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Abstract. We define the membership function of a set as the function that

determines whether an input is an element of the set. Canetti, Rothblum,
and Varia showed how to obfuscate evasive membership functions of hyper-

planes over a finite field of order an exponentially large prime, assuming the

hardness of a modified decisional Diffie-Hellman problem. Barak, Bitansky,
Canetti, Kalai, Paneth, and Sahai extended their work from hyperplanes to

hypersurfaces of bounded degree, assuming multilinear maps. Both works are

limited to algebraic sets over large fields of prime orders, and are based on less
standard assumptions, although they prove virtual black-box security.

In this paper, we handle much more general algebraic sets based on more
standard assumptions, and prove input-hiding security, which is not weaker nor

stronger than virtual black-box security (i.e., they are incomparable). Our first

obfuscator handles affine algebraic sets over finite fields of order an arbitrary
prime power. It is based on the preimage-resistance property of cryptographic

hash function families. Our second obfuscator applies to both affine and pro-

jective algebraic sets over finite fields of order a polynomial size prime power.
It is based on the same hardness assumption(s) required by input-hiding small

superset obfuscation. Our paper is the first to handle the obfuscation problem

of projective algebraic sets over small finite fields.

1. Introduction

1.1. Problem. Let Fq be a finite field and f1, . . . , fm ∈ Fq[X1, . . . , Xn] be poly-
nomials that can be efficiently evaluated. More precisely, we assume that there
are at most ℓ monomials in total among the polynomials, and that the monomials
can be evaluated by polynomially many (in m, n, ℓ) squarings and multiplications.
Consider the set X of all points in Fn

q that are roots of all m polynomials. This is
an (affine) algebraic set.

There are many different possible sets of polynomials that generate the same
algebraic set X. Precisely, there is an ideal I corresponding to the algebraic set X,
and any set of polynomials that generates the ideal I also gives rise to the same
algebraic set X.

We are interested in giving membership testing of an algebraic set X without
revealing the corresponding ideal I. More precisely, we are interested in obfuscating
the membership function of X, this function is the predicate that takes m polyno-
mials f1, . . . , fm, and a point x ∈ Fn

q , and returns 1 if and only if fi(x) = 0 for all
1 ≤ i ≤ m.
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We stress that this problem is fundamental, as a wide range of statements can be
expressed as polynomial systems. Some applications for the case of large prime q are
mentioned by Canetti et al [9]. We believe the cases with small q, especially q = 2,
will be more useful in practice since they include boolean formulas. Specifically,
boolean operations can be represented by polynomials over F2 in a standard way,
by taking AND(X1, X2) = X1X2 (mod 2), OR(X1, X2) = X1 +X2 (mod 2), and
NOT(X1) = 1 − X1. This means, for example, any circuit in the class NC0 of
circuits with constant depth and fan-in 2 can be represented by a polynomial in
F2[X1, . . . , Xn] of degree n

c for some constant c. A special case is conjunctions (also
known as pattern matching with wildcards) which has been widely studied [7, 6, 4].
In fact, all conjunctive normal forms and disjunctive normal forms can be easily
represented by polynomials in F2[X1, . . . , Xn] (they are all Boolean formulas).

1.2. Related Works. Special cases of this obfuscation problem have been con-
sidered in the literature. Canetti, Rothblum, and Varia [9] gave a solution to the
special case m = 1, linear homogeneous polynomials, and q being prime and large.
They need q ≥ 22λ since they rely on the difficulty of the (modified) decision Diffie-
Hellman problem in a group of order q, where λ is the security parameter. Barak,
Bitansky, Canetti, Kalai, Paneth, and Sahai (see Section 3 of [1]) extended the
work of [9] from hyperplanes to hypersurfaces. So they still have m = 1 and q be-
ing prime, but allow more general polynomials than linear ones. Their solution uses
a multilinear map (graded encoding scheme), which is a very strong assumption.
Compute-and-compare obfuscation [16, 23] can also be used to obfuscate affine al-
gebraic sets. But this is not a direct solution for our problem because for instance,
in order to use the compute-and-compare obfuscation in [23], one needs to firstly
translate an evasive family of algebraic set membership functions into an evasive
family of branching programs, which is non-trivial. Also, it is unclear that they can
handle projective algebraic sets (even for a different security goal).

In this work, we consider the general case of the problem. By “general” we
mean algebraic sets with m ≥ 1, including both affine and projective algebraic
sets, over general finite fields of prime power order. Our solution is applicable
for a much wider range of parameters (in particular, m and q) than [9, 1], and
applicable for projective algebraic sets over small finite fields which are not handled
by [9, 1, 16, 23], although with different security guarantees. Specifically, we handle
affine algebraic sets over finite fields Fq of arbitrary prime power order q ≥ 2, and
projective algebraic sets over finite fields Fq of polynomial size prime power order
q ≥ 2.

1.3. Function Families of Interest. We explain the range of function families
that are interesting to obfuscate.

We take the affine case as an example. The projective case is similar. Let λ
be the security parameter and m,n, ℓ be positive integers given by polynomials
in λ. An affine algebraic set membership function family Cλ with respect to λ
is, for each λ, a sequence M = (M1, . . . ,Mℓ) ∈ (Fq[X1, . . . , Xn])

ℓ of non-constant

monomials and a distribution Dλ on Fm×(ℓ+1)
q . A sample (ai,j , bi)i=1,...,m,j=1,...,ℓ

from Dλ defines the m polynomials

fi(X1, . . . , Xn) =

ℓ∑
i=1

ai,jMj(X1, . . . , Xn) − bi.
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These m polynomials f1, . . . , fm define the algebraic set X whose membership func-
tion is what we want to obfuscate. See Definition 3.1, 3.2, 4.2, 4.3 for more details.

We require that the algebraic setX ofm random polynomials f1, . . . , fm sampled
from the distribution Dλ is small compared to the whole input set Fn

q . Otherwise
one can find many accepting inputs by simply picking points from Fn

q uniformly
at random. This requirement is described by the weak evasivenss property of the
family distribution (see Definition 2.2).

However, requiring a random algebraic set to be relatively small is not enough
for the function family to achieve input-hiding obfuscation. This is because, for
example, if all algebraic sets in the family share a given point, then no matter
how small the algebraic sets are and how we obfuscate the random function, this
accepting point of the function is always leaked (see Example 4.1). Hence we further
require the low probability of the algebraic set of a random function to contain any
prefixed point. This requirement is described by the evasiveness property [1] of the
family distribution.

As explained in Section 4, if the family distribution is uniform, then for it to be
evasive, we require the parameters to satisfy

qm ≥ 2λ.

This gives a basic requirement for the parameter m of an obfuscatable family of
algebraic set membership functions.

Three typical sets of parameters to keep in mind are: (λ = 128, q = 2128,m =
1, n > m, ℓ ≥ n); (λ = 128, q = 264,m = 2, n > m, ℓ ≥ n); and (λ = 128, q = 2,m =
128, n > m, ℓ ≥ n).

We also remark that the interesting case to obfuscate is when the points of
the algebraic set cannot be efficiently enumerated (i.e., the algebraic set is either
super-polynomially large, or that it is polynomially small but it is inefficient to
solve the polynomial system). This is because if one can efficiently enumerate all
points y ∈ X, then the problem reduces to the problem of obfuscating a polynomial
number of point functions, namely the predicates “is the input x equal to y” for
every point y ∈ X. Point function obfuscation has been solved [8, 22] and thus this
case of the problem is not interesting. However, we do not deliberately avoid this
case because polynomial systems are generally not easy to solve and thus points in
an algebraic set are not always easy to enumerate, even if the algebraic set is small.
Also, it is not unusual for a naturally defined system family to have some systems
whose algebraic sets are large.

1.4. Security Notion of Interest. We explain why we are interested in input-
hiding security [1].

There are several security notions for obfuscation of evasive functions. The most
popular one is virtual black-box (VBB) security [2], as well as its various variants
[15, 1, 23]. VBB security is informally defined as: an attacker given the obfuscated
function cannot compute any predicate of the un-obfuscated function, apart from
those predicates that can be learned from oracle access to the function. Canetti,
Rothblum, and Varia [9], Barak, Bitansky, Canetti, Kalai, Paneth, and Sahai [1],
Goyal, Koppula and Waters [16], Wichs and Zierdelis [23] prove VBB security for
their obfuscators.

Another notion is input-hiding security [1]. It is often the most relevant security
property in many applications, such as password checks (point function obfuscation
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[8, 22]) and biometric authentication (fuzzy Hamming distance matching obfusca-
tion [13]). Input-hiding security is informally defined as: any attacker given the
obfuscated function cannot efficiently compute an input that is accepted by the
function.

Relations between VBB and input-hiding for evasive functions are discussed
in Section 2.2 of [1], where in Section 2.2.2 of [1] it is shown that VBB implies
input-hiding when every function in the function family has polynomially many
accepting inputs. But this is not an interesting case to obfuscate, especially when
the accepting inputs are efficiently enumerable, because in that case the problem
reduces to the problem of obfuscating a polynomial number of point functions, as
mentioned earlier.

