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Abstract. Since the introduction of differential-neural cryptanalysis, as the machine
learning assisted differential cryptanalysis proposed in [Goh19] is coined by now,
a lot of followup works have been published, showing the applicability for a wide
variety of ciphers. In this work, we set out to vet a multitude of differential-neural
distinguishers presented so far, and additionally provide general insights.
Firstly, we show for a selection of different ciphers how differential-neural distinguishers
for those ciphers can be (automatically) optimized, also providing guidance to do so
for other ciphers as well. Secondly, we explore a correlation between a differential-
neural distinguisher’s accuracy and a standard notion of difference between the two
underlying distributions. Furthermore, we show that for a whole (practically relevant)
class of ciphers, the differential-neural distinguisher can use differential features only.
At last, we also rectify a common mistake in current literature, and show that,
making use of an idea already presented in the foundational work[Goh19], the claimed
improvements from using multiple ciphertext-pairs at once are at most marginal, if
not non-existent.
Keywords: Deep Learning · Differential Cryptanalysis · Simon · Speck · Skinny
· Present · Katan · ChaCha

1 Introduction
Evaluating the security of a cipher is of great importance. In symmetric cryptography
this is, for the most time, done by proving resilience against already known types of
attacks and by the absence of (known) attacks against the full version of the cipher, often
including some security margin. For most types of attacks, automated search strategies
for the underlying properties were developed. Examples of this are finding differential
and/or linear characteristics with highest probability/correlation for a certain number
of rounds[MWGP11, MP13, SHW+14], or to automatically find integral attacks[Tod15,
XZBL16]. Such tools often reduce the underlying problem to, for example, a SAT or MILP
instance, which can be solved using already existing solvers.

Not too long ago, a new, machine learning assisted, type of attack on the block cipher
Speck was proposed in [Goh19]. Having its foundations in differential cryptanalysis, the
idea is to distinguish ciphertext-pairs that belong to a fixed plaintext difference from
random ones. For this, neuronal networks are employed, leading to an 11-round key
recovery attack on Speck32/64 that is at least competitive with classical ones.

While it is clear that machine learning will not completely substitute classical crypt-
analysis, especially since we will see that, at least for the problem at hand, they tend
to need a quite pronounced difference in the distributions of the learning problem, the
question arises how generic this approach is and to which extend it can complement the
work of a cryptanalyst. In other words, can we see machine learning as a tool assisting
cryptanalysis, similar to how SAT and MILP solvers, among others, are seen by now?
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While the successful application of differential-neural cryptanalysis to a wide variety of
different ciphers[ZW22, BBCD21, CSYY22, JKM20, LLL+22, ZWW22, HRC21a, HRC21b,
BGL+21, SZM20] already shows the generality of this technique, we explore on the
basis of six ciphers, representing five different cipher designs, if (and by how much) a
differential-neural distinguisher, as the machine learning based distinguisher from [Goh19]
is coined by now, can be optimized further. Despite our distinguishers leading to better
result than previously published ones, see Table 1 for a comparison1, the increase in
distinguishing performance over the best previously known distinguisher is not that
big, and is disproportionate to the explored search space, making it quite likely that
bigger improvements may not be possible. We will indeed see that, under some common
assumptions, our results for Simon are nearly optimal. Based on this observation and the
fact that the most important hyper-parameters appear to be identical for all six ciphers,
we also provide guidance on how to change the neural networks hyper-parameters for other
ciphers, allowing for automatic optimizations.

As another contribution, we show that the accuracy of a differential-neural distinguisher
is strongly correlated with the mean absolute distance of the ciphertext-difference distribu-
tion and the uniform one, which, under some common assumptions, completely explains
the features that the neural network is able to utilize for a whole class of ciphers. Still,
for ciphers of a different class, it is already known from [Goh19] that more than purely
differential features are used, and we provide additional example where this is likely to be
the case, too. Using Simon as an example where only differential features can be used,
we show that the differential-neural distinguisher is able to reach the same distinguishing
quality as a purely differential distinguisher, while we are also able to show for toy versions
of Speck that, similar to Speck32/64, the differential-neural distinguishers are able to
surpass the purely differential ones. In both cases, the differential-neural distinguishers
are able to learn a good approximation of the ciphertext-pair distribution, which is effec-
tively the ciphertext-difference distribution in the case of Simon. If we consider that the
ciphertext-difference distribution is classically computationally expensive to calculate, if
not infeasible, such an approximation could be useful for cryptanalysis, especially since it
is obtainable in a matter of hours on consumer grade hardware. Hence, this, the generality
and the competitiveness of attacks relying on this technique show that, despite the already
known limitations of differential-neural cryptanalysis such as limited explainability and
number of rounds directly covered by the differential-neural distinguisher, it can be a
valuable addition to the cryptanalyst’s toolkit.

Finally, we also set out to straighten up some claims about distinguisher performance.
It has become quite common in works following [Goh19] to use more than just one
ciphertext-pair at once, see for example [CSYY22, ZWW22, ZW22, LLL+22, HRC21b].
While this approach has the potential to use dependencies between the ciphertext-pairs
that come from using the same key, current literature fails to put the results into the right
perspective. Based on an idea already used in the underlying work[Goh19], we show how
a fair comparison could be done and rectify some of the claims made in those works. Most
crucially, some of the works that claim a huge improvement in distinguishing power are
even worse than the original neural distinguishers from [Goh19], while the improvements
of others are at most marginal, despite the high claims of the authors, see Table 2. This
is especially unfortunate since it is exactly this idea that is used to (implicitly) turn the
single-pair distinguisher into a multi-pair one for the original attacks against Speck32/64.

Related Work Following the introduction of differential-neural cryptanalysis[Goh19],
many different directions have been explored. For instance, Baksi et al.[BBCD21] and Jain

1Note that the input differences for Present differ. But even using the same input difference as in
[CSYY22], the accuracies of our distinguishers (without any further adjustments) are 0.662 and 0.550 for
6 and 7 rounds respectively.
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Table 1: Comparison of neural distinguishers. For convenience of the reader, the results
for each round-reduced cipher are ordered by accuracy.

Cipher Full Rounds Rounds Accuracy Source
Simon32/64 32 9 0.598 [HRC21b]

0.628 [SZM20]
<0.63 [HRC21a]
0.659 [BGL+21]
0.661 This Work

10 0.501† [SZM20]
0.566∗ [BGL+21]
0.567∗ This Work

11 0.517∗ [BGL+21]
0.520∗ This Work

Speck32/64 22 7 0.607 [CSYY22]
0.616 [Goh19]
0.617 This Work

8 0.514∗ [Goh19]
Skinny64/64 32 7 0.937 This Work
Present 31 6 0.658 [CSYY22]

0.712 This Work
7 0.549 [CSYY22]

0.563 This Work
Katan32 254 61 0.536 This Work

63 0.522 This Work
65 0.514 This Work
66 0.505 This Work

ChaCha 8/12/20 3 0.989 This Work

†: As far as we understand, the accuracy is evaluated using 106 samples, which means that the probability
that this is just random noise is around 3.6%.
∗: Results need a more elaborate training procedure; there is no known way to obtain them by simple
variations of direct training.
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Table 2: Comparison of multi-pair differential-neural distinguishers. Combined means
that the corresponding single pair distinguisher was used by combining the scores under
independence assumption. For this, 106 samples, each consisting of the given number of
pairs, were used to evaluating the accuracy.

Pairs
Cipher Rounds Neural Distinguisher 1 2 4 8 16 32 64

Simon32/64 9 [HRC21b] 0.591 0.586 0.623 – – 0.823 –
[SZM20] 0.628 0.637† – – – – –
[LLL+22] – – – – – – 0.993
[ZWW22] – 0.724 0.810 0.896 0.963 – –
Our (combined) 0.661 0.730 0.811 0.896 0.963 0.994 1.00

10 [LLL+22] – – – – – – 0.861
[SZM20] 0.501 0.502† – – – – –
[HRC21b] – – – – – 0.611 –
[ZWW22] – 0.591 0.634 0.690 0.761 – –
Our (combined) 0.567 0.598 0.637 0.692 0.761 0.842 0.922

11 [LLL+22] – – – – – – 0.596
[ZWW22] – 0.524 0.539 0.559 0.588 – –
Our (combined) 0.520 0.529 0.543 0.563 0.589 0.625 0.675

12 [ZWW22] – – – 0.515 0.523 – –
Speck32/64 5 [CSYY22] 0.926 0.974 0.991 0.999 1.000 – –

[CSYY22] (combined) 0.926 0.978 0.997 1.000 1.000 1.000 1.000
[Goh19] (combined) 0.929 0.978 0.997 1.000 1.000 1.000 1.000

6 [CSYY22] 0.784 0.867 0.936 0.953 0.979 – –
[CSYY22] (combined) 0.784 0.873 0.947 0.989 0.999 1.000 1.000
[ZWW22] – 0.877 0.950 0.990 0.999 – –
[Goh19] (combined) 0.788 0.877 0.950 0.990 1.000 1.000 1.000

7 [CSYY22] 0.607 0.640 0.685 0.701 0.649 – –
[HRC21b] – – – – – 0.889 –
[CSYY22] (combined) 0.607 0.650 0.706 0.779 0.861 0.938 0.985
[ZWW22] – 0.665 0.728 0.811 0.896 – –
[Goh19] (combined) 0.616 0.661 0.722 0.796 0.877 0.948 0.988
Our (combined) 0.617 0.663 0.725 0.801 0.883 0.954 0.991

8 [HRC21b] – – – – – 0.565 –
[ZWW22] – – 0.543 0.556 0.585 – –
[Goh19] (combined) 0.514 0.521 0.530 0.543 0.560 0.585 0.621

9 [ZWW22] – – – 0.502 0.505 – –
Present 6 [CSYY22] 0.658 0.720 0.795 0.831 0.826 – –

[CSYY22] (combined) 0.658 0.730 0.815 0.902 0.967 – –
[ZW22] – 0.733 0.820 0.907 0.970 – –
Our (combined) 0.712 0.799 0.889 0.960 0.993 1.000 –

7 [CSYY22] 0.549 0.550 0.585 0.579 0.582 – –
[CSYY22] (combined) 0.549 0.573 0.605 0.650 0.711 – –
[ZW22] – 0.572 0.607 0.656 0.721 – –
Our (combined) 0.563 0.593 0.635 0.691 0.765 0.849 –

Skinny 7 Our (combined) 0.937 0.992 1.000 1.000 1.000 1.000 1.000
Katan 66 Our (combined) 0.505 0.509 0.516 0.524 0.536 0.551 0.571

ChaCha 3 Our (combined) 0.989 0.999 1.000 1.000 1.000 1.000 1.000

†: Result is based on a difference-polytope that consists of 3 differences (i. e. 4 plain-/ciphertexts are used
per sample).
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et al. [JKM20] classify input differences instead of distinguishing between real and random
samples. In addition, the work of Benamira et al.[BGPT21] explores the explainability of
the results in [Goh19]. Also, similar approaches to [Goh19] have been applied to other
ciphers, such as ASCON[BBCD21], Chaskey[ZW22, BBCD21, CSYY22], DES[ZW22,
CSYY22], GIMLI[BBCD21], KNOT[BBCD21], Present[CSYY22, ZW22, JKM20], Si-
mon[LLL+22, ZWW22, HRC21a, HRC21b, BGL+21, SZM20] and Simeck[LLL+22]. Fur-
thermore, Bacuieti et al.[BBP22] explored the direction of finding smaller, and therefore
more efficient, neural distinguishers, which, despite inferior distinguishing performance,
have the potential to lower the attack complexity.

Outline. We start in Section 2 with introducing some basic notation, the general setting
of our distinguishers and the structure of the employed neuronal network, as well as the
ciphers under scrutiny. Afterwards, we perform a case study of optimizing the original
differential-neural distinguisher for six ciphers, following five different design approaches,
in Section 3 and provide some general guidance on which hyper-parameters should be
considered. This is followed up by pointing out some manual optimizations that can be
done for the ciphers at hand in Section 4. After that, we show in Section 5 that the
distinguishing performance of a differential-neural distinguisher is strongly correlated to
the mean absolute distance of the two underlying distributions, which is essentially the
accuracy a purely differential distinguisher is able to achieve, as well as that for a class
of ciphers it is impossible for any distinguisher to use more than differential features.
This is followed up by conducting the real difference experiment proposed in [Goh19]
for all ciphers under scrutiny in Section 6. We then show in Section 7 that it is rather
likely for differential-neural distinguisher to require a quite pronounced skewness of the
ciphertext-pair distribution in order to be able to learn, followed by a rectification of
distinguisher comparisons for using multiple ciphertext-pairs at once in Section 82. At last,
we conclude our work in Section 9.

