us turn to EOT. Compared to UOT, the EOT functionality gives a weak security guarantee: no mat-
ter whether the sender or the receiver is malicious, the malicious party can always determine the distribution of
the OT messages. Roughly speaking, if both sender and receiver are honest, the EOT functionality acts as the
UOT functionality. If the sender is malicious and the receiver is honest, the EOT functionality lets the adversary
determine the message strings m0,m1, and it returns the adversarial chosen mb to the honest receiver after receiv-
ing b. If the receiver is malicious and the sender is honest, the EOT functionality lets the adversary determine

12

The functionality interacts with two parties S, R and an adversary S.

Transfer. Upon receiving (SEND, sid, S,R) from S, do:

• Sample m0,m1←{0, 1}λ, record (sid, S,R,m0,m1), and send (SEND, sid, S,R) to R and the adversary S.

• Ignore any subsequent SEND commands.

Choose. Upon receiving (RECEIVE, sid, S,R, b) from R where b ∈ {0, 1}, do:

• Record (sid, S,R, b), and send (RECEIVE, sid, S,R) to the sender S and the adversary S.

• Ignore any subsequent RECEIVE commands.

Process. When both (sid, S,R,m0,m1) and (sid, S,R, b) are recorded, do:

• Send (PROCEED?, sid, S,R) to the adversary S.

• Upon receiving (PROCEED, sid, S) from the adversary S, output (RECEIVED, sid, S,R,m0,m1) to the sender S; Upon
receiving (NO, sid, S) from the adversary S, output (ABORT, sid, S) to the sender S. Upon receiving (PROCEED, sid, R)
from the adversary S, output (RECEIVED, sid, S,R,mb) to R; Upon receiving (NO, sid, R) from the adversary S, output
(ABORT, sid, R) to R.

Functionality FUOT

Figure 7: The Ideal Functionality FUOT for Uniform Oblivious Transfer

The functionality interacts with two parties S, R and an adversary S.

Transfer. Upon receiving (SEND, sid, S,R) from S, do:

• Sample m0,m1←{0, 1}λ, record (sid, S,R,m0,m1), and send (SEND, sid, S,R) to R and the adversary S.

• Ignore any subsequent SEND commands.

Choose. Upon receiving (RECEIVE, sid, S,R, b) from R where b ∈ {0, 1}, do:

• Record (sid, S,R, b), and send (RECEIVE, sid, S,R) to the sender S and the adversary S.

• Ignore any subsequent RECEIVE commands.

Process. When both (sid, S,R,m0,m1) and (sid, S,R, b) are recorded, do:

• If both the sender S and the receiver R are honest, output (RECEIVED, sid, S,R,m0,m1) to the sender S,
(RECEIVED, sid, S,R,mb) to R and (RECEIVED, sid, S,R) to the adversary S.

• Else if the sender S is corrupted and the receiver R is honest, send (PROCEED?, sid, R) to the adversary S. Upon
receiving (PROCEED, sid, R,m∗0,m

∗
1) from the adversary S, set m0 := m∗0 , m1 := m∗1 , and output

(RECEIVED, sid, S,R,m0,m1) to the sender S, (RECEIVED, sid, S,R,mb) to R; Upon receiving (NO, sid, R) from the
adversary S, output (ABORT, sid, R) to R.

• Else if the sender S is honest and the receiver R is corrupted, send (PROCEED?, sid, S) to the adversary S. Upon
receiving (PROCEED, sid, S,m∗b) from the adversary S, set mb := m∗b , and output (RECEIVED, sid, S,R,m0,m1) to the
sender S, (RECEIVED, sid, S,R,mb) to R; Upon receiving (NO, sid, S) from the adversary S, output (ABORT, sid, S) to the
sender S.

• Else if both the sender S and the receiver R are corrupted, halt.

Functionality FEOT

Figure 8: The Ideal Functionality FEOT for Endemic Oblivious Transfer

13

the message string mb, and it returns the adversarial chosen mb and an uniformly sampled m1−b to the honest
sender. If both sender and receiver are malicious, the EOT functionality simply aborts. Formally, we put the EOT
functionality FEOT in Figure 8.

2.5.3 Commitment

A commitment protocol allows a committer to compute a commitment message c to a message m towards a
receiver in the committing phase. Later in the opening phase, the committer can open c to m by sending the
opening message to the receiver. The commitment protocol should satisfies two properties: (i) hiding property, i.e.,
the receiver should learn nothing about the committed message from c; (ii) binding property, i.e., the committer
cannot open c to another message m′ 6= m. We put the commitment functionality FCom in Figure 9, and both
hiding and binding properties are captured by FCom.

The functionality interacts with two parties C,R and an adversary S.

Commit. Upon receiving (COMMIT, sid, C,R,m) from C, do:

• Record the tuple (sid, C,R,m), and send (PROCEED?, sid, C,R) to S.

• Upon receiving (PROCEED, sid, C,R) from S, send (RECEIPT, sid, C,R) to R and C; Upon receiving (NO, sid, C,R) from
S, send (ABORT, sid, C,R) to C and R and halt.

• Ignore any subsequent COMMIT command.

Open. Upon receiving (DECOMMIT, sid, C,R) from C, do:

• If there is a tuple (sid, C,R,m) recorded, send (PROCEED?, sid, C,R) to S. Upon receiving (PROCEED, sid, C,R) from S,
send (DECOMMIT, sid, C,R,m) to R and S; Upon receiving (NO, sid, C,R) from S, send (ABORT, sid, C,R) to C and R.

• Otherwise, ignore the message.

Functionality FCom

Figure 9: The Ideal Functionality FCom for Commitment

2.5.4 Random Oracles

We introduce the local RO model, and two well-known global RO models: Global Restricted Observable Random
Oracle (GroRO) model proposed by Canetti et al. [CJS14] and Global Restricted Programmable Random Oracle
(GrpRO) model proposed by Camenisch et al. [CDG+18].

The Local RO Model. Typically, the local RO is modeled as an ideal functionality FRO. As depicted in Figure 10,
upon receiving (QUERY, sid, x) from any party, FRO first checks whether the query (sid, x) has been queried before.
If not, FRO selects a random value of pre-specified length v ← {0, 1}`out(λ), answers with the value v and records
the tuple (sid, x, v); otherwise, the previously chosen value v is returned again, even if the earlier query was made
by another party.

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized by the output length
`out(λ). It maintains an initially empty list List.

Query. Upon receiving (QUERY, sid, x) from a party Pi ∈ P , or the adversary S:

• Check if ∃ v ∈ {0, 1}`out(λ) such that (sid, x, v) ∈ List. If not, select v ← {0, 1}`out(λ) and record the tuple (sid, x, v) in
List.

• Return (QUERYCONFIRM, sid, v) to the requestor.

Ideal Functionality FRO

Figure 10: The Local Random Oracle Model FRO

The GroRO Model. Compared toFRO, the GroRO is modeled as a shared functionality GroRO which may interact
with more than one protocol sessions. The GroRO answers to the queries in the same way as FRO. The simulator
is only granted the restricted observability: some of the queries can be marked as “illegitimate” and potentially

14

disclosed to the simulator. As depicted in Figure 11, the GroRO interacts with a list of ideal functionalities F̄ =
{F1, . . . ,Fn}, where F1, . . . ,Fn are the ideal functionalities for protocols. For any query (sid′, x) from any party
P = (pid, sid) where sid′ is the content of the SID field, if sid′ 6= sid, then this query is considered “illegitimate”.
After that, GroRO adds the tuple (sid′, x, v) to the list of illegitimate queries for SID sid′, which we denote as Qsid′ .
The illegitimate queries Qsid′ may be disclosed to an instance of ideal functionality F ∈ F̄ whose SID is the one
of the illegitimate queries, and the ideal functionality instance F may leak the illegitimate queries Qsid′ to the
simulator.

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized by the output length
`out(λ) and a list of ideal functionalities F̄ := {F1, . . . ,Fn}. It maintains an initially empty list List.

Query. Upon receiving (QUERY, sid′, x) from a party Pi ∈ P where Pi = (pid, sid), or the adversary S:

• Check if ∃ v ∈ {0, 1}`out(λ) such that (sid, x, v) ∈ List. If not, select v ← {0, 1}`out(λ) and record the tuple (sid′, x, v) in
List.

• If sid 6= sid′, add the tuple (sid′, x, v) to the (initially empty) list of illegitimate queries for SID sid′, which we denote by
Qsid′ .

• Return (QUERYCONFIRM, sid′, v) to the requestor.

Observe. Upon receiving a request from an instance of an ideal functionality Fi ∈ F̄ with SID sid′, return the list of illegitimate
queries Qsid′ for SID sid′ to this instance Fi.

Share Functionality GroRO

Figure 11: The Global Restricted Observable Random Oracle Model GroRO

The GrpRO Model. The GrpRO is also modeled as a share functionality GrpRO, and it answers to the queries in
the same way as FRO. The simulator is only granted the restricted programmability: both the adversary and the
simulator are allowed to program the unqueried points of the random oracle, but only the simulator can program
it without being detected. More precisely, as depicted in Figure 12, upon receiving (PROGRAM, sid, x, v) from the
simulator/adversary, GrpRO first checks whether (sid, x) has been queried before. If not, GrpRO stores (sid, x, v) in
the query-answer lists. Any honest party can check whether a point has been programmed or not by sending
the (ISPROGRAMED, sid, x) to GrpRO. Thus, in the real world, the programmed points can always be detected.
However, in the ideal world, the simulator S can escape the detection since it can return (ISPROGRAMED, sid, 0)
when the adversary invokes (ISPROGRAMED, sid, x) to verify whether a point x has been programmed or not.

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized by the output length
`out(λ). It maintains two initially empty lists List,Prog.

Query. Upon receiving (QUERY, sid, x) from a party Pi ∈ P , or the adversary S:

• Check if ∃ v ∈ {0, 1}`out(λ) such that (sid, x, v) ∈ List. If not, select v ← {0, 1}`out(λ) and record the tuple (sid, x, v) in
List.

• Return (QUERYCONFIRM, sid, v) to the requestor.

Program. Upon receiving (PROGRAM, sid, x, v) with v ∈ {0, 1}`out(λ) from the adversary S:

• Check if ∃ v′ ∈ {0, 1}`out(λ) s.t. (sid, x, v′) ∈ List and v 6= v′. If so, ignore this input.

• Set List := List ∪ {(sid, x, v)} and Prog := Prog ∪ {(sid, x)}.
• Return (PROGRAMCONFIRM, sid) to S.

IsProgramed. Upon receiving (ISPROGRAMED, sid′, x) from Pi ∈ P where Pi = (pid, sid), or the adversary S:

• If the input was given by Pi = (pid, sid) and sid 6= sid′, ignore this input.

• If (sid′, x) ∈ Prog, set b := 1; otherwise, set b := 0.

• Return (ISPROGRAMED, sid′, b) to the requester.

Share Functionality GrpRO

Figure 12: The Global Restricted Programmable Random Oracle Model GroRO

15

2.6 Computational Assumptions

Recall that, throughout the work, we let q be a λ-bit prime, and p = 2q + 1 also be a prime. We also let G be a
subgroup of order q of Z∗p with the generator g. We then present the formal descriptions about the computation
assumptions that will be used in this work, i.e., Computational Diffie-Hellman (CDH) assumption and Decisional
Diffie-Hellman (DDH) assumption [DH76], as follows.

Definition 13 (Computational Diffie-Hellman Assumption). We say that the Computational Diffie-Hellman (CDH)
assumption holds in a group G if there is a negligible function negl such that for any PPT adversary A, we have

Pr[A(G, p, q, g, gr, gs) = grs] ≤ negl(λ)

where r, s←Zq .

Definition 14 (Decisional Diffie-Hellman Assumption). We say that the Decisional Diffie-Hellman (DDH) assumption
holds in a group G if there is a negligible function negl such that for any PPT adversary A, we have

|Pr[A(G, p, q, gr, gs, grs) = 1]− Pr[A(G, p, q, g, gr, gs, Z) = 1]| ≤ negl(λ)

where Z←G and r, s←Zq .

3 UC-Secure Endemic OT via Random Oracles

In this section, we provide a new 1-round UC-secure EOT protocol construction under standard assumptions
in the RO model. Note that, in our protocol construction, we make use of the well-known ElGamal encryp-
tion [ElG84], and we refer interesting readers to see formal description about it in Appendix A.

We start with the two-round standalone EOT protocol in the RO model proposed in [CO15]: in the first round,
the sender sends h := gs using s←Zq ; in the second round, the receiver uses sender’s message to compute B :=
grhb based on its choice bit b and its secret randomness r←Zq ; finally, the sender computes and outputs m0 :=
FRO(Bs) and m1 := FRO((Bh)s) while the receiver outputs mb := FRO(hr). Here we use to notation y := FRO(x) to
describe the process for querying x to the random oracle FRO and obtaining the output y, which aligns with the
notation in [CSW20]. Since B can be viewed as the Pedersen commitment of the choice bit b, b is perfectly hidden
inB and thus a malicious sender cannot learn b from the receiver’s message. On the other hand, since the sender’s
randomness s is kept secret from the receiver, a malicious receiver cannot compute both messages as it requires
computing hs (as it involves querying Bs, (Bh)s to the RO). Such a computation is hard by CDH assumption. This
completes the standalone security of this protocol. Although this protocol is very simple and efficient, it cannot
achieve UC security [LM18, GIR20].

Our goals are: (i) reduce the round complexity of this protocol to one simultaneous round; (ii) add new mech-
anisms to make this protocol UC-secure. In order to reduce the round complexity, we let the receiver generate h
by invoking the RO on a randomly sampled string seed. In this way, the receiver can compute its message without
the sender’s message, thus only one simultaneous round is needed. This technique can be found in [CSW20].

We then discuss how to provide UC security. The UC-secure EOT protocol requires extractability: (i) when the
sender is malicious, the simulator should be able to extract the sender’s secret randomness, so the simulator can
compute both m0 and m1; (ii) when the receiver is malicious, the simulator should be able to extract the receiver’s
choice bit b. In order to extract the sender’s secret randomness s, we let the sender additionally generate a straight-
line extractable NIZK argument [Pas03, Fis05, Ks22] of s such that z = gs. The straight-line extractability relies on
the observability of the RO model. In this way, the simulator can extract the malicious sender’s secret randomness.
In order to extract the receiver’s choice bit b, we let the receiver generate an ElGamal encryption of b instead of
a Pedersen commitment of b, i.e., the receiver computes (u, v) := (hr, hbgr) using r←Zq . We also let the receiver
generate a NIZK argument of (b, r) such that (u, v) = (hr, hbgr) to ensure that (u, v) is an ElGamal encryption of a
bit b. In this way, the simulator knows logg h by making use of the programmability of the RO model, and thus be
able to extract b from (u, v).

Let g be the generator of G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ → {0, 1}λ be random oracles. Let
RENC := {((g, h, u, v), (r, b)) | (b = 0 ∧ (u, v) = (hr, gr)) ∨ (b = 1 ∧ (u, v) = (hr, grh))} and RDL := {((g, z), s) | z =
gs}. We denote by ΠsleNIZK the straight-line extractable NIZK argument in the FRO3-hybrid world. We denote
by ΠNIZK the NIZK argument in the FRO4-hybrid world. We note that, the domain and range of FRO3 and FRO4

depend on the concrete instantiations of the protocols, for that reason, we do not write them explicitly. Here we
assume the synchronous channel FSyn is available to the protocol players.