In the general case, especially in the interesting case where the sets of accepting
inputs of the function family are not all small (i.e., not all of polynomial sizes), it is
shown by Barak et al [1] that input-hiding and VBB are incomparable. Specifically,
input-hiding does not imply VBB because an input-hiding obfuscation may always
include the first bit of the function in the output [1, Section 2.2]; and VBB does
not imply input-hiding because a counterexample exists as is given in [1, Section
2.2.1]. Also, for evasive functions such as password checks and biometric matching
it is important that an attacker cannot find an accepting input and gain access.
Hence for evasive functions it is more relevant to focus on input-hiding security,
and this is what we do in this paper.

1.5. Our Contribution. We give two solutions to the problem of obfuscating
algebraic set membership functions. One is for affine algebraic sets, and the other
is for both affine and projective algebraic sets. We are the first to handle projective
algebraic sets over small finite fields.

The first solution is based on hash functions, and is only for affine algebraic sets.
In the case of m = 1, this approach works for a much wider range of parameters
than [9, 1]. In particular, for hyperplane membership where m = 1, [9] requires
q ≥ 22λ for λ-bit security (they prove VBB security), while we only require q ≥ 2λ

(and we prove input-hiding security). Also, our solution (up to different security
claims) is much more efficient than applying general techniques in [16, 23].

The second solution is based on small superset obfuscation, and it is for both
affine and projective algebraic sets over small (i.e., polynomial size) finite fields.
Beyond the hash-based solution, this solution further hides the row span of the
coefficient matrix.

We stress that projective algebraic sets over small finite fields are not handled
by any previous work. Specifically, one can use [9, 1] to obfuscate an algebraic
set with m > 1 by obfuscating m hyperplanes/hypersurfaces individually. But the
evasiveness of a function family with respect to single hypersurfaces requires the
field Fq to be exponentially large, so this approach is not applicable when working
with small fields. Although the methods in [16, 23] can be used to handle small
fields, they are not known to be able to handle projective algebraic sets (even for
a different security goal). Also, it is non-trivial to convert an evasive family of
algebraic set membership functions into an evasive family of the functions studied
in [16, 23].

We briefly sketch our two solutions here.
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Let M1, . . . ,Mℓ ∈ Fq[X1, . . . , Xn] be the non-constant monomials that appear in
the family of polynomial systems. For each 1 ≤ i ≤ m write

fi(X1, . . . , Xn) =

ℓ∑
j=1

Ai,jMj − bi

where Ai,j , bi ∈ Fq. Then we can represent the system of polynomials as the linear
system AM = b over Fq, where A is the m× ℓ matrix of the Ai,j , M is the length ℓ
column vector of the Mj , and b is the length m column vector of the bi. To check
if a point x = (x1, . . . , xn) ∈ Fn

q is a solution to the system, one can evaluate the
vector of monomials M at the point x (this is a polynomial-time computation by
definition) and check if AM(x) = b.

To obfuscate such a system with arbitrary A and uniform b, we simply publish
A and h = H(b), where H is a cryptographic hash function. To compute the
membership predicate we compute H(AM(x)) and check if this is equal to h. Since
b is a uniform vector of m elements in Fq, the number of possible b is qm. By the
evasiveness requirement we have qm ≥ 2λ and so it is inefficient to try all values
for b to reverse-engineer the system.

As explained in Section 5, this obfuscation gives an efficient obfuscator that
provides input-hiding security. However it cannot handle projective sets (where
b = 0) and it looks at first sight like it reveals too much information about the
original function because the coefficient matrix A is published. This motivates our
second obfuscator.

Our second construction is based on small superset functions. A small superset
function takes as input a set S′ and compares it with a reference set S: If S ⊆ S′ and
S′ is “small” (namely |S′| ≤ t for some prefixed threshold t)1, then the function
accepts S′. Equivalently, let s ∈ {0, 1}N be the characteristic vector of S and
let 0 ≤ t ≤ N be a threshold. The small superset function takes as input the
characteristic vector s′ ∈ {0, 1}N of S′ and outputs 1 if and only if s′− s ∈ {0, 1}N
and |s′| ≤ t, where |s′| denotes the Hamming weight of s′. Obfuscators for small
superset functions are known [3, 5, 12].

The obfuscator for the affine system AM = b with uniform (A, b) is the fol-
lowing.2 Sample k random vectors (a′j , b

′
j) and mix them with the m real vectors

(ai, bi). Let s be the length N := m+ k binary string of Hamming weight m which
indicates which rows are the “real” equations. Let t be an upper bound on the
number of dummy equations satisfied by any point in X. The obfuscated func-
tion is the (m+ k)× (ℓ+ 1) matrix (A∗, b∗) together with the obfuscated function
O(fs,N,m,t) of the small superset function fs,N,m,t.

To evaluate the function we take the point x ∈ Fn
q , compute the corresponding

monomial vector M(x) ∈ Fℓ
q, compute A∗ ·M(x) ∈ Fm+k

q and determine which
entries equal the corresponding b∗i , for 1 ≤ i ≤ m+k. Indicate those entries using a
binary string s′. If x is in the algebraic set then it will satisfy the real equations and
may also satisfy some (but not too many) of the dummy equations. The expected
number of dummy equations satisfied by any x is k/q. It follows that if the “small”
threshold t is predefined to be clearly larger than m+k/q, then with overwhelming

1The requirement of “small” makes sense since otherwise if we do not restrict the size of an
accepting input, then the whole set will always be an accepting input and there is no way the

function family can be evasive and that input-hiding obfuscation is impossible.
2The projective case AM = 0 is similar with A uniform, b∗ = 0, and x ∈ Pn

Fq .
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probability, for every x, the resulting s′ is a “small” (more precisely, bounded size)
superset of s, i.e., |s′| ≤ t, and so will be accepted by O(fs,N,m,t). On the other
hand, if the point x does not satisfy one of the polynomials fi then s′ is not a
superset of s and it will not be accepted by O(fs,N,m,t). According to whether s′ is
accepted by O(fs,N,m,t) we can determine whether x belongs to the algebraic set.

The intuition for the security of this obfuscator is that, since the obfuscation of
fs,N,m,t hides s, one cannot tell which of the m + k rows are the real equations

and which are the dummy ones. There are
(
m+k
m

)
possible subsets to choose from.

So if m is not too small and k is chosen large enough, then finding an accepting
x is hard, since finding such an x would tremendously reduce the search space
of an accepting s′ to the small superset function fs,N,m,t and hence violates the
input-hiding security of the small superset obfuscator.

Note that even in the case m+ k < ℓ, one cannot find an accepting point x ∈ X
by simply solving A∗ ·M = b∗. This is because the key point of this obfuscation is
that the number of uniformly sampled dummy equations that can be satisfied by
any accepting point x ∈ X is bounded by t−m with overwhelming probability (see
the first part of the proof of Theorem 6.1), and thus with overwhelming probability
the equation A∗ ·M = b∗ has no solution in X.

We summarize in Table 1 the parameters of the function families that we ob-
fuscate, where λ is the security parameter, q is the modulus, n is the number of
variables, ℓ is the number of monomials, m is the number of equations in each
system, poly(λ) denotes generic polynomial functions in λ.

Obfuscators Function Parameters Examples

Affine λ = 128

Hash
Fixed monomial vector M q = 2

Based
(Evasive) arbitrary A, uniform b m = λ

q ≥ 2 n = 1.5λ
m ≥ λ/ log2 q ℓ = 2λ

Affine or projective λ = 128
Small Fixed monomial vector M q = 2

Superset (Evasive) uniform (A, b) or A m = ⌈1.4λ⌉
Function 2 ≤ q ≤ poly(λ) n = 2λ
Based m ≥ λ/(log2 q − log2(1 + ε)) ℓ = 3λ

1/poly(λ) < ε < q − 1 ε = 0.2

Table 1. Constraints on function families

1.6. Organization. Section 2 gives mathematical preliminaries. Section 3 defines
algebraic set membership functions. Section 4 discusses evasive algebraic set mem-
bership function families. Section 5 gives a hash-based obfuscator for affine alge-
braic set membership functions. Section 6 gives a small superset function based
obfuscator for both affine and projective algebraic set membership functions. Sec-
tion 7 gives final remarks.

2. Preliminaries

2.1. Notations. We denote natural numbers as N = {1, 2, . . . } (not including 0).
We denote variables by X0, . . . , Xn and field elements by x0, . . . , xn. We denote
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algebraic sets by X,Y, Z, etc., and denote points in an algebraic set by x, y, z, etc.
We denote a monomial vector by M = (M1, . . . ,Mℓ), where Mi ∈ Fq[X1, . . . , Xn]
(affine case) or Mi ∈ Fq[X0, . . . , Xn] (projective case). We denote an evaluated
monomial vector byM(x) = (M1(x), . . . ,Mℓ(x)) ∈ Fℓ

q, where x = (x1, . . . , xn) ∈ Fn
q

(affine case) or x = (x0, . . . , xn) ∈ Pn
Fq

(projective case). We abuse the notation 0

to denote both the number 0 and zero vectors of the form (0, . . . , 0).
A function f : N→ R≥0 is negligible if for every positive polynomial p(n), there

exists a constant n0 such that f(n) < 1/p(n) for all n > n0. A function f : N→ R
is noticeable if there exist a positive polynomial p(n) and a constant n0 such that
f(n) > 1/p(n) for all n > n0. A function f : N → R is overwhelming if 1 − f
is negligible. We denote “generic” negligible functions, polynomial functions and
super-polynomial functions by negl(·), poly(·) and spoly(·), respectively; different
occurrences of negl, poly and spoly can be different concrete negligible, polynomial
and super-polynomial functions, respectively. In this paper, for concrete parameters
derivations, we use the specific negligible function negl(λ) = 1/2λ, while we keep
the original meaning of “negligible” in other contexts.

