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Abstract. The MPC-in-the-Head paradigm is a useful tool to build practical signature schemes. Many
such schemes have been already proposed, relying on different assumptions. Some are relying on stan-
dard symmetric primitives like AES, some are relying on MPC-friendly primitives like LowMC or Rain,
and some are relying on well-known hard problems like the syndrome decoding problem.

This work focuses on the third type of MPCitH-based signatures. Following the same methodology
as the work of Feneuil, Joux and Rivain (CRYPTO’22), we apply the MPC-in-the-Head paradigm
to several problems: the multivariate quadratic problem, the MinRank problem, the rank syndrome
decoding problem, and the permuted kernel problem. Our goal is to study how this paradigm behaves
for each of those problems.

For the multivariate quadratic problem, our scheme outperforms slightly the existing schemes when
considering large fields (as Fas6), and for the permuted kernel problem, we obtain larger sizes. Even if
both schemes do not outperform the existing ones according to the communication cost, they are highly
parallelizable and compatible with some MPC-in-the-Head techniques while the former proposals were
not.

Moreover, we propose two efficient MPC protocols to check that the rank of a matrix over a field F, is
upper bounded by a public constant. The first one relies on the rank decomposition while the second
one relies on g-polynomials. We then use them to build signature schemes relying on the MinRank
problem and the rank syndrome decoding problem. Those schemes outperform the former schemes,
achieving sizes below 6 KB (while using only 256 parties for the MPC protocol).
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1 Introduction

The MPC-in-the-Head paradigm [IKOS07] is a versatile framework to design zero-knowledge proofs of knowl-
edge, by relying on secure multi-party computation (MPC) techniques. After sharing the secret witness, the
prover emulates “in her head” an MPC protocol with IV parties and commits each party’s view independently.
The verifier then challenges the prover to reveal the views of a random subset of parties. By the privacy of
the MPC protocol, nothing is revealed about the witness, which implies the zero-knowledge property. On
the other hand, a malicious prover needs to cheat for at least one party, which shall be discovered by the
verifier with high probability, hence ensuring the soundness property.

Combined with the Fiat-Shamir transform [FS87], the MPCitH paradigm provides a useful tool for
building practical signatures. The security of the resulting scheme only depends on the security of commit-
ment /hash functions and the security of a one-way function. The choice of this one-way function is left to the
signature designers. A first research track JARS™15.DKR 21| consists in designing MPC-friendly primitives
and in using them with the MPC-in-the-Head paradigm to get short signatures. This methodology has the
disadvantage of requiring deep cryptanalysis of the introduced primitives. Another strategy would be to use
standard symmetric primitives like AES as security assumptions for the MPCitH-based signatures, but it
tends to produce larger signatures. As a last option, we can rely on a hard problem that exists for a long time



and thus is well understood. For example, [FJR22] succeeds in designing an efficient signature scheme using
the syndrome decoding problem (over the Hamming weight), which is one of the oldest problems of code-
based cryptography. The case of the syndrome decoding problem has been covered, but a natural question
would be

Which performances can we have when using
the MPC-in-the-Head paradigm with other hard problems?

Some articles [Wan22[FJR21/BG22JFMRV22] already apply this paradigm to hard problems (multivariate
quadratic problem, MinRank problem, subset sum problem, ...). One of the drawbacks of almost all the
schemes is that, when there is no structure to exploit, they need to rely on protocols with helpers [Beu20].
This technique introduced by [KKW18] and formalized by [Beu20| is quite powerful, but suffers from a high
computational cost. As a consequence, the number of parties involved in the MPC protocol must stay low
to have a practical scheme (in practice, many works take 32 as a limit for the number of parties), preventing
achieving smaller sizes. Recently, [BG22] succeeds in leveraging the structure when considering structured
hard problems (as the ideal rank syndrome decoding problem) and thus succeeds in achieving smaller sizes
by removing the helper from [EJR21].

The present work aims to complete the state of the art of the MPC-in-the-Head applied to hard problems.
Table [T] overviews schemes producing the shortest signatures for some hard problems.

‘ Hard Problem ‘ Best scheme ‘ Achieved sizes
o . Over Fy, [Wan22] 8.4—-9.4KB
Multivariate Quadratic Over Fas, our work 6.9—83 KB
Min Rank Our work 54—7.0KB
Permuted Kernel [BG22] 8.6 —9.7 KB

Subset Sum [FMRV22] 21.1 — 33.2 KB

. . Over Fa, 10.9 — 15.6 KB
Syndrome Decoding (Hamming) [FJR22] Over Fasg, 8.3 — 11.5 KB

Syndrome Decoding (Rank) Our work 58 - 7.2 KB

Table 1: State of the art of the MPCiH-based signatures, including this work.

Our contribution. In this article, we consider several hard problems for which we propose new zero-knowledge
proofs using the MPC-in-the-Head paradigm.
First, we propose a new zero-knowledge proof of knowledge for the multivariate quadratic problem. The
resulting signature scheme outperforms [Wan22] only when the base field is large enough (e.g. Fasg).
Secondly, we propose two efficient MPC protocols which take as input a matrix M € Fy*™ and which
check that the rank of M is upper bounded by r, where r is a public positive integer:

— the first one decomposes M as a product TR where T' € Fj*" and R € F;*"™, and uses an MPC protocol
that checks the correctness of a matrix multiplication;

— the second one relies on the fact that the rows of M (represented as elements of F,m) are roots of a
g-polynomial of degree ¢" and on the fact that computing a g-polynomial is efficient in MPC while
exploiting the linearity of the Frobenius endomorphism v — v9.

We then use those protocols to build efficient signatures relying on the MinRank problem or on the rank
syndrome decoding problem. Our schemes outperform all the previous proposals, by achieving sizes below 7
KB. They also outperform the [BG22]’s proposals which use structured problems (as the ideal rank syndrome
decoding problem) to achieve small sizes.

Finally, we propose a new zero-knowledge proof of knowledge for the permuted kernel problem. The
existing proposals are already quite efficient, achieving sizes below 10 KB [BG22]. They all rely on permu-
tations, which is quite natural since the problem itself uses permutations. However, securely implementing



permutations is a tricky exercise. Our proposal achieves larger sizes, but uses no permutation at all. Our
proposal is also compatible with the techniques proposed by [FR22] (as fast signature verification) and those
proposed by [AGH™ 23| (which improves the running times of the MPCitH-based schemes relying on additive
sharings), while the previous proposals for PKP are not.

Paper organization. The paper is organized as follows: In Section [2] we introduce the necessary background
on the MPC-in-the-Head paradigm. We present our general methodology in Section [3] Then we apply it to
the multivariate quadratic problem in Section [d] to the MinRank problem and the rank syndrome decoding
problem in Section[5] and to the permuted kernel problem in Section[6l Finally, we discuss the computational
cost of the obtained schemes in Section [1

2 Preliminaries

Throughout the paper, F, shall denote the finite field with ¢ elements. For any m € N*, the integer set
{1,...,m} is denoted [m]. For a probability distribution D, the notation s - D means that s is sampled
from D. For a finite set S, the notation s +— S means that s is uniformly sampled at random from S.

In this paper, we shall use the standard cryptographic notions of (honest verifier) zero-knowledge proof
of knowledge and secure multiparty computation protocols (in the semi-honest model). We refer to [FR22]
for the formal definition of those notions.

2.1 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] offers a way to build zero-knowledge
proofs from secure multi-party computation (MPC) protocols. Let us assume we have an MPC protocol
in which N parties Py,..., Py securely and correctly evaluate a function f on a secret input x with the
following properties:

— the secret x is encoded as a sharing [z] and each P; takes a share [z]; as input;
— the function f outputs ACCEPT or REJECT;
— the views of ¢ parties leak no information about the secret x.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of an z for which f(z) evaluates
to ACCEPT. The prover proceeds as follows:

— she builds a random sharing [z] of x;

— she simulates locally (“in her head”) all the parties of the MPC protocol;

— she sends commitments to each party’s view, i.e. party’s input share, secret random tape and sent and
received messages, to the verifier;

— she sends the output shares [f(z)] of the parties, which should correspond to ACCEPT.

Then the verifier randomly chooses ¢ parties and asks the prover to reveal their views. After receiving them,
the verifier checks that they are consistent with an honest execution of the MPC protocol and with the
commitments. Since only ¢ parties are opened, revealed views leak no information about the secret x, while
the random choice of the opened parties makesﬂ the cheating probability upper bounded by (N —t)/N, thus
ensuring the soundness of the zero-knowledge proof.

All MPC protocols described in this article fit the model described in [FR22], meaning that the parties
take as input an additive sharing [z] of the secret = (one share per party) and that they compute one or
several rounds in which they perform three types of actions:

Receiving randomness: the parties receive a random value € from a randomness oracle Or. When calling
this oracle, all the parties get the same random value €.

3 We implicitly assume here that the communication between parties is broadcast.



Receiving hint: the parties can receive a sharing [3] (one share per party) from a hint oracle Of. The
hint 8 can depend on the witness w and the previous random values sampled from Og.
Computing & broadcasting: the parties can locally compute [a] := [¢(v)] from a sharing [v] where ¢ is

an F-linear function, then broadcast all the shares [a]i, ..., [a]~ to publicly reconstruct a := ¢(v). The
function ¢ can depend on the previous random values {¢'}; from Og and on the previous broadcasted
values.

We refer to [FR22|] for the detailed transformation of such MPC protocols into zero-knowledge proofs of
knowledge and for the resulting performance.

3 Methodology

In each of the following sections, we focus on a specific hard problem which is supposed quantum-resilient:

— Section [4} Multivariate Quadratic Problem;

— Section Min Rank Problem;

Section Syndrome Decoding in the rank metric;
Section [Bf Permuted Kernel Problem.

For each of them, we will use the MPC-in-the-Head paradigm to build a new zero-knowledge protocol.
To proceed, we will first describe the MPC protocol we use. This MPC protocol will fit the model described
in [FR22| and will satisfy the following properties:

— it takes as input an additive sharing of a candidate solution of the studied problem, and eventually an
additive sharing of auxiliary data;

— the MPC parties get (only once) a common random value from an oracle Og;

— when the tested solution is valid (i.e. a solution of the studied hard problem) and when the auxiliary
data are genuinely computed, the MPC protocol always outputs ACCEPT; otherwise, it outputs ACCEPT
with probability at most p (over the randomness of Og), where p is called the false positive rate;

— the views of all the parties except one leak no information about the candidate solution.