2 Preliminaries

2.1 Notation

In this work, F2 denotes the finite field consisting of the two elements {0, 1}, and Fn2 the
n-dimensional vector space over this field. For convenience, we will implicitly identify
(xn, ..., x1) ∈ Fn2 with the integer

∑n
i=1 xi2i, and the other way around, based on the

context. We will therefore call x1 the least significant bit (lsb) and xn the most significant
bit (msb). Furthermore, ⊕,�,� denote XOR, modular addition and bitwise product, and
≪,≫ denote left and right rotation respectively. Additionally, gcd(a, b) will denote the
greatest common divisor of the two integers a and b.

At last, let us introduce some basic notation about differentials. For this, let |S| denote
the cardinality of the set S.

Definition 1 (Differential Probability (DP)). Let F : Fn2 → Fn2 , as well as γ, δ ∈ Fn2 .
Then we call pγδ (F ) := 2−n|{x ∈ Fn2 |F (x)⊕F (x⊕ γ) = δ}| the DP of the differential (γ, δ).
If γ and F are clear from the context, we will just write pδ.

As all ciphers under scrutiny are of an iterative nature, we will also recall the DP under
Markov assumption.

2The source code for our experiments and the neural distinguishers can be found at https://github.
com/differential-neural/An-Assessment-of-Differential-Neural-Distinguishers

https://github.com/differential-neural/An-Assessment-of-Differential-Neural-Distinguishers
https://github.com/differential-neural/An-Assessment-of-Differential-Neural-Distinguishers
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Corollary 1 (DP under Markov Assumption). Let F1, ..., Fr : Fn2 → Fn2 , as well as
γ1, ..., γr+1 ∈ Fn2 . Then, under Markov assumption,

pγ1
γr+1

(Fr ◦ ... ◦ F1) =
∑

γ2,...,γr∈Fn2

r∏
i=1

pγiγi+1
(Fi).

We are mainly interested in the maximal DP, either over the choice of output difference
or both, input and output difference.

Definition 2 (Maximal DP). Let F : Fn2 → Fn2 . Then the maximal DP for a fixed input dif-
ference γ ∈ Fn2 is maxδ∈Fn2 \{0} p

γ
δ (F ). In addition, the maximal DP is maxγ,δ∈Fn2 \{0} p

γ
δ (F ).

2.2 Differential Scenario

While cryptographers will most likely have some intuition on what we may mean by a
differential distinguisher, let us provide a bit more details. Given an encryption function
E : Fnk2 × Fnp2 → Fnc2 , where nk denotes number of key bits, np the number of plaintext
bits and nc the number of ciphertext bits, the task of a differential distinguisher in this
work will be to distinguish samples of the form (E(k, p), E(k, p⊕∆)), for a fixed ∆ ∈ Fn2 ,
as well as independent and identical distributed k ∈ Fnk2 and p ∈ Fnp2 , which we shall call
encryption samples, from independent and identical distributed (c, c′) ∈ (Fnc2 )2, which we
shall simply call random samples3. We will also refer to the distributions those samples
are drawn from as the encryption and random distribution respectively.

This approach is motivated by the wrong-key-randomization-hypothesis, which states
that a wrong (round-)key guess should lead to something that is indistinguishable from a
random sample. While it is well known that, especially for the ciphers under scrutiny, this
hypothesis does not hold, this assumption is still typical for attacks, and results like the
ones from [Goh19] show that such a distinguisher can be very useful in an attack.

2.3 Structure of the Neural Network

Let us quickly recall the structure of the neural network used in [Goh19], which is shown
in Fig. 1. Given a ciphertext-pair (c1, c2) the neural network first splits the ciphertexts
up into words (e. g. left and right side in the case of Speck) in what we shall call the
preprocessing layer. The result then goes through the bit sliced layer, where a convolution
with a filter size of one and 32 filters is applied, followed by batch normalization and a
Rectified Linear Unit (ReLU) activation layer. After that, 10 residual blocks are applied4,
each consisting of two iterations of convolutional layer (each using a filter size of 3 and 32
filters), batch normalization and (ReLU) activation, and a final addition of the input. At
last, the output of the last residual block is processed by the prediction head, which consists
of two iterations of a densely connected layer (using 64 neurons), batch normalization and
activation, and a final densely connected layer, which uses the sigmoid activation function
and one neuron only.

For training, the Adam optimizer is used, together with a cyclic Learning Rate (LR).
The loss is calculated as the Mean Squared Error (MSE) between the prediction and the
class label, together with a L2 regularization penalty.

3Since ciphers are usually bijective mappings if the key is fixed, strictly speaking the case that c = c′

should be excluded. But given that nc is at least 32 for the ciphers under scrutiny, the probability of this
happening is negligible.

4Note that less blocks were used to produce the final distinguishers in [Goh19].
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(c1, c2)

Preprocess

Convolution (1, 32)

Batch Normalization

Activation

Convolution (3, 32)

Batch Normalization

Activation

Convolution (3, 32)

Batch Normalization

Activation

+

Flatten
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Figure 1: Structure of neural network used in [Goh19].
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li

≪ α

≪ β

≪ γ ki

ri

li+1
ri+1

(a) Simon

li ri

≫ α

≪ β
ki

li+1
ri+1

(b) Speck

Figure 2: Round functions of Simon and Speck.

2.4 Ciphers under Scrutiny
Let us quickly recall the ciphers Speck, Skinny, Present, Katan and ChaCha that we
will analyze in this work.

The Ciphers Simon and Speck Simon and Speck are families of lightweight block cipher
designed by the NSA[BSS+13]. For the most part, we will concentrate on the variant using
a 32-bit state and a 64-bit key, which we shall denote as Simon32/64 and Speck32/64
respectively. During encryption, the state is split into two equal sized words, which are
then processed by Feistel-like round functions depicted in Fig. 2. The rotational constants
for Simon32/64 are α = 1, β = 8 and γ = 2, while the ones for Speck32/64 are α = 7
and β = 2.

Note that, even without knowing the key, part of the last round can always be reverted,
i. e. based on a ciphertext (li, ri) we are able to calculate (li−1, ri−1 ⊕ ki−1) in the case
of Simon and (li, ri−1) in the case of Speck. We will refer to this as calculating the
ciphertexts back.

For more details on Simon and Speck, the reader may consult [BSS+13].

The Cipher Skinny Skinny[BJK+16] is a tweakable block cipher and was designed by
Beierle et al. It uses a round function, which is depicted in Fig. 3 and inspired by the
Advanced Encryption Standard (AES). We will only consider the smaller version that
uses a 64-bit block size and a (tweak-)key of the same size. Furthermore, we will call each
of the 16 (4-bit) cells a word of the state. To be in line with the framework from [Goh19]
we will ignore the tweak and use the tweakkey as an ordinary key.

Again, part of the round function can be reverted, without any knowledge about the
key. This includes reverting the linear part (MixColumns and ShiftRows), as well as the
addition of the round constants (AC) and the application of the S-box (SC) to the last
two rows. In other words, it is possible to calculate the green cells (Fig. 3) within the last
round.

More details on Skinny can be found in [BJK+16].

The Cipher Present Present[BKL+07], a cipher designed by Bogdanov et al., also has
a 64-bit block size, and we focus on the version that uses a 80-bit key. Its round function is
shaped like a classical Substitution-Permutation Network (SPN), as can be seen in Fig. 4.
Note that after the last round a final round key addition takes place, as otherwise most
of the last round could trivially be reverted. This means that whenever we refer to the
number of rounds for Present, this should be understood as the number of applications
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ART

≫ 1

≫ 2

≫ 3

ShiftRows MixColumns

Figure 3: Round function of Skinny [Jea16]. The 16 green cells indicate to which point
the last round function can be reverted without knowing the key.

S S S S S S S S S S S S S S S S

ki

Figure 4: Round function of Present (modified version of [Jea15]).

of the round function, and the number of key additions is the number of rounds increased
by one. See [BKL+07] for more details on Present.

While for Present, the bit-permutation right before the last key addition is, by
nature, a linear operation, and we could revert this part, similar to how we revert non-key
dependent operations for the other ciphers under scrutiny, we will not do so, since we do
not expect changing the order of the bits to make a big difference.

The Cipher Katan Katan[DDK09] is a block cipher that uses shift registers and non-
linear feedback functions to manipulate the state during en-/decryption. Here, we only
consider the 32-bit version depicted in Fig. 5. For more details on Katan we refer to its
specification[DDK09].

As for most of the other ciphers, we will also consider reverting non-key dependent
parts of the round function. Since for Katan, this means reverting 17 (partial) rounds,
we provide the details of this in Appendix B.

The Cipher ChaCha The last cipher we consider here is ChaCha[Ber08]. While ChaCha
is a stream cipher, we will handle a keystream block as a ciphertext, and nonce and counter
(i. e. the input data that may be controlled by an adversary) as the plaintext. This enables
us to use similar techniques for all of the ciphers under scrutiny.

The key stream generation works as follows. First, an initial state, which is usually

L1

L2

IR

kb

ka

Figure 5: Structure of Katan (modified version of [Ava17]).
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ai bi ci di

≪ 16

≪ 12

≪ 8

≪ 7

ai+1 bi+1 ci+1 di+1

Figure 6: Quarter round of ChaCha (modified version of [Bre17]).

depicted as a 4 × 4 matrix of 32-bit words, is constructed by setting the first row to a
constant, the next two rows to the 256 key bits, and the last row to nonce and counter.
This state is then modified by an iterative application of the round function, which applies
the quarter round function depicted in Fig. 6 to the columns resp. the diagonals of the
matrix in parallel in even and odd rounds respectively. At the end, the initial state is
added using modular addition. For more details, we refer to the design paper [Ber08].

For backwards calculation, we only consider reverting the modular addition of the
two known rows of the initial state. While, in addition, the two outer outputs of the
quarter round (ai and di) are known, calculating di back to di−1 ⊕ (ai−1 � bi−1) could
make it harder to recognize any dependencies between di and the other three outputs.
One possibility to prevent this would be to just provide dn−1⊕ (an−1� bn−1) as additional
data. But this would increase the size of one sample (ciphertext-pair) from 1024 bits
to 1280 bits. Also, we would hope that the neural network would be able to revert one
simple XOR and two rotations itself. As we will see later, the accuracy of our differential
neural-distinguisher is already 0.989. Hence, we do not provide this additional data.

3 A Case Study on Various Ciphers
In [Goh19] it was shown that for Speck neural networks can be used as distinguishers
that lead to attacks that are at least competitive with classical ones. Naturally, this raises
the following question.

1. Is the presented technique of differential-neural cryptanalysis generic? In other words,
is the general idea applicable to a wide variety of ciphers? Considering that fol-
lowup works for the ciphers Ascon[BBCD21], Chaskey[ZW22, BBCD21, CSYY22],
DES[ZW22, CSYY22], GIMLI[BBCD21], Knot[BBCD21], Simon[LLL+22, ZWW22,
HRC21a, HRC21b, BGL+21, SZM20], Simeck[LLL+22] and Present[CSYY22,
ZW22, JKM20, CSYY22] exist, this question can be answered positively.

2. How generic is the underlying neural network, i. e. can it be used to learn a multitude
of different ciphers? For this, it should be noted that not all of the works cited above
employ the same network architecture as in [Goh19], which could be understood as
this architecture not being suitable for all of the ciphers.

3. Is it possible to improve the neural network form [Goh19] any further? While it is to
be expected that for Speck32/64 the neural network may already be optimal, this
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Table 3: Overview of used input differences. Differences without a reference were chosen
such that diffusion in the first few rounds is limited and were found to perform better than
ones from literature.