Let S be a set and D(S) be a distribution over S. We denote by s ← D(S) as
to sample an element s from S according to the distribution D(S), and denote by
s← S as to sample an element s from S uniformly at random.

2.2. Algebraic Geometry.

2.2.1. Affine Algebraic Geometry. LetK be a field (our focus is finite fields Fq), and
let K[X1, . . . , Xn] be the polynomial ring in n variables over K. The n-dimensional
affine space over K is the set of n-tuples An

K = Kn = {(x1, . . . , xn) : xi ∈ K}.
Let J be an ideal of K[X1, . . . , Xn]. We denote V (J) to be the set of common

roots x ∈ An
K of the polynomials in J . Let X be a subset of An

K . We denote I(X)
to be the set of polynomials f ∈ K[X1, . . . , Xn] vanish everywhere in X.

A set X ⊆ An
K is an algebraic set (also called algebraic variety) if X = V (I) for

some ideal I ⊆ K[X1, . . . , Xn]. Every ideal I ⊆ K[X1, . . . , Xn] is finitely generated,
denoted I = (f1, . . . , fm), where fi ∈ I. Every algebraic set is finitely generated,
denoted V (I) = V (f1, . . . , fm) = V (f1) ∩ · · · ∩ V (fm).

An algebraic set X is irreducible if X = Y ∪ Z implies either X = Y or X = Z,
where Y and Z are algebraic sets. Every algebraic set is a finite union of irreducible
algebraic sets. There is a notion of dimension associated to an irreducible algebraic
set. An irreducible algebraic set defined by m < n equations in K[X1, . . . , Xn] has
dimension at least n −m. In general, the dimension is equal to n −m, but it can
be larger when the system does not form a complete intersection. When q is large,
an irreducible algebraic set of dimension d will have approximately qd points; for
small q estimations of the size of the solution set are more subtle and we do not
go into this here. For more details of these concepts for algebraic sets over non-
algebraically closed fields (e.g., finite fields), we refer to Chapter 5 of [11], where
the discussion is centered around perfect fields which include all finite fields.

2.2.2. Projective Algebraic Geometry. The n-dimensional projective space over K
is the set of nonzero (n+1)-tuples Pn

K = Kn+1\{0}/ ∼, where ∼ is the equivalence
relation given by (x0, . . . , xn) ∼ (αx0, . . . , αxn) for α ∈ K\{0}. It is standard to
write projective coordinates as [X0 : X1 : · · · : Xn], but in this paper we prefer to
handle the affine and projective cases together so we write (X0, . . . , Xn).
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An ideal J ⊆ K[X0, . . . , Xn] is homogeneous if it is generated by homogeneous
polynomials. We define V (J) and I(X) similar to the affine case, with the only
difference that the ideals here are homogeneous ideals. Projective algebraic sets
and ideals satisfy similar properties as described in the affine case.

2.3. Input-Hiding Obfuscation. For the convenience of discussing space and
time complexities, we use circuits to represent functions.3 In this paper, by a
circuit we always mean a circuit of minimal size that computes a specified function,
where the size of a circuit is the number of gates that the circuit has. The relation
between size complexity and time complexity is given by the following fact: the size
complexity of a circuit of minimal size is polynomial in the time complexity of the
function it computes. For more details about these definitions and facts, we refer
to the book [20, Section 9.3].

Definition 2.1 (Input-Hiding Obfuscator [1]). Let C = {Cλ}λ∈N be a family of
Boolean circuits with an input size ensemble N = {n(λ)}λ∈N and a distribution
ensemble D = {Dλ}λ∈N such that: (1) for each λ ∈ N, the circuits C ∈ Cλ are of
(probably different) sizes (i.e., numbers of gates) |C| = poly(λ); (2) for each λ ∈ N,
all circuits C ∈ Cλ have the same input size (i.e., bit length) n(λ) = poly(λ); and
(3) for each λ ∈ N, Dλ is a distribution over Cλ. Let O be a probabilistic polyno-
mial time (PPT) algorithm that takes as input a security parameter λ ∈ N, a circuit
C ← Dλ, and outputs a circuit C ′ ← O(1λ, C). We say that O is an input-hiding
obfuscator for the family C over the distribution ensemble D if the following three
conditions are met.

1. Functionality-Preserving: There exists a negligible function µ(λ) such that for
all λ ∈ N and all circuits C ∈ Cλ, we have that:

Pr
C′←O(C)

[∀x ∈ {0, 1}n(λ) : C ′(x) = C(x)] ≥ 1− µ(λ),

where the probability is over the coin tosses of O.

2. Polynomial-Slowdown: There exists a polynomial function p(λ) such for all
λ ∈ N, all C ∈ Cλ, and all possible sequences of coin tosses for O, we have
|O(C)| ≤ p(λ). That is, the time complexity of O(C) is polynomial in the time
complexity of C.

3. Input-Hiding: For all PPT adversaries A there exists a negligible function µ(λ)
such that for all λ ∈ N and all auxiliary information α ∈ {0, 1}poly(λ) to A,

Pr
C←Dλ,C′←O(C)

[C(A(C ′, α)) = 1] ≤ µ(λ),

where the probability is taken over the random sampling of C ← Dλ and the coin
tosses of A and O.

The intuition of input-hiding is that given the obfuscated Boolean function,
it should be inefficient for any PPT algorithm to find an accepting input to the
function.

3Note that treating functions as circuits is just for the introduction of obfuscation, and usually
there is no need to transform a function into a circuit in order to obfuscate it.
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Note that not all function families can achieve input-hiding. For example, if all
functions C in Cλ have an accepting input set that is noticeably large compared
with the input set, then the attacker can always find an accepting input by sampling
random elements from the input set. Hence to achieve input-hiding, we at least
require that the accepting input set of a random function C sampled from Dλ is
negligibly small compared to the input set of C with overwhelming probability.
This requirement is captured by the following definition.

Definition 2.2 (Weak Evasive Circuit Family). A family of circuits C = {Cλ}λ∈N
with input size ensemble N = {n(λ)}λ∈N and distribution ensemble D = {Dλ}λ∈N
is weak evasive if there exists a negligible function µ(λ) such that for all λ ∈ N,

Pr
C←Dλ,x←{0,1}n(λ)

[C(x) = 1] ≤ µ(λ),

where the probability is taken over the random sampling of C ← Dλ and random
sampling of x← {0, 1}n(λ).

However, weak evasiveness is not sufficient to achieve input-hiding. For example,
if all functions C in Cλ accept and only accept the same point y, then the attacker A
which always outputs y breaks input-hiding of any obfuscator O over this function
family for any distribution Dλ. In fact, we not only require the accepting input sets
to be small compared with the input set, we also require them to be well-spread.
This requirement is captured by the following definition.

Definition 2.3 (Evasive Circuit Family [1]). A family of circuits C = {Cλ}λ∈N
with input size ensemble N = {n(λ)}λ∈N and distribution ensemble D = {Dλ}λ∈N
is evasive if there exists a negligible function µ(λ) such that for all λ ∈ N and all
x ∈ {0, 1}n(λ),

Pr
C←Dλ

[C(x) = 1] ≤ µ(λ),

where the probability is taken over the random sampling of C ← Dλ.

We have the following lemma.

Lemma 2.4. Evasiveness implies weak evasiveness and weak evasiveness does not
imply evasiveness.

Proof. The first half is clear since if the probability in Definition 2.3 holds for all x,
then it must hold for a uniform x. To see the second half, recall the counterexample
mentioned earlier: for every λ ∈ N, there is an input y ∈ {0, 1}n(λ) such that all
functions in Cλ accept and only accept y. In that case, there exists a negligible
function µ(λ) = 1/2n(λ) such that for all λ ∈ N,

Pr
C←Dλ,x←{0,1}n(λ)

[C(x) = 1] = Pr
x←{0,1}n(λ)

[x = y] = 1/2n(λ) ≤ µ(λ).