By applying the MPC-in-the-Head paradigm to this MPC protocol, we get a 5-round zero-knowledge proof of
knowledge of a solution of the studied problem (see [FR22, Theorem 2| with the privacy threshold ¢ := N —1),

with soundness error
1 1
il 1— — ).
Ly ( N) p

where N is the number of parties involved in the multi-party computation. We do not exhibit the obtained
proof of knowledge since the transformation is standard. We refer the reader to [FR22| for a detailed expla-
nation of how to concretely apply the MPC-in-the-Head paradigm.

To obtain a signature scheme, we apply the Fiat-Shamir transform [FS87] to the previous protocol. Since
this protocol has 5 rounds, the security of the resulting scheme should take into account the attack of [KZ20].
More precisely, the forgery cost of the signature scheme is given by

costy, = min L + N2
orge T1,T2:T1+T2=T Z‘ir:ﬁ ("Z')pZ(]_ _ p)rfi

where 7 is the number of parallel executions.

Remark 1. For the permuted kernel problem, the MPC protocol we propose slightly differs from the above
description. The parties call the oracle Og twice (instead of once). The resulting scheme is a 7-round proof
(not a 5-round proof) with the same soundness error as before. However, the forgery cost is not the same
(see Section [G)).



Finally, we compare the resulting scheme with all the former schemes which are non-interactive identi-
fication schemes based on the same security assumption. To proceed, we first list all these schemes with
their formulae of the forgery security and of the communication cost. Since some quantities occur several
times, we define some notations to ease the readability. For the forgery cost, we introduce the two following
notations:

— Enelper (T, M, €) is the soundness error of a protocol with helper [Beu20] when the helper entity is emulated
by a cut-and-choose phase. M is the total number of repetitions in the cut-and-choose phase, ¢ is the
soundness of the unitary protocol relying on the helper, and 7 is the number of repetitions of this unitary

protocol. We have
k
o (Mf‘r) L gk—(M—7)
Ehelper(T’ M’ E) T M—r‘lr'lfai{SM { (MM ) ) } |

—T

— KZ(p1,p2) is the forgery cost of [KZ20] for a 5-round protocoﬁ We have

1 1
KZ = i i p
(rp)i= | min { S (R o }

For the communication cost (i.e. the signature size), we introduce the following notations:

— lseed 18 the cost of sending a A-bit seed;
— Wdig 1s the cost of sending a 2A-bit commitment/hash digest;
— Uhelper 1S the cost (per repetition) of using the helper technique of [Beu20], this cost satisfies

M
,uhelper § (,useed + ,deig) . 10g2 7

where M is the number of repetitions involved in the cut-and-choose phase emulating the helper. It
corresponds to the cost of revealing M — 7 leaves among M in a seed tree, with the cost of sending the
authentication paths of 7 leaves among M in a Merkle tree.

— pmpcith is the fixed cost (per repetition) of using the MPC-in-the-Head paradigm, we have

HUMPCitH = Hseed * 1085 N + UUdig-

It corresponds to the cost of revealing all the leaves but one in a seed tree of N leaves (plus a commitment
digest).

Then, to get a numerical comparison, we select one or two instances of the studied hard problem and we
compare all these schemes for these precise instances. To proceed, we need to select the parameters of the
schemes when relevant. The signature schemes based on the MPC-in-the-Head paradigm have as parameter
the number N of parties involved in the multi-party computation. When taking a small N, we get a faster
scheme, but when taking a large N, we get shorter signature sizes. To have a fair comparison between the
different schemes, we will always take the same N:

— when the protocol relies on a helper, we take N = 8 to have a fast scheme and N = 32 to have short
sizes.
— otherwise, we take NV = 32 to have a fast scheme and N = 256 to have short sizes.

3.1 Matrix Multiplication Checking Protocol

In our constructions, we need an MPC protocol that checks that three matrices X, Y, Z satisfy Z = X - Y.
We describe in Figure (1) such a protocol I}, which has a positive parameter 7). This protocol is a matrix
variant of the multiplication checking protocol of [BN20] (optimized in [KZ22]).

* in the case where the verifier can not perform some checks after receiving the first response (see [KZ20] for details).



Inputs: Each party takes a share of the following sharings as inputs: [X] where X € F;**?, [Y] where Y € F*",
[Z] where Fi**™, [A] where A has been uniformly sampled from F5*"7, and [C] where C' € F;**" satisfies C = X A.

MPC Protocol:

. The parties get a random X € Fy*".

. The parties locally set [D] = [Y]X + [A].

The parties broadcast [D] to obtain D € FF*".

The parties locally set [V] = [X]D — [C] — [Z] ~.

. The parties open [V] to obtain V € Fy**".

. The parties outputs ACCEPT if V = 0 and REJECT otherwise.

=YX IO GUR I

Fig. 1: The MPC protocol I}, which checks that Z = X - Y (MM stands for Matrix Multiplication).

Lemma 1. If Z = XY and if C are genuinely computed, then II},,, always outputs ACCEPT. If Z # XY,
then II};,, outputs ACCEPT with probability at most q%.

Proof. We have

V=XD-C-2X
—X(YX+A)-C—2%
= (XY = 2)¥ — (C — X A).

If Z= XY and C'= X A, V is equal to zero and thus the parties will always output ACCEPT. In contrast, if
Z # XY, then there exists (i*,j*) € [m] x [n] such that Z;- j+ — (X -Y);« j« #0. Given k € {1,...,n}, Xj- &
is uniformly sampled in F, and then ((Z — X - Y)X);« . is uniformly random in F, (because one term of the
term is uniformly random). Thus, the probability that V is zero is at most the probability that (Z — X -Y)X
is equal to (C'— X A) on the row i* whereas the row i* of (Z — X - Y)) ¥ is uniformly random in F, i.e. the
probability that V' is zero (at row ¢*) is at most q%.

O

3.2 MPCitH Optimizations

It is often possible to optimize the communication cost of a scheme relying on the MPC-in-the-Head paradigm.
The common optimization tricks are the following:

— Except for the last party, the input share of a party can be derived from a seed using a pseudo-random
generator. Thus, when we need to reveal the input share, we just need to reveal a seed. In practice, a
prover must reveal the input shares of N — 1 parties, so it would imply revealing N — 1 seeds. To save
more communication, we can generate the seeds using a tree structure, decreasing the number of revealed
seeds to logy(N) (see [KKW18| Sec. 2.3] for details).

— We do not need to reveal shares for shared random values (as A in Figure [1)) since they can be entirely
derived from the seeds of the previous point.

— We do not need to reveal shares for shared publicly-known values (see [KZ22| Sec. 2.4] for details). For
example, we do not need to reveal the share of V' broadcast by the hidden party in Figure[l] Indeed, this
share can be deduced from the shares of the other parties and knowing that V must be equal to zero
(otherwise the verification fails).

4 Proof of Knowledge for MQ

We want to build a zero-knowledge proof of knowledge for the multivariate quadratic problem:

Definition 1 (Multivariate Quadratic Problem - Matrix Form). Let (¢,m,n) be positive integers.
The multivariate quadratic problem with parameters (g, m,n) is the following problem:



Let (Ai)iem], (Di)iepm), © and y be such that:

1. z is uniformly sampled from Fy,

2. for alli € [m], A; is uniformly sampled from Fy*™,

3. for alli € [m], b; is uniformly sampled from Fy,

4. for alli € [m], y; is defined as y; := 2T A;z + bl x.
(b

From (( )Ze[m]a Z)ie[m]vy)f .ﬁnd Z.

The prover wants to convince the verifier that she knows z € Fj such that

y1 =27 Ayr +blx

Ym = ITAm,x + b?nx
To proceed, she will rely on the MPC-in-the-Head paradigm: she will first share the secret vector x and then

use an MPC protocol which verifies that this vector satisfies the above relations.

MPC Protocol. Instead of checking the m relations separately, we batch them into a linear combination
where coeflicients 71, ..., v are uniformly sampled in the field extension Fy». The MPC protocol will check
that

Z Yi(yi — at Ajx — b x) = 0. (1)

If one of the relations was not satisfied, then Equation would be satisfied only with a probability q%,
We can write the equality as

> ilyi = bl x) =Y via" Aiz)
i=1 i=1

g (i %’Az) z
=1

= (x,w) where w:= (Z ’yiAi> x

i=1

By defining z := > 1" vi(y; — b} ) and w := (Y.~ :4;) =, proving Equation is equivalent to proving
that
z = (x,w).

And to prove the above equality, we can rely on the subprotocol ITyy described in Section (assuming
that all the scalars live in Fn). Thus, the MPC protocol proceeds as follows:

1. The parties get random 71, ..., Vm € Fgn.

2. The parties locally set [2] = > 1%, vi(y; — bf [2]).

3. The parties locally set [w] = (3°1%, viA;) [z].

4. The parties execute the protocol ITyiy to check that z = (w, ).

Since this sub-protocol ITyy produces false positive events with a rate of =, if x does not satisfy the m
MQ relations, the complete MPC protocol outputs ACCEPT only with a probabllity of at most

1 Loyt _2 1t
o\ ) T e

The complete MPC protocol is described in Figure



Public values: The matrices A1,..., An € Fg*™, the vectors b, ...,bm € Fy, and the outputs y1,...,ym € Fy.

Inputs: Each party takes a share of the following sharings as inputs: [z] where € Fy, [a] where a has been
uniformly sampled from Fg,, and [c] where ¢ € Fyn satisfies ¢ = —(a, ).

MPC Protocol:

The parties get random 71, ...,7Vm € Fgn and a random e € Fgn.
The parties locally set [z] = Y7, vi(y: — b7 [2]).

The parties locally set [w] = (37, viA:) [=].

The parties locally set [a] = ¢ - [w] + [a].

The parties open a € Fgy.

The parties locally set [v] = ¢ - [2] — (a, [z]) — [].

The parties open v € Fgn.

The parties outputs ACCEPT if v = 0 and REJECT otherwise.