Cipher Difference
Speck 0x0040 0000[Goh19, ALLW15]
Simon 0x0000 0040[KLT15, ALLW13]
Skinny 0x0000 0000 0000 2000
Present 0x0000 0000 00d0 0000
Katan 0x00002000
ChaCha 0x00000000 00000000 00000000 00008000

expectation should still be tested. In addition, assuming that the neural network
can also be used for other ciphers than Speck, can we optimize it further for each
specific cipher, and which of the hyper-parameters are important?

In the following of this section, we will set out to answer the last two (still open) questions.
To this end, we will train and further optimize the neural network from [Goh19] for six
different ciphers, following five different design approaches, namely Simon and Speck,
representing Feistel networks, Present and Skinny, representing a SPN using a simple
and a more involved (AES-like) linear layer respectively, Katan, that is based on non-
linear feedback shift registers, as well as ChaCha, which is in contrast to the other
ciphers not a block cipher, but a stream cipher. As we will see, using a bit of (automatic)
optimization/customization for each cipher leads to a quite promising differential-neural
distinguisher for a not insignificant number of rounds, which further supports the generality
of the approach and of the employed neural network. In addition, we show that we can
slightly improve over the best previously known differential-neural distinguishers, but
despite considering a great amount of hyper-parameters, no groundbreaking improvements
could be found.

3.1 On the used Input Difference

As described in Section 2.2, the encryption distribution requires an input difference ∆. We
will see later that this difference has a major impact on the accuracy a (purely differential)
distinguisher is able to achieve. Also, training the neural network from [Goh19] using a
variety of differences shows that the choice of difference has a big impact on the accuracy of
the neural network, too. It is therefore crucial to choose a reasonable good input difference
for each cipher.

Our approach to this problem is as follows. First, we try differences that belong to
differential characteristics of high probability reported in literature. In addition, we also try
differences which should lead to low diffusion in the first few rounds. The later approach
is motivated by the conjecture that low diffusion may help the neural network to better
learn the encryption distribution.

Note that we first chose the input difference and then try to optimize the used hyper-
parameters of the neural network. Even though the network is optimized for Speck, initial
experiments show that it is also able to learn for other ciphers, be it with a lower accuracy
and/or number of rounds compared to a cipher-optimized version.

We summarize the differences that led to the best results in our experiments, and that
we will use in the rest of this paper (if not stated otherwise), in Table 3.
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3.2 Cipher Specific Optimizations
A neural network, as the one used in [Goh19], exhibits a certain structure, which must
be set in advance. This structure is defined by the so-called hyper-parameters, like the
number of layers or neurons in each layer, which can have a big impact on the networks
ability to learn. Hence, it is common in machine learning to search for hyper-parameters
that lead to the best results by trying different combinations. We did so for all the ciphers
under scrutiny.

The Search Space We started with a quite broad search space for both, Simon and
Speck, which we than reduced to a more reasonable one for the other ciphers based on
the results for those two ciphers.

The first search space is shown in Table 4. The last column gives the values used
in [Goh19][Section 4.2]5. The concrete search space for each hyper-parameter was deter-
mined by two factors, hardware limitations6 and/or degradation in distinguishing power.
For more details on those hyper-parameter, we refer to Appendix A.

Out of all those parameters, only batch size, the use of circular convolutions, the number
of neurons in the densely connected layers, the number of filters, the filter size, the LR
(while using the cyclic LR schedule), the number of residual blocks and the L2 penalty seem
to have a significant (positive) effect. Hence, we restricted the search space for the other
ciphers to only those hyper-parameters. The overall results are shown in Table 5 (hyper-
parameters not shown are as in [Goh19][Section 4.2]). Out of all the hyper-parameters we
tested, the ones that appear to have the biggest impact are LR, L2 penalty and especially
the filter size. For Simon the higher filter size of 7 leads to an accuracy that is multiple
percent points higher than with a filter size of 3. One possible explanation for this is
that the neuronal network most likely (effectively) reverts deterministic transformations
at the end of the encryption process, which in the case of Simon is one complete round
(up to key addition). Hence, reverting such calculations in advance (i. e. before providing
the samples to the neural network), which we shall denote as calculating the ciphertexts
back, can be seen as one additional hyper-parameter of our search space. Doing so indeed
improved the results for half of the ciphers in our experiments. For Speck, on the other
hand, we do not see any significant improvement, which may be due to the neural network
already being optimized to perform this calculation itself, and the same appears to be the
case for Simon if a filter size of at least 7 is used.

We want to highlight that at least a small hyper-parameter search, with different LRs,
L2 penalties and filter sizes, should be conducted if one plans to use a neural distinguisher
for another cipher. But given that such a search can be automated using a tool like
Optuna[ASY+19], the results in Table 5 show that the neural network from [Goh19] is
quite generic.

Comparison to Literature As we mentioned before, there already exist results for Simon,
Speck and Present in literature. If we take a look at Table 1, we see that, for the same
number of rounds, our results are always superior (in terms of accuracy), even if not by
much in the cases of Simon and Speck (and also Present if we use the same input
difference). Given the size of the search space, it is likely that much greater improvements
are simply not possible. We will see in Section 5 that at least for Simon this is most
certainly the case.

Note that we naturally tried to increase to number of rounds, but did not find more
rounds to be learnable without any changes to the training data and/or process. This

5Note that we use 10 residual blocks as our default/baseline despite the fact that less blocks were used
to produce the final distinguishers in [Goh19].

6We used a Nvidia RTX 2080 Ti and 32GB of RAM for most of our experiments.
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Table 4: Considered Hyper-Parameters.
Hyper-Parameter Options [Goh19]
Optimizer Adadelta, Adagrad, Adam, Adamax, Adam

Ftrl, Nadam, RMSprop, SGD
LR Schedule constant, cyclic, cyclic to constant, cyclic

exponential decay, inverse time decay,
linear cyclic, picewise constant decay,
polynomial decay

Loss Function Kullback-Leibler Divergence, Mean MSE
Absolute Error, Mean Absolute
Percentage Error, MSE, Mean
Squared Logarithmic Error, Binary
Crossentropy, Hinge, LogCosh,
Poisson, squared Hinge, Huber

Activation Function ELU, ReLU, Leaky ReLU, ReLU
SELU, Softplus, Swish

Batch Size 103 to 5 · 104 5 · 103

# Densely Connected Neurons 48 to 96 per layer 64
# Densely Connected Layers 0 to 4 2
# Residual Blocks (depth) 0 to 48 10
Residual Block Design See Fig. 14 Fig. 14a
# Convolutions in 1, 2, 3 2
Residual Block
# Filters 8 to 256 32
Filter Size 1 to 11 3
Filter Size Bit Sliced 1, 3 1
Inception[SLJ+15] instead true, false false
of Convolution
Circular Convolutions[SNPP19] true, false false
Dropout Rate 0 and from 0.02 to 0.0025 0
Batch Normalization true, false true
Regularization L1, L2, L1 and L2 L2
Regularization Factor 2.5 · 10−3 to 8 · 10−8 10−5

Residual Scaling 1 to 0.1 1
Bit Encoding 0/1, 1/2, -1/1 0/1
Label Smoothing∗ 0 to 0.3 0
∗: Only for using Binary Crossentropy as the loss function.
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Table 5: Overview of differential-neural distinguishers from hyper-parameter search. Pa-
rameters not mentioned are as in [Goh19]. The accuracy is evaluated usingl 107 samples,
i. e. an accuracy above 0.5005 reaches a significance level of 0.001.

Cipher Speck Simon Skinny Present Katan ChaCha
Full Rounds 22 32 32 31 258 20

Round 7 9 7 7 66 3
Accuracy (Acc.) 0.617 0.661 0.937 0.563 0.505 0.989
High LR (/10−3) 3.5 2.7 1.1 3 1.7 2
Low LR (/10−5) 22 20 4.5 28 6 14

Neurons 80 64 64 64 64 64
Filter Size 3 7 3 1 7 7

Number Filters 16 32 32 32 32 32
L2 (/10−8) 84.9 220 4.3 62 600 1400

Circular Convolution false true false false false false
Calculate Back false false true false true true

seems to be in line with literature, as the results for more rounds are either not free from
doubt, or use the more elaborate training processes introduced in [Goh19].

4 Manual Optimizations
In the previous section, we studied the performance of a generic neural network based
cryptanalytic training pipeline on a wide variety of different ciphers. In this section, we will
show that the presented results can be significantly improved with some limited guidance
from a cryptanalyst.

4.1 Types of Manual Optimization
Cryptanalytic attacks on block ciphers can usually be roughly divided into two parts,
namely a statistical distinguisher against the block cipher and a key extraction phase.
Typically, the distinguisher will recognize some event that happens in the middle of the
cipher’s execution and which is triggered (with some probability) by sending well-chosen
input values into the cipher. The key extraction phase then uses the distinguisher to verify
guesses of the last round keys and, sometimes, also to guide the search for these subkey
values. In this article, this second step is not of interest.

When designing a machine learning based attack, the cryptanalyst will aim to capture
a stronger distinguishing signal than would be available using classical techniques and
to bridge as many rounds as possible using an automatic techniques, while retaining a
simple interface to classical pre- and post-processing steps and a reasonably high level of
distinguisher efficiency. In other words, ideally they would want to reliably detect an event
deep inside the cipher that can be controlled well by classical chosen input techniques.

In the context of optimizing the neural part of neural-differential attacks, this naturally
opens up the following ideas for optimization of existing distinguishers:

1. We can improve the choice of input differences. In principle, this does not necessarily
mean picking input differences that generate deeper distinguishers; it is perfectly
conceivable that improvements to an attack can be obtained by trading a slightly
weaker machine-learned distinguisher for more control over the event that it detects.
However, in this work, we will solely focus on optimizing input differences to obtain
stronger distinguishers.
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2. The designer can also try to obtain neural distinguishers that work for more rounds
by modifying the distinguisher to cover more rounds. In general, the most natural
approach to do this are staged training or extension by key-averaging as introduced
in [Goh19]; in this article, we will see that for Present, simply using the same
distinguisher for more rounds works to a significant extent.

4.2 Optimizations for Simon
Before diving into evaluating the Present distinguishers on more rounds, we would like to
quickly explain how we trained the differential-neural distinguishers for 10- and 11-round
Simon32/64, that we report of in Tables 1 and 2. Similar to the training of the 11-round
distinguisher in [BGL+21], we applied the staged training method introduced in [Goh19].
We started with training 8-round distinguishers based on our 9-round distinguisher, but for
the input differences 0x0180 0040 and 0x0440 0100, which are the most likely differences
to occur after 2 and 3 rounds respectively. Based on those two distinguishers, we trained
the 10 and 11 round distinguisher (using 108 samples) for one epoch with a learning rate
of 10−4, and another two/nine epochs using a learning rate of 10−5.

The results actually slightly surpass the ones reported in [BGL+21], as our 10-round
distinguisher achieves an accuracy of 0.567 instead of 0.566 and the 11-round distinguisher
achieves one of 0.520 instead of 0.517. Note that the increase in accuracy, despite being
small, is still significant.

4.3 Optimizations for Present
For Present, we investigated whether staged training leads to learning of additional
rounds; doing so, we found at first that our distinguisher was adapting extremely quickly
to higher round numbers and then realized that it simply kept working without retraining,
albeit at reduced distinguishing advantage. We also found that the same distinguisher
works well for several input differences.

Evaluating the Advantage of a Neural Distinguisher To the best of our knowledge, in
all of the literature since [Goh19], the distinguishing advantage of neural distinguishers has
so far been characterised by two measures: their accuracy on the one hand and the key-
ranking advantage obtained in attacks on the other hand. Additionally, the performance of
these distinguishers is implicitly being measured by the loss functions used during training;
mean square error loss is the most common choice in the literature.

All of these measures of success for a distinguisher encounter problems when we try to
determine how well a given neural distinguisher works for output distributions other than
the one it was trained for:

1. Accuracy collapses the output values of the distinguisher into binary choices, which
loses a lot of information. This loss of information is usually not too critical for
distinguishers that we can obtain by training on the output distribution, as the biases
discovered by training will usually be large enough to lead to statistically significant
accuracy results on test samples of the same order of magnitude as the training data
(or much smaller). However, for distinguishers obtained by transferring an existing
distinguisher to a different output pair distribution, one would be interested in being
able to show the existence of very small biases.