16

Protocol Description. Our protocol ΠEOT-RO works as follows. We first present the case where both sender
and receiver are honest in Figure 13. More precisely, the sender computes z := gs where g is a common group
generator and s ← Zq is randomly sampled, then the sender generates a proof πDL ← ΠsleNIZK.Prove

FRO3((g, z), s)
for relationRDL. After that, the sender sends z, πDL to the receiver via FSyn. At the same time, the receiver samples
seed ← {0, 1}λ and r ← Zq , then computes h := FRO1(sid, ‘R’||seed) where ‘R’ is the public identifier of the
receiver, and computes u := hr, v := hbgr, finally generates a proof πENC ← ΠNIZK.Prove

FRO4((g, h, u, v), (r, b))
for RENC. The receiver then sends (seed, u, v, πENC) to the sender via FSyn. After querying FSyn and obtaining
(seed, u, v, πENC), the sender computes h := FRO1(sid, ‘R’||seed), and checks if ΠNIZK.Verify

FRO4((g, h, u, v), πENC) = 1
for RENC. If so, the sender computes and outputs m0 := FRO2(sid, ‘S’||vs) and m1 := FRO2(sid, ‘S’||(vh)s) where
‘S’ is the public identifier of the sender; otherwise, the sender simply aborts. After querying FSyn and obtaining
(z, πDL), the receiver first checks if ΠsleNIZK.Verify

FRO3((g, z), πDL) = 1 for RDL. If so, the receiver computes mb :=
FRO2(sid, ‘S’||zr) and outputs (b,mb); otherwise, the receiver simply aborts. Note that, if the honest sender (resp.
receiver) cannot obtain the desired message form FSyn, the honest party simply aborts. Then we talk about the
malicious cases. When the sender (resp. receiver) is statically corrupted and the receiver (resp. sender) is honest,
after sending its message to FSyn and waiting for a long time, the honest receiver (resp. sender) will query FSyn to
obtain the other party’s message. If FSyn replies the desired message which is in the correct form, the honest party
will compute and output the local message according to Figure 13; otherwise, the honest party simply aborts. The
security of the protocol has been stated in Theorem 1.

Sender Receiver(b ∈ {0, 1})FROi

seed, u, v, πENC

z, πDL

s←Zq; z := gs

πDL ← ΠsleNIZK.Prove
FRO3

((g, z), s) for RDL

seed←{0, 1}λ; r ← Zq

h := FRO1(sid, ‘R’||seed)
(u, v) := (hr, hbgr)
πENC ← ΠNIZK.Prove

FRO4((g,
h, u, v), (r, b)) for RENC

h := FRO1(sid, ‘R’||seed)
Abort if ΠNIZK.Verify

FRO4((g,
h, u, v), πENC) = 0 for RENC

Output m0 := FRO2(sid, ‘S’||vs)
m1 := FRO2(sid, ‘S’||(vh)s)

Abort if ΠsleNIZK.Verify
FRO3((g,

z), πDL) = 0 for RDL

Output mb := FRO2(sid, ‘S’||zr)

Figure 13: 1-round EOT protocol ΠEOT-RO in the {FRO,FSyn}-hybrid world, where FRO = {FROi}i∈[4]. Let g be
the generator of G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ → {0, 1}λ be random oracles. Let RENC :=
{((g, h, u, v), (r, b)) | (b = 0 ∧ (u, v) = (hr, gr)) ∨ (b = 1 ∧ (u, v) = (hr, grh))} and RDL := {((g, z), s) | z = gs} be
NP relations.

Theorem 1. Assume the DDH assumption holds in group G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ → {0, 1}λ be
the random oracles. Let ΠNIZK be an NIZK argument in the FRO3-hybrid world. Let ΠsleNIZK be a straight-line extractable
NIZK argument in the FRO4-hybrid world. The protocol ΠEOT-RO depicted in Figure 13 UC-realizes the functionality FEOT

depicted in Figure 8 in the {FRO,FSyn}-hybrid world against static malicious corruption, where FRO = {FROi}i∈[4].

Proof. We leave the formal proof in Appendix C.1.

Instantiation. We instantiate ΠsleNIZK for relation RDL with the Schnorr’s protocol [Sch90] and the randomized
Fischlin transform [Ks22] which improves the efficiency and applicability of Fischlin transform [Fis05]. We present
the formal description of the Schnorr’s protocol and the randomized Fischlin transform in Appendix B.1 and
Appendix B.2 respectively.

We instantiate ΠNIZK for relationRENC with the following techniques: we first employ the OR-composition [CDS94]
to the Chaum-Pedersen protocols [CP93] to prove either (g, h, v, u) is a DDH tuple (which means b = 0) or
(g, h, vh , u) is a DDH tuple (which means b = 1), we then apply the the Fiat-Shamir transform [FS87] to remove the
interaction. We present the formal description of the Chaum-Pedersen protocols and the OR-composition of the
Sigma-protocols in Appendix B.1.

17

Efficiency. Here we compare the efficiency in the amortized setting where the sender and the receiver can reuse
some elements for multiple instances of the EOT protocol (in this protocol, the sender can reuse s, πDL while the
receiver can reuse the string seed). The amortized setting is also used in [CSW20] for efficiency comparison. By
taking the parameter (that achieves 128-bit security) from [Ks22], our protocol ΠEOT-RO requires 18 exponentiations
w.r.t. computation and 10 group/field elements w.r.t. communication; while the state-of-the-art 1-round UC-
secure RO-based protocol in [MR19a] requires 4 exponentiations w.r.t. computation and 2 group elements w.r.t.
communication. Note that, our protocol is based on a standard assumption; whereas the protocol in [MR19a] is
based on a non-standard assumption.

4 The Relations between Endemic OT and Other Primitives

In this section, we first show how to construct a bit commitment protocol via EOT with unconditional security.
Subsequently, we complete the picture of OT relations in [MR19a], showing that UOT can be constructed via EOT
with unconditional security.

4.1 From Endemic OT to Commitment

It is known that bit commitment can be constructed via 1-out-of-2 OT with unconditional security [Kil88, BFSK11].
What about EOT? Inspired by Brzuska et al.’s construction [BFSK11], here we show that bit commitment can also
be constructed via a weaker primitive, i.e., EOT, with unconditional security.

We observe that the receiver’s message can be viewed as the commitment to the receiver’s choice bit b, and the
locally computed message mb together with b can be viewed as the opening. Typically, a commitment protocol
requires two properties: hiding and binding. The hiding property comes from the fact: even if the malicious EOT
receiver can influence the distribution of mb, it cannot learn the other message m1−b. The binding property comes
from the fact: even if the malicious EOT sender can influence the distributions of both m0 and m1, it cannot tell
which one is received by the receiver. Furthermore, if we use a UC-secure EOT protocol as the building block,
the resulting commitment protocol is also UC-secure. Note that, we only assume authenticated channel FAuth is
available to the protocol players.

Protocol Description. Our protocol ΠCom works as follows. We first present the case where both committer
and receiver are honest in Figure 14. More precisely, in the committing phase, the committer acts as the EOT
receiver and uses RECEIVE command to send b to FEOT and the receiver acts as the EOT sender and sends SEND
command to FEOT, then the committer obtains mb from FEOT and the receiver obtains m0,m1 from FEOT. Note
that, if the honest committer (resp. receiver) obtains ABORT from FEOT, the honest party simply aborts. In the
opening phase, the committer simply sets m := mb and sends b,m to the receiver via FAuth. If the receiver obtains
the desired message from FAuth, the receiver will accept b if and only if m = mb; otherwise, the receiver simply
aborts. We then discuss the case where one party is statically corrupted and the other one is honest. We will
describe the case where the committer is statically corrupted and the receiver is honest, and omit the case where
the receiver is statically corrupted and the committer is honest since it is similar. When the committer is statically
corrupted and the receiver is honest, in the committing phase, the honest receiver sends its message to FEOT and
waits for FEOT to response. If FEOT replies m0,m1, the honest receiver continues the protocol; otherwise (i.e.,
FEOT replies ABORT), the honest receiver simply aborts. In the opening phase, if honest receiver receives the
corrupted committer’s message from FAuth which is in the correct form, the honest receiver will complete the
protocol according to Figure 14; otherwise, the honest receiver simply aborts. The security of the protocol has
been stated in Theorem 2.

Theorem 2. The protocol ΠCom depicted in Figure 14 UC-realizes the functionality FCom depicted in Figure 9 with uncon-
ditional security in the {FEOT,FAuth}-hybrid world against static malicious corruption.

Proof. We leave the formal proof in Appendix C.2.

4.2 From Endemic OT to Uniform OT

In [MR19a], the Masny and Rindal showed how to construct UOT with unconditional security in the {FEOT,FCoin,
FAuth}-hybrid world, and we recall their protocol construction in Figure 15. However, they only showed how to
construct the coin-tossing protocol via UOT. Therefore, whether EOT implies UOT remains an open question.

18

ReceiverCommitter(b ∈ {0, 1})

FEOT

b
mb m0,m1

Opening Phase:

Committing Phase:

b,m

Accept b iff m = mb

Figure 14: Bit Commitment Protocol ΠCom in the {FEOT,FAuth}-Hybrid World

FEOT

b
mbm0,m1

FCoin
r0, r1 r0, r1

Output s0 := m0 ⊕ r0
s1 := m1 ⊕ r1

Output sb := mb ⊕ rb

Sender Receiver(b ∈ {0, 1})

Figure 15: UOT Protocol ΠUOT in the {FEOT,FCoin,FAuth}-Hybrid World from [MR19a]

Lemma 1 ([MR19a]). The protocol ΠUOT depicted in Figure 15 UC-realizes FUOT depicted in Figure 7 with unconditional
security in the {FEOT,FCoin,FAuth}-hybrid world against static malicious corruption.

In this section, we provide a positive answer to this unsolved question. Our solution is as follows: we have
showed that EOT implies commitment in Section 4.1, and the coin-tossing protocol can be easily constructed via
only commitment; putting things together, we show that EOT implies UOT.

Protocol Description. The protocol ΠCoin works as follows. We first present the case where both player 1 and
player 2 are honest in Figure 16. More precisely, the player 1 samples a uniformly random stringm1 and sends m1

to FCom in the first round. If the player 2 receives RECEIPT from FCom, the player 2 samples a uniformly random
string m2 to the player 1 via FAuth; otherwise, the player 2 simply aborts. If the player obtains m1 from FAuth, the
player 1 sends DECOMMIT command to FCom and outputs m := m1 ⊕m2; otherwise, the player 1 simply aborts.
If the player 2 obtains m2 from FAuth, the player 2 outputs m := m1 ⊕ m2. We then discuss the case where one
party is statically corrupted and the other one is honest. We will describe the case where the player 2 is statically
corrupted and the player 1 is honest, and omit the other case since it is similar. When the player 2 is statically
corrupted and the player 1 is honest, the honest player 1 will execute the protocol according to Figure 16, except
that whenever FCom sends ABORT to the player 1 or the player 1 does not receive the player 2’s message from
FAuth in the second round, the player 1 simply aborts. The security of the protocol has been stated in Theorem 3.

Theorem 3. The protocol ΠCoin depicted in Figure 16 UC-realizes the functionality FCoin depicted in Figure 5 with uncon-
ditional security in the {FCom,FAuth}-hybrid world against static malicious corruption.

Proof. We leave the formal proof in Appendix C.3.

Formally, we prove that EOT implies UOT through Corollary 1. The security proof of Corollary 1 directly
comes from Lemma 1, Theorem 2 and Theorem 3, and thus we omit the trivial proof here.

Corollary 1. The protocol ΠUOT depicted in Figure 15 UC-realizes FUOT depicted in Figure 7 with unconditional security
in the {FEOT,FAuth}-hybrid world against static malicious corruption.

19

Player 2Player 1

m1 Receipt

m2

Decommit m1

Output m := m1 ⊕m2 Output m := m1 ⊕m2

FCom

Figure 16: Coin-Tossing Protocol ΠCoin in the {FCom,FAuth}-Hybrid World

5 GUC-Secure Endemic OT via Global Random Oracles

In this section, we turn to global RO models to seek a stronger variant of UC security, i.e., GUC security. As
for the GroRO model, we construct the first 1-round GUC-secure EOT protocol under CDH assumption against
static adversaries. Using our 1-round GUC-secure EOT protocol as the main building block, we propose the first
2-round GUC-secure commitment protocol in the GroRO model.

Regarding the GrpRO model, we prove that there exists no 1-round GUC-secure EOT protocol in the GrpRO
model even with static security. By combining this negative result in the GrpRO model and the positive result
in the GroRO model, we reveal a separation between these two models. Furthermore, we construct the first 2-
round (round-optimal) GUC-secure EOT protocol under DDH assumption in the GrpRO model against adaptive
adversaries.

5.1 Feasibility Results in the GroRO Model

5.1.1 Our EOT Protocol

We start with our UC-secure EOT protocol ΠEOT-RO depicted in Figure 13. Recall that, we let the sender send
z := gs using s← Zq , together with a straight-line extractable NIZK argument of s such that z = gs in ΠEOT-RO. The
straight-line extractable NIZK argument gives the simulator chance of extracting the sender’s secret randomness.
However, Pass showed that it is impossible to construct NIZK arguments in observable RO model [Pas03], let
alone NIZK arguments with straight-line extractability. The good news is that we find that straight-line extractable
NIWH argument is sufficient for our purpose, and it is possible in the GroRO model [Pas03]. Therefore, we let the
sender generate a straight-line extractable NIWH argument of s such that z = gs. Now let us consider the receiver.
In order to extract the receiver’s choice bit, we make full use of the programmability of random oracles in ΠEOT-RO.
Since GroRO does not permit anyone to program the random oracle, we need to take a different strategy: we let the
receiver generate h by invoking the GroRO on a randomly sampled string seed, compute a Pedersen commitment
to the choice bit B := grhb using r ← Zq , and generate a straight-line extractable NIWH argument of (r, b) such
that B = grhb. Analogously to the sender side, the simulator can extract the malicious receiver’s choice bit b.

Let g be the generator of G. Let GroRO1 : {0, 1}∗ → G and GroRO2 : {0, 1}∗ → {0, 1}λ. LetRCom := {((g, h,B), (r, b)) |
B = grhb} and RDL := {((g, z), s) | z = gs}. We denote by ΠS

sleNIWH the straight-line extractable NIWH argument
in the GroRO3-hybrid world which is used for generating the proof by sender. We denote by ΠR

sleNIWH the straight-
line extractable NIWH argument in the GroRO4-hybrid world which is used for generating the proof by receiver.
We assume synchronous channel FSyn is available to the protocol players..

Protocol Description. Our protocol ΠEOT-GroRO works as follows. We first present the case where both sender
and receiver are honest in Figure 17. More precisely, the sender computes z := gs where g is a common group
generator and s ← Zq , then the sender generates a proof πDL ← ΠsleNIWH.Prove

GroRO3((g, z), s) for relation RDL.
After that, the sender sends (z, πDL) to the receiver via FSyn. At the same time, the receiver selects seed←{0, 1}λ,
and computes h := GroRO1(sid, ‘R’||seed). Then the receiver computes B := grhb where g is a common group
generator and r ← Zq , and generates a proof πCom ← ΠsleNIWH.Prove

GroRO4((g, h,B), (r, b)) for relation RCom. After
that, the receiver sends (seed, B, πCom) to the sender via FSyn. After querying FSyn and obtaining (seed, B, πCom),
the sender computes h := GroRO1(sid, ‘R’||seed) where ‘R’ is the public identifier of the receiver. Then the sender
checks if ΠsleNIWH.Verify

GroRO4((g, h,B), πCom) = 1 for RCom. If so, the sender outputs m0 := GroRO2(sid, ‘S’||Bs) and

20

Sender Receiver(b ∈ {0, 1})GroROi

s←Zq; z = gs

πDL ← ΠS
sleNIWH.Prove

GroRO3

((g, z), s) for RDL

seed, B, πCom

z, πDL

seed←{0, 1}λ
h := GroRO1(sid, ‘R’||seed)
r←Zq;B := grhb

πCOM ← ΠR
sleNIWH.Prove

GroRO4

((g, h,B), (r, b)) for RCom

Abort if ΠS
sleNIWH.Verify

GroRO3

((g, z), πDL) = 0 for RDL

Output mb := GroRO2(sid, ‘S’||zr)

h := GroRO1(sid, ‘R’||seed)
Abort if ΠR

sleNIWH.Verify
GroRO4((g, h,B),

πCom) = 0 for RCom

Output m0 := GroRO2(sid, ‘S’||Bs)
m1 := GroRO2(sid, ‘S’||(Bh)s)

Figure 17: 1-round EOT protocol ΠEOT-GroRO in the {GroRO,FSyn}-hybrid world, where GroRO = {GroROi}i∈[4]. Let g
be the generator of G. Let GroRO1 : {0, 1}∗ → G and GroRO2 : {0, 1}∗ → {0, 1}λ be random oracles. Let RCom :=
{((g, h,B), (r, b)) | B = grhb} andRDL := {((g, z), s) | z = gs} be NP relations.

m1 := GroRO2(sid, ‘S’||(Bh)s) where ‘S’ is the public identifier of the sender. After querying FSyn and obtaining
(z, πDL), the receiver checks if ΠsleNIWH.Verify

GroRO3((g, z), πDL) = 1 for RDL. If so, the receiver simply computes
mb := GroRO2(sid, ‘S’||zr) and outputs (b,mb). Note that, if the honest sender (resp. receiver) cannot obtain the
desired message form FSyn, the honest party simply aborts. Then we talk about the malicious cases. When sender
(resp. receiver) is statically corrupted and receiver (resp. sender) is honest, after sending its message to FSyn and
waiting for a long time, the honest receiver (resp. sender) will query FSyn to obtain the other party’s message. If
FSyn replies the desired message which is in the correct form, the honest party will compute and output the local
message according to Figure 17; otherwise, the honest party simply aborts. The security of the protocol has been
stated in Theorem 4.