I e e

Fig.2: An MPC protocol that verifies that the given input corresponds to a solution of an MQ problem.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section [2.1)), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables us to convince a verifier that
a prover knows the solution of a M@ problem. The soundness error of the resulting protocol is

1 + (1 1 2 1
€= — = l—=——].
N N q" g
By repeating the protocol 7 times, we get a soundness error of 7. To obtain a soundness error of A bits, we
-2

log, €

thanks to the Fiat-Shamir transform [FS87]. According to [KZ20], the security of the resulting scheme is

can take 7 = [ 1 We can transform the interactive protocol into a non-interactive argument /signature

. 1 T2
o =\ S

2 1
where p = q7 — an

The communication cost of the scheme (in bits) is

AN+ 7 [ n-logy(q)+n-n-logy(q) +n-logy(q) + A -logy N + 24
x «a c MPCitH

where A is the security level, i is a scheme parameter and 7 is computed such that the soundness error is
of A bits in the interactive case and such that costsorge is of A bits in the non-interactive case. The public
key corresponds to the coefficients of the MQ equations (namely (A;);c}m) and (b;)iepm)) which can be
represented by a A-bit seed and the vector y € Fi". Its size is thus A + mlog, ¢ bits.

Performance and comparison. In what follows, we compare our scheme with the state of the art on two MQ
instances:

Instance 1. Multivariate Quadratic equations over a small field:
(q7 m, n) = (4a 88; 88);
Instance 2. Multivariate Quadratic equations over a larger field:

(g, m,n) = (256,40, 40).



Both of these instances are believed to correspond to a security of 128 bits [BMSV22].

We provide in Tables [2| and [3| a complete comparison of our scheme with the state of the art. In the
comparison, we put MQ-DSS |[CHR16] which corresponds to the non-interactive version of the 5-round
identification scheme of [SSH11]. For the sake of completeness, we also put how the 3-round identification

scheme of [SSHIT] would perform when applying the Fiat-Shamir transform on it.

Over a small field, the Mesquite [Wan22] scheme has the smallest communication cost, even if our scheme
produces competitive signature sizes. Over a larger field, we can produce signature sizes close to 7 KB, and
thus we outperform all the former schemes.

Remark 2. In contrast with the former state of the art, the communication cost of our scheme is independent

of the number m of MQ relations.

Scheme Name Security Signature Size
[SSH11] (3 rounds) (3/2)" Hdig + T [2var + flout + 2ftdig]
MQ-DSS [CHR16] KZ(%, H 2pdig + T [2ptvar + Hout + 2Mdig]

MupFisH [Beu20)]

Ehelper(Ty A{7 %)_1

Hdig + T [20var + Hout + 2ptseed + fdig - 1085(q") + Lhelper]

Mesquite [Wan22]

Ehelper (Ta ]\/[7 %)_1

fdig + T [fvar + flous + UMPCitH + Hhelper)

Our scheme

KZ(Z5 — =

1

2> N

)

2ptaig + 7 [(L+n) - pvar + 1 - 10gs q + pimpcis]

Table 2: Sizes of the signatures relying on the M Q problem (restricting to the schemes using the FS heuris-
tics). The used notations are: fiyar := nlog, q, tous := mlog, g, plus all the notations defined in Section

Instance Protocol Name Variant Parameters Signature Size Pubh'c Key
N ‘ M ‘ T ‘ n Size
[SSH11] (3 rounds) - 219 - | -] 28502 B
MQ-DSS [CHRT16][ - 316 - |- | 41444 B
¢=4 [ MupFisH [Beu20) N 1 (191|68| - | 14640 B
m =88 ‘ Fast || 8 |187]49] - 9578 B 38 B
n—gg | Mesquite [Wan22] | o1l 30 l3g0los| - | 8609 B
O sehome Fast | 32] - (40| 6| 10764 B
Short ||256 - (258 9064 B
[SSHI1] (3 rounds) - - 219] - | - 40328 B
MQ-DSS [CHR16]| - ~[156] - 28768 B
- Fast || 8 |176]51 15958 B
Zn_fig MupFis [Beu20] | gy oo |16 |250(36] - | 13910 B 56 B
= . Fast || 8 |187|49] - | 11339 B
n=40 | Mesquite [Wan22] | o "\ |39 |3g0|28| - | 9615 B
Our sch Fast || 32| - |36] 2 8488 B
ur scheme Short ||256| - [25|2| 7114 B

Table 3: Sizes of the signatures relying on the MQ problem (restricting to the schemes using the F'S heuris-

tics). Numerical comparison.

5 Proofs of Knowledge for MinRank and Rank SD

In this section, we propose arguments of knowledge for the MinRank problem (Section and the Rank
SD problem (Section . But before that, in Section we propose two efficient MPC protocols which

check that a matrix M has a rank of at most r.




In what follows, we denote wtg(M) the rank of a matrix M.

5.1 Matrix Rank Checking Protocols

We want to build MPC protocols which check that a matrix has rank at most r. Such MPC protocols will
be used for arguments of knowledge with the MPC-in-the-Head paradigm. We propose two protocols:

— the first one relies on the rank decomposition of matrices. It has the advantage of being quite simple,
but its false positive rate is large.

— the second one relies on linearized polynomials. It has the advantage of having a very small false positive
rate, but it sometimes requires to handle field extensions of large degrees.

Using Rank Decomposition. Let us design an MPC protocol which checks that a matrix M € F™*"™ has
a rank of at most r, i.e. wtg(M) < r. To proceed, we will rely on the rank decomposition:

a matrix M € Fy*™ has a rank of at most r
if and only if there exists T' € Fj*" and R € F;*™ such that M = TR.

In practice, our MPC protocol that we will denote ITj} zp takes as input such matrices T and R (in
addition to M) and simply executes the matrix multiplication checking protocol II},, (see Section [3.1)), for
some positive integer 7.

Theorem 1. If wtr(M) <r and if T, R are genuinely computed, then I}, », always outputs ACCEPT. If
wtr(M) > r, then IIgc.rp outputs ACCEPT with probability at most q%. More precisely, if wtp(M) =w+40
with § > 1, then I}, pp outputs ACCEPT with probability at most L

e

Proof. The final broadcast matrix V' in II};,, satisfies
V=(TR-M)X - (C—-TA)

where matrices A and C' have been built before receiving the random Y. We have

WtR(M - TR) Z WtR(M) — WtR(TR)
>(r+d)—r=94
It means that TR — M has at least § non-zero coefficients (i1, j1),. .., (is, js) which are over ¢ different rows

and over ¢ different columns, i.e.

v]'4517152 € [6]7 (ikl # ikQ) A (jkl # jkz)'

Let us consider k € [0]. The jith row of X is uniformly sampled in F}} and thus the iyth row of (M —TR)X
is uniformly random in F] (because one term of the sum is uniformly random). Thus, the probability that
the ixth row of V is zero is the probability that (M —TR)X is equal to (C — T A) on the row i whereas the

row i of (M —TR)X is uniformly random in [}, i.e. the probability that the ixth row of V' is zero is q%.

By taking a union bound over all k, we get that the probability that V is zero is at most . (|
q

Using Linearized Polynomials. In what follows, we represent a matrix of F;**" as an element of (IFj*)".
We want to design an MPC protocol which checks that a matrix M = (x1,...,2,) € (Fym)™ has a rank of
at most r. Equivalently, it means that all x; belongs to an [Fy-linear subspace U of Fym of dimension r. Let

us define the polynomial Ly (X) as

Lu(X) = [ (X —u) € Fgn[X].
uelU

10



The degree of Ly is ¢" since U has ¢" elements. Showing that wt(M) < r can be done by showing that all
x;’s are roots of L.
According to [LN96|, Theorem 3.52], Ly is a g-polynomial over Fym, meaning that it is of the form

r—1
Lu(X) =X +) 8X7.

i=0
Such polynomials are convenient for multi-party computation since the Frobenius endomorphism X — X9
is a linear application in field extensions of F, and thus it is communication-free to compute [z7], [[xq2]], e
from [z].

The core idea of the rank checking protocol is to check that Ly (1) = Ly(z2) = ... = Ly(x,) = 0. To

proceed, the MPC protocol will batch these checkings by uniformly sampling 1, ..., v, € Fym and checking
that

> 5+ Lu(z;) = 0. (2)
j=1

If one x; is not a root of the polynomial Ly, then Equation is satisfied only with probability qu_ Let us
rewrite the left term of :

n n r—1 )
> v Do) = v (ng + Zﬁz‘fﬂf)
j=1 j=1 =0
n . r—1 n s
=D el ) B ) e
j=1 i=0 j=1

—_——— ———
=—z =w;
By defining z := —Z;’:l v - (E;]-T and w; = Z?:l ijgl for i € {0,...,r — 1}, proving Equation is
equivalent to proving
z = {8, w).

Our MPC protocol that we will denote ITf} | p takes as input [z1],..., [z,] and [Ly] = X9 +Z:;é [8:]X9
proceeds as follows:

1. The parties get random 1, ...,V € Fgman.

2. The parties locally set [2] = — 327, v;[z;]7 .

3. The parties locally set [w;] =>77_, v [;] for all i € {0,...,7 —1}.

4. The parties execute the protocol IIyy to check that z = (8, w) over Fym-n.

Theorem 2. If wtp(M) < r and if Ly are genuinely computed, then II}, . ; p always outputs ACCEPT. If

wtr(M) > r, then II} . ; p outputs ACCEPT with probability at most qm%n +(1-— q,i.n) q,,}_n.

Proof. [Ly] is a g-polynomial over Fym of degree exactly ¢". It means that its number of roots is at most ¢”.
According to [LN96, Theorem 3.50], the roots form a Fy-linear subspace V of the field extension Fys of Fym.
Since Fym is also a linear subspace of Fgs, V NFym is a linear subspace of Fgs (and of Fym). Its dimension is
at most r (since it has at most ¢" elements). If wtr(M) > r, there exist ¢* such that

Ly (wi+) #0.
We then have two options resulting in IT}}+ | » outputing ACCEPT:

— Either Z;-L:l 7v; - Ly (z;) = 0, which occurs with probability ﬁ;
— Or Z?Zl v; - Lu(z;) # 0, i.e. z # (B, w) and ITym outputs ACCEPT, which occurs with probability

since Iy has a false positive rate of q%n.