Hence the family is weak evasive. But it is not evasive. This is because for the input
y, all functions C ∈ Cλ accept it and thus a randomly sampled function C ← Dλ

must accept it. This implies the following: for all negligible functions µ(λ), there
exists a λ ∈ N and a y ∈ {0, 1}n(λ) such that

Pr
C←Dλ

[C(y) = 1] = 1 > µ(λ)

for any distribution Dλ. This contradicts evasiveness. □
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To see why evasiveness is the right condition for a function family to achieve
input-hiding obfuscation, we look at the case where Dλ is uniform. In this case,
weak evasiveness means that overwhelmingly many functions C in Cλ have a negli-
gibly small accepting input set; and evasiveness means that overwhelmingly many
functions C in Cλ do not share an accepting input with noticeably many other
functions in Cλ. Note that evasiveness implies that if the attacker is given nothing
about the random function C ← Dλ, then it is inefficient for her to find an accepting
input to C, because the accepting input sets are negligibly small and well-spread.
Moreover, even if the attacker is further given oracle access to C, it is still inefficient
for her to find an accepting input. This is because the accepting input set of C
is negligibly small (with overwhelming probability) and thus the oracle of C will
almost always output 0 when responding to the attacker’s queries, meaning that
the oracle is nearly useless. So the relation between evasiveness and input-hiding
is intuitively the following: evasiveness implies that the oracle of a function is not
helpful in finding an accepting input to the function; and input-hiding implies that
the obfuscated function should be just as uninformative as the oracle of the function
when it comes to leaking an accepting input.

Previous obfuscated evasive functions include point functions [8, 22], conjunc-
tions [7, 6, 4], fuzzy Hamming distance matching functions [13], small superset
functions [3, 12], big subset functions [5, 12], hyperplane membership functions [9],
finite automata [14], compute-and-compare functions [23, 16], etc.

2.4. Cryptographic Hash Function Family. Let H : K ×M → Y be a hash
function family where |M| = 2r. For correctness and security of our hash-based
obfuscator, we will want the following two properties.

The family H is called collision-free if there exists a negligible function µ(r) such
that

Pr
K←K

[∃a, b ∈M : a ̸= b,HK(a) = HK(b)] ≤ µ(r).

Note that collision-free is different from collision-resistance: collision-resistance is
about the hardness of finding a collision, while collision-free is about the existence
of collisions.

The following argument shows that for a random function H : M → Y, if
|M| = 2r then |Y| = 23r is large enough to ensure that H has no collisions with
overwhelming probability. Let E be the event that H has no collisions. Then by
the birthday collision argument [17, Lemma A.15], for |M| ≤

√
2|Y|, we have

Pr[E] = 1− |M|(|M| − 1)

2 · |Y|
= 1− 2r(2r − 1)

2 · 23r
> 1− 1

2r
.

The family H is called preimage-resistant [19] if for every PPT (possibly non-
uniform) algorithm A there exists a negligible function µ(r) such that

Pr[K ← K, a←M, h← HK(a), a′ ← A(HK , h) : HK(a′) = h] ≤ µ(r).

2.5. Small Superset Functions. A small superset function is parameterized by
a triple of integers (N,m, t), which themselves are polynomial in the security pa-
rameter λ.

Definition 2.5 (Small Superset Function [3, 12]). Let s ∈ {0, 1}N (N ∈ N) be a
characteristic vector of a subset of {1, . . . , N}. Let m = |s| be the Hamming weight
of s. Let t ∈ N with m ≤ t ≤ N be a threshold indicating “small”. A small superset
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function with respect to s and t is a function fs,N,m,t : {0, 1}N → {0, 1} such that
fs,N,m,t(s

′) = 1 if and only if s′ − s ∈ {0, 1}N and |s′| ≤ t.

We sometimes denote fs,N,m,t by fs for simplicity, with the parameters N,m, t
implied.

Definition 2.6 (Fixed-Weight Small Superset Function Family). Let λ ∈ N and
N,m, t ∈ N be polynomial in λ and m ≤ t ≤ N . A fixed-weight small superset func-
tion family is a family {fs,N,m,t}N,m,t∈N,s∈{0,1}N ,|s|=m of small superset functions
parametrized by (N,m, t) with the same Hamming weight |s| = m.

We will only consider “evasive” fixed-weight small superset function families.
Namely for any s′ ∈ {0, 1}N , the probability that a random s ∈ {0, 1}N with
Hamming weight m such that s′ is a small superset of s is negligible. By Inequality
(5) in [12], a fixed-weight small superset function family (with uniform distribution)
is evasive if and only if (

N

m

)/(
t

m

)
≥ 2λ.

An asymptotic but sufficient way to see this inequality is Nm/tm ≥ 2λ.
Candidate small superset function obfuscators that can be used in our construc-

tions include the one given by Bartusek, Carmer, Jain, Jin, Lepoint, Ma, Malkin,
Malozemoff and Raykova [3], which is a general solution to evasive small superset
function obfuscation based on computational assumptions in abelian groups (their
security proofs are in the generic group model); the scheme by Beullens and Wee [5]
(which is for big subset obfuscation, which is trivially equivalent to small superset
obfuscation); and the one given by Galbraith and Li [12], which is obfuscation tai-
lored to fixed-weight small superset functions, and it is the only paper that proves
input-hiding security.

3. Algebraic Set Membership Functions

In this paper, we consider algebraic sets over finite fields Fq with q a prime power.
The algebraic closure of Fq is the union of the finite fields Fqe for e ∈ N. We define
affine and projective algebraic set membership functions in the following.

Definition 3.1 (Affine Algebraic Set Membership Function). Let Fq be a finite field
and Fq[X1, . . . , Xn] be a polynomial ring over Fq. Let M1, . . . ,Mℓ ∈ Fq[X1, . . . , Xn]
be non-constant monomials that can be evaluated in polynomial time (i.e., with

bounded degree). Let (A, b) ∈ Fm×(ℓ+1)
q be the augmented matrix of the following

system of equations over Fq:

a1,1M1 + · · ·+ a1,ℓMℓ = b1,

...

am,1M1 + · · ·+ am,ℓMℓ = bm.

An affine algebraic set membership function parameterized by (m,n, ℓ, q,M1, . . . ,Mℓ)
is a Boolean function fA,b : Fn

q → {0, 1} such that fA,b(x) = 1 if and only if x is a
solution of the equations.

Definition 3.2 (Projective Algebraic Set Membership Function). Let Fq be a fi-
nite field and Fq[X0, . . . , Xn] be a polynomial ring over Fq. Let M1, . . . ,Mℓ ∈
Fq[X0, . . . , Xn] be fixed monomials of the same total degree that can be evaluated in
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polynomial time. Let A ∈ Fm×ℓ
q be the coefficient matrix of the following system of

homogeneous equations over Fq:

a1,1M1 + · · ·+ a1,ℓMℓ = 0,

...

am,1M1 + · · ·+ am,ℓMℓ = 0.

A projective algebraic set membership function parameterized by (m,n, ℓ, q,M1, . . . ,
Mℓ) is a Boolean function fA : Pn

Fq
→ {0, 1} such that fA(x) = 1 if and only if x is

a root of the equations. (Note that x is by definition nonzero, since it is a point in
projective space.)

It is typical (but not required) that m < n ≤ ℓ. The relation m < n is natural
for non-empty algebraic sets. The restriction n ≤ ℓ is also natural since the number
of possible monomials Mj is much greater than the number of possible variables
Xi. In the special case where the monomials Mi = Xe

i , i = 1, . . . , n, e ∈ N (resp.,
Mi = Xe

i , i = 0, . . . , n, e ∈ N for the projective case) are power monomials, e.g.,
the linear case, we have ℓ = n (resp., ℓ = n+ 1 for the projective case).

4. Evasive Algebraic Set Membership Function Families

To achieve input-hiding security, it is necessary to work over evasive algebraic set
membership function families. In this section, we first explain why weak evasiveness
is necessary. We then give a counterexample to illustrate why only requiring weak
evasiveness is not enough and we must require evasiveness. In the end we derive
parameters for evasive algebraic set membership function families. These are the
families we obfuscate.

The reason for requiring weak evasiveness is obvious by definition, since if the
function family is not weak evasive, then for a random function f , one can easily
find an accepting input x by sampling random points from the input set.

However, only requiring weak evasiveness is not enough to achieve input-hiding
obfuscation. Following is a counterexample.

Example 4.1. Consider an algebraic set membership function family where the
monomial sequence is

(X1X2, X2X3, X4, X5, . . . , Xn)

and the constant terms are all zero. Suppose the systems in the family all have a
large number of equations, and that the algebraic sets are all small. So this family is
weak evasive. However, notice that all systems in the family share the same solution
(1, 0, 1, 0, . . . , 0). This means that no matter how we obfuscate the functions in this
family, an accepting input is always leaked.

Therefore for input-hiding obfuscation, we further require evasiveness. We de-
fine evasive affine and projective algebraic set membership function families in the
following. They follow from Definition 2.3 immediately.