Before giving the theorem, we have to give the transferable EOT functionality FtEOT in Figure 18. The main
difference with the traditional EOT functionality is that in FtEOT, the simulator can request the list of illegitimate
queries, which fits the GroRO model.

The functionality interacts with two parties S, R and an adversary S.

Transfer/Choose/Process. Same as FEOT depicted in Figure 8.

Observe. When asked by the adversary S, obtain from GroRO the list of illegitimate queries Qsid that pertain to SID sid, and
send Qsid to the adversary S.

Functionality FtEOT

Figure 18: The Transferable Ideal Functionality FtEOT for Endemic Oblivious Transfer in GroRO Model

Theorem 4. Assume the CDH assumption holds in group G. Let GroRO1 : {0, 1}λ → G and GroRO2 : G → {0, 1}λ be the
random oracles. Let ΠS

sleNIWH be a straight-line extractable NIWH argument in the GroRO3-hybrid world. Let ΠR
sleNIWH be a

straight-line extractable NIWH argument in the GroRO4-hybrid world. The protocol ΠEOT-GroRO depicted in Figure 17 GUC-
realizes the functionality FtEOT depicted in Figure 18 in the {GroRO,FSyn}-hybrid world against static malicious corruption,
where GroRO = {GroROi}i∈[4].

Proof. We leave the formal proof in Appendix C.4.

Instantiation. We instantiate ΠS
sleNIZK for relation RDL with the Schnorr’s protocol and the randomized Fischlin

transform as in Section 3. Note that, although we use the same instantiation as in Section 3, we only obtain a
straight-line extractable NIWH argument, since here we use a observable RO model [Pas03].

We instantiate ΠR
sleNIWH for relation RCom with the Okamoto’s protocol [Oka93] and the randomized Fischlin

transform. We present the formal description of the Okamoto’s protocol and the randomized Fischlin transform
in Appendix B.1 and Appendix B.2 respectively.

21

Efficiency. We consider the efficiency of our GUC-secure protocol ΠEOT-GroRO in the amortized setting here, just
like we did in Section 3. By taking the parameter (that achieves 128-bit security) in [Ks22], our GUC-secure
protocol ΠEOT-GroRO requires 53 exponentiations w.r.t. computation and 41 group/field elements w.r.t. communi-
cation; while the state-of-the-art 2-round GroRO-based OT protocol in [CSW20] requires 5 exponentiations w.r.t.
computation and 2 group elements + 2λ bits string w.r.t. communication. The efficiency of our GUC-secure pro-
tocol ΠEOT-GroRO is slightly worse than the protocol in [CSW20], but our protocol only requires CDH assumption,
whereas the protocol proposed in [CSW20] requires the DDH assumption, which is stronger.

5.1.2 Our Commitment Protocol

At the very beginning, we introduce the transferable commitment functionality FtCom from [CJS14] in Figure 19.
The main difference with the traditional commitment functionality is that in FtCom, the simulator can request the
list of illegitimate queries, which fits the GroRO model.

The functionality interacts with two parties S, R and an adversary S.

Commit/Open. Same as FCom depicted in Figure 9.

Observe. When asked by the adversary S, obtain from GroRO the list of illegitimate queries Qsid that pertain to SID sid, and
send Qsid to the adversary S.

Functionality FtCom

Figure 19: The Transferable Ideal Functionality FtCom for Commitment in GroRO Model

Recall that, we construct a commitment protocol ΠCom depicted in Figure 14 in the {FEOT,FAuth}-hybrid world
with unconditional security (cf. Section 4.1). It is easy to see that if we replace the ideal functionality FEOT with
transferable ideal functionality FtEOT and call the resulting protocol ΠtCom, then the protocol ΠtCom will GUC-
realize FtCom in the {FtEOT,FAuth}-hybrid world with unconditional security. Formally, we have the following
corollary, and its security proof is analogously to the proof of Theorem 2.

Corollary 2. The protocol ΠtCom GUC-realizes the functionality FtCom depicted in Figure 19 with unconditional security
in the {FtEOT,FAuth}-hybrid world against static malicious corruption.

Instantiation. We instantiate FtEOT with our 1-round GUC-secure EOT protocol depicted in Figure 17. Then
we immediate obtain a 2-round GUC-secure commitment protocol ΠtCom in the GroRO model; note that, the
first round messages are communicated over the synchronous channel FSyn and the second round message is
communicated over the authenticated channel FAuth. The security is guaranteed by Theorem 4 and Corollary 2.

Comparison. Our commitment protocol is the first 2-round GUC-secure commitment in the GroRO model, while
the previous state-of-the-art protocols achieves 3 rounds [MRS17, ZZZR22]. Note that, Zhou et al. proved that
it is impossible to construct 2-round GUC-secure commitment protocol in the GroRO model even with static
security [ZZZR22]; but they did not consider the simultaneous communication model. Our 2-round commitment
protocol contains a simultaneous round, so we do not contradict their impossibility result. We also note that, our
protocol and protocols in [MRS17, ZZZR22] are all 3-move static-secure protocols, but ours is the only one whose
first two moves can be executed in one simultaneous round; hence, ours is the only one that can achieve 2-round.
The details of the comparison are presented in Table 2.

Protocol #Round
Computational

Assumption
[MRS17] 3 DL

[ZZZR22] 3 OWF
ΠtCom 2 CDH

Table 2: Comparison with state-of-the-art GUC-secure commitment against static adversaries in the GroRO model.

22

5.2 Impossibility and Feasibility Results in the GrpRO Model

5.2.1 Our Impossibility Result

Here we show that there exists no 1-round GUC-secure EOT protocol against static adversaries in the GrpRO
model.

We prove this impossibility by contradiction. Suppose that there exists such a 1-round GUC-secure EOT proto-
col. Let us first consider the case where the receiver is corrupted, and the simulator needs to extract the choice bit
of the receiver from its message. Recall that, the GrpRO only grants the simulator the restricted programmability:
although the simulator can program the unqueried points without being detected, the simulator is external to the
GrpRO and it can not know in real time what queries other parties are sending to GrpRO. Thus, the simulator needs
to program the points in advance and find a way to enforce the corrupt receiver to generate its message on the
simulator’s programmed points. In that way, the simulator can have the chance of extracting the choice bit of
the receiver. However, in a one simultaneous round protocol, the messages between parties have no dependency.
Hence the simulator cannot enforce the corrupt receiver to produce its message on the programmed points, and
has no advantages over the real world adversary. If the simulator still succeeds to extract the corrupted receiver’s
choice bit, then distinctions will be revealed when the adversary performs the following attacks. The adversary
corrupts the sender, and instructs the sender to run the simulator algorithm above to extract the choice bit from
the message sent by the receiver/simulator. However, the receiver/simulator has no idea about the real choice bit,
thus with high probability the simulation would fail. Formally, we prove this impossibility through Theorem 5.

Theorem 5. There exists no terminating 1-round protocol Π that GUC-realizes FEOT depicted in Figure 8 with static
security in the {GrpRO,FSyn}-hybrid world.

Proof. We proceed by contradiction. Suppose there exists such a protocol Π that GUC-realizes FEOT in the {GrpRO,

FSyn}-hybrid world. Then there must exist a PPT simulator S such that EXECGrpRO

FEOT,S,Z
c≈ EXEC

GrpRO,FSyn

Π,A,Z for any PPT
adversary A and any PPT GrpRO-externally constrained environment Z .

In particular, let us first consider the session with SID sid1, and let A be a dummy adversary that simply
forwards protocol flows between the corrupt party and the environment Z . Our Z proceeds by corrupting the
receiver R∗ at first. Then Z waits for S to send its message πS . Note that, once the message πS is given to FSyn,
A is allowed to see it. After obtaining πS from A, Z chooses a random bit b ← {0, 1} and instructs R∗ to perform
the receiver algorithm on input b, and send its message πR to S. Finally, Z performs the local computation of R∗

to obtain mb, and waits for S to output m′0,m′1 at the end of the protocol. If mb = m′b, Z outputs 1; otherwise, Z
outputs 0.

In order to make the GUC experiment above remain indistinguishable, the simulator S needs to perform
the following strategy. First, S extracts the choice bit b of the receiver from message πR. Then S performs the
local computation of S to obtain m0,m1. Finally, S sends (RECEIVE, sid, b,mb) to FEOT on behalf of the dummy
corrupted receiver. It is easy to see that the crucial part lies in the extraction of the choice bit b of the receiver.
Recall that, the main advantage of S is that it can program the GrpRO on unqueried points without being detected,
but the simulator is external to the GrpRO and it can not know in real time what queries other parties are sending to
GrpRO. For notation convenience, we denote by Progsid1

the queries programmed by S. If the adversary happens to
use the points that belongs to Progsid1

, then S has the chance of extracting the private information of the malicious
party. We also note that, the simulator S also can query GrpRO just like other parties. In order to describe the process
of querying to GrpRO, we denote by G∗rpRO the simplified version of the GrpRO, i.e., the GrpRO without the PROGRAM

interface. We write SG∗rpRO to denote the event that S is given query access to GrpRO and can continuously query to
GrpRO. With notations above, we denote by b← SG∗rpRO(sid1, πR,Progsid1

) the event where S extracts the choice bit b
from πR using Progsid1

. Recall that, (i) the simulator S should be able to handle any PPT adversaryA and any PPT
environment Z ; (ii) there should be no dependency between πS and πR in one simultaneous round protocol, i.e.,
the computation of πR is totally independent of πS . Hence we can consider the following case: the environment
Z queries GrpRO everything that will be needed to compute the receiver’s message πR in advance (we denote these
queries asQsid1,Z), then Z starts the protocol Π and instructs R∗ to run the receiver algorithm on those previously
queried points. In this case, we have Pr[Progsid1

∩Qsid1,Z = ∅] = 0 whereQsid1,Z is the queries used for generating
the receiver’s message πR. However, the simulator S should still be able to extract the choice bit; otherwise, Z will
distinguish the ideal world from the real world. In other words, the algorithm b← SG∗rpRO(sid1, π1, ∅) should work
even if we replace the programmed queries Progsid1

with an empty set ∅. We note that SG∗rpRO(sid1, πR, ∅) works as
long as the appropriate inputs are provided, even if we switch to the session with a different SID.

Next, we show that the existence of the simulator S above contradicts the security of Π against static corrup-
tions, by creating a particular Z ′ which distinguishes EXEC

GrpRO

FEOT,S′,Z′ from EXEC
GrpRO

Π,A′,Z′ after a static corruption

23

operation for any PPT simulator S ′. Let us consider the session with SID sid2. We let Z ′ corrupt the sender S∗ at
first. Then Z ′ feeds the honest receiver with a random bit b, and waits for the arrival of message πR. Note that, b
is the hidden input of the honest receiver, and the receiver sends b only to FEOT which hides it from S information
theoretically. Therefore, the entire computation of πR is totally independent of b. Now Z ′ instructs S∗ to invoke
b′ ← SG∗rpRO(sid2, πR, ∅). In the real world, we always have b′ = b. In the ideal world, we have b′ = b with proba-
bility at most 1

2 since πR is totally independent of b. Therefore, Z ′ can distinguish between the real world and the
ideal world with a non-negligible probability, contradicting our assumption that Π is GUC-secure.

By combining this negative result in the GrpRO model and the positive result in the GroRO model depicted in
Section 5.1.1, we demonstrate a separation between the GroRO and the GrpRO model.

5.2.2 Our EOT Protocol

Theorem 5 rules out the possibility of 1-round GUC-secure EOT protocols in the {GrpRO,FSyn}-hybrid world. It
makes us wonder if we do not let the sender and the receiver send their messages simultaneously but in a specific
order, can we obtain a 2-move (also 2-round) GUC-secure protocol?

We start with the UC-secure EOT protocol in the CRS+GrpRO hybrid model proposed by Canetti et al. [CSW20].
Their CRS consists of two group elements g, h ∈ G, and the simulator knows logg h. They let the receiver generate
parameter G,H by invoking the RO on a randomly sampled string seed, and compute two instances of Peder-
sen commitment to the choice bit (B1, B2) := (gxGb, hxHb) using two sets of different parameters (g,G), (h,H)
and the same randomness x ← Zq . As for the sender, they let the sender compute z := grhs using randomness
r, s← Zq . Finally, the sender outputs m0 := GrpRO(Br1B

s
2) and m1 := GrpRO((B1

G)r(B2

H)s) while the receiver outputs
mb := GrpRO(zx).

Our goals are: (i) remove the CRS setup of this protocol; (ii) make this protocol GUC-secure in the GrpRO
model. To achieve the former goal, we let the sender generate g, h by invoking random oracle on a randomly
sampled string seed1. Then the sender computes z := grhs using r, s ← Zq , and sends seed1, z to the receiver.
On the other hand, we let the receiver generate G,H by invoking GrpRO on another randomly sampled string
seed2, computes two instances of Pedersen commitment to the choice bit (B1, B2) := (gxGb, hxHb) using the
same randomness x ← Zq . The local computation is the same as Canetti et al’s protocol. In order to show that
our modified protocol achieves the latter goal, we show the simulation strategy as follows: when the receiver is
malicious, the simulator can extract the receiver’s choice bit b by programming the GrpRO and knowing α such that
h = gα. Then the simulator can extract b by the following strategy: if B2 = Bα1 , it sets b := 0; else if B2

H = (B1

G)α, it
sets b := 1; else, it sets b := ⊥. Note that, when B1, B2 are not correctly constructed (i.e., the simulator sets b := ⊥),
the malicious receiver cannot compute either m0 or m1. When the sender is malicious, the simulator can compute
both m0 and m1 by programming the GrpRO such that (g, h,G,H) is a DDH tuple, i.e., G = gt, H = ht. In this way,
the simulator can compute m0 := GrpRO(zx) and m1 := GrpRO(zx−t).

Sender Receiver(b ∈ {0, 1})GrpROi

seed1←{0, 1}λ
(g, h) := GrpRO1(sid, ‘S’||seed1)
r, s←Zq; z := grhs seed1, z

seed2, B1, B2

Abort if seed1 is programmed
(g, h) := GrpRO1(sid, ‘S’||seed1)
seed2←{0, 1}λ
(G,H) := GrpRO1(sid, ‘R’||seed2)
x←Zq; (B1, B2) := (gxGb, hxHb)

Abort if seed2 is programmed
(G,H) := GrpRO1(sid, ‘R’||seed2)
Output m0 := GrpRO2(sid, ‘S’||Br

1B
s
2)

m1 := GrpRO2(sid, ‘S’||(B1

G)r(B2

H)s)

Output mb := GrpRO2(sid, ‘S’||zx)

Figure 20: 2-round EOT protocol ΠEOT-GrpRO in the {GrpRO,FAuth}-hybrid world, where GrpRO = {GrpRO1,GrpRO2}.
Let GrpRO1 : {0, 1}∗ → G2 and GrpRO2 : {0, 1}∗ → {0, 1}λ be random oracles.

24

Let GrpRO1 : {0, 1}∗ → G×G and GrpRO2 : {0, 1}∗ → {0, 1}λ. Here we assume authenticated channels FAuth are
available to all parties.