1
qmn

O
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5.2 Proof of Knowledge for MinRank
We want to build a zero-knowledge proof of knowledge for the MinRank problem:

Definition 2 (MinRank Problem). Let (¢,m,n,k) be positive integers. The MinRank problem with pa-
rameters (q,m,n, k) is the following problem:

Let My, My, ..., My, E and x such that:

e x is uniformly sampled from ]F’q“,
e for alli € [k], M; is uniformly sampled from Fyp*™,
o E is uniformly sampled from {E € Fy*™ : wtp(E) < w},
e My is defined as My = FE — Zf;l x; M;.
From (Mg, My, ..., My), find x.

The prover wants to convince the verifier that she knows such an x. To proceed, the prover will first share
the secret vector « and then use an MPC protocol which verifies that this vector satisfies the above property.

MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) « and which outputs

AccepPT if wtr(E) <r
REJECT otherwise.

where E := My + Zle i M;.

Given [z], the parties can locally build [E] as My + Zle[[a:l]]MZ It remains to check that [E] cor-
responds to the sharing of a matrix of rank at most r. It can be done using one of the two rank checking
protocols described in Section II} ¢ rp relying on the rank decomposition or I | p relying on linearized
polynomials, for some parameter 7.

The complete MPC protocol is described in Figure [3] when relying on the rank decomposition and in
Figure [f] when relying on linearized polynomials. In the second case, the rows of the matrix E are rewritten
as elements of Fym, but when m # n, it can be more convenient to work on the columns (depending of the
values of m and n).

Public values: Mo, M, ..., M, € F3*™.

Inputs: Each party takes a share of the following sharings as inputs: [] where = € F¥, [T] where T € F2*", [R] where
R € F7*™  [a] where a has been uniformly sampled from F7*7 and [¢] € F2*", such that Mo 4+ 32, 2;,M; = TR
and ¢ =Ta.

MPC Protocol:

The parties get a random X € F**".

The parties locally set [E] = Mo + Ef:l[[zz]]Ml

The parties locally set [a] = [R]X + [a].

The parties open o € Fg*".

. The parties locally set [v] = [T]a — [c] — [E]X.

. The parties open v € Fy*".

The parties outputs ACCEPT if v = 0 and REJECT otherwise.

No o W

Fig.3: An MPC protocol based on the rank decomposition technique (IIrc.rp) which verifies that the given
input corresponds to a solution of a MinRank problem.

12



Public values: Mo, M1,..., M € Fy*™.

Inputs: Each party takes a share of the following sharings as inputs: [2] where z € F¥, [Ly] := X9+ E:;Ol [[ﬂi]]Xqi
where Ly (X) :=]] X —u) € Fgm[X], [a] where a has been uniformly sampled from Fym.n, and [c] € Fgm-n, such
that ¢ = — (8, a).

MPC Protocol:

uEU(

1. The parties get random 71, ...,y € Fgmn.
2. The parties get a random € € Fgmn.
3. The parties locally set [E] = Mo + 3¢ [a:] M;.
4. The parties locally write the rows of [E] as elements (e1,...,€m) of Fgm
5. The parties locally set [2] = — 377, v; [e;]7" .
6. The parties locally set [wi] = >7_, v; le;]9 for alli € {0,...,r —1}.
7. The parties locally set [a] = ¢ - [w] + [a].
8. The parties open o € Fym.n.
9. The parties locally set [v] =€ - [z] — (e, [B]) — [e]-
10. The parties open v € Fgm-n.
11. The parties outputs ACCEPT if v = 0 and REJECT otherwise.

Fig. 4: An MPC protocol based on the technique using linearized polynomials (IIrc.1p) which verifies that the
given input corresponds to a solution of a MinRank problem. U is a F,-linear subspace of Fym of dimension

r which contains the rows (e1,...,e,) of E:= My + Zle x;M; € Fy ™™ represented as elements of Fym.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section [2.1)), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables us to convince a verifier that
a prover knows the solution of a MinRank problem. The soundness error of the resulting protocol is

5.—N N yZ

where p,, := q% when using T}« rp and p, := qm% — (12%,, when using ITj} | p. By repeating the protocol

T times, we get a soundness error of €. To obtain a soundness error of A bits, we can take 7 = LO;—AE—‘
2

We can transform the interactive protocol into a non-interactive proof/signature thanks to the Fiat-Shamir
transform [F'S87]. According to [KZ20], the security of the resulting scheme is

1
- - N
costhorge = MO { S G- }

When using ITrc.rp, the communication cost of the scheme (in bits) is

AN+7-|(k +rxm+rxn+rxn+nxn)-logsq+ A-logs N + 2X
~ S = e = —_————

T R T « c MPCitH

where A is the security level, r is a scheme parameter and 7 is computed such that the soundness error is of
A bits in the interactive case and such that costsorge is of A bits in the non-interactive case.
And when using IIrc.rp, the communication cost of the scheme (in bits) is

AIN+7- |k +rxm+rxmxn+mxn)-logyqg+ X-logg N + 2\
~ = ——— = —_—

x Ly « c MPCitH

The public key corresponds to the k41 matrices My, . .., M. The matrices M, ..., M} can be represented
by a A-bit seed and [BESV22] showed that we can generate My such that it requires only (mn — k)log, q
bits to send. The size of the public key is thus A + (mn — k) log, g bits.

13



Performance and comparison. In what follows, we compare our scheme with the state of the art on the
MinRank instance [BESV22]:
(g, m,n, k,r) = (16,16, 16,142,4),

which targets the security level that corresponds to the NIST category I. We provide in Tables [4] and [f| a
complete comparison of our scheme with the state of the art. To provide a fair comparison, we propose two
variants for [Cou0T] and [SINY22]: the first one corresponds to the scheme as described in the original article
and the second one is an optimized version. This optimized version includes the following tricks:

— Instead of revealing all the commitments during the first round, the prover just sends a hash digest of
them. Then, to enable the verifier to recompute this digest, the prover just needs to send the commitment
digests that the verifier can not compute herself.

— The random combination used in the schemes (usually denoted () is derived from a seed. Then, instead
of sending the coefficients of 3, the prover can just send this seed. Moreover, this seed and the masks
involved in the schemes (usually denoted T, S and X)) are also derived from a common seed.

— Instead of revealing two matrices such that the difference is of rank (at most) r, the prover sends one of
the matrices and directly the difference (which is cheaper to send), and thus the verifier can deduce the
non-sent matrix.

In the comparison, we put how [BG22] Section 2] would perform if we apply the same technique for MinRank
problem ([BG22] does not consider the MinRank problem in their article).

First, let us remark that [SINY22] presents no advantage compared to [Cou0I]. The soundness error of
each iteration is 1/2 instead of 2/3, but each iteration is more expensive. The achieved communication cost
is thus equivalent to [Cou01]. [BESV22] is a protocol with helper [Beu20]. The components in the proof
transcript are the same as for [Cou0TI] (and [SINY22]), but it succeeds in achieving a bit smaller signature
size just by sending a smaller number of seeds and digests. The MPC-in-the-Head paradigm enables to obtain
much smaller sizes. Using techniques from [BG22|, the resulting size is around 10 KB. In an independent
work, [ARZV22] recently proposes a new scheme using techniques which are similar to our protocol with
IIrc.rp: they are working on another matrix relationﬂ but use a less efficient matrix multiplication checking
protocol. They succeed in producing signatures with sizes below 8 KB. Our scheme with ITgc.rp achieves
similar sizes as [ARZV22], but our scheme with IIxc.1p outperforms all the previous ones achieving sizes
below 6 KB. For the sake of completeness, we put in the comparison tables how [ARZV22] would perform if
we use Iy as a subroutine.

5.3 Proof of Knowledge for Rank SD
We want to build a zero-knowledge proof of knowledge for the rank syndrome decoding problem:

Definition 3 (Rank Syndrome Decoding Problem - Standard Form). Let Fym be the finite field
with ¢™ elements. Let (n,k,r) be positive integers such that k < n. The rank syndrome decoding problem
with parameters (q,m,n, k,r) is the following problem:

Let H, x and y be such that:

1. H is uniformly sampled from {(H'|I,,_x),H' € ]F,g?n_k)xn},
2. x is uniformly sampled from {x € Fy.. : wtg(z) <7},
8.y is built as y :== Hez.

From (H,y), find x.

Remark 3. The rank wtg(z) of an element = of Fy.. is the dimension of the [F,-linear subspace spanned by
T1,...,Tn. BEquivalently, it is the rank of the matrix M for which the rows are zi,...,x, represented as
vectors of F".

5 They express the m — r last columns w.r.t. the 7 first ones.
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Scheme Name Security Signature Size
[Coud1] (3/2)" 37 - paig + 7 [ 2 ftmat + 2 Heombi + 2 fisced]
[CounT], opt. (3/2)7 faig + 7 [ % (Bmat + frank + feombi + 2Hscea) + faig)
[SINY22] 2" 67 - fidig + T [Hmat + 5 fcombi + 2 fhsced]
[SINY22], opt. 2" praig + T [ 5 (mat + firank + flcombi + 3fsced) + 2ftdig)
[BESV22] Enetper(T, M, 3)™" | ptaig + 7 [3 (ftmat + frank + feombi + iseed) + Hdig + Hhelper
[BG22] Ehelper (T, M, &)~ Hdig + T [Hcombi + Mrank + UMPCitH + Hhelper]
[ARZV22] KZ(Z, %) 2pdig + 7 [ficombi + (0 + 2rn — r?) log, q + pvpcitn |
[ARZV22]+ITm KZ(J7, %) 2fidig + T [feombi + (1(n — 1) +n(n — 2r)) log, ¢ + pnpcish]
Our scheme (RD) KZ(%, + 2pdig + T [fcombi + firank + N(n + 1) log, ¢ + pvpcich]
Our scheme (LP) KZ(% - ﬁ, +)| 2paig + T [Heombi + rmlogy g + n(r 4+ 1)mlog, q + pupcitn]

Table 4: Sizes of the signatures relying on the MinRank problem (restricting to the schemes using the FS
heuristics). The used notations are: fimat := mnlog2q, pirank := (M + n)log, ¢, fieombi := klogs g, plus all
the notations defined in Section

Instance | Protocol Name Variant ]\}D le"a;[rl‘le:—el"sn Signature Size Pubsl’ii(Z:eKey
[Cou01] Optimized || - | - 20 | 2ms78
SINY22] Optimized || - | - EZ ] ggfggg
[BESV22] - - |256]128] - 26405 B
ot | B9 g alasoas| - | 1037
| mmem | ogn IR Yee |
T | BRZYR e | G |22 B 0 S
Our scheme (RD) Sl?;;t 23526 : ?3 g 3?223
Our scheme (LP) Sl:l‘la(')s;ct 23526 : ?2 } 57 gg;%

Table 5: Comparison of the signatures relying on the MinRank problem (restricting to the schemes using the
FS heuristics). Numerical comparison.