2. Mean square error loss is not necessarily easy to interpret for poorly calibrated
distinguishers. For instance, a given neural distinguisherD and the same distinguisher
with binary thresholding will by definition reach the same accuracy level, but the
mean square error of the latter will usually be far larger than even for the baseline
that outputs a value of 0.5 for every sample.
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Table 6: Present distinguisher evaluated (using 107 samples) on more rounds than it
was trained on. Every result other than the ones for 10 rounds passes a significance test
with significance level 0.001.

Encryption Rounds 6-round Distinguisher 7-round Distinguisher
6 0.658 –
7 0.557 0.563
8 0.509 0.512
9 0.502 0.502
10 0.500 0.500

Table 7: Present distinguisher evaluated (using 107 samples from the real distribution
and a fixed set of 108 samples from the random distribution) on more rounds than it was
trained on. All reported results except the one on 11 rounds are significant at the 3σ level
or more. The 11-round result becomes significant when 108 real labels are used, at an
empirical deviation of ≈ 5σ0.

Encryption Rounds 7-round Distinguisher, (µ1 − µ0)/σ0

8 229
9 34.8
10 4.8
11 0.7

A natural alternative approach is to measure distinguisher performance by sampling the
output distribution (without thresholding) of a distinguisher on real and on random test
data and applying standard hypothesis testing to see whether the hypothesis that both
distributions are the same can be rejected. In principle, there are a variety of tests that
can be used for this purpose, but we will in this work settle for a very simple method.

If we denote the distinguisher output for sample i with Xi and assume that we have n
samples chosen independently at random either all from the real or all from the random
distribution, then the Xi are independent and identically distributed random variables
with range [0, 1]. As such, they have a mean µj (where index j = 1 is the real case
and j = 0 indicates the random distribution) and standard deviation σj . The mean and
standard deviation of the empirical mean 1

n

∑
i = 1nXi are µj and 1/

√
nσj and by the

central limit theorem, the distribution of the empirical mean is well approximated by a
normal distribution with these parameters.

In general, it is sufficient to show that sampling from the real and random output
distribution of a cryptographic distinguisher yields recognisably different results for these
two cases. In the case of Present, we will, however, assume that µ1 ≥ µ0. Since the
random distribution does not depend on number of rounds or input difference considered,
empirical estimates of the parameters of the random distinguisher output distribution
can be computed once on a large sample for a given distinguisher and then reused across
experiments. This allows us to be fairly certain about the parameters for the distinguisher
output distribution on the random samples. In Table 7, we report an advantage at more
than three standard errors s = µ1−µ0

σ0
of the random distribution for up to ten rounds;

this advantage can be shown to still exist at 11 rounds, although in our trials we saw
it reliably only with significantly more real ciphertext pairs (roughly 108 were clearly
sufficient). For comparison, Table 6 shows the observed empirical accuracy values for two
different distinguishers against Present as measured by the standard test of running
the distinguisher on 107 samples collected from the real and the random distribution in
roughly equal proportion.



Aron Gohr, Gregor Leander and Patrick Neumann 17

4.4 Optimizations for Katan
A similar phenomenon as described in the previous section for Present was also evident
for Katan. While we did not find that our neural distinguishers were directly applicable
to more rounds than we had trained the distinguishers in question for, we found that
fine-tuning the weights of the last network layer of the distinguisher provided a quite
effective way to adapt them for higher round numbers. To this end, we used one of our
ordinary distinguishers for Katan as the base model and removed the final sigmoid output
layer. The resulting model outputs for any observed Katan ciphertext pair an internal
representation vector consisting of 64 floating-point numbers. To attack n + k rounds,
we then performed linear regression to find a linear decision surface that would classify
n + k-round output as real or random as accurately as possible. Using our 60-round
distinguisher as the base model, applying the same backwards calculation as for that model,
and training the final linear distinguisher on 5 · 106 samples, we obtained a distinguisher
against 71-round Katan with an accuracy of 50.15 percent; applying the same test as in
the last section for Present, the mean response of the resulting fine-tuned distinguisher to
real samples was estimated more than 12 times the standard error of the observed random
samples above the mean for the random samples.

5 Relations to Classical Differential Attacks
While it is common in differential cryptanalysis to use just a single differential to mount an
attack, it can actually be beneficial to use all possible output differences (or more precise
their probability), see for example [AL13]. Of course, this is often infeasible as it would
require the calculation of one row of the Difference Distribution Table (DDT). But at
least for Simon32/64 and Speck32/64 it is, under Markov assumption, feasible using the
methods provided in [KLT15] and [LM02] respectively, and was already done in [BGL+21]
for Simon32/64 and in [Goh19] for Speck32/64.

The Accuracy of a Purely Differential Distinguisher Given the probability pδ for every
output difference δ ∈ Fn2 (and a fixed input difference) a distinguisher could just use
pδ >

1
2n−1 as a decision rule, i. e. the ciphertext-pair is coined to belong to the encryption

distribution if the probability of the observed ciphertext difference is greater in the
encryption case than the probability of the same difference to appear in the random case7.
With this, the accuracy of such a distinguisher would be

1
2

∑
pδ>

1
2n−1

pδ + 1
2

∑
pδ≤ 1

2n−1

1
2n − 1 ,

assuming that both, the encryption and the random case, appear with probability 1
2 , as

it is the case for training the neural network (and evaluating its accuracy). Note that
if both cases are equiprobable, this is actually the best that can be done if only the
ciphertext-differences of single samples are considered.

Interestingly, this accuracy is basically the same as the mean absolute distance of the
ciphertext-difference distribution and the uniform one.

Lemma 1. The accuracy of a purely differential distinguisher is the same (up to constants)
as the mean absolute distance of the ciphertext-difference distribution and the uniform one.

7Note that the zero difference cannot appear, which means that (in the random case) the differences
can be seen as drawn uniformly from Fn

2 \ {0}.
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Proof. Since both pδ and 1
2n−1 sum to 1 over all possible δ ∈ Fn2 \ {0}, we have

∑
pδ>

1
2n−1

pδ +
∑

pδ≤ 1
2n−1

1
2n − 1 = 1−

∑
pδ≤ 1

2n−1

pδ +
∑

pδ≤ 1
2n−1

1
2n − 1 = 1 +

∑
pδ≤ 1

2n−1

∣∣∣∣ 1
2n − 1 − pδ

∣∣∣∣ ,
as well as∑
pδ>

1
2n−1

pδ +
∑

pδ≤ 1
2n−1

1
2n − 1 =

∑
pδ>

1
2n−1

pδ + 1−
∑

pδ>
1

2n−1

1
2n − 1 =

∑
pδ>

1
2n−1

∣∣∣∣pδ − 1
2n − 1

∣∣∣∣+ 1.

Combining both, we get

1
2

∑
pδ>

1
2n−1

pδ + 1
2

∑
pδ≤ 1

2n−1

1
2n − 1

=1
4

1 +
∑

pδ≤ 1
2n−1

∣∣∣∣ 1
2n − 1 − pδ

∣∣∣∣+
∑

pδ>
1

2n−1

∣∣∣∣pδ − 1
2n − 1

∣∣∣∣+ 1


=1

2 + 1
4

∑
δ∈Fn2 \{0}

∣∣∣∣pδ − 1
2n − 1

∣∣∣∣ .

This means that maximizing the accuracy of such a distinguisher (over the chosen
input difference) may not lead to the same input difference as if one tries to maximize the
probability of a differential, as the former maximizes the mean absolute distance, while the
later maximizes the maximal distance.

5.1 On the Ciphertext-Pair Distribution
While it was shown in [Goh19] that the neural distinguisher for Speck is able to use more
than just differential features, the same is unlikely to be true for ciphers like Simon and
Present. To see why this is the case, let us recall that a sample from the encryption
distribution is of the form (c1, c2) = (E(k, p), E(k, p⊕∆)) for k ∈ Fnk2 and p ∈ Fnp2 drawn
independently and uniformly at random, which has to be distinguished from the two
ciphertexts being drawn independently and uniformly at random. If E(k, .) is bijective,
choosing p uniform at random is the same as choosing c1 or c2 uniform at random. Hence,
looking only at c1 (or only at c2) there is no difference to the uniform distribution. So, a
distinguisher needs to look at (parts of) c1 and (parts of) c2 at once in order to distinguish
the encryption distribution from the uniform one.

Knowing that c1 and c2 are uniform distributed also tells us that the marginal dis-
tribution of each bit is a Bernoulli-distribution with probability 1

2 for it to be 1 (or 0).
Obviously, adding independent key bits from a key chosen uniform at random removes any
potential dependency between bits.

Lemma 2. Let X1, ..., Xm, Y1, ..., Yl and K1, ...,Kl be Bernoulli-distributed random vari-
ables. Let further (for every i) Ki be 1 with probability 1

2 and independent of X1, ..., Xm,
Y1, ..., Yl and K1, ...Ki−1,Ki+1,Kl. Then

Pr [Xi = xi ∀i, Yj = yj ⊕Kj ∀j] = 2−l Pr [Xi = xi ∀i] .
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Proof.

Pr [Xi = xi ∀i, Yj = yj ⊕Kj ∀j]

=
∑

(k1,...,kl)∈Fl2

Pr [Xi = xi ∀i, Yj = yj ⊕ kj ∀j] · Pr [Kj = kj ∀j]

=2−l
∑

(k1,...,kl)∈Fl2

Pr [Xi = xi ∀i, Yj = yj ⊕ kj ∀j]

=2−l Pr [Xi = xi ∀i]

By interpreting the Xi as bits from c1 and Yi as bits from c2 this means that if we add
independent key bits (more precisely key bits that are independent of the bits from c1 and
c2 we are looking at) to c2 we would get

Pr [X1 = x1, ..., Xm = xm, Y1 = y1 ⊕K1, ..., Yl = yl ⊕Kl]
= 2−l Pr [X1 = x1, ..., Xm = xm] = 2−m−l,

i. e. the bits would look uniform distributed. But there is also a different interpretation.
If we divide the bits from c1 and c2 that we are looking at in a group of bits that get
added by the same key bits (or no key bits at all), i. e. we have dependencies between the
key bits that get added to the bits, and interpret them as X1, ..., Xm (after key addition),
and interpret the rest of the bits, i. e. the ones where we add independent key bits, as
Y1 ⊕K1, ..., Yl ⊕Kl, we can see that we only need to consider the group corresponding to
the dependent key bits.

For illustration let us look at a Feistel cipher with round function F : F2n
2 → F2n

2 ,
Fk(l, r) = (r ⊕ k ⊕ f(l), l) and Feistel function f : Fn2 → Fn2 . Let us consider the two
ciphertexts c1 = (s(l)

1 , ..., s
(l)
n , s

(r)
1 , ..., s

(r)
n ) and c2 = (q(l)

1 , ..., q
(l)
n , q

(r)
1 , ..., q

(r)
n ). If we would

look at s(l)
1 , ..., s

(l)
n and q(r)

1 , ..., q
(r)
n we would see no dependency since the last round key

got added to s(l)
1 , ..., s

(l)
n but is independent of q(r)

1 , ..., q
(r)
n , assuming independent round

keys. Analog, there can also be no dependency between s(l)
1 , ..., s

(l)
bn/2c−1 and q(l)

dn/2d, ..., q
(l)
n .

DDT vs. Ciphertext-Pair Distribution While it is clear that it is possible to calculate
the DDT knowing the probability distribution of (c1, c2), it is interesting to note that the
reverse is also true under some conditions.

Lemma 3. Let X1, ..., Xm and Y1, ..., Ym be Bernoulli-distributed random variables and
(z1, ...zm), (w1, ..., wm) as well as (δ1, ..., δm) be elements of Fm2 . Let further

Pr [Vj = vj | Xi = vi, Yi = vi ⊕ δi ∀i 6= j] = 1
2 (1)

hold for all (v1, ..., vm) ∈ Fm2 and all Vj ∈ {Xj , Yj}. Then we have that

Pr [Xi = zi, Yi = zi ⊕ δi ∀i] = Pr [Xi = wi, Yi = wi ⊕ δi ∀i] ,

i. e. the probability is independent of the concrete choice of z1, ...zm.