Protocol Description. Our protocol ΠEOT-GrpRO works as follows. We first present the case where both sender
and receiver are honest in Figure 20. More precisely, the sender first selects seed1←{0, 1}λ and computes (g, h) :=
GrpRO1(sid, ‘S’||seed1) where ‘S’ is the public identifier of the sender. Then the sender computes z := grhs where
g is a common group generator and r, s←Zq . After that, the sender sends (seed1, z) to the receiver via FAuth. If
the receiver receives (seed1, z) from FAuth, the receiver first checks if seed1 is programed. If so, the receiver simply
aborts. Otherwise, the receiver selects seed2←{0, 1}λ and computes (g, h) := GrpRO1(sid, ‘S’||seed1), (G,H) :=
GrpRO1(sid, ‘R’||seed2) where ‘R’ is the public identifier of the receiver, and (B1, B2) := (gxGb, hxHb) where x ←
Zq . After that, the receiver sends (seed2, B1, B2) to the sender via FAuth. Finally, the receiver outputs mb :=
GrpRO2(sid, ‘S’||zx). If the sender receives (seed2, B1, B2) from FAuth, the sender first checks if seed2 is programed.
If so, the sender simply aborts. Otherwise, the sender computes (G,H) := GrpRO1(sid, ‘R’||seed2) and outputs
m0 := GrpRO2(sid, ‘S’||Br1Bs2) and m1 := GrpRO2(sid, ‘S’||(B1

G)r(B2

H)s). We then talk about the general solution for
the honest party when the other party may get corrupted: if the honest party obtains the other party’s message
from FAuth and the obtained message is in the correct form, the honest party will continue the protocol according
to Figure 20; otherwise, the honest party simply aborts. The security of the protocol has been stated in Theorem 6.

Theorem 6. Assume the DDH assumption holds in group G. Let GrpRO1 : {0, 1}λ → G×G and GrpRO2 : G→ {0, 1}λ be
the random oracles. The protocol ΠEOT-GrpRO depicted in Figure 20 GUC-realizes the functionality FEOT depicted in Figure 8
in the {GrpRO,FAuth}-hybrid world against adaptive malicious corruption, where GrpRO = {GrpRO1,GrpRO2}.

Proof. We leave the formal proof in Appendix C.5.

Efficiency. We consider the efficiency of our protocol ΠEOT-GrpRO in the amortized setting here, just like we did
in Section 3. Our protocol ΠEOT-GrpRO requires 5 exponentiations w.r.t. computation and 2 group elements w.r.t.
communication; while the state-of-the-art 2-round GrpRO-based OT protocol in [CSW20] requires the same com-
putation and extra 2λ bits string w.r.t. communication compared to our protocol. We emphasize that our protocol
ΠEOT-GrpRO achieves GUC security; whereas the protocol proposed in [CSW20] achieves only UC security.

Acknowledgment. We thank anonymous reviewers of Eurocrypt 2023 for their helpful and constructive com-
ments.

References

[BFSK11] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically uncloneable
functions in the universal composition framework. In Phillip Rogaway, editor, CRYPTO 2011, volume
6841 of LNCS, pages 51–70. Springer, Heidelberg, August 2011.

[BM90] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 547–557. Springer, Heidelberg, August 1990.

[BPRS17] Megha Byali, Arpita Patra, Divya Ravi, and Pratik Sarkar. Fast and universally-composable obliv-
ious transfer and commitment scheme with adaptive security. Cryptology ePrint Archive, Report
2017/1165, 2017. https://eprint.iacr.org/2017/1165.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven. The
wonderful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part I, volume 10820 of LNCS, pages 280–312. Springer, Heidelberg, April / May
2018.

25

https://eprint.iacr.org/2017/1165

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, Hei-
delberg, February 2007.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages
174–187. Springer, Heidelberg, August 1994.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (prelimi-
nary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random
oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 597–608. ACM
Press, November 2014.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure chan-
nels. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 337–351. Springer,
Heidelberg, April / May 2002.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Kristin E. Lauter
and Francisco Rodrı́guez-Henrı́quez, editors, LATINCRYPT 2015, volume 9230 of LNCS, pages 40–58.
Springer, Heidelberg, August 2015.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

[CSW20] Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and round-optimal oblivious transfer and com-
mitment with adaptive security. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 277–308. Springer, Heidelberg, December 2020.

[Dam02] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department for Computer Science,
page 84, 2002. https://www.cs.au.dk/˜ivan/Sigma.pdf.

[DD20] Bernardo David and Rafael Dowsley. Efficient composable oblivious transfer from CDH in the global
random oracle model. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20,
volume 12579 of LNCS, pages 462–481. Springer, Heidelberg, December 2020.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ECDSA from
ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997. IEEE Computer
Society Press, May 2018.

[DSW08] Yevgeniy Dodis, Victor Shoup, and Shabsi Walfish. Efficient constructions of composable commit-
ments and zero-knowledge proofs. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 515–535. Springer, Heidelberg, August 2008.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer,
Heidelberg, August 1984.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, Heidelberg,
August 2005.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-
malleability of the Fiat-Shamir transform. In Steven D. Galbraith and Mridul Nandi, editors, IN-
DOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer, Heidelberg, December 2012.

26

https://www.cs.au.dk/~ivan/Sigma.pdf

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

[GIR20] Ziya Alper Genç, Vincenzo Iovino, and Alfredo Rial. “the simplest protocol for oblivious transfer”
revisited. Information Processing Letters, 161:105975, 2020.

[GIS18a] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: Information-theoretic and
black-box. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS,
pages 123–151. Springer, Heidelberg, November 2018.

[GIS18b] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: Information-theoretic and
black-box. Cryptology ePrint Archive, Report 2018/909, 2018. https://eprint.iacr.org/2018/
909.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer, Heidelberg,
May / June 2006.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April
2008.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from bilinear maps.
In Chris Umans, editor, 58th FOCS, pages 588–599. IEEE Computer Society Press, October 2017.

[HL17] Eduard Hauck and Julian Loss. Efficient and universally composable protocols for oblivious transfer
from the CDH assumption. Cryptology ePrint Archive, Report 2017/1011, 2017. https://eprint.
iacr.org/2017/1011.

[Kat07] Jonathan Katz. On achieving the “best of both worlds” in secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 11–20. ACM Press, June 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM
Press, May 1988.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable syn-
chronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498.
Springer, Heidelberg, March 2013.

[Ks22] Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random oracle model
with applications to signature aggregation. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part II, volume 13792 of LNCS, pages 279–309. Springer, Heidelberg, December 2022.

[LM18] Baiyu Li and Daniele Micciancio. Equational security proofs of oblivious transfer protocols. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 527–553. Springer,
Heidelberg, March 2018.

[MR19a] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 309–326. ACM Press, November
2019.

[MR19b] Daniel Masny and Peter Rindal. Endemic oblivious transfer. Cryptology ePrint Archive, Report
2019/706, 2019. https://eprint.iacr.org/2019/706.

[MRS17] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. Sublinear zero-knowledge arguments for
RAM programs. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 501–531. Springer, Heidelberg, April / May 2017.

27

https://eprint.iacr.org/2018/909
https://eprint.iacr.org/2018/909
https://eprint.iacr.org/2017/1011
https://eprint.iacr.org/2017/1011
https://eprint.iacr.org/2019/706

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signa-
ture schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer,
Heidelberg, August 1993.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–337. Springer, Heidelberg, August 2003.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August
1992.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571.
Springer, Heidelberg, August 2008.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[ZZZR22] Zhelei Zhou, Bingsheng Zhang, Hong-Sheng Zhou, and Kui Ren. GUC-secure commitments via ran-
dom oracles: New impossibility and feasibility. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part IV, volume 13794 of LNCS, pages 129–158. Springer, Heidelberg, December 2022.

A Additional Preliminaries

A.1 Pedersen Commitment

The Pedersen commitment is one of the most common trapdoor commitment scheme [Ped92]. In order to for-
mally define the Pedersen commitment, we first introduce the trapdoor commitment and then describe how to
instantiate it with Pedersen commitment.

A trapdoor commitment scheme Π = (Π.KeyGen,Π.Commit,Π.ComVer,Π.Equiv) allows the committer to com-
pute the commitment c to any value m using the commitment key ck and the randomness r. Later, the committer
can open c to m by sending the the opening d to the receiver who verifies it. Furthermore, if the committer some-
how obtains the trapdoor key td with respect to ck, it can open the previous commitment c to any other message
m̃ 6= m. Formally, the trapdoor commitment has the following algorithms:

• (ck, td) ← KeyGen(1λ) takes input as the security parameter λ, and outputs a commitment key ck and a
trapdoor key td.

• (c, d) := Commit(ck,m; r) takes input as a commitment key ck, a message m and a randomness r. It outputs
the commitment c and the opening d. We assume that there exists a deterministic algorithm that can extract
m from d. When r is not important, we use Commit(ck,m) for simplicity.

• b := ComVer(ck, c, d) takes input as a commitment key ck, and a commitment-opening pair (c, d). It outputs
a bit b indicating acceptance (b = 1) or rejection (b = 0).

• (d̃, r̃) := Equiv(ck, td, c, d, m̃) takes input as a commitment key ck, a trapdoor key td, a commitment c and
its opening d, and an arbitrary message m̃ for which equivocation is required. It outputs the new opening d̃
and a new randomness r̃ such that (c, d̃) = Commit(ck, m̃; r̃).

The trapdoor commitment requires the following properties: perfect correctness, perfect hiding, computa-
tional binding and trapdoor property. Perfect correctness means that any commitment produced by the honest
committer can always be verified. Perfect hiding means that the commitment c reveals nothing about the message
m. Computational binding means that it is infeasible for the PPT committer to output the commitment c that
can be opened in two different ways. Trapdoor property means that given the trapdoor key td, one can open a
previously constructed commitment c that corresponds to the message m to any other message m̃ 6= m. Formally,
we have the following definition:

Definition 15. We say a scheme Π = (Π.KeyGen,Π.Commit,Π.ComVer,Π.Equiv) is a trapdoor commitment scheme if the
following conditions hold:

28

• (Perfect Correctness) For any message m, we say it is perfect correct if

Pr[(ck, td)← KeyGen(1λ); (c, d)← Commit(ck,m) : ComVer(ck, c, d) = 1] = 1

• (Perfect Hiding) We say it is perfect hiding if for any adversary A

Pr

[
(ck, td)← KeyGen(1λ); (m0,m1, st)← A(ck);
b← {0, 1}; (c, d)← Commit(ck,mb); b

′ ← A(c, st)
: b = b′

]
=

1

2

• (Computational Binding) We say it is computational binding if for any PPT adversary A, there exists a negligible
function negl such that

Pr

[
(ck, td)← KeyGen(1λ);
(c, d0, d1)← A(ck)

:
ComVer(ck, c, d0) = ComVer(ck, c, d1) = 1
∧ d0 6= d1

]
≤ negl(λ)

• (Trapdoor Property) For any message pair (m, m̃), we say it has trapdoor property if{
(ck, c, d, r)

∣∣ (ck, td)← KeyGen(1λ); (c, d) := Commit(ck,m; r)
}

c≈
{

(ck, c, d, r)

∣∣∣∣ (ck, td)← KeyGen(1λ); (c, d̃) := Commit(ck, m̃; r̃);

(d, r) := Equiv(ck, td, c, d̃, r̃)

}
Now we show how to instantiate the trapdoor commitment scheme with the famous Pedersen commitment.

We present the formal description of the Pedersen commitment in Figure 21. It is well-known that the Pedersen
commitment is a trapdoor commitment scheme under the Discrete Logarithm (DL) assumption.

• KeyGen(1λ): It outputs ck := (G, p, q, g, h) and td := α, where q = p−1
2

and p are primes, G is a subgroup of order q of Z∗p,
g and h = gα are the generators of G.

• Commit(ck,m; r): It outputs c := gmhr mod p and d := (m, r).

• ComVer(ck, c, d): It checks if c = gmhr holds. If so, it outputs 1; otherwise, outputs 0.

• Equiv(ck, td, c, d, m̃): It computes r̃ := m−m̃
α

+ r mod q, and outputs d̃ := (m̃, r̃) and r̃.

Pedersen Commitment

Figure 21: Pedersen Commitment

A.2 ElGamal Encryption

The ElGamal encryption is a pseudorandom Public Key Encryption (PKE) system [GOS06]. Analogously to the
Section A.1, we first introduce the pseudorandom PKE system, then describe how to instantiate it with the ElGa-
mal encryption.

A pseudorandom PKE system Π = (Π.KeyGen,Π.Enc,Π.Dec) allows anyone to compute an encryptionE of the
message m using the public key pk and the randomness r. The one who has the decryption key dk can compute
m from E. Formally, the pseudorandom PKE system has the following algorithms:

• (pk, dk)← KeyGen(1λ) takes input as the security parameter λ, and outputs a public key pk and a decryption
key dk.

• E := Enc(pk,m; r) takes input as a public key pk, a message m and a randomness r. It outputs the ciphertext
E. When r is not important, we use Enc(pk,m) for simplicity.

• m ← Dec(pk, dk, E) takes input as a public key pk, a decryption key dk and a ciphertext E. It outputs the
plaintext message m.

The pseudorandom PKE system requires the following properties: perfect correctness, semantic security. Per-
fect correctness is trivial. Semantic security means that the ciphertext E reveals nothing about the message m.
Formally, we have the following definition:

29

Definition 16. We say a scheme Π = (Π.KeyGen,Π.Enc,Π.Dec) is a pseudorandom PKE system if the following conditions
hold:

• (Perfect Correctness) For any message m, we say it is perfect correct if

Pr

[
(pk, dk)← KeyGen(1λ);E ← Enc(pk,m);
m′ ← Dec(pk, dk, E)

: m = m′
]

= 1

• (Semantic Security) We say it is semantic secure if for any PPT adversary A, there exists a negligible function negl
such that ∣∣∣∣Pr

[
(pk, dk)← KeyGen(1λ); (m0,m1, st)← A(ck);
b← {0, 1};E ← Enc(ck,mb); b

′ ← A(E, st)
: b = b′

]
− 1

2

∣∣∣∣ ≤ negl(λ)

Here we show how to instantiate the pseudorandom PKE system with the well-known ElGamal encryption.
We present the formal description of the ElGamal encryption in Figure 22. It is well-known that the ElGamal
encryption is a pseudorandom PKE system under the DDH assumption.

• KeyGen(1λ): It outputs pk := (G, p, q, g, h) and dk := α, where q = p−1
2

and p are primes, G is a subgroup of order q of Z∗p,
g and h = gα are the generators of G.

• Enc(pk,m; r): It computes (u, v) := (gr mod p, gmhr mod p) and outputs E := (u, v).

• Dec(ck, dk, E): It computes v
uα

and searches exhaustively for m.

ElGamal Encryption

Figure 22: ElGamal Encryption

B Building Blocks of (Straight-Line Extractable) NIZK/NIWH Arguments

In this section, we introduce the building blocks of our (straight-line extractable) NIZK/NIWH arguments. More
precisely, we first introduce several Sigma-protocols that are previously mentioned in our instantiations. We
then introduce the randomized Fischlin transform [Ks22] which compiles a Sigma-protocol into a straight-line
extractable NIZK (resp. NIWH) arguments in the RO (resp. observable RO) model.

B.1 Concrete Examples of Sigma-Protocols

Schnorr’s protocol [Sch90]. The Schnorr’s protocol aims to prove the knowledge of a discrete logarithm. Let
RDL := {((g, h), w) | h = gw}. We present the Sigma-protocol for relationRDL in Figure 23.

Common Input: Statement x := (G, p, q, g, h), where p, q describe the group G and g, h ∈ G.
Private Input of the Prover: Witness w such that h = gw .

• P1(x,w): Select r ← Zq and output a := gr mod p, st := r.

• V1(1λ): Select e← Zq and output e.

• P2(x,w, e, st): Compute z := r + e · w mod q and output z.

• Verify(x, a, e, z): Check if gz = a · he holds. If so, output 1; otherwise, output 0.

Schnorr’s Protocol

Figure 23: Sigma-Protocol for RelationRDL

Chaum-Pedersen protocol [CP93]. The Chaum-Pedersen protocol aims to prove the knowledge of a DDH tuple.
LetRDDH := {((g, h, u, v), w) | u = gw ∧ v = hw}. We present the Sigma-protocol for relationRDDH in Figure 24.

30

Common Input: Statement x := (G, p, q, g, h, u, v), where p, q describe the group G and g, h, u, v ∈ G.
Private Input of the Prover: Witness w such that u = gw and v = hw .

• P1(x,w): Select r ← Zq , compute a0 := gr mod p, a1 := hr mod p and output a := (a0, a1), st := r.

• V1(1λ): Select e← Zq and output e.

• P2(x,w, e, st): Compute z := r + e · w mod q and output z.