The prover wants to convince the verifier that she knows such an z, i.e. a vector x € Fy.. such that
y = Hx and wtg(x) < r. Previous works propose proofs of knowledge where the constraint on the weight is
an equality, but it is sometimes easier to just prove an inequality (see [FJR22|] for the case of the Hamming
weight). To proceed, the prover will first share the secret vector z and then use an MPC protocol that verifies
that this vector satisfies the above property.

Remark 4. In the above definition, the parity-check matrix is in standard form. It does not decrease the
hardness of the problem (since the transformation into a standard form is a polynomial transformation), but
it enables us to simplify the construction we propose.

MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) x and which outputs

AccepT if y = Hz and wtg(z) <7
REJECT otherwise.
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Since H is in standard form, the equality y = Hx implies that x can be written as

_( 7a
T \y-Hza

for some x4 € IF’;. Therefore, we will build an MPC protocol which takes as input (a sharing of) x4 and
which outputs
. T A
< =
AcceprT if wtgr(z) <r where z (y _ H'acA>
REJECT otherwise.

Given [z 4], the parties can locally build [zg] as [zg] :=y — H'[x 4], and so they can deduce a sharing
[«] of = (simply by concatenating the shares of [x 4] with the shares of [z]). It remains to check that [z]
corresponds to the sharing of a vector of Fg. of rank at most r. The latter can be done using one of the
two rank checking protocols described in Section II} o rp relying on the rank decomposition or ITj« | p
relying on linearized polynomials, for some parameter 7.

The complete MPC protocol is described in Figure [5| when relying on the rank decomposition and in
Figure [6] when relying on linearized polynomials.

Public values: H = (H'|I,—) € F{ ¥ ™ and y € F2.F.

Inputs: Each party takes a share of the following sharings as inputs: [xa] where z4 € IF’,;m, [T] where T € Fy™",
[R] where R € F*™, [a] where a has been uniformly sampled from Fy*", and [¢] where ¢ € Fy*", such that ¢ = T'a
and X = TR where X is the matrix form of z.

MPC Protocol:

The parties get a random X € Fy**".

The parties locally set [zp] =y — H'[z4].

The parties locally write [z] := ([za], [xB]) as a matrix [X].
The parties locally set [a] = [R]X + [a].

The parties open o € Fg*".

. The parties locally set [v] = [T]a — [¢] — [X] 2.

The parties open v € F**".

. The parties outputs ACCEPT if v = 0 and REJECT otherwise.

I R N

Fig.5: An MPC protocol based on the rank decomposition technique (ITgrc.grp) which verifies that the given
input corresponds to a solution of a rank syndrome decoding problem.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section [2.1)), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables us to convince a verifier that
a prover knows the solution of a rank syndrome decoding problem. The soundness error of the resulting

protocol is
€= e +(1 e
TN N )P

where p,, := q% when using [T} yp and p, := q,f_,, - qg%_n when using ITj} | p. By repeating the protocol

T times, we get a soundness error of €. To obtain a soundness error of A bits, we can take 7 = LO;,AE—‘.
2

We can transform the interactive protocol into a non-interactive proof/signature thanks to the Fiat-Shamir
transform [FS87]. According to [KZ20], the security of the resulting scheme is

1
t = i - -+ N
o= ot o
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Public values: H = (H'|I,,—x) € Ffﬁb_k)m and y € Fg&k.

Inputs: Each party takes a share of the following sharings as inputs: [z4] where x € Fkn, [Ly] := X7 +E:;Ol [[Bi]]Xqi
where Ly (X) :=[] X —u) € Fgm[X], [a] where a has been uniformly sampled from Fym.,, and [c] € Fgm-n, such
that ¢ = — (8, a).

MPC Protocol:

ueU(

1. The parties get random 71, ...,y € Fgmn.
2. The parties get a random € € Fgmn.
3. The parties locally set [zp] = y — H'[z4].
4. The parties locally set [2] = —>>"_, v; [z;]7" .
5. The parties locally set [w;] = >°7_, v; [z;]¢" for all i € {0,...,r —1}.
6. The parties locally set [a] = ¢ - [w] + [a].
7. The parties open o € Fym.n.
8. The parties locally set [v] = ¢ - [2] — (o, [8]) — []-
9. The parties open v € Fgm-n.
10. The parties outputs ACCEPT if v = 0 and REJECT otherwise.

Fig.6: An MPC protocol based on the technique using linearized polynomials (IIxc.p) which verifies that
the given input corresponds to a solution of a rank syndrome decoding problem. U is a [F-linear subspace
U of Fgm of dimension r which contains z1,...,z,.

When using ITrc.rp, the communication cost of the scheme (in bits) is

AAN+7- | (k-m+rxm+rxn+rxn+nxn) - logyqg+ A -logy N + 2\
M~ N Y T —_—

TA R T « c MPCitH

where A is the security level, ) is a scheme parameter and 7 is computed such that the soundness error is of
A bits in the interactive case and such that costsorge is of A bits in the non-interactive case.
And when using IIrc.rp, the communication cost of the scheme (in bits) is

AAN+7- | (k-m+rxm+rxmxn+mxmn)-logyqg+ A-logy N + 2\
e e — —_——

TA Ly a c MPCitH

The public key corresponds to the matrix H which can be represented by a A-bit seed and the vector
Yy E IE‘Z,Z’“. Its size is thus A + m(n — k) log, ¢ bits.

Performance and comparison. In what follows, we compare our scheme with the state of the art on the Rank
Syndrome Decoding instance [BG22):

(g, m,n, k,7) = (2,32,30,14,9),

which targets a 128-bit security level. We provide in Tables [6] and [7] a complete comparison of our scheme
with the state of the art. To get a more complete comparison, we include the schemes [Ste94], [Vér96] and
[FJR21] which can be easily adapted for the rank metric (by replacing the permutations by rank isometries).
Moreover, we put in Table [7] the achieved performance of [BG22] when relying on the structured rank
syndrome decoding problem (the parameters of the structured problem come from the original article).

The first schemes [Ste94] and [Vér96] can achieve signature sizes of around 30 KB (let us remark that
some optimization tricks have been used to achieve these sizes). Then, using the MPC-in-the-Head technique
of the “shared permutation”, [FJR2I] and [BG22| divide this size by half, achieving communication cost
around 15 KB (13 — 19 KB). Finally, our new schemes outperform all these schemes by achieving sizes
around 6 — 11 KB. The scheme using a ¢g-polynomial even outperforms the [BG22]’s proposalsﬁ which rely
on structured rank syndrome decoding problems.
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Scheme Name Security Signature Size
[Steod] (3/2)7 dig + T [5(2fmat + frank + 2fisced) + fdig)
[Véra6] (3/2)7 Haig + T [5 (mat + fiptx + firank + 2tsced) + faig]
[FJR21] Ehelper (T, M, %)_1 Hdig + T [Hmat + fptx + frank + UMPCitH + Mhelper)
[BG22] Ehetper (T, M, )71 Haig + T [fmat + frank + UMPCitH + [helper)
Our scheme (RD) KZ(%, %) 2ptaig + T [pptx + prank + n(n + ) logy ¢ + pmvpcith]
Our scheme (LP) KZ(% — (12_#_”, %) 2ptaig + T [ptx + Tmlogy ¢ + n(r + 1)mlog, ¢ + pmpcith]

Table 6: Sizes of the signatures relying on the rank syndrome decoding problem (restricting to the schemes
using the FS heuristics). The used notations are: pmay = mnlog2q, frank = 7(m + n)1ogy q, fpix =
mk log, q, plus all the notations defined in Section @

Instance Protocol Name | Variant ]\? aja]r\/r[le{te:s‘ 0 Signature Size PubShiZeKey

Stern [Ste9d] - [ - [219] - | 31358B
Véron [Véroo] - T 219 - 27115 B
Fast 8 |187[49 | - 19328 B
W‘f - §1 [EJR21) Short | 32 |389]28] - 14181 B
- Fast 8 |187[49 - 15982 B

Z: fg [BG22, Short | 32 |389]28] - 12274 B B
- Our scheme (RD)| 0 32 | - |33[19] 11000 B
"= ut schen Short | 256 | - |21|24| 8543 B
Fast 32 | - |30 1 7376 B
Our scheme (LP) | gy v 1l 256 | - |20/ 1| 5899 B
Fast 32 | - [37]- 12607 B

Ideal RSD I3G22) Short | 256 | - |26] - 10126 B % B
Fast 32 | - |27]- 9392 B

Ideal RSL [BG22] stort || 256 | - 17| - 6751 B 410 B

Table 7: Sizes of the signatures relying on the rank syndrome decoding problem (restricting to the schemes
using the FS heuristics). Numerical comparison.

Remark 5. Let us focus on the zero-knowledge proof relying on linearized polynomials. Thanks to the struc-
ture of the MPC protocol, it is possible to use Shamir’s secret sharings over F,= instead of additive sharings
(even if the base field is F, due to the F,-linearity of the Frobenius endomorphism). We describe in Ap-
pendix how the MPC protocol behaves when using Shamir’s secret sharing. As explained in [FR22], using
such sharings reduces the computational cost of emulating the MPC protocol and enables to have fast signa-
ture verifications. The fact that we can share values over F,m implies that we can use techniques from [FR22],
with a very large number N of parties (N is upper bounded by ¢™). This is not true for the zero-knowledge
proof relying on the rank decomposition, or for both zero-knowledge proofs about the MinRank problem.
For those proofs, the number N of parties would be upper bounded by ¢, which is small when considering
concrete instances.