Definition 4.2 (Evasive Affine Algebraic Set Membership Function Family). Let
λ ∈ N and m,n, ℓ ∈ N be polynomial in λ. Let DA be a distribution on Fm×ℓ

q and
Db be a distribution on Fm

q . Let D = {(DA, Db)}m,ℓ∈N be the distribution ensemble

on (A, b) ∈ Fm×(ℓ+1)
q , where A and b are sampled from DA and Db respectively and
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independently. Let C = {Cm,ℓ}m,ℓ∈N with Cm,ℓ = {fA,b}(A,b)∈Fm×(ℓ+1)
q

be a family

of affine algebraic set membership functions fA,b with distribution ensemble D. We
say C is evasive if there exists a negligible function µ(λ) such that for all λ ∈ N and
for all x ∈ Fn

q ,

Pr
(A,b)←(DA,Db)

[fA,b(x) = 1] ≤ µ(λ). (1)

Definition 4.3 (Evasive Projective Algebraic Set Membership Function Family).
Let λ ∈ N and m,n, ℓ ∈ N be polynomial in λ. Let DA be a distribution on Fm×ℓ

q . Let

D = {DA}m,ℓ∈N be a distribution ensemble on A ∈ Fm×ℓ
q . Let C = {Cm,ℓ}m,ℓ∈N with

Cm,ℓ = {fA}A∈Fm×ℓ
q

be a family of projective algebraic set membership functions fA
with distribution ensemble D. We say C is evasive if there exists a negligible function
µ(λ) such that for all λ ∈ N and all x ∈ Pn

Fq
,

Pr
A←DA

[fA(x) = 1] ≤ µ(λ). (2)

Now we discuss the distribution ensembles that we consider in this paper. For
affine algebraic set membership function families, we consider arbitrary distribution
for A and uniform distribution for b. For projective algebraic set membership
function families where we necessarily have b = 0, we consider uniform distribution
for A.

We first consider requirements for the monomial sequence M = (M1, . . . ,Mℓ).
For affine algebraic set membership functions we do not have any particular re-
quirement for the monomial sequence. However, for projective algebraic set mem-
bership functions where we necessarily have b = 0, we require that M(x) =
(M1(x), . . . ,Mℓ(x)) ̸= 0 for all x ∈ Pn

Fq
. This is because if there exists an x

such that M(x) = 0, then all algebraic set membership functions will accept this
x, and that there is no way the family can be evasive, regardless of what the family
distribution is.

Now we consider requirements for the basis matrices.
(1) Affine algebraic set membership functions with arbitrary distribution DA

and uniform distribution Db. To achieve evasiveness, we require that for any fixed
x ∈ Fn

q , the probability that a matrix (A, b) ← (DA, Db) satisfies AM(x) = b is

negligible. Note that b is uniform and independent of A. Hence what we require is4

Pr
(A,b)←(DA,Db)

[fA,b(x) = 1] = Pr
(A,b)←(DA,Db)

[AM(x) = b] =
1

qm
≤ 1

2λ
. (3)

(2) Projective algebraic set membership functions with uniform A← DA. For an
x ∈ Pn

Fq
, we assume that M(x) = (M1(x), . . . ,Mℓ(x)) ∈ Fℓ

q is nonzero, as discussed

above. The left kernel of the vector M(x) has dimension ℓ− 1 hence it is of order
qℓ−1. Any m vectors in the kernel form an m× ℓ matrix A such that AM(x) = 0.
So the number of m × ℓ matrices A such that AM(x) = 0 is qm(ℓ−1). The total
number of m× ℓ matrices in Fm×ℓ

q is qmℓ. Hence what we require is

Pr
A←DA

[fA(x) = 1] = Pr
A←DA

[AM(x) = 0] =
qm(ℓ−1)

qmℓ
=

1

qm
≤ 1

2λ
. (4)

4As mentioned earlier in Section 2.1, in this paper, for concrete parameter derivations, we use
1/2λ as the negligible function. If needed, one can use larger negligible functions instead.
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Both Inequalities (3) and (4) give

qm ≥ 2λ. (5)

Inequality (5) gives a necessary condition on m for which algebraic set member-
ship obfuscation is possible.

Suppose λ = 128, three typical choices of m are as follows: if q = 2 then we
require m ≥ 128; if q = 280 then we require m ≥ 2; if q = 2128 then m can be as
small as 1. In the case m = 1 the problem reduces to hypersurface membership [1],
of which a special case is hyperplane membership [9].

5. Hash-Based Obfuscation for Affine Algebraic Sets

Our first obfuscator works on evasive affine algebraic set membership function
families with arbitrary distribution DA and uniform distribution Db. For hyper-
plane membership, an advantage of this obfuscator over the DLP-based obfuscator
proposed in [9] is that our scheme works for a much wider range of parameters.
Specifically, [9] requires a prime modulus q > 2256 for 128-bit security due to the
O(
√
q) complexity of generic DLP algorithms such as the Baby-Step Giant-Step

algorithm and Pollard’s rho algorithm [18]; while our scheme works for arbitrary
prime power modulus q > 2128 for 128-bit security.

5.1. Construction. Let {fA,b} be a family of affine algebraic set membership func-
tions over Fm×ℓ

q ×Fm
q . We obfuscate fA,b by hashing b. To make this practical and

secure it is necessary to precisely specify the way we encode a vector b ∈ Fm
q as a

binary string.
The encoding is given by Algorithm 1. The basic idea is as follows. Let q = pe

where p is prime and e ∈ N. We write elements of Fp as integers in {0, 1, . . . , p−1}.
An element of Fpe is a vector of e elements of Fp, with respect to a fixed vector
space basis for Fpe over Fp. So we encode that vector uniquely as an integer
{0, . . . , q − 1}, using a base p representation. Then we encode a vector b ∈ Fm

q

of integers in {0, . . . , q − 1} as a single integer, as a base q representation. Hence
we have a bijection from Fm

q to {0, 1, . . . , qm − 1}, which then can naturally be
represented as a binary string of length ⌈log2(qm)⌉. One can easily write down a
decoding algorithm, but we do not need it for our scheme.

Algorithm 1 Encode(b,m, p, e)

Input: b ∈ Fm
q , m, q, p, e ∈ N, where p is a prime and q = pe

Output: b̂ ∈ {0, 1}⌈log2(q
m)⌉

1: for i = 1, . . . ,m do
2: represent bi ∈ Fpe as (bi,1, . . . , bi,e) ∈ Fe

p

3: set Bi =
∑e

j=1 bi,jp
j−1

4: end for
5: compute B =

∑m
i=1 Biq

i−1

6: write B in its binary form as b̂ ∈ {0, 1}⌈log2(q
m)⌉

7: return b̂

The obfuscator is given by Algorithm 2. The basic idea is as follows. Let
Hq,m : K×M→ Y be a collision-free and preimage-resistant hash function family

with K = {0, 1}λ,M = {0, 1}⌈log2(q
m)⌉ and Y = {0, 1}δ⌈log2(q

m)⌉, where δ ≥ 3 ∈ N.
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Keep in mind that we always assume qm ≥ 2λ. Now given a basis matrix (A, b) ∈
Fm×ℓ
q × Fm

q , the obfuscator chooses a random K, encodes b as b̂ ∈ {0, 1}⌈log2(q
m)⌉,

and publishes (A,HK(b̂)) as the obfuscated function.

Algorithm 2 Affine Algebraic Set Membership Function Obfuscator (OA-ASMF)

Input: λ, ℓ,m, q, p, e ∈ N, where m ≥ λ/ log2 q, p is a prime and q = pe; A ∈ Fm×ℓ
q ,

b ∈ Fm
q ; Hq,m : K ×M→ Y

Output: (A ∈ Fm×ℓ
q , h ∈ {0, 1}δ⌈log2(q

m)⌉)

1: compute b̂ = Encode(b,m, p, e)
2: sample K ← K
3: compute h = HK(b̂)
4: return (A, h,HK)

The evaluation is given by Algorithm 3. The basic idea is as follows. Given
an input x ∈ Fn

q , compute a = AM(x), encode it as â ∈ {0, 1}⌈log2(q
m)⌉, and

return the truth value of the proposition “HK(â) = HK(b̂)”. Remind that M ∈
(Fq[X1, . . . , Xn])

ℓ denotes a monomial vector and M(x) ∈ Fℓ
q denotes the evaluated

monomial vector M on x ∈ Fn
q .

Algorithm 3 Affine Algebraic Set Membership Function Evaluation (with embed-
ded data M,A, h,HK)

Input: x ∈ Fn
q , m, q, p, e ∈ N, where p is a prime and q = pe

Output: 0 or 1

1: compute M(x) ∈ Fℓ
q

2: compute a = AM(x) ∈ Fm
q

3: compute â = Encode(a,m, p, e)
4: compute h′ = HK(â)
5: return truth value of “h′ = h”

5.2. Security Proof.

Theorem 5.1. If the hash function family Hq,m is collision-free and preimage-
resistant, then the obfuscator OA-ASMF given by Algorithm 2 is an input-hiding
obfuscator for evasive affine algebraic set membership function families with arbi-
trary distribution DA over Fm×ℓ

q and uniform distribution Db over Fm
q .

Proof. 1. Functionality-Preserving. We want to prove that there exists a negligible
function µ(λ) such that for all λ ∈ N and all (A, b) ∈ Fm×ℓ

q × Fm
q :

Pr
K←K

[∀x ∈ {0, 1}n : OA-ASMF(fA,b)(x) = fA,b(x)] ≥ 1− µ(λ), (6)

where the probability is over the randomness of K.
Let r(λ) = ⌈log2(q(λ)m(λ))⌉ be the bit length of hash input, which is a function

upper bounded by some polynomial in λ. By assumption, Hq,m is collision-free.
I.e., there exists a negligible function ν(r) such that for a uniform K ← K, the
probability that all pairs (â, b̂) ∈ {0, 1}r(λ) × {0, 1}r(λ) satisfy â ̸= b̂ ⇔ HK(â) ̸=
HK(b̂) is ≥ 1− ν(r(λ)) = 1− µ(λ) for some negligible function µ(λ) := ν(r(λ)).
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Assuming that â ̸= b̂ ⇔ HK(â) ̸= HK(b̂) holds for all pairs (â, b̂) ∈ {0, 1}r ×
{0, 1}r, we have: (1) if x is a good input, i.e., AM(x) = b, then HK(â) = HK(b̂)
and that x will be correctly accepted with probability 1; and (2) if x is a bad input,

i.e., AM(x) ̸= b, then HK(â) ̸= HK(b̂) and that x will be correctly rejected with
probability 1.