• Verify(x, a, e, z): Check if gz = a0 · ue and hz = a1 · ve hold. If so, output 1; otherwise, output 0.

Chaum-Pedersen Protocol

Figure 24: Sigma-Protocol for RelationRDDH

Okamoto’s protocol [Oka93]. The Okamoto’s protocol aims to prove the knowledge of a Pedersen commit-
ment’s opening. Let RCom := {((g, h, C), (m, r)) | C = gmhr}. We present the Sigma-protocol for relation RCom in
Figure 25.

Common Input: Statement x := (G, p, q, g, h, C), where p, q describe the group G and g, h, C ∈ G.
Private Input of the Prover: Witness w := (m, r) such that C = gmhr .

• P1(x,w): Select s, t← Zq , compute a := gsht mod p and output a, st := (s, t).

• V1(1λ): Select e← Zq and output e.

• P2(x,w, e, st): Compute z0 := s+ e ·m mod q, z1 := t+ e · r mod q and output z := (z0, z1).

• Verify(x, a, e, z): Check if gz0hz1 = a · Ce holds. If so, output 1; otherwise, output 0.

Okamoto’s Protocol

Figure 25: Sigma-Protocol for RelationRCom

Common Input: Statement x := (x0, x1).
Private Input of the Prover: Witness w such that (xb, w) ∈ Rb.

• P1(x,w): Compute (ab, st)← Πb.P1(xb, w). Select s1−b ← Πb.V1(1λ) and compute (a1−b, z1−b)← Π1−b.Sim(x1−b, s1−b).
Output a := (a0, a1), st.

• V1(1λ): Select e← Zq and output e.

• P2(x,w, e, st): Set sb := e⊕ s1−b, compute zb ← Πb.P2(xb, w, sb, st) and output z := (s0, z0, s1, z1).

• Verify(x, a, e, z): Check if e = s0 ⊕ s1 and Π0.Verify(x0, a0, s0, z0) = Π1.Verify(x1, a1, s1, z1) = 1 hold. If so, output 1;
otherwise, output 0.

OR-Composition

Figure 26: Sigma-Protocol for RelationR0 ∨R1

OR-composition [CDS94]. Let (x0, x1) be a pair of the statements.The OR-composition of the Σ-protocol allows
the prover to prove that it knows a witness w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1 without revealing
which is the case. Let Π0 be the Sigma-protocol for relation R0 and Π1 be the one for relation R1. We present the
Sigma-protocol for relationR0 ∨R1 in Figure 26.

B.2 Randomized Fischlin Transform

Recently, Kondi and shelat revisited the famous Fischlin transform [Fis05], which complies a Sigma-protocol into
a straight-line extractable NIZK (resp. NIWH) arguments in the RO (resp. observable RO) model, and improved
it in both efficiency and applicability [Ks22]. We call their construction randomized Fischlin transform as the orig-
inal Fischlin transform is somewhat deterministic and suffers from a “replay” attack that breaks the witness-

31

indistinguishability property of the OR-composition of Sigma-protocols [Ks22]. We review the randomized Fis-
chlin transform ΠRan-Fis in Figure 27.

Common Input: Statement x.
Private Input of the Prover: Witness w such that (x,w) ∈ R.
Parameter: r, `, t such that r is an even number, r · ` = 2λ and t = plog λq · `.
Primitive: Sigma-protocol ΠΣ for relation R.
Random Oracle: FRO : {0, 1}∗ → {0, 1}2`.

• ProveFRO (x,w):

1. For i ∈ [r]: compute (ai, sti)← ΠΣ.P1(x,w).

2. Set a := (ai)i∈[r].

3. For i ∈ [r/2]: do the following:

(a) Set ξi := ∅ and flag := 0.
(b) Sample ei ← ΠΣ.V1(1λ) \ ξi and compute zi ← ΠΣ.P2(x,w, ei, sti).
(c) For j ∈ [22`]:

i. Set ξi+r/2 := ∅.
ii. Sample ei+r/2 ← ΠΣ.V1(1λ) \ ξi+r/2 and compute zi+r/2 ← ΠΣ.P2(x,w, ei+r/2, sti+r/2).

iii. If FRO(a, i, ei, zi) 6= FRO(a, i+ r/2, ei+r/2, zi+r/2), repeat Step 3(c)ii; else, set flag := 1 and break the loop.
(d) If flag 6= 1, repeat Step 3b.

4. Output π := (ai, ei, zi)i∈[r].

• VerifyFRO (x, π):

1. Output 1 if the following conditions hold:

(a) For i ∈ [r/2]: Check if FRO(a, i, ei, zi) = FRO(a, i+ r/2, ei+r/2, zi+r/2) holds.
(b) For i ∈ [r]: Check if ΠΣ.Verify(x, ai, ei, zi) = 1 holds.

Randomized Fischlin Transform

Figure 27: Randomized Fischlin Transform ΠRan-Fis from [Ks22]

Recall that, the Fischlin transform requires the Sigma-protocol to additionally satisfy quasi-unique responses [Fis05].
Roughly speaking, this means that no PPT prover can compute a statement x and a, e, z, z′ such that (a, e, z) and
(a, e, z′) are both accepting transcripts for x. Kondi and shelat showed that a simpler property, i.e., strong spe-
cial soundness, would be sufficient for their purpose. More precisely, they defined a variant of Sigma-protocols,
i.e., strong special sound Sigma-protocols and proved that their transform can be applied to these Sigma-protocols
securely. We present the definition of strong special sound Sigma-protocols as follows.

Definition 17. Fix an NP relationR and its associate languageL. We say a protocol Π = (Π.P1,Π.V1,Π.P2,Π.Verify,Π.Ext,
Π.Sim) is a strong special sound Sigma-protocol for relationR if it satisfies completeness and SHVZK that have been defined
in Definition 5 and the following property:

1. (Strong Special Soundness) For any x ∈ L, we say it is a strong special sound if for any PPT adversary A,

Pr

[
(T := (a, e, z), T ′ := (a, e′, z′))← A(x);
w ← Ext(x, T, T ′)

:
Verify(x, T) = Verify(x, T ′) = 1
∧ T 6= T ′ ∧ (x,w) ∈ R

]
= 1

In the main body of our paper, we apply randomized Fischlin transform to Schnorr’s protocol [Sch90] and
Okamoto’s protocol [Oka93] to instantiate straight-line extractable NIZK (resp. NIWH) arguments in the RO
(resp. observable RO) model. It is easy to see that both Schnorr’s protocol and Okamoto’s protocol are strong
special sound Sigma-protocols. Thus the security of our instantiations is guaranteed.

C Additional Security Proofs

C.1 Proof of Theorem 1

Theorem 1. Assume the DDH assumption holds in group G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ → {0, 1}λ be
the random oracles. Let ΠNIZK be an NIZK argument in the FRO3-hybrid world. Let ΠsleNIZK be a straight-line extractable

32

NIZK argument in the FRO4-hybrid world. The protocol ΠEOT-RO depicted in Figure 13 UC-realizes the functionality FEOT

depicted in Figure 8 in the {FRO,FSyn}-hybrid world against static malicious corruption, where FRO = {FROi}i∈[4].

Proof. We now prove the security of our protocol ΠEOT-RO by showing it is a UC-secure realization of FEOT. We
describe the workflow of S in the ideal-world with FEOT, and give a proof that the simulation in the ideal world
execution EXECFEOT,S,Z is computationally indistinguishable from a real world execution EXEC

FRO,FSyn

ΠEOT-RO,A,Z for any
PPT adversary A and any PPT environment Z . Note that, the simulator S simply forwards the communication
between A and Z .

The sender is honest while the receiver is statically corrupted. Here the simulator S needs to extract the choice
bit of the receiver from the message sent from R∗. Note that, the simulator S needs to send its message on behalf
of the honest sender before seeing the adversary A’s message. We describe the strategy of S as follows:

• Generate (z, πDL) honestly, and send (z, πDL) to R∗.

• WheneverR∗ invokesFRO1 on candidate seed values, select different α ∈ Zq and return h = gα as the output
of FRO1.

• Wait for R∗ to send (seed, u, v, πENC), then do the following:

– Abort if ΠNIZK.Verify
FRO4((g, h, u, v), πENC) = 0 forRENC.

– If u = vα, set b := 0; else if u = (vh)α, set b := 1; else, abort.

– Compute m0,m1 honestly, and send (RECEIVE, sid, S,R∗, b) to FEOT on behalf of the dummy corrupted
receiver. Return (PROCEED, sid, S,mb) to FEOT when FEOT sends (PROCEED?, sid, S).

• If R∗ does not send its message, pick a random bit b and send (RECEIVE, sid, S,R∗, b) to FEOT on behalf of
the dummy corrupted receiver. Return (NO, sid, S) to FEOT when FEOT sends (PROCEED?, sid, S).

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXEC
FRO,FSyn

ΠEOT-RO,A,Z .

• H1: Same as H0, except that S selects different α ∈ Zq and returns h = gα as the output of FRO1 whenever
R∗ invokes FRO1 on candidate seed values. Indistinguishability follows from the fact that the tuple (g, h) is
randomly selected in bothH0 andH1.

• H2: Same as H1, except that S aborts when πENC is not valid. Indistinguishability follows from the fact that
honest sender would always abort when πENC is not valid.

• H3: Same asH2, except that S aborts when it fails to extract b ∈ {0, 1}.

Lemma 2. Assume the DDH assumption holds in G. Let ΠNIZK be an NIZK argument in the RO model. Hybrid H3

is computationally indistinguishable fromH1.

Proof. Since the proof πENC has already been verified, the tuple (u, v) should be an ElGamal encryption of
a bit b ∈ {0, 1}. In this case, due to the computational soundness of ΠNIZK, the simulator S fails to extract
b ∈ {0, 1} only at a negligible probability. In conclusion, H3 is computationally indistinguishable from
H2.

• H4: Same as H3, except that S extracts b ∈ {0, 1}, computes m0,m1 honestly, sends (RECEIVE, sid, S,R∗, b)
to FEOT on behalf of the dummy corrupted receiver, and returns (PROCEED, sid, S,mb) to FEOT when FEOT

sends (PROCEED?, sid, S). The simulator S aborts when R∗ computes both m0 and m1.

Lemma 3. Assume the CDH assumption holds in G, thenH4 is computationally indistinguishable fromH3.

Proof. The simulator S aborts when R∗ computes m0 and m1 by setting b = 0 (b = 1) and querying
zr, z

r

hs (zrhs) to FRO2. We discuss the case where R∗ sets b = 0 and queries zr, z
r

hs to FRO2 here, and the
other case is similar.

We observe that if there exists such a R∗, then there is a reduction B which breaks the CDH assumption. The
reduction B interacts with the CDH game challenger C and receives (A1, A2, A3) from C, and we assume that

33

A1 := g,A2 := gt, A3 := gs. Then B simulates FRO1,FRO2,FRO3,FRO4 and starts the protocol ΠEOT-RO with
R∗ by running R∗ internally as a black-box. Note that B has full control over {FROi}i∈[4]. First B sets z := A3

and simulates the straight-line extractable NIZK proof πDL by programming the random oracles FRO3, and
sends z, πDL to R∗. When R∗ queries a λ-bit string seedi to FRO1, B returns A2 · gai where ai←Zq . Upon
receiving (seed, u, v, πENC) fromR∗, B looks up the query-answer table ofFRO1 and finds the index j such that
seed = seedj and h = A2 · gaj . Finally, B randomly selects two queries q1, q2 made to FRO2 by R∗ and sends
A4 := q1

q2A
aj
3

to C. If there areQ queries made toFRO2 byR∗ in total, thenA4 = q1
q2A

aj
3

= zr

zr

hsA
aj
3

=
As2·gsaj
A
aj
3

= gst

happens at probability 1

2·
(
Q
2

) . Therefore, B wins the CDH game at probability 1

2·
(
Q
2

) which is non-negligible.

In conclusion,H4 is computationally indistinguishable fromH3.

• H5: Same as H4, except that when R∗ does not send its message, the simulator S picks a random bit b and
sends (RECEIVE, sid, S,R∗, b) to FEOT on behalf of the dummy corrupted receiver, and returns (NO, sid, S)
to FEOT when FEOT sends (PROCEED?, sid, S). Indistinguishability follows from the fact that the honest
sender will abort in both ideal world and the real world when the malicious receiver refuses to continue the
protocol.

HybridH5 is identical to the ideal world execution EXECFEOT,S,Z . In conclusion, when the sender S is honest and
the receiver R∗ is statically corrupted, EXECFRO,FSyn

ΠEOT-RO,A,Z
c≈ EXECFEOT,S,Z holds.

The receiver is honest while the sender is statically corrupted. Here the simulator S needs to extract the secret
randomness of the sender from the message sent from S∗ and computes both messages. Note that, the simulator
S needs to send its message on behalf of the honest receiver before seeing the adversaryA’s message. We describe
the strategy of S as follows:

• Select a random bit b ∈ {0, 1} and generate (seed, u, v, πENC) honestly. Send (seed, u, v, πENC) to S∗.

• Wait for S∗ to send (seed, z, πDL), then do the following:

– Abort if ΠsleNIZK.Verify
FRO3((g, z), πDL) = 0 forRDL.

– Invoke the straight-line extractor ΠsleNIZK.Ext to obtain s such that z = gs (note that, the proof πDL is
verified, and the simulator S can see the query-answer list of FRO3 since FRO3 is simulated by S , and
thus S is able to invoke the extractor algorithm).

– Compute m0 := FRO2(sid, ‘S∗’||vr) and m1 := FRO2(sid, ‘S∗’||(vh)r).

– Send (SEND, sid, S∗, R) to FEOT on behalf of the dummy corrupted sender. Return (PROCEED, sid,
R,m0,m1) to FEOT when FEOT sends (PROCEED?, sid, R).

• If S∗ does not send its message, send (SEND, sid, S,R∗) to FEOT on behalf of the dummy corrupted sender.
Return (NO, sid, R) to FEOT when FEOT sends (PROCEED?, sid, R).

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXEC
FRO,FSyn

ΠEOT-RO,A,Z .

• H1: Same as H0, except that S aborts when πDL is not valid. Indistinguishability follows from the fact that
honest receiver would always abort when πDL is not valid.

• H2: Same asH1, except that S extracts s by invoking the straight-line extractor ΠsleNIZK.Ext
FRO3 and computes

m0,m1. Indistinguishability follows from the straight-line extractability of ΠsleNIZK.

• H3: Same as H2, except that S sends (SEND, sid, S∗, R) to FEOT on behalf of the dummy corrupted sender,
and returns (PROCEED, sid, R,m0,m1) to FEOT when FEOT sends (PROCEED?, sid, R). The simulator S aborts
when S∗ extracts b from the messages sent by S.

Lemma 4. Assume the DDH assumption holds in G. Let ΠNIZK be an NIZK argument in the RO model. Hybrid H3

is computationally indistinguishable fromH1. HybridH3 is computationally indistinguishable fromH2.

34

Proof. We show that any PPT S∗ cannot extract b from (u, v) or πENC except with a negligible probability.
It is easy to see that (u, v) is the ElGammal encryption of b, so b is computationally hidden in (u, v). The
zero-knowledge property of ΠNIZK guarantees that no PPT S∗ can learn any information about b from πENC.
Therefore, S aborts at a negligible probability. In conclusion, H3 is computationally indistinguishable from
H2.

• H4: Same as H3, except that when S∗ does not send its message, the simulator S sends (SEND, sid, S,R∗)
to FEOT on behalf of the dummy corrupted sender, and returns (NO, sid, R) to FEOT when FEOT sends
(PROCEED?, sid, R).

Hybrid H4 is identical to the ideal world execution EXECFEOT,S,Z . In conclusion, when the receiver R is honest
and the sender S∗ is statically corrupted, EXECFRO,FSyn

ΠEOT-RO,A,Z
c≈ EXECFEOT,S,Z holds.

C.2 Proof of Theorem 2

Theorem 2. The protocol ΠCom depicted in Figure 14 UC-realizes the functionality FCom depicted in Figure 9 with uncon-
ditional security in the {FEOT,FAuth}-hybrid world against static malicious corruption.

Proof. We now prove the security of our protocol ΠCom by showing it is a UC-secure realization of FCom. We de-
scribe the workflow of S in the ideal-world with FCom, and give a proof that the simulation in the ideal world
execution EXECFCom,S,Z is statistically indistinguishable from a real world execution EXECFEOT,FAuth

ΠCom,A,Z for any adver-
sary A and any environment Z . Note that, the simulator S simply forwards the communication between A and
Z .