Remark 6. Tt is possible to transform a proof of knowledge for rank syndrome decoding (RSD) problem into
a proof of knowledge for sum-rank syndrome decoding (SRSD) problem. The latter consists, given (H,y), in
finding € F™ such that y = Hz and

wtsr(z) <7

where wtsr((T1,...,2,/¢)) = Z:;/g wtr(z;) with £ a SRSD parameter and with x; € F*. Let us denote
X, Xi,...,X=n the matrix form of z,z1,...,2=. Proving that = (or equivalently X) satisfies wtsr(z) < r

6 Theses sizes are larger than the ones in [BG22] because they take N = 1024, but here to have a fair comparison
with the other schemes, we take N = 256.
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can be done by proving that the matrix
X1
Xo

Xa
[
has a rank of at most r. Thus all proofs for RSD can be used for SRSD, but they must handle a large matrix.

We propose in Appendix [Bf another MPC protocol to check that wtgr(z) < r, which does not rely on the
above transformation. The core idea of this protocol is to transform z into a vector d (using ITyv) such that

WtSR(I) = WtH(d)

Then using the MPC protocol of [EJR22], we can check that wty(d) < r and thus we get the desired
inequality.

6 Proof of Knowledge for Permuted Kernel Problem

We want to build a zero-knowledge proof of knowledge for the permuted kernel problem:

Definition 4 (Inhomogenous Permuted Kernel Problem). Let F, be the finite field with q elements.
Let m and n be positive integers. The permuted kernel problem with parameters (q,m,n) is the following
problem:

Let H, y, v and o be such that:

1. H is uniformly sampled from Fg>™,
2. v is uniformly sampled from Fy,

3. o is a random permutation of [n],
4. y is built as y := Ho(v).

From (H,y,v), find o.

The prover wants to convince the verifier that she knows a permutation o such that y = Ho(v). Sharing the
permutation seems the natural strategy, all the previous works adopt it. However, implementing permutations
in a secure way (secure against timing and cache attacks) is a tricky exercise. We propose here a new
proof of knowledge which has a larger communication cost, but which has the advantage of not relying on
permutations. To proceed, the prover will first share the secret vector x := o(v) and then use an MPC
protocol which verifies that this vector satisfies the desired property.

MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) x := o(v) and which
outputs

AccepT if y=Hz and Jo: 2 = o(v)
REJECT otherwise.

Proving that y = Hx is easy since it is linear. The hard part is to prove that there exists a permutation
between x and v, without using any permutation. To proceed, we will check that the two following polynomials
are equal:

PX)=(X—-2z1)...( X —z,) and QX)=(X—v1)...(X —vp).

If they are equal, it means that they have the same roots, and thus we can deduce that x := (z1,...,2,) and
v := (v1,...,v,) are equal up to the order of their coordinates. In practice, to check that P(X) and Q(X)
are equal, we will rely on the Schwartz-Zippel Lemma: we sample a random evaluation point £ in the field
extension Fyn (for some positive integer 71) and we check that P(§) is equal to Q(&). If the two polynomials
are not equal, the probability to get P(£) = Q(§) is upper bounded by

n
‘Fq’“ ‘
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since n is the degree of P(X) — Q(X). Thus, the MPC protocol will compute P(§) = (£ — z1).

from a sharing [«] of « and will compare the result with Q(¢&).
Given an evaluation point &, let us denote

s1:=(§ —x1)
sg 1= (£ —x1)(§ — 2)

Spi=(E—x1)(€—x2)...(§ —xp).
The MPC protocol could proceed as follows:

1. The parties get a random evaluation point £ € Fyn, .
2. The parties get as hints [s1], ..., [sn—1] (which depend on &).
3. The parties execute a multiplication checking protocol to check that

Vie{l,...,n—1}, si-mip1 = Sit1

where s, := Q(£).

(& =xp)

However, all existing multiplication checking protocols induce a communication cost that depends on the

bit size of the multiplication triples. In what follows, we assume that n is even. Let us define

tl =T T2

t2 = XT3 - T4

tn/2 = Tp—1-"Tn
To save communication, the MPC protocol we consider will proceed as follows:

. The parties get a random evaluation point £ € Fgn: .

. The parties get as hints [t1], ..., [t 2] which live in F,.

. The parties get as hints [s4],[s¢], ..., [Sn—2] which live in Fgn, .

. The parties execute a multiplication checking protocol to check that

=W N

Vi € {1, ey n/2}, Toi—1 - XTo; = ;.
5. The parties execute a multiplication checking protocol to check that
Vie{2,...,n/2}, s2io- (52 — (@2i—1 + @2:)€ + ;) = s24

where so := (£2 — (z1 + 22)€ + t1) and s, == Q(&).

Since t;’s bitsize is 77 times smaller than s;’s, the communication cost of this MPC protocol is smaller

than the previous one.

The MPC protocol is completely described in Figure [7] As batch multiplication checking protocol, we

use the MPC protocol ITgyc described in Figure [8| (inspired from [BDK™21]).

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see [FR22, Theorem 2]), we transform the above
MPC protocol into an interactive 7-round zero-knowledge proof of knowledge which enables us to convince a
verifier that a prover knows the solution of a permuted kernel problem. The soundness error of the resulting

protocol is
1 1
E::ﬁ+ 17N Py
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Public values: H € F**", y € Fy* and v € Fy.
Inputs: Each party takes a share of the following sharings as inputs: [x] where z € Fy.

MPC Protocol:

1. The parties get a random £ € Fgn1.
2. The parties get as hints [t1],.. ., [t,/2] where

Vi € {1, ey %}, ti = T2i—1 " T2i.
3. The parties get as hints [s4], [s6], ---, [Sn—2] where

Vied{2,..., g =1}, s2 = s2i-2 - (€ — w2i-1) - (§ — 24)
with s 1= (£ — I1)(§ — 1‘2).
4. The parties execute in parallel the MPC protocols

[z1], [z2], [t:]
[zs], [z4], [t2]

[v1] + TEnE .
[oal, lonl, [t5]
and
[s2], &% — ([wa] + [za]) - € + [t2], [s4]
[s4], &% — ([=s] + [we]) - € + [ts], [s6]
[v2] « e
[sn-4], € — ([xn—3] + [zn—2]) - € + [tz 1], [sn—2]
[sn-2], € = ([zn-1] + [zal) - €+ [tn], Q&)
where [so] = &2 — ([z1] + [w2]) - € + [ta].
5. The parties open v; and wva.

6. The parties locally set [vo] = H[z], and they open vo.
7. The parties outputs ACCEPT if vo = y, v1 = 0 and v2 = 0, and REJECT otherwise.

Fig.7: An MPC protocol which verifies that the given input corresponds to a solution of a permuted kernel
problem.

where

-1 1
=1 (1= ) (1= 1— .
1,72 qm qm e qm e

By repeating the protocol 7 times, we get a soundness error of 7. To obtain a soundness error of A bits,
-2
log, €

thanks to the Fiat-Shamir transform [FS87]. According to [KZ20] (adapted for 7-round proof), the security
of the resulting scheme is

we can take 7 = [ -‘ We can transform the interactive protocol into a non-interactive proof/signature

) 1 1
ﬁ+g1}£3ﬂ { SPMF(7, 71, p1) + SPMF (7 — 71,72, p2)

COStiorge 1= + N }

where SPMF(r,7/,p) := >.__, (7)p'(1 — p)" " and

i=7" \q

n
b1 = )




Inputs: Each party takes a share of the following sharings as inputs:

[r1], [s1], [t
[ra], [sa], [ta]

MPC Protocol:

—_

. The parties get as hints [a], [0] and [c] where a and b are uniformly random in K and ¢ = a - b.
2. The parties locally build the polynomials [R] and [S] such that

[S1(vi) = [si]
3. The parties get as hints [tn1],. .., [t2n—1] where
Vi€ [n—1]tnti = (R S)(Yn+i)-
4. The parties locally build the polynomial [T such that
Vi € [2n = 1], [T] () = [t:].
The parties get random 7,¢ € K.
The parties locally set [a] = ¢ - [R](r) + [a] and [B] = [S](r) + [].

The parties open «, 5 € K.
The parties locally set [v] =¢- [T](r) — [c] +a-[b] + B [a] — a - B.

® N oo

Fig.8: An MPC protocol T}, which verifies that, for all i € [n], r; - s; = t;, where all (r;, s;,¢;)’s belong to
a field F. Let us denote K the field extension of degree 7. 71, . ..,van—1 are distinct elements of F (we assume
that |F| > 2n — 1).

The communication costﬂ of the scheme (in bits) is

A+7-((n—m)-1 misc + A - logy N+ 2)
+7- | (nm)-1ogy ¢ + pmise + A - logy N +

A MPCitH
HMmisc = (* + m (* - 2) + (* - 1) +771 (* — 2) +5771’I72) '10g2 q
2 2 2 2 ~——
tl,...,t%,84,..‘,sn72 T @hB.e

where ) is the security level, (11, 72) are scheme parameters and 7 is computed such that the soundness error
is of A bits in the interactive case and such that costsorge is of A bits in the non-interactive case.

Performance and comparison. In what follows, we compare our scheme with the state of the art on the
permuted kernel instance [Beu20)]:
(g,n,m) = (997,61, 28).

We provide in Tables [§] and [J] a comparison of our scheme with the state of the art. To get a more com-
plete comparison, we include the schemes [Ste94], [Vér96] and [F-JR21] which can be easily adapted for the
permuted kernel problem.