Proof. Let us assume that (z1, ...zm) 6= (w1, ..., wm) as otherwise the lemma would already
be true. This means that there exists an j such that zj 6= wj . We will show that the
probability stays the same when replacing zj with wj = zj ⊕ 1. For this let us look at

Pr [Xi = zi, Yi = zi ⊕ δi ∀i]
= Pr [Xj = zj , Yj = zj ⊕ δj | Xi = zi, Yi = zi ⊕ δi ∀i 6= j] · Pr [Xi = zi, Yi = zi ⊕ δi ∀i 6= j] .
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By using Eq. (1) we get that

Pr [Xj = zj , Yj = zj ⊕ δj | Xi = zi, Yi = zi ⊕ δi ∀i 6= j]

=1
2 − Pr [Xj = zj , Yj = zj ⊕ 1⊕ δj | Xi = zi, Yi = zi ⊕ δi ∀i 6= j]

=1
2 −

(
1
2 − Pr [Xj = zj ⊕ 1, Yj = zj ⊕ 1⊕ δj | Xi = zi, Yi = zi ⊕ δi ∀i 6= j]

)
= Pr [Xj = wj , Yj = wj ⊕ δj | Xi = zi, Yi = zi ⊕ δi ∀i 6= j] .

Thus, we have

Pr [Xi = zi, Yi = zi ⊕ δi ∀i] = Pr [Xi = zi, Yi = zi ⊕ δi ∀i 6= j,Xj = wj , Yj = wj ⊕ δj ] .

The lemma follows now from repeating this for all zi 6= wi.

For us this means that as long as Eq. (1) holds the probability distribution does only
depend on the difference between c1 and c2 and can therefore be calculated using the DDT.
This can easily be seen by expressing the probability of a difference as the sum of every
possible bit configuration

Pr [Xi = Yi ⊕ δi ∀i] =
∑

(zi,...,zm)

Pr [Xi = zi, Yi = zi ⊕ δi ∀i] .

Since the lemma tells us that all configurations have the same probability, calculating them
from the probability of the difference is just a matter of dividing by the number of possible
configurations. Hence, if we want to see whether it could be possible to learn additional
features aside from the ones provided by the DDT, we can check if Eq. (1) does not hold.

For example, let us assume we have a cipher with round function of the from R :
Fn2 × Fn2 → Fn2 , R(k, x) = f(x) ⊕ k for some f : Fn2 → Fn2 and independent round key k.
Then we know from Lemma 2 that Eq. (1) holds. Therefore, we cannot expect to learn
additional information from the distribution of ciphertext-pairs than we could already
learn from the DDT8. More general, we have shown the following.

Theorem 1. If for a (bijective) cipher there exist a transformation of the ciphertexts inde-
pendent of the key such that the transformed ciphertexts have the from c′⊕ k′, where k′ are
independent key bits, then the encryption distribution and the ciphertext-difference distribu-
tion (where the difference is calculated after applying the key independent transformation)
contain the same information.

Hence, in order to show that the encryption distribution does not provide any additional
information to the DDT we have to show that we can represent ciphertexts as c′ ⊕ k′ for
independent key bits k′. Obviously, this is the case for Present if we assume independent
round keys, as well as all other key-alternating ciphers.

Additionally, this is also the case for Feistel ciphers. To see that, let us denote
the round function of such a cipher as Fk(l, r) = (r ⊕ k ⊕ f(l), l) for some function
f : Fn2 → Fn2 and round key k. Obviously, we can see the key addition as the first operation
in the round and calculate one round back up to the key addition. Hence, instead of
looking at ciphertexts of the from (ri ⊕ ki ⊕ f(li), li) we can look at ones of the form
(ri ⊕ ki, li) = (ri ⊕ ki, ri−1 ⊕ ki−1 ⊕ f(li−1)) = (ri, ri−1 ⊕ f(li−1)) ⊕ (ki, ki−1). Since
ri, ri−1, li−1 do not depend on the round keys ki, ki−1 (assuming independent round keys)

8That is if we know the real DDT, i. e. the model used to calculate the DDT does not contain any
assumptions that are not met such as the Markov assumption that is often used even though it does not
hold in most cases. Otherwise, we would only have an approximation of the DDT, and therefore of the
distribution of ciphertext-pairs, and could still hope to find a better one.
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Table 8: Accuracy comparison between neural distinguisher and DDT based one (after
reverting one round up to key addition) for Simon32/64.

Distinguisher Rounds
9 10 11

Neural 0.661 0.567 0.520
DDT[BGL+21] 0.663 0.568 0.520

we know that we can calculate the probability distribution of the ciphertexts (calculated
back up to key addition) by using the DDT. In other words, Simon is another example
where only differential features can be used, again, assuming independent round keys. But
for Feistel ciphers, such as Simon, we first need to revert one round, up to key addition.

Knowing that, and given that Bao et al.[BGL+21] already calculated the accuracy
a DDT based distinguisher is able to achieve, we can actually judge the quality of the
approximation the differential-neural distinguisher is able to produce for Simon32/64.
As can be seen in Table 8, the accuracies of the two distinguishers are almost identical,
supporting the conjecture that the results we have seen in Section 3 may be (almost)
optimal. We will later see that the same is true for toy versions of Simon, which makes
it reasonable to assume that this observation can be extrapolated to the 48-, 64-, 96-
and 128-bit block versions of Simon, too. Note that, while calculating the DDT for
the 32-bit version of Simon is possible, at least under Markov assumption, it is already
computationally expensive, and one can expect it to become infeasible for greater block
sizes. Hence, the use of differential-neural distinguishers could be even more valuable for
greater block sizes.

A Chance to Still Use More Than Differential Features While the results above show
that for single ciphertext-pairs only their difference may provide information, one option to
still improve over purely differential distinguishers could be to use multiple ciphertext-pairs
at once, making use of dependencies between the pairs, especially if the key is fixed. But
as we will see in Section 8, the dependencies are either not that strong, or they simply do
not get used much by current state of the art multi-pair distinguishers.

5.2 Influence of the Key Schedule
Applying Theorem 1 to Simon and Present has the caveat of assuming independent round
keys. While this assumption is not uncommon, it is conceivable that a differential-neural
distinguisher may use (potential) weaknesses within the key schedule. In the end, this
could as well be the reason why the differential-neural distinguisher in [Goh19] is able to
perform better than the purely differential one. To answer this question we conducted
a simple experiment, replacing the original round keys derived using the corresponding
key schedule by independent and identical distributed round keys (i. e. using a free key
schedule) and evaluating the differential-neural distinguisher on the so created samples.
For all six ciphers, doing so does not lead to any significant difference in accuracy. Hence,
we can conclude that the key schedule has no (notable) impact on the distinguishing
performance, at least for the assessed ciphers.

5.3 Experiments using Small Scale Variants of Simon and Speck.
To analyze the relation between differential-neural and classical cryptanalysis further, we
conducted experiments on small scale variants of Simon and Speck. First, we calculated
the whole DDT, under Markov assumption, using the methods from [KLT15, LM02]. While
doing so for the 32-bit variants is feasible, and was already done in [BGL+21, Goh19] for
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a fixed input difference, it is still computationally expensive. To make our experiment
more economic, and since it is unlikely that the results would look significantly different
for bigger block sizes, we will consider 16-bit versions of the two ciphers instead.

But since 16-bit versions of Simon and Speck are not specified, it is not clear which
rotational constants to use9. Hence, we will first reduce the amount of rotational constants
by considering reasonable choices (with respect to purely differential attacks) only.

Small Scale Simon Starting with Simon, the authors of [KLT15, Bei16] already provide
constraints for choosing reasonable rotational constants α, β and γ (using the notation
from Fig. 2a). The most obvious one is that α and β can be switched and, of course, α 6= β
should hold. Also, it should hold that gcd(|α− β |, n) = 1, where n = 8 is the word size,
in order to keep the differential probabilities low. For the same reason γ /∈ {α, β} should
hold, too. In addition, Kölbl et al. also show in [KLT15] that multiplying all rotational
constants by s ∈ Z∗n results in the same cipher apart from bit permutations (and changes
within the key schedule). We will adopt their notation of structural equivalence for this.

Definition 3 (Structural equivalence[KLT15]). If two ciphers are identical apart from
bit permutations of the input, output and round key bits we will call them structural
equivalent.

Furthermore, we want to note that the following also holds.

Lemma 4. For Simon, adding n/2 to all rotational constants, where n denotes the word
size, leads to a structural equivalent cipher.

Proof. Let
f(x)(α,β,γ) = ((x≪ α)� (x≪ β))⊕ (x≪ γ)

be the Feistel function of Simon. It is easy to see that, for any integer ρ, f(x)(α+ρ,β+ρ,γ+ρ) =
f(x)(α,β,γ) ≪ ρ holds. If we denote by

R
(k)
(α,β,γ)(l, r) =

(
r ⊕ f(l)(α,β,γ) ⊕ k, l

)
the round function of Simon, then by using ρ = n/2 it is easy to see that

R
(k)
(α+n/2,β+n/2,γ+n/2)(l, r≪ n/2) =

(
(r ⊕ f(l)(α,β,γ) ⊕ (k≪ n/2))≪ n/2, l

)
and

R
(k)
(α+n/2,β+n/2,γ+n/2)(l≪ n/2, r) =

(
r ⊕ f(l)(α,β,γ) ⊕ k, l≪ n/2

)
.

Hence, using (α, β, γ) and (α + n/2, β + n/2, γ + n/2) produces structural equivalent
ciphers.

Therefore, we have classes of equivalent rotational constants, leading to structural
equivalent ciphers. For selecting one combination of rotational constants of each of these
equivalence classes we make use of the following lemma.

Lemma 5. Let n be the word size. If n is even, n ≥ 4 and gcd(|α− β |, n) = 1, then there
exist unique and non-negative integers b < n/2 (even) and c < n− 1 such that, for Simon,
using the constants (α, β, γ) is structural equivalent to using the constants (1, b, c).

9For Simon it is also not clear how the key schedule should be adapted, which is why we use independent
rounds keys instead. For Speck, on the other hand, the key schedule makes use of the round function only,
which makes adaptation of the key schedule straight forward.
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Table 9: Maximal DP and accuracy (based on DDT) for 7-round small scale Simon and
different choices of rotational constants, together with the input difference which leads to
those results, and ordered by maximal DP. Rotational constant α is fixed to 1.

β γ Difference log(maxDP) Difference max Acc.
2 3 0x00 0b -11.3 0x00 01 0.566
2 5 0x01 20 -11.0 0x00 01 0.547
2 7 0x01 80 -11.0 0x00 01 0.587
0 7 0x01 80 -11.0 0x00 01 0.688
0 5 0x01 20 -11.0 0x00 01 0.546
0 6 0x00 01 -10.4 0x00 01 0.546
0 2 0x00 01 -10.4 0x00 01 0.574
0 3 0x00 05 -10.3 0x00 01 0.547
2 6 0x00 01 -8.7 0x00 01 0.694
0 4 0x00 01 -7.4 0x00 01 0.701
2 4 0x00 01 -7.2 0x00 01 0.619
2 0 0x00 01 -6.8 0x00 01 0.737

Proof. Since gcd(|α−β |, n) = 1 and n is even, α−β must be odd. This means that one of
them (α or β) has to be even and the other one odd. Hence, by multiplying all constants
with s ∈ Z∗n we can bring the odd one to 1 while the even one remains even. For the
sake of simplicity let us assume that α = 1. Now we can choose b as either β if β < n/2
already holds or as β + n/2 by simply adding n/2 to all constants (and reducing modulo
n). Of course, this means that we could change α from 1 to 1 +n/2, but by multiplying all
constants with 1 + n/2 we can return α to (1 + n/2)2 = 1 mod n (since n ≥ 4 even) and
also leave b < n/2 untouched since b · (1 + n/2) = b+ n · b2 = b mod n as β and therefore b
is even. The uniqueness follows from the fact that adding n/2 and multiplying by s ∈ Z∗n
is commutative and every combination of those can be written as a single multiplication by
s and at most one addition of n/2. Adding n/2 or multiplying by s alone would violate the
first constant being 1 while doing both would require 1 · s+ n/2 = 1 for the first constant
to remain 1, which means that s has to be n/2 + 1, i. e.

b · s+ n/2 = b · (n/2 + 1) + n/2 = b+ n/2 > n/2

since b is even and b < n/2. Hence, b and c are unique.