The committer is honest while the receiver is statically corrupted. Here the simulator S needs to generate an
equivocate commitment message without knowing b. We describe the strategy of S as follows:

• Committing Phase:

– Simulate FEOT. Upon receiving (PROCEED?, sid, C,R∗) from FCom, send (PROCEED?, sid, C) to the ad-
versary on behalf of FEOT. Upon receiving (PROCEED, sid, R∗, C,m0,m1) from the adversary, output
(RECEIVED, sid, R∗, C,m0,m1) toR∗ on behalf of FEOT, and return (PROCEED, sid, C,R∗) to FCom; Upon
receiving (NO, sid, C) from the adversary, let the honest committer abort and return (NO, sid, C) to
FCom.

• Opening Phase:

– Upon receiving (PROCEED?, sid, R∗, C) fromFCom, return (PROCEED, sid, R∗, C). Upon receiving (DECOMMIT,
sid, C,R∗, b) from FCom, send (b,mb) to R∗ on behalf of the honest committer.

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXECFEOT,FAuth

ΠCom,A,Z .

• H1: Same as H0, except that S obtains (m0,m1) by playing the role of the FEOT and outputs (m0,m1) as
the commitment message to R∗, when the adversary agrees to proceed the protocol. The simulator S aborts
when R∗ extracts b from (m0,m1). Perfect indistinguishability holds since b is independent of m0,m1; in
other words, any malicious malicious R∗ cannot learn b.

• H2: Same as H1, except that S lets the honest committer abort when the adversary refuses to continue the
protocol. Perfect indistinguishability holds since the honest committer will abort in both ideal world and
real world when the malicious party refuse to continue the protocol.

• H3: Same asH2, except that S sends (b,mb) toR∗ after receiving (DECOMMIT, sid, C,R, b) from FCom. Perfect
indistinguishability holds since S does not modify anything.

Hybrid H3 is identical to the ideal world execution EXECFCom,S,Z . In conclusion, when the committer C is honest
and the receiver R∗ is statically corrupted, EXECFEOT,FAuth

ΠCom,A,Z ≡ EXECFCom,S,Z holds.

The receiver is honest while the committer is statically corrupted. Here the simulator S needs to extract b from
the commitment message sent by the malicious C∗. We describe the strategy of S as follows:

35

• Committing Phase:

– Simulate FEOT. Upon receiving and (RECEIVE, sid, R, C∗, b) from C∗, sends (PROCEED?, sid, R) to the
adversary on behalf of FEOT.

– Upon receiving (PROCEED, sid, R,mb) from the adversary, sample an uniformly randomm1−b ← {0, 1}λ
and output (RECEIVED, sid, R, C∗,mb) to C∗ on behalf of FEOT. Send (COMMIT, sid, C∗, R, b) to FCom on
behalf of the dummy corrupted committer. Return (PROCEED, sid, C∗, R) to FCom when FCom sends
(PROCEED?, sid, C∗, R).

– Upon receiving (NO, sid, R) from the adversary, pick a random bit b and send (COMMIT, sid, C∗, R, b) to
FCom on behalf of the dummy corrupted committer. Return (NO, sid, C∗, R) to FCom when FCom sends
(PROCEED?, sid, C∗, R).

• Opening Phase:

– Wait for C∗ to send (b′,m). If b′ = 1 − b and m = m1−b hold or C∗ does not send its message, return
(NO, sid, C∗, R) toFCom whenFCom sends (PROCEED?, sid, C∗, R); otherwise, return (PROCEED, sid, C∗, R)
to FCom.

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXECFEOT,FAuth

ΠCom,A,Z .

• H1: Same as H0, except that S obtains (b,mb) by playing the role of the FEOT and outputs mb to C∗, when
the adversary agrees to proceed the protocol. Perfect indistinguishability holds since S does not modify
anything.

• H2: Same as H1, except that S lets the honest receiver abort when the adversary refuses to continue the
protocol. Perfect indistinguishability holds since the honest receiver will abort in both ideal world and real
world when the malicious party refuses to continue the protocol.

• H3: Same as H2, except that S lets the honest receiver abort when C∗ sends (1 − b,m1−b) or C∗ does not
send its message. For the former case, indistinguishability follows from the fact that the message m1−b
is sampled uniformly, thus the probability of the adversary guessing the m1−b correctly is 2−λ, which is
negligible. For the latter case, indistinguishability follows from the fact that the honest receiver will abort in
both ideal world and real world when the malicious party refuses to continue the protocol. In conclusion,
H3 is statistically indistinguishable fromH2.

Hybrid H3 is identical to the ideal world execution EXECFCom,S,Z . In conclusion, when the receiver R is honest
while the committer C∗ is statically corrupted, EXECFEOT,FAuth

ΠCom,A,Z is statistically indistinguishable EXECFCom,S,Z .

C.3 Proof of Theorem 3

Theorem 3. The protocol ΠCoin depicted in Figure 16 UC-realizes the functionality FCoin depicted in Figure 5 with uncon-
ditional security in the {FCom,FAuth}-hybrid world against static malicious corruption.

Proof. We now prove the security of our protocol ΠCoin by showing it is a UC-secure realization of FCoin. We
describe the workflow of S in the ideal-world with FCoin, and give a proof that the simulation in the ideal world
execution EXECFCoin,S,Z is perfectly indistinguishable from a real world execution EXECFCom,FAuth

ΠCoin,A,Z for any adversary
A and any environment Z . Note that, the simulator S simply forwards the communication between A and Z .

The player 1 is honest while the player 2 is statically corrupted. Here the simulator S needs to generate an
equivocate commitment message and later open it to any message. We describe the strategy of S as follows:

• Round 1: Simulate FCom. Send (PROCEED?, sid, P1, P
∗
2) to the adversary on behalf of FCom. Upon receiv-

ing (PROCEED, sid, P1, P
∗
2) from the adversary, output (RECEIPT, sid, P1, P

∗
2) to P ∗2 on behalf of FCom. Upon

receiving (NO, sid, P1, P
∗
2) from the adversary, return (NO, sid, P1) (resp. (NO, sid, P ∗2)) to FCoin when FCoin

sends (PROCEED?, sid, P1) (resp. (PROCEED?, sid, P ∗2)).

• Round 2: Wait for P ∗2 to send m2. If P ∗2 does not send the message, return (NO, sid, P1) (resp. (NO, sid, P ∗2))
to FCoin when FCoin sends (PROCEED?, sid, P1) (resp. (PROCEED?, sid, P ∗2)).

36

• Round 3: Return (PROCEED, sid, P1) (resp. (PROCEED, sid, P ∗2)) toFCoin whenFCoin sends (PROCEED?, sid, P1)
(resp. (PROCEED?, sid, P ∗2)). Upon receiving (TOSSED, sid, P1, P

∗
2 , r) from FCoin, compute m1 := r ⊕m2, and

output (DECOMMIT, sid, P1, P
∗
2 ,m1) to P ∗2 on behalf of FCom.

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXECFCom,FAuth

ΠCom,A,Z .

• H1: Same as H0, except that S plays the role of the FCom and outputs (RECEIPT, sid, P1, P
∗
2) to P ∗2 , when the

adversary agrees to proceed the protocol. Perfect indistinguishability holds since in both H0 and H1, the
malicious P ∗2 would receive (RECEIPT, sid, P1, P

∗
2) from FCom.

• H2: Same as H1, except that S lets the honest player 1 abort when the adversary refuses to continue the
protocol. Perfect indistinguishability holds since the honest player 1 will abort in both ideal world and real
world when the malicious player 2 refuses to continue the protocol.

• H3: Same as H2, except that S computes m1 := r ⊕m2, where m2 is sent by P ∗2 and r is sent by FCoin, and
outputs (DECOMMIT, sid, P1, P

∗
2 ,m1) to P ∗2 on behalf of FCom. Perfect indistinguishability holds since FCom

is simulated by S.

HybridH3 is identical to the ideal world execution EXECFCoin,S,Z . In conclusion, when the the player 1 P1 is honest
while the player 2 P ∗2 is statically corrupted, EXECFCom,FAuth

ΠCoin,A,Z ≡ EXECFCoin,S,Z holds.

The player 2 is honest while the player 1 is statically corrupted. Here the simulator S needs to extract m1 from
the commitment message sent by P1. We describe the strategy of S as follows:

• Round 1: Simulate FCom, and receive (COMMIT, sid, P ∗1 , P2,m1) from P ∗1 on behalf of FCom. If P ∗1 does not
send the message, return (NO, sid, P ∗1) (resp. (NO, sid, P2)) to FCoin when FCoin sends (PROCEED?, sid, P ∗1)
(resp. (PROCEED?, sid, P2)).

• Round 2: Return (PROCEED, sid, P ∗1) toFCoin whenFCoin sends (PROCEED?, sid, P ∗1). Upon receiving (TOSSED,
sid, P ∗1 , P2, r) from FCoin, compute and send m2 := r ⊕m1 to P ∗1 .

• Round 3: Wait for P ∗1 to open the commitment. If P ∗1 does not open the commitment, return (NO, sid, P2)
when FCoin sends (PROCEED?, sid, P2); else, return (PROCEED, sid, P2).

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXECFCom,FAuth

ΠCoin,A,Z .

• H1: Same as H0, except that when the adversary agrees to proceed the protocol, the simulator S obtains m1

by playing the role of the FCom, and sends m2 := r ⊕m1 to P ∗1 where r is sent by FCoin and r is uniformly
random. Perfect indistinguishability holds since m2 in bothH1 andH0 is uniformly random.

• H2: Same as H1, except that if P ∗1 does not open the commitment, S will (NO, sid, P2) when FCoin sends
(PROCEED?, sid, P2). Perfect indistinguishability holds since the honest P2 would always aborts if the mali-
cious P ∗1 does not open the commitment.

• H3: Same asH2, except that if P ∗1 opens the commitment, S will return (PROCEED, sid, P2) when FCoin sends
(PROCEED?, sid, P2). Perfect indistinguishability holds since the protocol participants would receive r as
final output in bothH3 andH2.

Hybrid H3 is identical to the ideal world execution EXECFCoin,S,Z . In conclusion, when the player 2 P2 is honest
while the player 1 P ∗1 is statically corrupted, EXECFCom,FAuth

ΠCoin,A,Z ≡ EXECFCoin,S,Z holds.

C.4 Proof of Theorem 4

Theorem 4. Assume the CDH assumption holds in group G. Let GroRO1 : {0, 1}λ → G and GroRO2 : G → {0, 1}λ be the
random oracles. Let ΠS

sleNIWH be a straight-line extractable NIWH argument in the GroRO3-hybrid world. Let ΠR
sleNIWH be a

straight-line extractable NIWH argument in the GroRO4-hybrid world. The protocol ΠEOT-GroRO depicted in Figure 17 GUC-
realizes the functionality FtEOT depicted in Figure 18 in the {GroRO,FSyn}-hybrid world against static malicious corruption,
where GroRO = {GroROi}i∈[4].

37

Proof. We now prove the security of our protocol ΠEOT-GroRO by showing it is a GUC-secure realization of FtEOT.
We only need to prove that ΠEOT-GroRO EUC-realizes FtEOT with respect to the shared functionality GroRO, where
GroRO = ({GroROi}i∈[4]). Therefore, we describe the workflow of S in the ideal-world with FtEOT, and give a proof
that the simulation in the ideal world execution EXECGroRO

FtEOT,S,Z is computationally indistinguishable from a real

world execution EXEC
GroRO,FSyn

ΠEOT-GrpRO,A,Z for any PPT adversaryA and any PPT GroRO-constrained environment Z . Note
that, the simulator S simply forwards the communication between A and Z .

The sender is honest while the receiver is statically corrupted. Here the simulator S needs to extract the choice
bit of the receiver from the message sent from malicious receiver R∗. Note that, the simulator S needs to send its
message on behalf of the honest sender before seeing the adversary A’s message. We describe the strategy of S as
follows:

• Generate (z, πDL) honestly, and send (z, πDL) to R∗.

• Wait for R∗ to send (seed, B, πCom), then do the following:

– Compute h := GroRO1(sid, ‘R’||seed).

– Abort if ΠR
sleNIWH.Verify

GroRO4((B, g, h), πCom) = 0 forRCom.

– Request illegitimate queries Qsid from FtEOT.

– Invoke the straight-line extractor ΠR
sleNIWH.Ext to obtain (b, r) such that B = grhb (note that, the proof

πCom is verified, and the simulator S obtains the RO queries and answers posed by the adversary, and
thus S is able to invoke the extractor algorithm).

– If b /∈ {0, 1}, act as the honest sender to until the end of the protocol.

– Else, compute m0,m1 honestly, and send (RECEIVE, sid, S,R∗, b) to FtEOT on behalf of the dummy cor-
rupted receiver. Return (PROCEED, sid, S,mb) to FtEOT when FtEOT sends (PROCEED?, sid, S).

• If R∗ does not send its message, pick a random bit b and send (RECEIVE, sid, S,R∗, b) to FtEOT on behalf of
the dummy corrupted receiver. Return (NO, sid, S) to FtEOT when FtEOT sends (PROCEED?, sid, S).

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXEC
GroRO,FSyn

ΠEOT-GroRO,A,Z .

• H1: Same as H0, except that S aborts when πCom is not valid. Indistinguishability follows from the fact that
honest sender would always abort when πCom is not valid.

• H2: Same as H1, except that S obtains b by invoking the straight-line extractor ΠR
sleNIWH.Ext

GroRO4 . Indistin-
guishability follows from the straight-line extractability of ΠsleNIWH.

• H3: Same as H2, except that b /∈ {0, 1} and S acts as the honest sender to until the end of the protocol. The
simulator S aborts when R∗ computes either m0 or m1.

Lemma 5. Assume the CDH assumption holds in G, thenH3 is computationally indistinguishable fromH2.

Proof. Here we argue that when b /∈ {0, 1}, the malicious receiver R∗ can compute m0 or m1 with only
negligible probability. Note that, the malicious R∗ compute m0 (m1) by querying zrhs·b (zrhs(b−1)) to GroRO2.
We discuss the case where R∗ computes m0 by querying zrhsb to GroRO2 here, and the other case is similar.

More precisely, we observe that if there exists such a R∗, then there is a reduction B which breaks the CDH
assumption. The reduction B interacts with the CDH game challenger C and receives (A1, A2, A3) from C,
and we assume that A1 := g,A2 := gt, A3 := gs. Then B simulates {GroROi}i∈[4] and starts the protocol
ΠEOT-GroRO with R∗ by running R∗ internally as a black-box. Note that B has full control over {GroROi}i∈[4].
First B sets z := A3 and simulates the straight-line extractable NIWH argument πDL by programming the
random oracles, and sends z, πDL to R∗. When R∗ queries a λ-bit string seedi to GroRO1, B returns A2 · gai
where ai

$← Zq . Upon receiving (B, πCom, seed) from R∗, B looks up the query-answer table of GroRO1 and
finds the index j such that seed = seedj and h = A2 · gaj . After that, B invokes the straight-line extrac-
tor ΠR

sleNIWH.Ext
GroRO4 to obtain (b, r) such that B = grhb. Finally, B randomly selects a query q made to

GrpRO2 by R∗ and sends A4 := (q

A
r+b·aj
3

)b
−1

to C. If there are Q queries made to GroRO2 by R∗ in total, then

38

A4 = (q

A
r+b·aj
3

)b
−1

= (z
rhs·b

zrzb·aj
)b
−1

= (
As·b2 ·gs·b·aj
gs·b·aj

)b
−1

= (As·b2)b
−1

= gst happens at probability 1
Q . There-

fore, B wins the CDH game at probability 1
Q which is non-negligible. In conclusion, H3 is computationally

indistinguishable fromH2.

• H4: Same asH3, except that S extracts b ∈ {0, 1}, computes m0,m1 honestly, sends (RECEIVE, sid, S,R∗, b) to
the FtEOT on behalf of the dummy corrupted receiver, and return (PROCEED, sid, S,mb) to FtEOT when FtEOT

sends (PROCEED?, sid, S). The simulator S aborts when R∗ computes both m0 and m1.

Lemma 6. Assume the CDH assumption holds in G,H4 is computationally indistinguishable fromH3.