The first schemes [Ste94] and [Vér96] can achieve signature sizes of around 20 — 25 KB (let us remark
that some optimization tricks have been used to achieve these sizes). Then, using a protocol with helper,
Beullens [Beu20] reduces the sizes to around 15 KB (12—18 KB). Thanks to their MPC-in-the-Head technique

" The formula of this cost assumes that the matrix is in standard form (as in Section [5.3). We omit this detail in
Figure m for the sake of simplicity.
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of the “shared permutation”, [FFJR2I] achieves similar performance. [BG22] then succeeds to remove the
helper from [FJR21] by leveraging the linearity of the permuted kernel problem and thus currently has the
best sizes from the state of the art (9 — 10 KB). Our scheme has similar signature sizes as [Beu20] and
[FJR21], and is outperformed by [BG22]. However, our scheme presents several advantages:

— instead of using permutations, our scheme works on polynomials, which is easier to securely implement;

— our scheme is more parallelizable since all the parties run computation in parallel, whilst the parties in
[FJR21] and [BG22] run computation in series;

— our scheme is more compatible with existing MPC-in-the-Head techniques. As example, our scheme is
compatible with techniques from [FR22] (like fast signature verification) and from |[AGH™23| (see next
section), while the previous schemes based on PKP were not.

Scheme Name Security Signature Size
[Sha90] KZ(3,3) T [2ptdig + Hmask + Msmal]
[Ste94] (3/2)7 fdig + 7 [ 5 (2ftmask + feman + 2ftsced) + fidig)
[Vér96] (3/2)7 Pdig + T [%(ﬂmask + Uptx + Hsmall + 2/isced) + ,udig]
PKP-DSS [BFK'19) KZ(17,3) Hdig + T+ [fbmask + Hdig + 2ftseed]

SusHYF1sH [Beu20] | enetper(T, M, 7)™ | fraig + 7 [ftmask + Hsmant + 2iseed + Hdig - 1082(q") + fihetper]
[EJR21] Ehelper (T, M, %)71 Hdig + T [Hmask + Hptx T Hsmall + UMPCitH + [helper)
[BG22] KZ(q%], ) fdig + T [Hmask + Hsmall T UMPCitH + [helper]

2paig + T [fptx + Pmisc + UMPCitH
Our scheme KZs(p1,p2, %) N [ ]

where pimise := ((n = 1)(m +1) + 71 (512 — 3)) log, ¢

Table 8: Sizes of the signatures relying on the permuted kernel problem (restricting to the schemes using the
FS heuristics). The used notations are: pimask := 110g2q, fsman := nlogy N, fpix = (n — m)log, ¢, plus all
the notations defined in Section

Parameters
Instance Protocol Name Variant Signature Size
N[M[7 m][mn]"®
Shamir [Sha90) - - | - |149| - | - 27746 B
Stern [Ste94] - - - |219] - | - 23848 B
Véron [Vér9o) - - |- [219] - | - 21272 B
PKDP-DSS [BEK 19] | - B I /1) i 20961 B
Fast 4 (191| 68| - - 18448 B
—C \
qn__‘)é)f SusayFiss [Beu20] | g o |l1aslorg| 20| - | - | 12145 B
- Fast 8 |187|49 | - - 15420 B
m =38 (EIR21) Short || 32 |389| 28 | - - 11947 B
Fast 32| - |42 - - 9896 B
(RG22) Short {256 - |31 - - 8813 B
Our sch Fast 32| - |41 2 | 2 16373 B
ur scheme Short |[256) - [24] 3 | 2 12816 B

Table 9: Sizes of the signatures relying on the permuted kernel problem (restricting to the schemes using the
FS heuristics). Numerical comparison.
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7 Running times

To provide a fair comparison of our work with the state of the art, we need to give an estimation of
the computational performances of our proposals. The best way to proceed would be to have optimized
implementations for them, but producing such implementations requires dedicated work for each of the
proposed signature schemes. Since the code of those schemes would be similar except for the part about the
MPC protocols, we decided to develop a unified MPC-in-the-Head libraryﬂ The idea is to factorize as much
as possible the common code of the MPCitH-based signatures. As long as they respect the expected API, a
user just needs to implement

— the code which generates an instance of the hard problem with its solution,
— the computation of a party in the MPC protocol.

Then they can rely on the library to get the desired signature scheme. Thanks to this library, we were able
to estimate the running times of the schemes proposed in this article.

Until recently, the only way to implement an MPCitH-based proof system was by emulating all the parties
of the underlying MPC protocol, implying that we would need to emulate N times a party per repetition.
The recent work [AGH 23] changes this drastically. The authors suggest generating the input shares of
the parties in a correlated way using a hypercube approach. This optimization enables us to emulate only
1 + logy(N) parties per repetition. For example, in Section 4} we propose to take 7 = 25 and N = 256
for the “short” trade-off of our scheme. Without the optimization of [AGHT23|, we would need to emulate
7+ N = 6400 times a party per signing. With it, we just need to emulate 7 - (1 +log, N) = 225 times a party,
reducing the computational cost of the MPC emulation by a factor of 28.

We included the [AGH™ 23| optimization in the library. The obtained signing times are given in Table
except for the scheme relying on the permuted kernel problem. We put the running time of [AGHT23] for
SDitH in the table, but to provide a fairer comparison with the other schemes, we reimplement it using our
library and give the achieved performances. In our implementations, the pseudo-randomness is generated
using AES in counter mode, the hash function is instantiated with SHA3, and the MPC challenge (i.e. the
challenge provided by Og, see Section is sampled using SHAKE. We benchmarked our schemes on a 3.8
GHz Intel Core i7-10700K CPU with the support of AVX2 and AES instructions. All the reported timings
were measured on this CPU while disabling Intel Turbo Boost.

In our benchmarks, we decompose the running time of our schemes in six parts: the expansion of the
seed trees, the commitments of the input shares, the expansion of the input shares from seeds, the remaining
operations to prepare input shares (e.g. the computation of the shares of the “main” parties of the hypercube
technique), the emulation of the MPC protocol and the rest of the computation.

We optimized the factorized code which mainly relies on symmetric primitives. For example, we rely on
fourfold calls of Keccak (for SHA3) using AVX instructions. However, the arithmetic parts used by the MPC
protocols have not been optimized, since it would require dedicated work for each scheme (and is out of the
scope of this article).

In Table we did not give the running times for the key generation and the signature verification. For
all these schemes, the key generation is fast since it only consists in generating a random instance of the
underlying hard problem. It usually takes less than 0.5 ms. Moreover, for all the MPCitH-based schemes
relying on additive sharings, the verification time is similar (slightly smaller) to the signing time since the
verifier must re-emulate the MPC protocol (as the prover) except for one party (to keep the zero-knowledge
property).

Here is an analysis of the obtained running times:

— Tree Expansion: it consists in deriving N seeds from a master seed using the structure of a binary
tree. This operation only depends on the number of parties N, and it is repeated at each repetition (i.e.
7 times). Thus, when we fix N, the computation contribution is linear in 7. It can be observed from the
benchmark: when N = 32, it takes 0.0073 - 7 ms, and when N = 256 it takes 0.055 - 7 ms.

8 This library is available at https://github.com/CryptoExperts/libmpcith.
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Tree Commitment Randomness Share MPC Misc Total Size
Scheme Expansion Expansion | Preparation | Emulation signing time
in ms in ms ‘ in Mc | in bytes
Variant “Short” — 256 parties (N = 256)
. - - - - - - 3-7* -
SDitH [FIR27] 0.93 0.97 0.61 0.29 4.57 0.41 | 7.78* 30 8459
MQ over Fase 1.37 1.42 0.53 0.40 6.25 0.59 || 10.56 40 7114
MQ over Fas1 1.37 1.42 1.24 1.77 2.17 0.59 8.56 33 7114
MinRank (with RD) 1.06 1.11 1.52 0.51 3.75 0.44 8.39 32 7122
MinRank (with LP) 0.99 1.05 1.12 0.45 13.23 0.38 || 17.22 65 5518
Rank SD (with RD) 1.16 1.22 0.69 0.27 2.36 0.42 6.12 23 8543
Rank SD (with LP) 1.10 1.14 0.51 0.24 3.72 0.38 7.09 27 5899
Variant “Fast” — 32 parties (N = 32)
SDitH [FTR22 ) - . . . o s 11835
y 0.20 0.22 0.12 0.04 5.35 0.17 || 6.10° 23
MQ over Fasg 0.26 0.28 0.10 0.05 6.9 0.24 7.83 30 8488
MQ over Fasi 0.26 0.28 0.22 0.23 2.15 0.28 3.42 13 8488
MinRank (with RD) 0.24 0.27 0.28 0.07 2.68 0.16 3.70 14 9288
MinRank (with LP) 0.20 0.23 0.21 0.12 13.63 0.15 14.54 55 7204
Rank SD (with RD) 0.24 0.27 0.13 0.07 2.30 0.18 3.19 12 11000
Rank SD (with LP) 0.22 0.24 0.09 0.03 3.71 0.12 4.41 17 7376

Table 10: Benchmark of our implementations of the proposed signature schemes (128 bits of security). All
the timings are given in milliseconds, except those in the column “in Mc” which are given in megacycles.
Timings with * correspond to the implementation of [AGHT 23|, while timings with * correspond to our own
implementation of SDitH using the library. The verification is around 5 — 10% faster than the signing.

— Commitment: it consists in committing the input shares of N parties. In practice, it consists in com-
mitting a A-bit seed for all the parties except the last one. The cost of committing the entire input
share of the last party tends to be negligible compared to the cost of committing N — 1 seeds. Thus, the
computation contribution of the commitments is roughly linear in N - 7. From the benchmark, we get
that it takes 0.0575- 7 ms when N = 256 and 0.0082 -7 ms when N = 32 (committing a seed with a salt
takes around 220 nanoseconds).

— Randomness Expansion: it consists in expanding seeds to get input shares. The computational cost
depends on the number 7 of repetitions, the size of the input shares, and the field from which elements
should be sampled. When the field is an extension of o, the sampling can be efficient. However, sampling
in another field is less efficient since we need to deal with rejection. It explains why the cost of this step
is larger for MQ over Fa5; than for MQ over Fasg.

— Share Preparation: it consists in getting the input share of the last party from the other ones and
in computing the shares of the “main” parties of the hypercube technique (see [AGHT23| for details).
It depends on 7, the size of the input shares, and the additive law of the underlying field. This step is
very efficient when working in characteristic two since the addition is the bitwise XOR. When working
in prime fields, we need to deal with reduction.