Combining the above two paragraphs, we have the desired probability given by
Inequality (6).

2. Polynomial-Slowdown. Algorithm 3 evaluates m polynomials of bounded degree
and computes a hash of the resulting vector â, which is efficient by the definition of
algebraic set membership functions and the efficiency of the hash function. Hence
the entire algorithm takes polynomial time and has polynomial-slowdown compared
to the original function.

3. Input-Hiding. Let AA-ASMF be any PPT algorithm against input-hiding of
OA-ASMF on some affine algebraic set membership function family parameterized
by (m,n, ℓ, q,M) with distribution D = (DA, Db) over Fm×ℓ

q × Fm
q for some aux-

iliary information α ∈ {0, 1}poly(λ). Algorithm AA-ASMF takes input (A,HK , h, α)
and outputs x ∈ Fn

q and wins if h = HK(â) where â = Encode(AM(x),m, p, e) and
q = pe. Denote its success probability as µ(λ). We want to show for contradiction
that µ(λ) is negligible.

Let (HK , h) be an instance of the preimage-resistance problem for the hash
family, where h = HK(â) for a uniformly sampled â ∈ M = {0, 1}r, and r =
⌈log2(qm)⌉.

We construct a non-uniform PPT algorithm AHASH against preimage-resistance
of the hash function family as the following. It takes α ∈ {0, 1}poly(λ) as the advice
string, obtains the parameters m,n, ℓ, q,M,DA, Db from the algebraic set member-
ship function family that AA-ASMF works on, samples A← DA, calls AA-ASMF with
(A,HK , h, α), and outputs â′ = Encode(AM(AA-ASMF(A,HK , h, α)),m, p, e) as her
guess for the preimage of h. Denote the success probability of AHASH as ν(r).

Let ω be the randomness in the input-hiding game of affine algebraic set mem-
bership function obfuscation apart from the randomness of b. Let G1 be the input-
hiding game of affine algebraic set membership function obfuscation, where the ran-
domness are ω and b← Fm

q . Let G2 be the input-hiding game of affine algebraic set
membership function obfuscation with randomness ω and b← {0, 1}r. Let E,F be
the events that AA-ASMF wins in G1, G2 respectively. It is clear that Pr[E] = µ(λ)
and Pr[F ] = ν(r). Note that |Fm

q | ≥ |{0, 1}r|/2. Hence Pr[F ] ≥ Pr[E]/2. Therefore
ν(r) ≥ µ(λ)/2. By preimage-resistance of the hash function family, ν(r) is negli-
gible in r. Also r is upper bounded by some polynomial in λ. Thus ν(r) = ν′(λ)
for some negligible function ν′(λ). Therefore µ(λ) ≤ 2ν(r) = 2ν′(λ) is a negligible
function. □

The advantages of this obfuscator are its simplicity and efficiency. However this
obfuscator does not handle projective algebraic set membership functions because
in the case of projective algebraic set membership functions, the constant vector b
is always the zero vector and there is no security in hashing it. Also, this obfuscator
reveals the row span of A.
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6. Small Superset Function Based Obfuscation for Affine and
Projective Algebraic Sets

Now we give an obfuscator for evasive affine and projective algebraic set mem-
bership function families with uniform distributions (DA, Db) and DA respectively,
polynomial size prime power q, and almost full range of m given by Inequality (5).
This obfuscator hides the row span of A.

As is standard in algebraic geometry, another way to handle projective alge-
braic set membership functions via affine algebraic set membership functions is to
translate a projective algebraic set X ⊆ Pn

Fq
into n + 1 affine algebraic sets and

obfuscate the affine algebraic sets instead. However, since the resulting affine equa-
tions are all related, it is not automatic that the security would hold. For example,
the projective hyperplane ax0 + bx1 + cx2 = 0 reduces to the affine hyperplane
a+ bY + cZ = 0 when x0 ̸= 0 (by taking Y = x1/x0 and Z = x2/x0); it reduces to
aX + b+ cZ = 0 when x1 ̸= 0 (by taking X = x0/x1 and Z = x2/x1); and reduces
to aX + bY + c = 0 when x2 ̸= 0 (by taking X = x0/x2 and Y = x1/x2). It is easy
to see that using our hash-based obfuscator would not hide the triple (a, b, c), up to
scalar multiplication, since the obfuscation of the first equation reveals (b, c), the
obfuscation of the second equation reveals (a, c), and the obfuscation of the third
equation reveals (a, b).

6.1. Construction. The obfuscator is given by Algorithm 4. We explain our tech-
niques in the affine case. The projective case is similar.5 We are given (A, b) ∈
Fm×(ℓ+1)
q . We sample another k random rows (A′, b′) ← Fk×(ℓ+1)

q , for a suitably
chosen k (see Algorithm 4 or Section 6.3). We shuffle the m+ k rows of (A, b) and

(A′, b′) and denote the resulting matrix as (A∗, b∗) ∈ F(m+k)×(ℓ+1)
q . Since both the

real rows and the dummy rows are uniform, the attacker cannot distinguish the
real rows from the dummy rows and solve the real rows for a solution.

Let s = (s1, . . . , sm+k) ∈ {0, 1}m+k be the characteristic vector indicating the
positions of the real rows, i.e., si = 1 if and only if the i-th row of (A∗, b∗) is a
row of (A, b), for all i ∈ {1, . . . ,m+ k}. Let fs be the small superset function over
{0, 1}m+k with the “small” threshold t = m + ⌈(1 + ε)k/q⌉ for some real number
1/poly(λ) < ε < q − 1. Note that t is an upper bound of the number of rows in
(A∗, b∗) that are satisfiable by any point x ∈ Fn

q . Let OSSF be an input-hiding
small superset function obfuscator (e.g., the obfuscators in [3, 5, 12]). We publish
(A∗, b∗, OSSF(fs)) as the obfuscated function.

The evaluation is given by Algorithm 5. The basic idea is as follows. Given an
input x, compute the vector M(x), evaluate all m+k equations on M(x) and define
a characteristic vector s′ = (s′1, . . . , s

′
m+k) ∈ {0, 1}m+k such that s′i = 1 if and only

if M(x) is a solution to the i-th equation, for all i ∈ {1, . . . ,m+k}. The obfuscated
function eventually outputs what OSSF(fs) outputs on s′.

The following example parameters give a picture for the obfuscator: λ := 128,
q := 2, m := ⌈1.4λ⌉, n := 2λ, ℓ > n, ε = 0.2, k = 312λ, t = 189λ, N = ⌈313.4λ⌉.

We now explain that the evasiveness of both the algebraic set membership func-
tion family (which is parameterized by (m,n, ℓ, q,M)) and the small superset func-
tion family (which is parameterized by (N,m, t)) is guaranteed by the condition
m ≥ λ/(log2 q − log2(1 + ε)) in Algorithm 4.

5The difference between the treatments of affine and projective algebraic set membership func-

tions is reflected by Step 3 of Algorithm 4.
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Algorithm 4 Algebraic Set Membership Function Obfuscator (OASMF)

Input: λ, ℓ,m, n, ℓ, q ∈ N, m ≥ λ/(log2 q − log2(1 + ε)), 1/poly(λ) < ε < q − 1, q a
prime power, (A, b) ∈ Fm×ℓ

q × Fm
q (affine case) or A ∈ Fm×ℓ

q (projective case)

Output: (A∗ ∈ F(m+k)×ℓ
q , b∗ ∈ Fm+k

q , OSSF(fs))

1: set k = ⌈(3q loge(2λqn))/ε2⌉ and t = m+ ⌈(1 + ε)k/q⌉
2: sample A′ ← Fk×ℓ

q

3: if projective case then set b = 0 ∈ Fm
q and b′ = 0 ∈ Fk

q else sample b′ ← Fk
q

4: randomly permute the rows of ((A, b)⊤, (A′, b′)⊤)⊤ to get (A∗, b∗)
5: create s = (s1, . . . , sm+k)← {0, 1}m+k such that si = 1 if and only if (A∗, b∗)i =

(A, b)j for some j ∈ {1 . . . ,m}, for all i ∈ {1, . . . ,m+ k}
6: obfuscate the small superset function fs (whose parameters are (N := m +

k,m, t)) as OSSF(fs)
7: return (A∗, b∗, OSSF(fs))

Algorithm 5 Algebraic Set Membership Function Evaluation (with embedded data
(M,A∗, b∗, OSSF(fs))

Input: x ∈ Fn
q (affine case) or x ∈ Pn

Fq
(projective case)

Output: 0 or 1

1: compute y = A∗ ·M(x)− b∗

2: set s′ = (s′1, . . . , s
′
m+k) ∈ {0, 1}m+k such that s′i = 1 if and only if yi = 0, for

all i ∈ {1, . . . ,m+ k}
3: return OSSF(fs)(s

′)

To see the evasiveness of the algebraic set membership function family, simply
notice that the evasiveness of an algebraic set membership function family only
requires that m ≥ λ/ log2 q by Inequality (5) and now we have m ≥ λ/(log2 q −
log2(1 + ε)) > λ/ log2 q.