Proof. The simulator S aborts when R∗ computes m0 and m1 by setting b = 0 (b = 1) and querying
zr, z

r

hs (zrhs) to GroRO2. We discuss the case where R∗ sets b = 0 and queries zr, z
r

hs to GroRO2 here, and
the other case is similar.

We observe that if there exists such a R∗, then there is a reduction B which breaks the CDH assumption.
The reduction B interacts with the CDH game challenger C and receives (A1, A2, A3) from C, and we assume
that A1 := g,A2 := gt, A3 := gs. Then B simulates {GroROi}i∈[4] and starts the protocol ΠEOT-GroRO with R∗

by running R∗ internally as a black-box. Note that B has full control over {GroROi}i∈[4]. First B sets z := A3

and simulates the straight-line extractable NIWH argument πDL by programming the random oracles, and

sends z, πDL to R∗. When R∗ queries a λ-bit string seedi to GroRO1, B returns A2 · gai where ai
$← Zq . Upon

receiving (B, πCom, seed) from R∗, B looks up the query-answer table of GroRO1 and finds the index j such
that seed = seedj and h = A2 · gaj . Finally, B randomly selects two queries q1, q2 made to GrpRO2 by R∗ and
sends A4 := q1

q2A
aj
3

to C. If there are Q queries made to GroRO2 by R∗ in total, then A4 = q1
q2A

aj
3

= zr

zr

hsA
aj
3

=

As2·gsaj
A
aj
3

= gst happens at probability 1

2·
(
Q
2

) . Therefore, B wins the CDH game at probability 1

2·
(
Q
2

) which is

non-negligible. In conclusion,H4 is computationally indistinguishable fromH3.

• H5: Same as H4, except that when R∗ does not send its message, the simulator S picks a random bit b and
sends (RECEIVE, sid, S,R∗, b) to FtEOT on behalf of the dummy corrupted receiver, and returns (NO, sid, S)
to FtEOT when FtEOT sends (PROCEED?, sid, S). Indistinguishability follows from the fact that the honest
sender will abort in both ideal world and the real world when the malicious receiver refuses to continue the
protocol.

HybridH5 is identical to the ideal world execution EXECGroRO

FtEOT,S,Z . In conclusion, when the sender S is honest and

the receiver R∗ is statically corrupted, EXECGroRO,FSyn

ΠEOT-GroRO,A,Z
c≈ EXECGroRO

FtEOT,S,Z holds.

The receiver is honest while the sender is statically corrupted. Here the simulator S needs to compute both m0

and m1. Note that, the simulator S needs to send its message on behalf of the honest receiver before seeing the
adversary A’s message. We describe the strategy of S as follows:

• Select b← {0, 1}, generate (seed, B, πCom) honestly, and send (seed, B, πCom) to R∗.

• Wait for S∗ to send (z, πDL), then do the following:

– Abort if ΠS
sleNIWH.Verify

GroRO3((g, z), πDL) = 0 forRDL.

– Request illegitimate queries Qsid from FtEOT.

– Invoke the straight-line extractor ΠS
sleNIWH.Ext to obtain s such that z = gs (note that, the proof πDL is

verified, and the simulator S obtains the RO queries and answers posed by the adversary, and thus S
is able to invoke the extractor algorithm).

– Compute m0 := GroRO2(sid, ‘S∗’||Bs) and m1 := GroRO2(sid, ‘S∗’||(Bh)s).

– Send (SEND, sid, S∗, R) to FtEOT on behalf of the dummy corrupted sender. Return (PROCEED, sid,
R,m0,m1) to FtEOT when FtEOT sends (PROCEED?, sid, R).

• If S∗ does not send its message, send (SEND, sid, S,R∗) to FtEOT on behalf of the dummy corrupted sender.
Return (NO, sid, R) to FtEOT when FtEOT sends (PROCEED?, sid, R).

We prove the indistinguishability through the following hybrid experiments:

39

• H0: This is the real world execution EXEC
GroRO,FSyn

ΠEOT-GroRO,A,Z .

• H1: Same as H0, except that S aborts when πDL is not valid. Indistinguishability follows from the fact that
honest receiver would always abort when πDL is not valid.

• H2: Same as H1, except that S extracts s by invoking the straight-line extractor ΠS
sleNIWH.Ext

GroRO3 and com-
putes m0,m1. Indistinguishability follows from the straight-line extractability of ΠsleNIWH.

• H3: Same as H2, except that S sends (SEND, sid, S∗, R) to FtEOT on behalf of the dummy corrupted sender,
and returns (PROCEED, sid, R,m0,m1) to FtEOT when FtEOT sends (PROCEED?, sid, R). The simulator S
aborts when S∗ extracts b from the messages sent by S.

Lemma 7. If ΠsleNIWH be a straight-line extractable NIWH argument in the RO model, then H3 is computationally
indistinguishable fromH2.

Proof. We only have to show that any PPT S∗ cannot extract b from B or π1. It is easy to see that B is the
Pedersen commitment of b, so b is perfectly hidden in B due to the perfect hiding property. The witness
hiding property of ΠsleNIWH guarantees that any PPT S∗ cannot extract b from πCom. Therefore, S aborts at a
negligible probability. In conclusion,H3 is computationally indistinguishable fromH2.

• H4: Same as H3, except that when S∗ does not send its message, the simulator S sends (SEND, sid, S,R∗)
to FtEOT on behalf of the dummy corrupted sender, and returns (NO, sid, R) to FtEOT when FtEOT sends
(PROCEED?, sid, R).

Hybrid H4 is identical to the ideal world execution EXECGroRO

FtEOT,S,Z . In conclusion, when the receiver R is honest

and the sender S∗ is statically corrupted, EXECGroRO,FSyn

ΠEOT-GroRO,A,Z
c≈ EXECGroRO

FtEOT,S,Z holds.

C.5 Proof of Theorem 6

Theorem 6. Assume the DDH assumption holds in group G. Let GrpRO1 : {0, 1}λ → G×G and GrpRO2 : G→ {0, 1}λ be
the random oracles. The protocol ΠEOT-GrpRO depicted in Figure 20 GUC-realizes the functionality FEOT depicted in Figure 8
in the {GrpRO,FAuth}-hybrid world against adaptive malicious corruption, where GrpRO = {GrpRO1,GrpRO2}.

Proof. We now prove the security of our protocol ΠEOT-GrpRO by showing it is a GUC-secure realization of FEOT.
We only need to prove that ΠEOT-GrpRO EUC-realizes FEOT with respect to the shared functionality GrpRO, where
GrpRO = {GrpRO1,GrpRO2}. Therefore, we describe the workflow of S in the ideal-world with FEOT, and give a proof
that the simulation in the ideal world execution EXEC

GrpRO

FEOT,S,Z is computationally indistinguishable from a real

world execution EXEC
GrpRO,FAuth

ΠEOT-GrpRO,A,Z for any PPT adversaryA and any PPT GrpRO-constrained environment Z . Note
that, the simulator S simply forwards the communication between A and Z . We first argue the static security,
then discuss the adaptive corruptions of the parties.

The sender is honest while the receiver is statically corrupted. Here the simulator S needs to extract the choice
bit of the receiver from the message sent in the second round. We describe the strategy of S as follows:

• Round 1:

– Select seed1←{0, 1}λ;α←Zq .
– Sample a generator g of group G and compute h := gα.

– Send (PROGRAM, sid, ‘S’||seed1, (g, h)) to GrpRO1.

– Select r, s←Zq and compute z := grhs. Send (seed1, z) to R∗.

• Round 2:

– Return (ISPROGRAMED, sid, 0) when R∗ invokes GrpRO1 on (ISPROGRAMED, sid, ‘S’||seed1).

– Wait for R∗ to send (seed2, B1, B2). If R∗ does not send the message, return (NO, sid, S) when FEOT

sends (PROCEED?, sid, S).

• Local Computation:

40

– Invoke GrpRO1 on (ISPROGRAMED, sid, ‘S’||seed2) and abort if it returns (ISPROGRAMED, sid, 1).

– Compute (G,H) := GrpRO1(sid, ‘R’||seed2).

– If B2 = Bα1 , set b := 0; else if B2

H = (B1

G)α, set b := 1; else, set b := ⊥.

– Compute m0,m1 honestly. If b = ⊥, do nothing; else, send (RECEIVE, sid, S,R∗, b) to FEOT on be-
half of the dummy corrupted receiver, and return (PROCEED, sid, S,mb) to FEOT when FEOT sends
(PROCEED?, sid, S).

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXEC
GrpRO,FAuth

ΠEOT-GrpRO,A,Z .

• H1: Same as H0, except that S programs GrpRO1 on seed1, so S knows α s.t. h = gα. Indistinguishability
between the hybrids follows from (i) the tuple (g, h) is randomly selected in both H0 and H1, and (ii) S
would return (ISPROGRAMED, sid, 0) when R∗ invokes GrpRO1 on (ISPROGRAMED, sid, ‘S’||seed1).

• H2: Same as H1, except that when R∗ does not send the message in the second round, the simulator S will
return (NO, sid, S) when FEOT sends (PROCEED?, sid, S). Perfect indistinguishability holds since the honest
sender will always abort when the malicious receiver refuses to continue the protocol.

• H3: Same asH2, except that S extracts b /∈ {0, 1} and just does nothing.

Lemma 8. Assume the DL assumption holds in G, thenH2 is computationally indistinguishable fromH1.

Proof. We first consider the case where the choice bit of R∗ is 0, but B2 6= Bα1 . This would happen when
B1 = gx1 , B2 = hx2 for x1 6= x2. We then argue that any PPT malicious receiver R∗ cannot obtain m0, thus
the indistinguishability holds. If we assume that h = gα, then Br1B

s
2 = grx1hsx2 = grx1+αsx2 , z = grhs =

gr+αs. Since the DL assumption holds in G, any PPT malicious receiver R∗ cannot know r, s from z. Thus
it is impossible for R∗ to compute Br1Bs2 given only z, x1, x2. Therefore, any PPT R∗ cannot compute m0.
The case where the choice bit of R∗ is 1 but B2

H 6= (B1

G)α is similar. In conclusion, H3 is computationally
indistinguishable fromH2.

• H4: Same as H3, except that S extracts b ∈ {0, 1}, computes m0,m1 honestly, sends (RECEIVE, sid, S,R∗, b)
to FEOT on behalf of the dummy corrupted receiver, and returns (PROCEED, sid, S,mb) to FEOT when FEOT

sends (PROCEED?, sid, S). The simulator S aborts when R∗ computes m1−b.

Lemma 9. Assume DDH assumption holds in G, thenH3 is computationally indistinguishable fromH2.

Proof. We first consider the case where (g, h,G,H) is a DDH tuple. In this case, R∗ can compute m0 and m1

easily. Since S has checked that seed2 is not programmed by R∗, the probability of (g, h,G,H) being a DDH
tuple is negligible.

We then consider the case where (g, h,G,H) is not a DDH tuple, andR∗ computes bothm0 andm1 by setting
b = 0 (b = 1) and querying zx, zx

GrHs (zxGrHs) to GrpRO2. We discuss the case whereR∗ sets b = 0 and queries
zx, zx

GrHs to GrpRO2 here, and the other case is similar. We observe that if there exists such a R∗, then there is
a reduction B which breaks the CDH assumption. The reduction B interacts with the CDH game challenger
C and receives (A1, A2, A3) from C, and we assume that A1 := g,A2 := gt, A3 := gr. Then B simulates
GrpRO1,GrpRO2 and starts the protocol ΠEOT-GrpRO with R∗ by running R∗ internally as a black-box. Note that
B has full control over GrpRO1,GrpRO2. In round 1, B samples s, seed1, h randomly, programs the GrpRO1 such
that it can output (g, h) on input seed1 , and sends z := A3 · hs to R∗. In round 2, when R∗ queries seed2 to
GrpRO1, B samples H randomly and returns (G := A2, H) as the output of GrpRO1. Finally, B randomly selects
two queries q1, q2 made to GrpRO2 by R∗ and sends A4 := q1

q2Hs
to C. If there are Q queries made to GrpRO2 by

R∗ in total, then A4 = q1
q2Hs

= zx
zx

GrHsH
s = Gr = gtr happens at probability 1

2·
(
Q
2

) . Therefore, B wins the CDH

game at probability 1

2·
(
Q
2

) which is non-negligible. In conclusion, H4 is computationally indistinguishable

fromH3.

41

HybridH4 is identical to the ideal world execution EXEC
GrpRO

FEOT,S,Z . In conclusion, when the sender S is honest and

the receiver R∗ is statically corrupted, EXECGrpRO,FAuth

ΠEOT-GrpRO,A,Z
c≈ EXEC

GrpRO

FEOT,S,Z holds.

The receiver is honest while the sender is statically corrupted. Here the simulator S needs to compute both m0

and m1. We describe the strategy of S as follows:

• Round 1: Wait for S∗ to send (seed1, z). If S∗ does not send the message, return (NO, sid, R) when FEOT

sends (PROCEED?, sid, R).

• Round 2:

– Invoke GrpRO1 on (ISPROGRAMED, sid, ‘S’||seed1) and abort if it returns (ISPROGRAMED, sid, 1).

– Compute (g, h) := GrpRO1(sid, ‘S’||seed1).

– Select seed2←{0, 1}λ and t←Zq , and compute G := gt, H ← ht.

– Send (PROGRAM, sid, ‘R’||seed2, (G,H)) to GrpRO1.

– Select x←Zq , compute B1 := gx and H2 := hx, and (seed1, B1, B2) to S∗.

• Local Computation:

– Return (ISPROGRAMED, sid, 0) when S∗ invokes GrpRO1 on (ISPROGRAMED, sid, ‘R’||seed2).

– Compute m0 := GrpRO2(sid, ‘S’||zx),m1 := GrpRO2(sid, ‘S’||zx−t). Send (SEND, sid, S∗, R) to FEOT on
behalf of the dummy corrupted sender, and return (PROCEED, sid, R,m0,m1) to FEOT when FEOT sends
(PROCEED?, sid, R).

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXEC
GrpRO,FAuth

ΠEOT-GrpRO,A,Z .

• H1: Same as H0, except that when S∗ does not send the message in the second round, the simulator S will
return (NO, sid, R) when FEOT sends (PROCEED?, sid, R). Perfect indistinguishability holds since the honest
receiver will always abort when the malicious sender refuses to continue the protocol.

• H2: Same as H1, except that S programs GrpRO1 on seed2, so S knows t s.t. G = gt, H = ht; furthermore, the
simulator S would return (ISPROGRAMED, sid, 0) when S∗ invokes GrpRO1 on (ISPROGRAMED, sid, ‘R’||seed2).

Lemma 10. Assume the DDH assumption holds in G, thenH1 is computationally indistinguishable fromH0.

Proof. The simulator S would return (ISPROGRAMED, sid, 0) when the malicious sender S∗ invokes GrpRO1 on
(ISPROGRAMED, sid, ‘R’||seed2). Thus, the distinction is revealed if and only if S∗ can distinguish the DDH
tuple (g, h, gt, ht) from the non-DDH tuple. In other words, we observe that if there exists such a S∗, then
there is a reduction B which breaks the DDH assumption. The reduction B interacts with the DDH game
challenger C and receives (A1, A2, A3, A4) from C. Then B simulates GrpRO1,GrpRO2 and starts the protocol
ΠEOT-GrpRO with R∗ by running S∗ internally as a black-box. Note that B has full control over GrpRO1,GrpRO2.
In round 1, when S∗ queries seed1 to GrpRO1, B returns (g := A1, h := A2) as the output of GrpRO1. In round 2,
B acts as an honest receiver except that programs the output of GrpRO1 as (T1 := A3, T2 := A4) on input seed2.
If R∗ aborts the protocol, B sets b := 1 indicating (A1, A2, A3, A4) is a DDH tuple; else, B sets b := 0. Finally,
B sends b to C and wins the game. In conclusion,H2 is computationally indistinguishable fromH1.

• H3: Same as H2, except that S always sets B1 := gx, B2 := hx and computes m0 := GrpRO2(sid, ‘S’||zx), and
m1 := GrpRO2(sid, ‘S’||zx−t). Indistinguishability follows from the fact that for b ∈ {0, 1}, we can always
compute mb := GrpRO2(sid, ‘S’||zα−bt).