— MPC Emulation: it consists in emulating the MPC protocols. Thanks to the hypercube technique,
it consists in emulating 1 + log,(N) parties by repetition. The important point to remark here is that
the choice of N does not impact a lot the emulation cost. It comes from that 7 = logzﬁ, so the total

computation cost of the emulation correspondsﬂ to the cost of emulating 7 (1 4 logy(N)) =~ X + w
parties.

— Misc: it corresponds to the rest of the signing computation (decompression of the public key, building
the signature, ...).

In this article, we propose two MPC protocols to check that a matrix has a small rank: one based on rank
decomposition (RD), and one based on g-polynomials (LP). The second protocol leads to smaller signature

A

9 We omit here that 7 is larger than Togs (V)

would be the same.

to be secure againt the forgery attack of [KZ20|, but the conclusion
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sizes, but it tends to be less efficient in running timing since it involves computation in a field extension.
From the benchmark, we can observe that both protocols give similar running times when applied to the rank
syndrome decoding problem. However, when applied to MinRank, the MPC protocol based on g-polynomials
gives a slow scheme. As explained previously, the arithmetics of the implementations have not been optimized.
The scheme “MinRank (with LP)” suffers from this lack of optimizationﬂ

8 Conclusion

In this work, we studied how the MPC-in-the-Head paradigm behaves for the multivariate quadratic problem,
the MinRank problem, the rank syndrome decoding problem and the permuted kernel problem.

While a straight application of this paradigm to the permuted kernel problem seems to produce schemes
with limited performances, it enables to reduce communication cost when considering the multivariate
quadratic problem on larger fields as Fasg.

The main contribution of this work is to reduce the task of proving the low rank of a matrix to proving
that some field elements are roots of a g-polynomial. Such polynomials are MPC-friendly thanks to the
linearity of the Frobenius endomorphism. Using this reduction, we can produce signatures relying on the
MinRank problem and on the rank syndrome decoding problem with sizes below 6 KB.
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— Supplementary Material —

A Using Shamir’s Secret Sharings in the Proof of Knowledge for Rank SD

Let us focus on the MPC protocol described in Figure [6} This protocol checks that a vector corresponds to
a solution of a rank syndrome decoding problem, by using a ¢-poynomial. In what follows, we describe how
the MPC protocol behaves when replacing additive sharings by Shamir’s secret sharings over Fym.

To share a secret value v € Fgm, the (¢ + 1, N)-Shamir’s secret sharing scheme proceeds as follows:

— sample r1,...,r, uniformly in Fgm,

— build the polynomial P as P(X) = v+ Y3\_, 1 X",

— build the shares [v]; as evaluations P(e;) of P for each i € {1,..., N}, where ey,...,ey are public
non-zero distinct points of Fym.

From a sharing [v] of v, the parties can easily build a sharing of v?: they just need to compute
[v?]: < [olf

for all . However, the parties’ evaluation points of [v?] are not ey, ..., ey, but they are e, ..., €% . Indeed,
we have

Vi q
P(X)1 = <v + Zrﬁ(’)
=1
4
=7 4+ Z T?X‘”
=1

4
=l 4+ (X9
=1

¢
= P'(X9), where P':=v7+ ngXi.

i=1

Thus for all 7, we get
[v]} = P(ei)? = P'(ef) = [v']i

if P is the polynomial which encodes [v?].
Adding two sharings is possible if and only if those two sharings have the same parties’ evaluation points.
The MPC protocol described in Figure [f] satisfies this property, enabling us to replace the additive sharings

by Shamir’s secret sharings over F,m. If we denote e, ..., en the parties’ evaluation points of [z ], then
— for all i € {0,...,r — 1}, the parties’ evaluation points for Jw;], [a;] and Jo;] are e‘{l, e e}]\;,
— the parties’ evaluation points for [8], [2] and [c] are e‘f' b ,e?\;.

B Proof of Knowledge for Sum-Rank SD

We want to build a zero-knowledge proof of knowledge for the sum-rank syndrome decoding problem:
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Definition 5 (Sum-Rank Syndrome Decoding Problem). Let F,m be the finite field with ¢™ elements.
Let (n,k,£,1) be positive integers such that k < n and £ | n. We define the sum-rank weight wtsg(z) of an
element of Fym as

n/l

wtsgr(z) := Z Wt g (i),

with x := (v1,...,22). The sum-rank syndrome decoding problem with parameters (q,m,n,k,{,r) is the
following problem:

Let H, x and y be such that:

1. H is uniformly sampled from {(H'|I,—1), H' € ]Féﬁl_k)xn},
2. x is uniformly sampled from {x € Fyn : wtsr(z) < r},
8.y is built as y :== Hz.

From (H,y), find x.

The prover wants to convince the verifier that she knows such an z, i.e. a vector x € Fj.. such that
y = Hx and wtggr(z) < r. To proceed, the prover will first share the secret vector z and then use an MPC
protocol which verifies that this vector satisfies the above property.

MPC Protocol. As in Section [5.3] H is in standard form and we split the secret

— TA
v () )

We want to build an MPC protocol which takes as input (a sharing of) x4 and which outputs

T
. n/l . o A
Accepr if 37 wtr(z;) < 7 where = <y _ H'$A>
T3
REJECT otherwise.

For each chunk z; € F... with i € [%], let us define the binary vector d; € {0,1}* as

0 if ((ﬁl)J € Vect]pq((xi)l, ey ((Ei)jfl)
1 otherwise

Vi€ l, (di);:= {

and let us remark that there exists a lower triangular matrix 7; € Fg” with the form ) such
* *

* % x 1
that

di ox; = TZSL'Z

where o is the component-wise multiplication. The matrix T; corresponds to the process of removing depen-
dencies in x;. We have

WtH(dl) Z WtH(di o .’EZ) = WtR(di o xz)

since each non-zero coordinates of d; o x; are independent by definition of d;. Moreover, we have

WtR(di o {)Si) = WtR(TiSUZ‘) = WtR(LL‘i)
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since T; is invertible. By defining d := (dy, ...,d=), the MPC protocol will check that wt(d) < r, and since

% 2
wtg() =Y wtr(diow;) <Y wty(d;) = wta(d)
=1 =1

'Mw

=1

the desired inequality would be checked. In order to check wty(d) < w, we will use the protocol of [FJR22).
To sum up, to check the weight inequality, the MPC protocol takes as input the vectors d ...,d=z and
the matrices 71,...,T» (in addition to x4) and proceeds as follows:

(y —[[ffil[][}mﬂ ) '

2. The parties execute the [FJR22]’s protocol to check that wtg(d) < 7.

3. For i€ {1,..., %}, the parties check that d; o x; = T;x; as follows:
— The parties locally set [D;] € F{*¢ as a diagonal matrix for which the diagonal is the vector [d;].
— The parties executes the protocol II{},; to check that (D; — T;)x; = 0.

1. The parties locally build [z] as

The MPC protocol is completely described in Figure [0}

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section [2.1)), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince a verifier that a
prover knows the solution of a sum-rank syndrome decoding problem. The soundness error of the resulting

protocol is
1 1 1
EIZN"— ].—N max q777767717"72

where 0y, . is the false positive rate of [FJR22]. By repeating the protocol 7 times, we get a soundness error

—A
log, €

of 7. To obtain a soundness error of A bits, we can take 7 = { —‘ We can transform the interactive

protocol into a non-interactive proof / signature thanks to the Fiat-Shamir transform [FS87]. According
to [KZ20Q], the security of the resulting scheme is

costy, = min 1 + N
orege T1,T2:T1+To=T Z‘ir:ﬁ (:)pl(]_ _ p)Tfi

o 1
where p := max (q7757z1,n2>-

The communication cost of the scheme (in bits) is

n(l—1¢ n n .
4)\+T-((k-m—|—ZT+Z(€— 1)+Z(n-€)+n~m1n{m,€—l}+
A ———
Tl,‘u d17... Cy,(X1 ...

2rny + 3mne) - logy g + A - logy N 4 2))
SDitH MPCitH

where A is the security level, r is a scheme parameter and 7 is computed such that the soundness error is of
A bits in the interactive case and such that costsorge is of A bits in the non-interactive case.
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Public values: H = (H'|I,,—x) € Ffﬁfk)xn and y € Ff;ﬁk.

Inputs: Each party takes a share of the following sharings as inputs:

[za] where x € F¥n,
— [dI,IT1], ..., [T=] where d € {0,1}" and Ti ..., T= € Fg*“ such that

we{L...,%},dioxi:Timi

lai],...,[an] where ai,...,an € Fpxt,

[c] where ¢ € Fl.. such that ¢ =>"" | a;z;

[Q] where @ =[], .o(X —7:) € Fgm [X]

— [P] where P € Fgn [X] satisfies SQ = FP with F(X) := ]];c(,)(X — ) and S the unique polynomial of degree
n — 1 such that S(v;) = d; for all i € [n].

— [a'],[¥'], [¢'] where @', b, ¢’ € Fgmna such that ¢ =a’ - b'.

[T] where T' € Fy** and [R] where R € Fy**™, such that X = TR where X is the matrix form of z.
MPC Protocol:

1. The parties get random Xi,...,Xn € Foxe,
2. The parties get random r,&’ € Fynina.

3. The parties locally compute [S] by interpolation such that V7, [S(v:)] = [d;] € Fq-
4. The parties locally compute [S(r)], [Q(r)] and [P(r)].

5. The parties locally set [a'] =" - [Q(r)] + [@'] and [B'] = [S(r)] + [V']

6. The parties open o’ and 3’.

7. The parties locally set [v'] =& - [(F-P)(r)] =[]+ - V'] +8 - [d'] - - 5"
8. The parties locally set [zg] =y — H'[z4].

9. The parties locally set [z] = ([za], [zB])-
10. Fori e {1,...,%},
— The parties locally write [d;] as a diagonal matrix [D;] € F5*“.
— The parties locally set [oi] = 2:([D:] — [T3]) + [a:]-
— The parties open «; € IF‘;’”.
11. The parties locally set [v] = Zil aifzi] — [c].

12. The parties outputs ACCEPT if v = 0 and v’ = 0, and REJECT otherwise.

Fig.9: An MPC Protocol that verifies that the given input corresponds to a solution of a sum-rank syndrome
decoding problem. 7,..., v, are distinct points of Fym
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