To see the evasiveness of the small superset function family, first notice that
the evasiveness of an small superset function family (with uniform distribution)

requires that
(
N
m

)
/
(
t
m

)
≥ 2λ (see Section 2.5). A sufficient asymptotic way to see

this inequality is Nm/tm ≥ 2λ. For this, it is sufficient to require that km/tm ≥ 2λ.
Plugging in k and t we have m ≥ λ/(log2 q − log2(1 + ε)). Namely whenever
m ≥ λ/(log2 q − log2(1 + ε)) the small superset function family is evasive.

Note that the restriction m ≥ λ/(log2 q− log2(1+ε)) is stronger than the restric-
tion m ≥ λ/ log2 q for evasiveness of algebraic set membership function families. To
better approach obfuscating the whole regime of evasive algebraic set membership
function families, see Section 6.3 for directions.

A final remark is that in order to achieve polynomial-slowdown, this obfuscator
only works for polynomial size q (and ε > 1/poly(λ)) so that k = ⌈(3q loge(2λqn))/ε2⌉
is of polynomial size. We stress that this is the most interesting case because the
case of exponential size q can be obfuscated simply by encoding each entry inde-
pendently (e.g., using DLP).

6.2. Security Proofs. Now we show that this obfuscator is an input-hiding obfus-
cator. In particular, in the proof of functionality-preserving, we prove a conclusion
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of independent interest, which is the upper bound of the number of uniform poly-
nomial equations that have common solution(s).

Theorem 6.1. If the small superset obfuscator OSSF is an input-hiding obfuscator,
then the obfuscator OASMF given by Algorithm 4 is an input-hiding obfuscator for

uniform evasive algebraic set membership function families over Fm×(ℓ+1)
q (affine

case) or over Fm×ℓ
q (projective case) with m ≥ λ/(log2 q− log2(1+ε)), 1/poly(λ) <

ε < q − 1, and q polynomial in λ.

Proof. 1. Functionality-Preserving. First we consider the case x = 0. This input is
forbidden (and hence rejected) in the projective case, so we must be in the affine
case and b is a fixed value that has been sampled from some distribution Db. In
this case, Algorithm 5 always correctly rejects x, no matter if b∗ ̸= 0 or b∗ = 0.
The case b∗ ̸= 0 is obvious. To see the case b∗ = 0, notice that the point x = 0
satisfies all m + k equations and thus |s′| = m + k > t, meaning that s′ is not a
“small” superset of s, and so the algorithm will correctly reject x. In other words,
if the distribution Db is such that b∗ = 0 with noticeable probability in the affine
case, then correctness is not ensured, but in that case the family is not evasive, and
so we do not consider it.

Now we consider the case x ̸= 0. If x is a solution then s′ is a “superset” of
s because x satisfies all rows of (A, b) indicated by s. Now we show s′ is small.
More precisely, we show that for all x in the algebraic set, the corresponding s′

are all small with overwhelming probability. This is equivalent to showing that the
probability that there exists a point x in the algebraic set that satisfies more than
t−m dummy equations is negligible.

Let X be the algebraic set defined by (A, b). Let x be a point of X and let Rx

be the Bernoulli random variable that is 1 if x is a solution of a dummy equation
and 0 otherwise. So Pr[Rx] = 1/q. Since we are choosing k dummy equations
independently, the expected number of dummy equations to be satisfied is µ = k/q.
Let Tx be the random variable that is the number of dummy equations satisfied
by x. The expected value of Tx is k/q. The Chernoff bound [10] for binomial
distributions [21, Section 6.2.1] says that

Pr[Tx ≥ (1 + ε)µ] ≤ exp(−ε2µ/3),
Pr[Tx ≥ (1 + ε)k/q] ≤ exp(−ε2k/3q),
Pr[Tx ≥ t−m] ≤ exp(−ε2k/3q).

Now consider all the points x ∈ X. Each point has associated to it a random
variable Rx and a random variable Tx. Consider a choice of k independently sam-
pled dummy equations. Denote E as the event that this choice of dummy equations
is “bad”, namely there exists a point x ∈ X that satisfies more than t−m dummy
equations. Bounding the probability of E by the union probability we have6

Pr[E] ≤
∑
x∈X

Pr[Tx > t−m]

≤ |X| · exp(−ε2k/3q)

6Note here that in Inequality (7) we used qn (i.e., the size of Fn
q ) instead of the size |X| of

the algebraic set X because we do not have a tighter bound for |X|. If a tighter bound β ≥ |X|
is known, we can replace qn by β and we could use a smaller k, which improves efficiency of the

obfuscator.



20 OBFUSCATION OF EVASIVE ALGEBRAIC SET MEMBERSHIP

< qn · exp(−ε2k/3q) (7)

≤ qn · exp(−ε2(3q loge(2λqn)/ε2)/3q)

=
1

2λ
.

Hence for all x ∈ X, the corresponding s′ is a small superset of s and soOSSF(fs)(s
′) =

1 with overwhelming probability. It follows that for all x ∈ X, the obfuscated affine
algebraic set membership function correctly outputs 1 with overwhelming proba-
bility.

On the other hand, if x is not a solution, then at least one of the rows of (A, b) is
not satisfied and s′ is not a superset of s, regardless of whether it is “small”. Then
OSSF(fs)(s

′) = 0 and the obfuscated affine algebraic set membership function cor-
rectly outputs 0 with probability 1.

2. Polynomial-Slowdown. What Algorithm 5 does is to evaluate N = m+k polyno-
mials of bounded degree, generate a vector s′ of polynomial length N , and evaluate
OSSF(fs) on s′. Now since m,n, q are polynomial in λ and ε > 1/poly(λ), we have
that k = ⌈(3q loge(2λqn))/ε2⌉ is polynomial in λ. We then have that N = m+ k is
polynomial in λ. Also by polynomial-slowdown of OSSF, the evaluation of OSSF(fs)
on s′ takes polynomial time. Therefore Algorithm 5 takes polynomial time and it
has polynomial-slowdown compared to the original algebraic set membership func-
tion.

3. Input-Hiding. Let A be any PPT algorithm that breaks input-hiding of OASMF

on some algebraic set membership function family parameterized by (m,n, ℓ, q,M)
(wherem ≥ λ/(log2 q−log2(1+ε))) for some auxiliary information α ∈ {0, 1}poly(λ).
Denote its success probability as µ(λ). We show for contradiction that µ(λ) is negli-
gible by constructing a PPT algorithm B against input-hiding of OSSF on an evasive
small superset function family that is parametrized by (N := m+ k,m, t).

Let OSSF(fs) be an obfuscated small superset function with evasive parame-
ters (N,m, t). Let β ∈ {0, 1}poly(λ) be some auxiliary information containing the
parameters (N,m, t, n, ℓ, q,M, α).

Algorithm B takes (OSSF(fs), β) as input, samples a matrix (R∗, r∗)← FN×(ℓ+1)
q

(in the affine case) or (R∗, r∗) ← FN×ℓ
q × {0}N (in the projective case), calls A

with (R∗, r∗, OSSF(fs), α), and outputs the binary vector s′ indicating the rows of
(R∗, r∗) that are satisfied by the output x of A. Denote the success probability of
B as ν(λ).

Note that (R∗, r∗) (resp., R∗) is uniform and that (R∗, r∗, OSSF(fs), α) obeys the
same distribution as the obfuscated functions (A∗, b∗, OSSF(fs), α) that A works
on. Hence with probability µ(λ) the output x of A is accepted by the obfuscated
function. This means that s′ is accepted by OSSF(fs) with probability µ(λ), namely
B wins with probability ν(λ) = µ(λ). Since OSSF is input-hiding, we have that ν(λ)
is negligible and thus µ(λ) is negligible. □

Now we address our earlier claim that the small superset function based obfus-
cator hides the row span of A, which is not hidden by the hash-based obfuscator.

Theorem 6.2. If the small superset obfuscator OSSF is an input-hiding obfuscator,
then the obfuscator given by Algorithm 4 satisfies the following span-hiding property
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for uniform algebraic set membership function families over Fm×(ℓ+1)
q (affine case)

or over Fm×ℓ
q (projective case), with m ≥ λ/(log2 q− log2(1 + ε)), 1/poly(λ) < ε <

q−1, q polynomial in λ: For all PPT adversaries A, there exists a negligible function
µ(λ) such that for all λ ∈ N and for all auxiliary information α ∈ {0, 1}poly(λ) to
A

Pr
(A,b)←(DA,Db)

[A(OASMF(A, b), α) = span(A)] ≤ µ(λ),

where the probability is taken over the random sampling of (A, b) ← (DA, Db) and
the coin tosses of A and OASMF.