• H4: Same as H3, except that S sends (SEND, sid, S∗, R) to FEOT on behalf of the dummy corrupted sender,
and returns (PROCEED, sid, R,m0,m1) to FEOT when FEOT sends (PROCEED?, sid, R). The simulator S aborts
when S∗ extracts b from the messages sent by S. Indistinguishability follows from the perfect hiding prop-
erty of the Pedersen commitment.

42

Protocol Begins

S is honest

R is honest

S is corrupted

R is corrupted R is honest R is corrupted

First OT
message sent

Second OT
message sent

S gets
corrupted first

R gets
corrupted first

S gets
corrupted

Post-execution
Corruption

Case 1 Case 2 Case 3 Case 4

Case 5

R gets
corrupted

Figure 28: Simulation Cases for Adaptive Corruptions in Protocol ΠEOT-GrpRO

Hybrid H4 is identical to the ideal world execution EXEC
GrpRO

FEOT,S,Z . In conclusion, when the receiver R is honest

and the sender S∗ is statically corrupted, EXECGrpRO,FAuth

ΠEOT-GrpRO,A,Z
c≈ EXEC

GrpRO

FEOT,S,Z holds.
The proof of static security is completed, and we will discuss the cases for adaptive corruptions.

The sender/receiver gets corrupted adaptively. We present the different simulation cases in Figure 28. We present
the according strategy of the simulator S as follows:

• Round 1:

– Case 1-3: If S is honest, S performs the following:

* Select seed1←{0, 1}λ;α←Zq .
* Sample a generator g of group G and compute h := gα.

* Send (PROGRAM, sid, ‘S’||seed1, (g, h)) to GrpRO1.

* Select r, s←Zq and compute z := grhs. Send (seed1, z) to R.

– Case 4-5: Else, S simply waits for S∗ to send (seed1, z). If S∗ does not send the message, return
(NO, sid, R) when FEOT sends (PROCEED?, sid, R).

• Round 2:

– Case 1,2: If S and R are honest, S performs the following:

* Select seed2←{0, 1}λ and t←Zq , and compute G := gt, H ← ht.

* Send (PROGRAM, sid, ‘R’||seed2, (G,H)) to GrpRO1.

* Select x←Zq , compute B1 := gx and H2 := hx, and (seed1, B1, B2) to S.

– Case 3: If S is honest and R∗ is corrupted, S performs the following:

* Return (ISPROGRAMED, sid, 0) when R∗ invokes GrpRO1 on (ISPROGRAMED, sid, ‘S’||seed1).

* Wait for R∗ to send (seed2, B1, B2). If R∗ does not send the message, return (NO, sid, S) when FEOT

sends (PROCEED?, sid, S).

– Case 4: If R is honest and S∗ is corrupted, S performs the following:

* Invoke GrpRO1 on (ISPROGRAMED, sid, ‘S’||seed1) and abort if it returns (ISPROGRAMED, sid, 1).

* Compute (g, h) := GrpRO1(sid, ‘S’||seed1).

* Select seed2←{0, 1}λ and t←Zq , and compute G := gt, H ← ht.

* Send (PROGRAM, sid, ‘R’||seed2, (G,H)) to GrpRO1.

* Select x←Zq , compute B1 := gx and H2 := hx, and (seed1, B1, B2) to S∗.

– Case 5: If S∗ and R∗ are corrupted, S ends the simulation.

• Local Computation:

43

– Case 1,2: If S and R are honest, S performs nothing.

– Case 3: If R∗ is corrupted and S is honest, S performs the following:

* Invoke GrpRO1 on (ISPROGRAMED, sid, ‘S’||seed2) and abort if it returns (ISPROGRAMED, sid, 1).

* Compute (G,H) := GrpRO1(sid, ‘R’||seed2).

* If B2 = Bα1 , set b := 0; else if B2

H = (B1

G)α, set b := 1; else, set b := ⊥.

* Compute m0,m1 honestly. If b = ⊥, do nothing; else, send (RECEIVE, sid, S,R∗, b) to FEOT on be-
half of the dummy corrupted receiver, and return (PROCEED, sid, S,mb) to FEOT when FEOT sends
(PROCEED?, sid, S).

– Case 4: If S∗ is corrupted and R is honest, S performs the following:

* Return (ISPROGRAMED, sid, 0) when S∗ invokes GrpRO1 on (ISPROGRAMED, sid, ‘R’||seed2).

* Compute m0 := GrpRO2(sid, ‘S’||zx),m1 := GrpRO2(sid, ‘S’||zx−t), send (SEND, sid, S∗, R) to FEOT on
behalf of the dummy corrupted sender, and return (PROCEED, sid, R,m0,m1) to FEOT when FEOT

sends (RECEIVE, sid, R).

• Post-Execution Corruption:

– Case 1,2: If S and R are honest, S performs the following based on the sequence of corruption:

* Case 1: If R is honest and S gets corrupted first, S obtains (m0,m1) from FEOT and programs
GrpRO2 such that m0 = GrpRO2(sid, ‘S’||Br1Bs2), m1 = GrpRO2(sid, ‘S’||(B1

G)r(B2

H)s). The simulator S
then reveals (r, s) as the honest sender’s internal states. When R gets corrupted, S obtains b and
provides x′ := x− b · t as the honest receiver’s internal state.

* Case 2: If S is honest and R gets corrupted first, S obtains (b,mb) from FEOT and programs GrpRO2

such that mb = GrpRO2(sid, ‘S’||Br1Bs2(GrHs)−b). The simulator S then reveals x′ := x − b · t as the
honest receiver’s internal state. When the sender S gets corrupted, S obtains (m0,m1) from FEOT,
programs GrpRO2 such that m1−b = GrpRO2(sid, ‘S’||Br1Bs2(GrHs)b−1) and provides r, s as the honest
sender’s internal state.

– Case 3: If R∗ is corrupted and S gets corrupted, S obtains (m0,m1) from FEOT, programs GrpRO2 such
that m1−b = GrpRO2(sid, ‘S’||Br1Bs2(Gr1H

s
2)b−1) and provides r, s as the honest sender’s internal state.

– Case 4: If S∗ is corrupted and R gets corrupted, S obtains b and provides x′ := x − b · t as the honest
receiver’s internal state.

We prove the indistinguishability through the following hybrid experiments:

• H0: This is the real world execution EXEC
GrpRO,FAuth

ΠEOT-GrpRO,A,Z .

• H1: Same as H0, except if S is honest before the first OT message is sent, the simulator S programs GrpRO1

on seed1, so S knows α s.t. h = gα. Indistinguishability has been proven in the static security proof. This
happens in Case 1-3 of Figure 28.

• H2: Same asH1, except if S andR are honest before the second OT message is sent, the simulator S programs
GrpRO1 on seed2, so S knows t s.t. G = gt, H = ht. Indistinguishability follows from the DDH assumption as
explained in Lemma 10. This happens in Case 1,2 of Figure 28.

• H3: Same asH2, except if S andR are honest during the protocol and S gets corrupted first in post-execution
and thenR gets corrupted, in this case the simulator S obtains (m0,m1) fromFEOT and programs GrpRO2 such
that m0 = GrpRO2(sid, ‘S’||Br1Bs2), m1 = GrpRO2(sid, ‘S’||(B1

G)r(B2

H)s). The simulator S then reveals (r, s) as the
honest sender’s internal states. When R gets corrupted, S obtains b and provides x′ := x− b · t as the honest
receiver’s internal state. This completes Case 1 of Figure 28.

Lemma 11. Assume the CDH assumption holds in G, thenH3 is computationally indistinguishable fromH2.

Proof. Note that, the simulator S runs the honest sender’s algorithm to produce the sender’s message. There-
fore, the simulator S’s revealed internal states r, s have the same distribution with the honest sender’s inter-
nal states. On the other hand, due to the trapdoor property of Pedersen commitment, no PPT adversary can
distinguish from the revealed internal state x′ from the honest receiver’s internal state.

44

Now the only thing left is to argue that the simulator S can program GrpRO2 successfully, i.e., the external
adversaryA cannot queryBr1Bs2 or (B1

G)r(B2

H)s to GrpRO2 without corrupting any party and without knowing
(r, s) or x. Here we only discuss the case where the PPT adversary A cannot query Br1Bs2 to GrpRO2, the case
concerning (B1

G)r(B2

H)s is similar. Formally, we observe that if such adversary A exists, then we can build a
reduction B which breaks the CDH assumption. The reduction B interacts with the CDH game challenger
C and receives (A1, A2, A3) from C, and we assume that A1 := g,A2 := gr, A3 := gx. Then B simulates
GrpRO1,GrpRO2 and starts the protocol ΠEOT-GrpRO with A by running A internally as a black-box. Note that
B has full control over GrpRO1,GrpRO2. In round 1, B samples s, seed1, α randomly, computes h := gα and
programs the GrpRO1 such that it can output (g, h) on input seed1. Finally it sends z := A2 · hs. In round
2, B generates seed2, G,H honestly and sends B1 := A3, B2 := Aα3 . Finally, B randomly selects a queries q
made to GrpRO2 by A and sends A4 := q

Asα3
to C. If there are Q queries made to GrpRO2 by A in total, then

A4 = q
Asα3

=
Br1B

s
2

Bs2
= Br1 = grx happens at probability 1

Q . Therefore, B wins the CDH game at probability
1
Q which is non-negligible. In conclusion, if the CDH assumption holds, then the simulator S can program
GrpRO2 successfully. Therefore, we prove thatH3 is computationally indistinguishable fromH2.

• H4: Same asH3, except if S andR are honest during the protocol andR gets corrupted first in post-execution
and then S gets corrupted, in this case the simulator S obtains (b,mb) from FEOT and programs GrpRO2 such
thatmb = GrpRO2(sid, ‘S’||Br1Bs2(GrHs)−b). The simulator S then reveals x′ := x−b · t as the honest receiver’s
internal state. When the sender S gets corrupted, S obtains (m0,m1) from FEOT, programs GrpRO2 such
that m1−b = GrpRO2(sid, ‘S’||Br1Bs2(GrHs)b−1) and provides r, s as the honest sender’s internal state. This
completes Case 2 of Figure 28.

Lemma 12. Assume the CDH assumption holds in G, thenH4 is computationally indistinguishable fromH3.

Proof. Here we only argue that the simulator can program the GrpRO2 such that
m1−b = GrpRO2(sid, ‘S’||Br1Bs2(GrHs)b−1), i.e., the adversary A cannot query Br1Bs2(GrHs)b−1 to GrpRO2 even
after corrupting the receiver R. The rest is analogously to the Lemma 11.
We observe that if such adversaryA exists, then we can build a reduction B which breaks the CDH assump-
tion. The reduction B interacts with the CDH game challenger C and receives (A1, A2, A3) from C, and we
assume that A1 := g,A2 := gr, A3 := gt. Then B simulates GrpRO1,GrpRO2 and starts the protocol ΠEOT-GrpRO

with A by running A internally as a black-box. Note that B has full control over GrpRO1,GrpRO2. In round 1,
B samples s, seed1, α randomly, computes h := gα and programs the GrpRO1 such that it can output (g, h) on
input seed1. Finally it sends z := A2 · hs. In round 2, B samples seed2, x randomly and programs the GrpRO1

such that it can output (G := A3, H := Aα3) on input seed2. It then sends B1 := gxhb, B2 := GxHb. When R
gets corrupted, B obtains b and reveals x′ := x− b · α as the internal states. Finally, B randomly selects two
queries q1, q2 made to GrpRO2 by A and sends A4 := q1

q2·Hs to C. If there are Q queries made to GrpRO2 by A in

total, then A4 =
Br1B

s
2

Br1B
s
2(GrHs)−1·Hs = GrHs

Hs = Gr = grt happens at probability 1

2·
(
Q
2

) . Therefore, B wins the

CDH game at probability 1

2·
(
Q
2

) which is non-negligible. In conclusion, if the CDH assumption holds, then

the adversary A cannot query Br1Bs2(GrHs)b−1 to GrpRO2 even after corrupting the receiver R. Therefore, we
prove thatH4 is computationally indistinguishable fromH3.

• H5: Same as H4, except if S is honest and R∗ is corrupted before the second OT message is sent, if R∗ does
not send its message, the simulator S returns (NO, sid, S) when FEOT sends (PROCEED?, sid, S); else, the
simulator S will extract the choice bit b of R∗ and finish the rest of the simulation. Indistinguishability has
been proven in the static security proof. This happens in Case 3 of Figure 28.

• H6: Same as H5, except if S is honest and R∗ is corrupted before the second OT message is sent and fi-
nally S gets corrupted post-execution, the simulator S obtains (m0,m1) from FEOT, programs GrpRO2 such
that m1−b = GrpRO2(sid, ‘S’||Br1Bs2(Gr1H

s
2)b−1) and provides r, s as the honest sender’s internal state. Indis-

tinguishability follows from the DDH assumption (as explained in Lemma 9). This completes Case 3 of
Figure 28.

• H7: Same as H6, except if S∗ is statically corrupted and R is honest at the time of sending the second
OT message, when S∗ does not send its message, the simulator will return (NO, sid, R) when FEOT sends
(PROCEED?, sid, R). Perfect indistinguishability holds since the honest receiver will always abort when the
malicious sender refuses to continue the protocol.

45

• H8: Same as H7, except if S∗ is statically corrupted and R is honest at the time of sending the second OT
message, when S∗’s message arrives, the simulator S programs GrpRO1 on seed2, so S knows t s.t. G =
gt, H = ht, and computes B1 := gx, B2 := hx; furthermore, the simulator S would return (ISPROGRAMED,
sid, 0) when S∗ invokes GrpRO1 on (ISPROGRAMED, sid, ‘R’||seed2). Indistinguishability follows from the DDH
assumption as explained in Lemma 10. This happens in Case 4 of Figure 28.

• H9: Same as H8, except if S∗ is statically corrupted and R is honest at the local computation phase, the
simulator S computes m0 := GrpRO2(sid, ‘S’||zx), m1 := GrpRO2(sid, ‘S’||zx−t). Indistinguishability has been
proven in the static security proof. This happens in Case 4 of Figure 28.

• H10: Same as H9, except if S∗ is statically corrupted and R get corrupted post-execution, the simulator
obtains b and provides x′ := x− b · t as the honest receiver’s internal state. Indistinguishability follows from
the trapdoor property of the Pedersen commitment. This completes Case 4 of Figure 28.

• H11: Same as H10, except if S∗ is statically corrupted and R∗ is corrupted before the second OT message is
sent, the simulator S simply halts. Indistinguishability follows from the fact that the distribution is iden-
tical in both hybrids since both two parties are controlled by the adversary before sending anything. This
completes Case 5 of Figure 28.

HybridH11 is identical to the ideal world execution EXEC
GrpRO

FEOT,S,Z . In conclusion, when the sender or the receiver

gets corrupted adaptively, EXECGrpRO,FAuth

ΠEOT-GrpRO,A,Z
c≈ EXEC

GrpRO

FEOT,S,Z holds.
The proof of adaptive security is completed.

46

	Introduction
	Problem Statement
	Our Results
	Constructing EOT in the (Global) Random Oracles
	Understanding the Power/Limits of Different Global Random Oracles
	Understanding the Relation between EOT and Other Cryptographic Primitives

	Related Work
	Organization

	Preliminaries
	Notations
	Universal Composability
	Sigma Protocols
	Non-Interactive Arguments in the Random Oracle Model
	NIWH Arguments in the Random Oracle Model
	NIZK Arguments in the Random Oracle Model
	Straight-Line Extractability in the Random Oracle Model

	Ideal Functionalities
	Coin-Tossing
	OT, UOT and EOT
	Commitment
	Random Oracles

	Computational Assumptions

	UC-Secure Endemic OT via Random Oracles
	The Relations between Endemic OT and Other Primitives
	From Endemic OT to Commitment
	From Endemic OT to Uniform OT

	GUC-Secure Endemic OT via Global Random Oracles
	Feasibility Results in the GroRO Model
	Our EOT Protocol
	Our Commitment Protocol

	Impossibility and Feasibility Results in the GrpRO Model
	Our Impossibility Result
	Our EOT Protocol

	Additional Preliminaries
	Pedersen Commitment
	ElGamal Encryption

	Building Blocks of (Straight-Line Extractable) NIZK/NIWH Arguments
	Concrete Examples of Sigma-Protocols
	Randomized Fischlin Transform

	Additional Security Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 6