This leaves us with the rotational constants

(α, β, γ) ∈ {(1, b, c)|b ∈ {0, 2}, γ ∈ {0, 2, 3, 4, 5, 6, 7}\{b}} . (2)

We calculated the DDT for 7 rounds by making use of Theorem 3 from [KLT15] for those
constants. Note that since the round function is invariant under rotations (i. e. rotation
both words of the input by d is the same as doing so at the output) we only need to
consider input differences up to rotational equivalence. Table 9 provides the maximal DP,
as well as the maximal accuracy of a purely differential distinguisher, together with the
input differences leading to those results. Here, it becomes already apparent that choosing
the rotational constants such that the maximal DP is minimized, as it is normally done10,
does not necessarily minimize the accuracy a purely differential distinguisher is able to
achieve.

We already know from Section 5.1 that an r-round distinguisher would use the DDT
for r − 1 rounds. Hence, we trained differential-neural distinguishers11 on 8 rounds using

10Of course, other kinds of attacks then differential ones would also be considered.
11The hyper-parameters were chosen to be as in [Goh19][Section 4.2], i. e. no cipher specific hyper-

parameter optimization was done.
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Figure 7: Network performance for small scale Simon and different choices of rotational
constants when using the input difference 0x00 01 and one additional round, i. e. 8 rounds,
while the DDT is still calculated for 7 rounds. α is fixed to 1 and the results are ordered
by the accuracy of the neural network.

the input difference 0x00 01, which leads to the highest accuracies for the DDT-based
distinguisher, no matter the rotational constants. As can be seen in Fig. 7, if the neural
network did learn at all, the accuracies are virtually identical.

Note that the input difference 0x00 01, which is found to be the best (in terms of
accuracy), is rotational equivalent to every other input difference with only one active
bit that is in the right words. In other words, the input difference we have chosen for
Simon32/64, namely 0x0000 0040, is rotational equivalent to 0x0000 0001, which is a
reasonable candidate for the best input difference for the 32-bit version, based on the
results we have seen here.

Next, let us fix the rotational constants to (α, β, γ) = (1, 2, 3), i. e. the ones that lead
to the lowest maximal DP. Since 7 rounds seem to be harder for the neural network to
learn, we will use 6 rounds instead, in order to have more meaningful results.

Starting with the input differences that lead to the maximal DP, it can be seen in
Fig. 8a that both accuracies, the one based on the DDT and the one of the neural network,
are again virtually identical. The same can be seen for input differences leading to maximal
accuracy (based on the DDT), see Fig. 8b. Therefore, we conclude that for Simon the
neural network seems to be able to find a good approximation of the DDT, which may not
be that interesting for the small scale variant, but, as we have already seen, also seems to
be the case for Simon32/64, and is therefore also likely to be true for variants with greater
block sizes, where calculating the DDT becomes infeasible. Hence, such an approximation,
especially for larger block sizes, could get quite useful.

Small Scale Speck For Speck, we, again, need to chose the rotational constants. For
this, we can make similar arguments. Once more, we need α and β to be not both divisible
by 2 in order to achieve better diffusion. Also, α = n − β mod n (n being the word
size) should be avoided, as the rotations would otherwise be identical. In addition, we
incorporate the rational of the THREEFISH designers[FLS+10] and ignore the rotational
constants −1, 0 and 1 since diffusion in adjacent bits should already be provided by the
modular addition.

The best input differences for purely differential distinguishers on 6-round Speck and
different choices of rotational constants are given in Table 10. Note that, once more, the
best input difference in terms of DP and the best in terms of accuracy based on the DDT
are not identical.

In contrast to small scale Simon, where the input difference 0x00 01 always lead to
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(a) Top ten differences based on DP (b) Top ten differences based on accuracy (DDT)

Figure 8: Network performance for small scale Simon, using rotational constants (α, β, γ) =
(1, 2, 3), for the top ten input differences (up to rotational equivalence) based on and ordered
by DP (for 7 rounds) and accuracy (DDT) respectively. The network was trained on 7
rounds, but the accuracy based on the DDT is reported for 6 rounds.

the highest accuracy and is the natural counterpart to 0x0000 0040 (up to rotational
equivalence), the choice of input difference is not as clear cut for the different variants of
small scale Speck. But if we take a closer look at the input difference used for Speck32/64
in [Goh19], we notice that at the first modular addition only the msb of the left word is
active. This leads to a deterministic first round transition and can easily be adapted for
other choices of rotational constants.

Using such differences, we can see once more that the accuracy based on the DDT is
a good approximation of the one of the neural distinguisher, see Fig. 9a. But as already
noted in [Goh19], the neural distinguisher is able to surpass the purely differential one
in most of the cases, and as can be seen in Fig. 9b, just optimizing the size of the filters
enables the neural distinguisher to at lest catch up to the purely differential one in the
cases where the purely differential distinguisher was superior before.

We would like to note that trying different filter sizes for small scale Simon did not
make any significant difference. In other words, the version of Fig. 7 optimized for filter
size would not look any different.

Given that the rotational constants α = 5 and β = 2 lead to the lowest maximal DP,
let us now fix those constants. We can see the top ten input differences, as well as the
corresponding maximal DP and accuracies for both, the neural network, as well as the
DDT, in Fig. 10a. Here, we would like to point out two things. Firstly, if the neural
network is able to learn at all, it either reaches the same accuracy as the distinguisher
based on the DDT or it surpasses it. Secondly, the figure definitely shows that there is no
clear relation between the accuracy (based on the DDT) and the maximal DP, which is
not surprising as we already know that one corresponds to the mean and the other to the
maximal distance of the distributions.

Moving on to the top ten input differences according to the accuracy of the purely
differential distinguisher, we can see in Fig. 10b that the accuracy based on the DDT is
once more a good approximation for the one of the neural distinguisher, and, again, the
neural distinguisher is at least as good as the purely differential one and even surpasses it
in most cases.

If we take a closer look at the input differences that lead to the highest accuracies for
small scale Speck, we see that the counterpart to the input difference used for Speck32/64
(i. e. 0x10 00) does not lead to the highest accuracy. Hence, the question arises if we are
able to find a better input difference based on those results. While it is not completely
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Table 10: Maximal DP and accuracy (based on DDT) for 6-round small scale Speck and
different choices of rotational constants together with the input difference which leads to
those results, ordered by maximal DP.

α β Difference log(maxDP) Difference max Acc.
5 2 0x08 60 -11.7 0x04 20 0.591
3 2 0x28 01 -11.7 0x01 20 0.580
3 6 0x84 98 -11.6 0x10 02 0.596
6 5 0x20 00 -11.0 0x01 04 0.581
5 6 0x20 01 -11.0 0x10 00 0.563
2 5 0x48 10 -11.0 0x10 04 0.587
6 3 0x28 a9 -11.0 0x04 10 0.580
5 4 0x12 91 -10.0 0x10 80 0.644
3 3 0x34 02 -10.0 0x24 80 0.592
5 5 0xd0 94 -10.0 0x12 80 0.598
2 3 0x02 80 -9.7 0x40 10 0.559
4 3 0x28 32 -9.0 0x48 80 0.599
3 4 0x01 20 -8.4 0x04 80 0.615
4 5 0x84 40 -8.0 0x08 00 0.664

(a) Without hyper-parameter optimization. (b) Using filter sizes 3, 5 or 7.

Figure 9: Network performance for 6-round small scale Speck and different choices of
rotational constants when using the input difference such that only the msb of the left side
is active right before the modular addition in the first round, extended by the accuracy
calculated using the DDT (for the same number of rounds). The results are ordered by
the accuracy of the neural network in the left image.
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(a) Top ten differences based on DP (b) Top ten differences based on accuracy (DDT)

Figure 10: Network performance for 6-round small scale Speck, using rotational constants
(α, β) = (5, 2), for the top ten input differences based on and ordered by DP and accuracy
(DDT) respectively.

clear how one can find a counterpart of one difference for a different variant of Speck,
we will still try to do so based on the word size and the rotational constants. For the
difference 0x04 20 for example, one can notice that after rotation the left side by α the
two sides are identical, i. e. the differences in both words are the same right before the
first modular addition. Furthermore, rotating the right side by β yields a difference in
the msb only. The counterpart of 0x04 20 is therefore likely to be 0x0010 2000. But for
Speck32/64 this difference leads to an accuracy of 0.595, which is slightly worse than the
original input difference, but still the best result of all differences such that the two sides
are identical up to rotating the left side by α. It hence looks reasonable that the choice of
input difference in [Goh19] could already be optimal, at least if we consider the neural
distinguisher on its own.

6 Real-Difference-Experiment
In [Goh19] the Real-Difference-Experiment is proposed to show that the neural distinguisher
for Speck is not a purely differential distinguish. For this, 107 samples12 of the form
(c1, c2) are drawn from the encryption distribution. Then half of the samples get blinded
as (c1 ⊕ b, c2 ⊕ b) by independent blinding values b chosen uniformly at random. The
resulting samples get judged by the distinguisher and the accuracy of distinguishing the
blinded from the un-blinded samples is evaluated using the distinguishers trained for the
scenario described in Section 2.2.

As explained in [Goh19], the rationale behind this is that the blinded samples contain
the same ciphertext difference, but all additional information is lost. Hence, if only
differential features would be used by a distinguisher the accuracy would be around 0.5. If
the accuracy is significantly higher, then more than just the ciphertext difference is used.

Actually, the distinguishing performance on the non-blinded encryption samples will
stay the same, as a sample labeled as encryption sample is still an encryption sample,
while one labeled as random sample is now a blinded encryption sample. This means we
could just compare the performance on random and blinded encryption samples, both
labeled as random samples, which is typically called the True Negative Rate (TNR) in
both, the default network evaluation, as well as the Real-Difference-Experiment. If the
TNR would be the same in both cases, then the blinded encryption samples would look

12We increased the amount of samples from 106 to 107 in order to get more precise estimates for Katan.
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Figure 11: Results of Real-Difference-Experiment using the neural distinguisher from
Table 5, except for Simon where we used a version of the neural distinguisher trained on
samples where the last round was reverted, given the results from Section 5.1.

like random samples to the network. If it would go down, then at least some differential
features get used.

Still, we think that the accuracy of the Real-Difference-Experiment is the more intuitive
metric, which is why we will simply report both. If we take a look at the results in Fig. 11,
we see that for Simon32/64, Skinny and Present the accuracy drops to 0.5 in the
Real-Difference-Experiment, indicating that the neural distinguisher only makes use of the
ciphertext difference (or more precise, the difference after a deterministic transformation
of the ciphertexts in the cases of Simon and Skinny). While this was to be expected
for Simon and Present, given the results from Section 5.1, for Skinny it is not as clear
cut. Still, the experiment shows that for Skinny only differential features were used, too.
Whether this is because other features do not exist or because the neural network was
unable to learn them is not clear.

While the results for Katan look like also only differential features are used, a closer
look on the accuracy of 0.501 reveals that, as it was evaluated using 107 samples, it still
deviates significantly from 0.5, which means that more than purely differential features
were used. Similar can be seen for ChaCha and Speck32/64, where the accuracy drops
are not too high.

We would like to point out that while the results for Simon, Present and Skinny
clearly indicate that only differential features are used, we cannot conclude the opposite
for Katan and ChaCha, as we only considered one (natural) representation. If we, for
example, look at Simon32/64 without backwards calculation, we see that the accuracy in
the Real-Difference-Experiment would still be 0.645 (with a TNR of 0.708). In other words,
we would need to repeat the Real-Difference-Experiment for all possible (deterministic)
transformations of the ciphertexts (up to linear equivalence), if we would want to make
such a conclusion plainly based on the Real-Difference-Experiment. Nevertheless, the
results show that using the given representation, more than just differential features can
be used. Additionally, at least for Speck, it was already show in [Goh19], and also in
Section 5.3, that the neural distinguisher uses more than just differential features.