Proof. We prove the theorem for the affine case. The projective case is similar.
The structure of the proof is similar to the proof of Theorem 6.1.

Let A be any PPT algorithm that breaks span-hiding of OASMF on some al-
gebraic set membership function family parameterized by (m,n, ℓ, q,M) (m ≥
λ/(log2 q− log2(1+ε))) for some auxiliary information α ∈ {0, 1}poly(λ). Denote its
success probability as µ(λ). We show for contradiction that µ(λ) is negligible by
constructing a PPT algorithm B against input-hiding of OSSF on an evasive small
superset function family that is parametrized by (N := m+ k,m, t).

Let OSSF(fs) be an obfuscated small superset function with evasive parame-
ters (N,m, t). Let β ∈ {0, 1}poly(λ) be some auxiliary information containing the
parameters (N,m, t, n, ℓ, q,M, α).

Algorithm B takes (OSSF(fs), β) as input, samples a matrix (R∗, r∗)← FN×(ℓ+1)
q

(in the affine case) or (R∗, r∗)← FN×ℓ
q ×{0}N (in the projective case), calls A with

(R∗, r∗, OSSF(fs), α), and outputs the binary vector s′ indicating the rows of R∗

that are in the vector space V output by A.
Denote A as the submatrix of R∗ indicated by s. Denote the success probability

of B as ν(λ). We will show the negligibility of µ(λ) by showing µ(λ) ≤ ν(λ)+1/2λ.
First notice that s′ is a “small superset” of s if: (1) V = span(A); and (2) the

number of rows in R∗ but not in A lying in V is upper bounded by t −m. This
is because if (1) is true then s′ is a “superset” of s; and if (2) is true then s′ is
“small”.

Denote E as the event that (2) is true, and denote Ē as the complement event
of E. Since the rows of R∗ are sampled independently and uniformly from Fℓ

q, by
the same logic as Inequality (7), the number of rows a1, . . . , as in R∗ but not in A
such that the linear system (A⊤, a⊤1 , . . . , a

⊤
s )
⊤x = 0 has at least one solution x is

upper bounded by t−m with probability ≥ 1− 1/2λ. This means that the number
of rows in R∗ but not in A lying in V is upper bounded by t−m with probability
≥ 1− 1/2λ. I.e., Pr[E] ≥ 1− 1/2λ.

Now denote EA as the event thatA succeeds and EB as the event that B succeeds.
We have µ(λ) = Pr[EA] = Pr[E] · Pr[EA|E] + Pr[Ē] · Pr[EA|Ē] = Pr[EB] + Pr[Ē] ·
Pr[EA|Ē] = ν(λ)+Pr[Ē]·Pr[EA|Ē] ≤ ν(λ)+(1/2λ)·Pr[EA|Ē] ≤ ν(λ)+1/2λ. Since
OSSF is input-hiding, we have that ν(λ) is negligible and thus µ(λ) is negligible. □

6.3. Parameters. Now we analyze to what extent the small superset function
based obfuscator has solved the problem of input-hiding obfuscation of evasive
algebraic set membership functions. The first limitation is that this obfuscator only
deals with uniform algebraic set membership function distributions. The second
limitation is that it only handles polynomial size finite fields Fq. The third aspect
is about the range of m. We show in this section that the obfuscator works for
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(approximately) full range of m, where the full range is given by Inequality (5).
During the analysis we may also see that the recommended formulas for k and
t in Algorithm 4 are convenient formulas for the correctness and security of the
obfuscator, but not tight, and that one can choose slightly tighter parameters in
practical use.

Conditions for parameters are:

(1) Evasiveness of the algebraic set membership function family;
(2) Evasiveness of the small superset function family;
(3) Functionality-preserving and input-hiding of algebraic set membership
function obfuscation.

For condition (1), we take qm ≥ 2λ (i.e., Inequality (5)).

For condition (2), we take
(
m+k
m

)
/
(
t
m

)
≥ 2λ (see Section 2.5).

For condition (3), we take Pr[E] ≤ 1/2λ for functionality-preserving, as stated in
the proof of Theorem 6.1; and input-hiding is implied by condition (2) and Theorem
6.1.

Further derivations of the three conditions give the following.
For condition (1), we take

m ≥ λ/ log2(q). (8)

For condition (2), since
(
m+k
m

)
/
(
t
m

)
≥ ((m+k)/t)m, it is sufficient to take ((m+

k)/t)m ≥ 2λ. Hence we take

m ≥ λ/ log2((m+ k)/t). (9)

For condition (3), we take

k ≥ (3q loge(2
λqn))/ε2 and t = m+ ⌈(1 + ε)k/q⌉ (10)

by the derivation of functionality-preserving in the proof of Theorem 6.1.7

In other words, the range of m that the small superset function based obfuscator
can handle, and the parameters of this obfuscator, are captured by (In)equalities

(9) and (10), where Inequality (9) slightly loosens the condition
(
m+k
m

)
/
(
t
m

)
≥ 2λ

(and thus if one wants tighter parameters in practical use of the obfuscator, one can
use the tight condition instead of Inequality (9) for concrete parameters choosing).

Note that Inequality (8) is the full regime of evasive algebraic set membership
function families; and Inequality (9) is the regime of algebraic set membership
function families that can be obfuscated by our small superset function based ob-
fuscator. Now we investigate how Inequality (9) is close to Inequality (8). If
we choose sufficiently large k and sufficiently small ε (under the restriction that
k ≥ ⌈(3q loge(2λqn))/ε2⌉), we have

m+ k

t
=

m+ k

m+ ⌈(1 + ε)k/q⌉
≈ k

(1 + ε)k/q
≈ q

and hence Inequality (9) approaches Inequality (8). This means that we can trade-
off performance (i.e., using large k) against the generality (i.e., achieving smaller
m) of our solution to the problem of evasive algebraic set membership function
obfuscation.

7As mentioned in an earlier footnote, k can be reduced if we know a tighter upper bound

β ≥ |X| of the size |X| of the algebraic set X than the loose upper bound |Fn
q | > |X| (simply

replace qn by β in Inequality (7) and we get a smaller k); or if we use a larger negligible function
negl(λ) instead of 1/2λ in Inequality (7).
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For a concrete example, let λ = 128, q = 2 (this is actually the worst q to achieve
full generality of m), n = 130, and set k = 230 and ε = 0.001. Then we can obfus-
cate algebraic set membership function families with m ≥ 129, which is almost the
full generality given by m ≥ 128.

Summary. To conclude, we give a summary of the relations between the parameters
m, n, ℓ, k and t.

First is the relations between the parameters m, n and ℓ of algebraic set mem-
bership functions. We do not have specific constrains on them. But a typical case
is m < n ≤ ℓ, as explained after Definition 3.2.

Second is the relation between m+ k and t. We have t < m+ k, as is shown in
the first part of the proof of Theorem 6.1 that the number of satisfiable equations
in k equations is bounded by t−m with overwhelming probability. This fact is also
the base of the use of evasive small superset function families, whose evasiveness
requires that the “small” threshold t is clearly smaller than the entire bit length
N := m+ k of the secret string.

Third is the relation between m + k and ℓ. We allow both m + k > ℓ and
m + k ≤ ℓ. The case m + k > ℓ is natural, but for the case m + k ≤ ℓ one may
think about violating the security (i.e., input-hiding) by finding an accepting input
via solving all m+ k equations for a common solution x. However, this is already
avoided by the basic correctness (i.e., functionality-preserving) of the scheme proven
by the first part of the proof of Theorem 6.1, where we proved that the probability
that there exists a point x ∈ Fn

q (or x ∈ Pn
Fq

for the projective case) that satisfies

more than t − m dummy equations is negligible, not to mention satisfying all k
(k > t−m) dummy equations.

7. Final Remarks

We summarize this paper by Table 2.

Obfuscators Function Parameters Obfuscator Parameters Examples

Affine λ = 128

Hash
Fixed monomial vector M Same as collision- q = 2

Based
(Evasive) arbitrary A, uniform b free and preimage- m = λ

q ≥ 2 resistant hash family n = 1.5λ
m ≥ λ/ log2 q ℓ = 2λ

λ = 128
Affine or projective q = 2

Small Fixed monomial vector M
k ≥ (3q loge(2

λqn))/ε2
m = ⌈1.4λ⌉

Superset (Evasive) uniform (A, b) or A
t = m+ ⌈(1 + ε)k/q⌉ n = 2λ

Function 2 ≤ q ≤ poly(λ)
1/poly(λ) < ε < q − 1

ℓ = 3λ
Based m ≥ λ/(log2 q − log2(1 + ε)) k = 312λ

1/poly(λ) < ε < q − 1 t = 189λ
ε = 0.2

Table 2. Summary of our obfuscators

There are still some open problems for future work. It would be interesting to
know if there are VBB solutions to the affine problem that are more efficient than
applying “generic” compute-and-compare obfuscation. It remains an open problem
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to have a VBB obfuscator in the projective case in small characteristic. It would
also be interesting to get efficient techniques (possibly based on our work) that
handle more general evasive distributions than uniform.
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