All in all, neural distinguishers are able to make use of more than just differential
feature, even in a setting that is differential by nature (i. e. using a fixed input difference).
It would therefore be interesting to classically explain such features, as this may have the
potential to lead to new classes of attacks, and hence improve current security estimations
as well as provide new guidance for cipher design.
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7 Empirical Evaluation of Differential-Linear Biases
Next, we would like to distinguish the encryption distribution using statistical means.
Given the complexity of this distribution, the idea is to reduce it to the distribution of one
bit only. As it turns out, the found one-bit biases for the same amount of rounds as the
differential-neural distinguishers cover are quite pronounced.

From Lemma 2 it is clear that reducing our analysis to (parts of) one ciphertext only
would reduce the distribution to a uniform one. Therefore, we will look at one bit of the
difference of the two ciphertexts of a ciphertext-pair13. In other words, we will empirically
evaluate the differential-linear biases for each possible one bit linear mask, together with
the input difference we used for our neural distinguishers.

For each of the six ciphers under scrutiny here, we show in Fig. 12 the differential-linear
biases that pass a significance test with significance level 0.01 (after Bonferroni correction
for the number of linear masks evaluated). Interestingly, the biases for Present are all
negative, which is related to the fact that the output differences are biased towards lower
weight. In addition, the biases for Skinny are clearly clustered into four bit blocks, which
happen to align with the word structure of Skinny.

Unsurprisingly, the biases seem to be strongly related to the accuracy the neural
disitnguishers are able to achieve. Both, the ChaCha and Skinny distinguisher achieve
accuracies above 0.9, and have many high absolute biases. For Present, Simon and Speck
the biases get lower and/or less frequent, and the accuracies of the neural distinguishers
are between 0.56 and 0.66. For Katan, the biases are the lowest, as is the accuracy.

We would like to note that the lowest absolute bias passing the significance test would
be around 2−11. Since the amount of samples used here is the same as we train the
neural networks with (i. e. 107), this means that a lower bias would be unlikely to even be
noticeable during training. In contrast, such an absolute bias is not disproportionally low
for it to be used in an attack. Of course, depending on the cipher there exist information
not visible in the differential-linear biases, as it is the case for Speck, given that the neural
distinguisher uses more than just differential features[Goh19], but our experiments still
show a strong correlation between the biases and the networks performance.

Given that we used the highest number of rounds for which we were able to directly14

train a neural distinguisher, it looks like there needs to exist a certain degree of skewness
in the encryption distribution for it to be distinguishable from the uniform one by neural
networks as the one from [Goh19]. While this should be no surprise, the biases in Fig. 12
indicate that the degree of skewness may need to be relatively high. In other words, it is
unlikely that neural distinguishers will be useful for breaking any reasonable (full round)
cipher, but we still think that they can be a useful tool to evaluate its security, as they can be
expected to procure good approximations of the DDT and/or ciphertext-pair-distribution
for non-trivial numbers of rounds.

8 Using Multiple Ciphertext-Pairs
One current trend in the vicinity of machine learning assisted cryptanalysis is the use of
multiple ciphertext-pairs per sample. While this could be a valid approach to improve
upon using single pairs due to possible dependencies between the pairs, and especially
could help to surpass classical distingiushers even for ciphers where this is not possible
using single pairs (see Section 5), current literature fails to put the results into the right
perspective, which we would like to chance.

13Strictly speaking, we revert deterministic parts of the last round function before calculating the
ciphertext difference (except for present, as this would just result in a permutation of the bit positions),
which is motivated by Section 5.1

14I. e. without any form of pre-training or more elaborate training process.
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(a) 9-round Simon32/64 (b) 7-round Speck32/64

(c) 7- round Skinny (d) 7-round Present

(e) 66-round Katan (f) 3-round ChaCha

Figure 12: Differential-linear biases when using the usual input differences as well as
one-bit linear masks, empirically evaluated using 107 samples. Results that do not pass a
Bonferroni corrected significance test with significance level 0.01 are not shown. The two
critical values for the significance test are shown by the two horizontal lines.
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For this, it is important to note that differential-neural distinguishers, like the one
from [Goh19], actually produces a score between 0 and 1 for each sample, representing
its confidence for the sample to belong to the encryption class (instead of the random
class). To evaluate the accuracy, we reduce this confidence into a hard decision by simply
comparing it to 0.5, i. e. we loose information. But if we simply interpret each score as the
probability of the sample to belong to the encryption class, and if we assume independence,
we can actually make use of the whole score.

Corollary 2. Let us assume that we havem samples, each drawn from the same distribution
(encryption or random). Let us denote the probability that the i-th samples is an encryption
samples as pi. If the probabilities p1, ..., pm are independent, then the probability that all
m samples are drawn from the encryption distribution is

1
1 +

∏m
i=1

1−pi
pi

.

Note that this was already implicitly used in [Goh19], as a ranking of m ciphertext-pairs
based on this combined probability is the same as one by∑

i

log
(

pi
1− pi

)
,

which is how the keys are ranked in [Goh19] when using multiple ciphertext-pairs during
trial decryption. In other words, [Goh19] already used multi-pair distinguishers, even if
only implicitly.

Using this rule of combining probabilities/distinguisher responses, we are able to
explicitly turn a distinguisher for one ciphertext-pair into one for an arbitrary amount of
ciphertext-pairs. A comparison of such distinguishers and results from literature is shown
in Table 215. As can be seen, the claimed improvement is at best non-existent in most cases.
In the case of [CSYY22], the multi-pair results are even worse than just using their single-
pair distinguishers. Only [ZWW22] manage to improve over the combined distinguishers,
but not as much as they reported, and in the case of 7- to 9-round Speck32/64, as well as
12-round Simon32/64 only.

To be fair to the authors, our distinguishers were not available for them to compare
to, but at least comparisons to published distinguishers, such as the ones for Speck32/64
from [Goh19], or even to their own single pair distinguishers, would have been desirable.

In addition to the results in Table 2, Benamira et al.[BGPT21, Section 6] claim to
improve the distinguisher from [Goh19] by averaging over the score of multiple (single-
pair) samples or combining them using a neural network, effectively creating a multi-pair
distinguisher. Unfortunately, they fail to notice that the key recovery attacks in [Goh19]
effectively combine the scores as detailed above. Despite their claims, they do not manage
to improve the results from [Goh19] at all, see Table 11.

Given the results for using multiple ciphertext-pairs when training a neural distinguisher,
one could come to the conclusion that this may be the best way to learn more rounds.
Indeed, if we look for example at the accuracies the authors of [ZWW22] achieved for
9-round Speck32/64 when using at least 8 pairs, it seems unlikely that we could tell an
accuracy for one pair apart from 0.5 using 106 (or even 107) samples. In other words,
it could be that single-pair distinguishers for 9-round Speck32/64 already were trained,
but were not identified as being useful due to the noise that comes from experimentally
evaluating the accuracy. A good example for this are our results for 66-round Katan.

15To avoid dividing by zero, we will use the number of times that pi = 0 or pi = 1 holds as a decision rule
in case that at least one of the pi is zero. Also, note that we used independent keys for each ciphertext-pair,
but do not expect the results to look significantly different if the same key were to be used for all pairs
contained in one sample.
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Table 11: Accuracy (for Speck32/64) when using the score combination method implicitly
used in [Goh19] compared to the ones proposed in [BGPT21].

Rounds Pairs [Goh19] Averaging[BGPT21] 2D-CNN[BGPT21]
5 5 0.999 0.998 0.994

10 1.000 1.000 1.000
6 5 0.967 0.954 0.933

10 0.995 0.990 0.977
50 1.000 1.000 1.000

7 5 0.743 0.735 –
10 0.821 0.808 –
50 0.977 0.967 –

100 0.997 0.997 –

While a single pair leads to an accuracy of 0.505 only, which one could easily mistake for
random noise, using (for instance) 8 pairs leads to an accuracy of 0.524, for which it is
out of the gate more believable to be better than random guessing, but which is still way
higher than the accuracy of 0.502 (reported in [ZWW22] for 9-round Speck32/64 and 8
pairs).

We would like to emphasise that we do think that using more than just one ciphertext-
pair could be a viable way to improve on already existing distinguishers, as there should
exist dependencies between the pairs that could be used, but we would like to ask for a
fair comparison, for example as we did here. Especially, a fair comparison does not include
using the same total amount of plain-/ciphertexts when evaluating the accuracy, but
keeping the amount used for one sample constant. It should be clear that the amount of
samples/trials only effects the quality of the accuracy estimation, but not the distinguishing
performance itself.

9 Conclusion
We have seen that differential-neural distinguishers are quite generic and can be applied to
a wide variety of ciphers and cipher designs. Furthermore, we provide guidance on how the
network hyper-parameters should be chosen in order to produce potent differential-neural
distinguishers. Despite the size of the explored search space, only a few hyper-parameters
needed to be changed for the six ciphers under scrutiny, which makes it plausible that the
same may be true for other ciphers as well.

In addition, we have seen that the best input difference with respect to the probability
of a differential is not necessarily the best for differential-neural distinguishers, and also that
there is a pronounced correlation between the accuracy a differential-neural distinguisher is
able to achieve and the mean absolute distance between the output difference distribution
and the uniform one, which is essentially the accuracy of a DDT-based distinguisher.

For a whole class of ciphers, we were able to see that only differential features can be
used, assuming independent round keys. Furthermore, we have seen examples of ciphers
not belonging to this class, where it is most likely that more than differential features are
used by the differential-neural distinguishers presented in this work.

While the skewness of the encryption distribution most likely needs to be quite pro-
nounced for the neural network to learn, this does not diminish the fact that differential-
neural distinguishers seem to be able to learn a good approximation of the ciphertext-
difference distribution, which, especially for greater block sizes, should be much faster
than calculating the corresponding part of the DDT.
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At last, we were able to rectify results from literature for using multiple ciphertext-pairs
at once, showing that the claimed improvements are at best marginal, if not non-existent.
This is especially important as the approach of combining distinguisher responses is by
no means new, but is already used in the underlying work[Goh19], be it only implicitly.
We hope that going forward, this gives authors a straightforward way of comparing such
distinguishers to single-pair ones.

Discussion One downside of neural network based cryptanalysis is without doubt the
explainability of the used features. It would be desirable to understand the neural-
distinguishers decision in order to gain insights for (classical) cryptanalysis and cipher
design. While there does exist work in this direction (e. g. [BGPT21]), it is (so far)
distinguisher (and therefor cipher) specific. On the other hand, we were able to show that
for a great number of ciphers any distinguisher in the differential setting we discussed
here can at most make use of the ciphertext-difference distribution16, which completely
explains the features a neural network could use. For such ciphers, we can even see
differential-neural distinguishers as a tool providing (in a reasonable amount of time) a
lower bound on the mean absolute distance of the ciphertext-difference distribution and
the uniform one, but with the drawback that it may be unclear how tight this bound is.

In addition, even if unknown features get used by a machine learning based distinguisher,
knowing of the existence of such features is at least a first step in gaining insights, and is
preferable over being unaware of such features.

Future Work We see multiple directions in the area of differential-neural cryptanalysis
that could be worth exploring. For one, we were, despite a quite significant effort, not
able to improve the distinguisher performance for Speck32/64 from [Goh19] by much,
and also show that the ones for Simon are most likely almost optimal. It is therefore
conceivable that the differential-neural distinguishers cannot be improved much further.
But one way to still improve current machine learning based attacks is to make the
distinguisher evaluations more efficient, for example by using a smaller neural network as
in [BBP22]. During our hyper-parameter search for 7-round Speck32/64 we incidentally
found a differential-neural distinguisher that has only 29,921 instead of 44,321[Goh19]
overall parameters17, but still achieves an accuracy of 0.616. Given that we did not try to
optimize the number of parameters at all, it would be unreasonable to assume that this is
as low as we can go.

Another approach could be to try to find better input differences. While our experiments
using toy versions of Simon and Speck suggest that the input differences we use may
already by optimal (with regards to distinguishing performance), it would be unreasonable
to assume that the same is true for the other ciphers under scrutiny here.

On the other hand, it could be more beneficial to chose the input difference with the
classical part in mind. In this work, we focused plainly on distinguishing performance,
while [Goh19] augments their neural distinguisher using a classical differential. This is,
of course, somewhat limited by the chosen input difference the neural distinguisher was
trained with, especially if neutral bits for the differential transition should be used. It is
therefore quite likely that the optimal input difference with regards to the distinguishing
performance may not be the best for an overall attack.

Despite our findings that published multi-pair distinguisher do not perform much
better than single pair ones, we still think that there should be a way to make use of
the dependencies between the pairs. It would therefore be interesting to see if such

16If we assume independent round keys, which is a standard assumption in symmetric cryptanalysis.
17We provide this distinguisher as part of our source code, too, see https://github.com/

differential-neural/An-Assessment-of-Differential-Neural-Distinguishers

https://github.com/differential-neural/An-Assessment-of-Differential-Neural-Distinguishers
https://github.com/differential-neural/An-Assessment-of-Differential-Neural-Distinguishers
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distinguishers can indeed lead to greatly increased distinguishing performance, but it could
be that the dependencies would need to be more pronounced for this to be possible.

Also interesting could be to try to find the best input difference by classical means.
While it is possible that this is as hard as computing the DDT, given that the best input
difference for a differential-neural distinguisher seems to be the one that maximizes the
mean absolute distance between the ciphertext-difference distribution and the uniform
one, this could also prove useful for general security estimations, as it would especially be
a nice addition to just knowing the maximal distance, i. e. the maximal probability of a
differential, since an adversary is by no means limited to one ciphertext-difference only.

At last, for ciphers like Simon32/64, where differential-neural distinguishers are unlikely
to exceed a distinguisher based on the DDT, and where it is feasible to compute the needed
part of the DDT, it could be interesting to see if an attack that basically replaces the
differential-neural distinguisher by one based on the DDT in the attack from [Goh19]
can be competitive with existing attacks. While evaluating the distinguisher could be
a problem for the overall time complexity, making use of all possible output differences
should be superior to using just a single one.
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over 10 epochs, and jumps back to 2 · 10−3 completing the cycle, is used. Looking at
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(a) Exponential Decay (b) Polynomial Decay

(c) Inverse Time Decay (d) Piecewise Constant Decay

(e) Cyclic to Constant (f) Linear Cyclic

Figure 13: Examples of tried LR schedules, compared to the cyclic one used in [Goh19]
(original).
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Figure 14: Tried residual block designs.

Residual Block Design We tested a variety of different residual blocks, see Fig. 14, all
using two convolutional layers. In addition, we also tried in-/decreasing the number of
convolutional layers using the original design shown in Fig. 14a. Here, the number of con-
volutions actually refers to the number of applications of the composition of convolutional
layer, batch normalization and activation.

Inception Given the importance of the filter size, we also tried to use Inception[SLJ+14],
which allows the use of multiple filter sizes at the same time, in a way enabling the network
to learn the filter size. A graphic representation of our implementation can be found in
Fig. 15. Since calculating multiple convolutional layers with different filter sizes instead
of one convolutional layer with a fixed filter size is computationally more expensive, the
authors of [SLJ+14] proposed to reduce the number of filters for the layers with a filter
size greater than one by adding additional convolutional layers with filter size one and less
filters before these layers.

Given the increase in training time, but not in accuracy, we found it to be more efficient
to directly search for the optimal filter size using a hyper-parameter search.

Circular Convolutions Based on the fact that many of the ciphers under scrutiny make use
of some sort of bit cyclic shift (i. e. rotation), it seems reasonable that a cyclic representation
would make more sense. To achieve this, Schubert et al.[SNPP19] propose to pad the input
using data from the opposing side, instead of with zero. We adapted this approach to
the neural network from [Goh19], and found it to make small improvements. But in total,
those improvements also seem possible by tweaking the remaining hyper-parameters.
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Figure 15: Residual block using the Inception Model. Convolutional layers marked with
(Red.) are used for filter reduction and use filter size of one. All other convolutional layers
have their filter size written in parentheses. For max. pooling, the number in parentheses
represent the used pool size.

Dropout As an additional form or regularization, we also considered dropping out neurons
in the densely connected layers, but did not find this to be helpful.

Batch Normalization The original network from [Goh19] already uses batch normaliza-
tion. We therefore wanted to find out which effect it has on the performance of the neural
distinguisher. As batch normalization after convolutions is already part of the residual
block design, we tested removing batch normalization after the densely connected layers
only, and found it to be quite essential.

Residual Scaling The residual block takes some input x, calculated some function F on
it and adds the input to the result. While this can enable deeper neural networks in the
first place, our idea is to control the impact of F by scaling it accordingly, i. e. instead of
calculating F (x) + x, we calculate λ · F (x) + x for a scalar λ. This was found to have only
a limited effect.

Bit Encoding In [Goh19] the samples are represented as arrays of bits, encoded as zero
and one. But note that most layers of the neural network just perform matrix multiplication
over real numbers. Therefore, using zero as one possible encoding could have the drawback
that every multiplication with zero gives zero. Based on this observation, we tried encoding
the bits as −1 and 1, as well as 1 and 2, but did not find this to make any difference.

B Reverting Deterministic Parts of the Katan Round Func-
tion

Let us take a look at how we calculate ciphertexts back for the cipher Katan. Let
(xr0, ..., xr31) ∈ F32

2 be the state of Katan after round r, where (xr0, ..., xr12) is the content
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of the first shift register and (xr13, ..., x
r
31) the content of the second one. If we look at the

structure of Katan in Fig. 5, we know that

xr−ji = xri+j for 0 ≤ i ≤ 12− j and

xr−ji = xri+j for 13 ≤ i ≤ 31− j.

Let further (kra, krb ) ∈ F2
2 be the round key and IRr ∈ F2 the round constant of round r.

Hence

xr−1
12 = xr13 ⊕ xr−1

8 · xr−1
5 ⊕ xr−1

7 ⊕ xr−1
3 · IRr ⊕ kra and

xr−1
31 = xr0 ⊕ xr−1

16 · x
r−1
21 ⊕ x

r−1
20 ⊕ x

r−1
23 · x

r−1
25 ⊕ krb .

Therefore, we know every variable except the round keys for the last four rounds, which
means we that we can calculate

xr−4
9+i ⊕ k

r−i
a for 0 ≤ i ≤ 3 and

xr−4
28+i ⊕ k

r−i
b for 0 ≤ i ≤ 3.

In other words, we know the state of four rounds before (up to the eight key bits). But
since we only know xr−4

9 ⊕ kra and not xr−4
9 itself, we can no longer calculate xr−5

12 as it
would require us to know xr−5

8 = xr−4
9 . On the other hand, it is still possible to calculate

at least parts of some more rounds backwards. While we do not know xr−5
8 and therefore

cannot revert the addition of xr−5
8 · xr−5

5 to xr−5
12 , we can still revert the addition of

xr−5
7 ⊕ xr−5

3 · IRr−4. Furthermore, we can still calculate xr−5
31 ⊕ kr−4

b and xr−6
31 ⊕ kr−5

b ,
before xr−7

23 · x
r−7
25 becomes unknown. Hence, partly reverting six rounds gives

xr−6
i for 0 ≤ i ≤ 6,
xr−6
i ⊕ kr+7−i

a for 7 ≤ i ≤ 10,
xr−6
i ⊕ xr+6−i

8 · xr+6−i
5 ⊕ kr+7−i

a for 11 ≤ i ≤ 12,
xr−6
i for 13 ≤ i ≤ 25 and
xr−6
i ⊕ kr+26−i

b for 26 ≤ i ≤ 31.

As already mentioned, we now no longer are able to calculate xr−7
23 ·x

r−7
25 . Despite that, we

can still continue to calculate part of the rounds backwards. After all, it takes another four
rounds for xr−10

12 to become unknown (up to key addition), because we cannot calculate
xr−10

3 · IRr−9. Also, xr−10
7 = xr−6

11 which is not only masked by the round key kr−4
a , but

also by xr−5
8 · xr−5

5 . Therefore, calculating nine rounds (partially) backwards gives

xr−9
i for 0 ≤ i ≤ 3,
xr−9
i ⊕ kr+4−i

a for 4 ≤ i ≤ 7,
xr−9
i ⊕ xr+3−i

8 · xr+3−i
5 ⊕ kr+4−i

a for 8 ≤ i ≤ 12,
xr−9
i for 13 ≤ i ≤ 22,
xr−9
i ⊕ kr+23−i

b for 23 ≤ i ≤ 28 and
xr−9
i ⊕ xr+22−i

23 · xr+22−i
25 ⊕ kr+23−i

b for 29 ≤ i ≤ 31,

but after that we can only revert the addition of xr−10
16 · xr−10

21 for the next round, whereas
the one of xr−i20 can still be reverted (up to addition of the round key) up to i = 17. Hence,
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partially reverting ten rounds gives

xr−10
i for 0 ≤ i ≤ 2,
xr−10
i ⊕ kr+3−i

a for 3 ≤ i ≤ 6,
xr−10
i ⊕ xr+2−i

8 · xr+2−i
5 ⊕ kr+3−i

a for 7 ≤ i ≤ 11,
xr−10
i ⊕ xr−10

8 · xr−10
5 ⊕ xr−10

7 ⊕ xr−10
3 · IRr−9 ⊕ kr−9

a for i = 12
xr−10
i for 13 ≤ i ≤ 21,
xr−10
i ⊕ kr+22−i

b for 22 ≤ i ≤ 27 and
xr−10
i ⊕ xr+21−i

23 · xr+21−i
25 ⊕ kr+22−i

b for 28 ≤ i ≤ 31.

We now can continue reverting the addition of xr−i20 for three additional rounds until all
values within the first register are masked by a key, i. e.

xr−13
i ⊕ kr−ia for 0 ≤ i ≤ 3,
xr−13
i ⊕ xr−1−i

8 · xr−1−i
5 ⊕ kr−ia for 4 ≤ i ≤ 8,

xr−13
i ⊕ xr−1−i

8 · xr−1−i
5 ⊕ xr−1−i

7 ⊕ xr−1−i
3 · IRr−i ⊕ kr−ia for 9 ≤ i ≤ 12,

xr−13
i for 13 ≤ i ≤ 18,
xr−13
i ⊕ kr+19−i

b for 19 ≤ i ≤ 24,
xr−13
i ⊕ xr+18−i

23 · xr+18−i
25 ⊕ kr+19−i

b for 25 ≤ i ≤ 28 and
xr−13
i ⊕ xr+18−i

16 · xr+18−i
21 ⊕ xr+18−i

23 · xr+18−i
25 ⊕ kr+19−i

b for 29 ≤ i ≤ 31.

As already mentioned, the next obstacle is that xr−18
20 = xr−13

25 is not known (even not up
to key addition). But we can still (partially) revert 17 rounds.

xr−17
i ⊕ xr−5−i

8 · xr−5−i
5 ⊕ kr−4−i

a for 0 ≤ i ≤ 4,
xr−17
i ⊕ xr−5−i

8 · xr−5−i
5 ⊕ xr−5−i

7 ⊕ xr−5−i
3 · IRr−4−i ⊕ kr−4−i

a for 5 ≤ i ≤ 12,
xr−17
i for 13 ≤ i ≤ 14,
xr−17
i ⊕ kr+15−i

b for 15 ≤ i ≤ 20,
xr−17
i ⊕ xr+14−i

23 · xr+14−i
25 ⊕ kr+15−i

b for 21 ≤ i ≤ 24,
xr−17
i ⊕ xr+14−i

16 · xr+14−i
21 ⊕ xr+14−i

23 · xr+14−i
25 ⊕ kr+15−i

b for 25 ≤ i ≤ 27 and
xr−17
i ⊕ xr+14−i

16 · xr+14−i
21 ⊕ xr+14−i

23 · xr+14−i
25 ⊕ kr+15−i

b ⊕ kr+28−i
a for 28 ≤ i ≤ 31

From now on, we cannot even revert parts of the round function. Hence, this is the state
we are referring to if we talk about ciphertexts calculated back.
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