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Abstract

We present the first round-optimal and plausibly quantum-safe oblivious transfer (OT) and
multi-party computation (MPC) protocols from the computational CSIDH assumption – the
weakest and most widely studied assumption in the CSIDH family of isogeny-based assumptions.
We obtain the following results:

• The first round-optimal maliciously secure OT and MPC protocols in the plain model that
achieve (black-box) simulation-based security while relying on the computational CSIDH
assumption.

• The first round-optimal maliciously secure OT and MPC protocols that achieves Universal
Composability (UC) security in the presence of a trusted setup (common reference string
plus random oracle) while relying on the computational CSIDH assumption.

Prior plausibly quantum-safe isogeny-based OT protocols (with/without setup assumptions) are
either not round-optimal, or rely on potentially stronger assumptions.

We also build a 3-round maliciously-secure OT extension protocol where each base OT pro-
tocol requires only 4 isogeny computations. In comparison, the most efficient isogeny-based OT
extension protocol till date due to Lai et al. [Eurocrypt 2021] requires 12 isogeny computations
and 4 rounds of communication, while relying on the same assumption as our construction,
namely the reciprocal CSIDH assumption.
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1 Introduction

Oblivious transfer (OT) [Rab05, EGL82] is an interactive protocol between two parties: a sender
and a receiver. Informally speaking, an OT protocol involves a sender holding two messages m0

and m1, and a receiver holding a bit b ∈ {0, 1}. At the end of the protocol, the receiver should
only learn the message mb and nothing about the other message m1−b, while the sender should
learn nothing about the bit b. OT serves as a fundamental building block in cryptography [Kil88],
particularly in secure multi-party computation (MPC) [Yao86, IKO+11, BL18, GS18]. Round
optimal OT protocols imply round-optimal MPC protocols [BL18, GS18, CCG+20] and hence are
always desirable.

Quantum-Safe OT. With steady progress in quantum computing, the study of post-quantum
cryptography has gained significant momentum in recent years, especially in light of Shor’s al-
gorithm [Sho94], which breaks traditional cryptographic assumptions such as factoring and dis-
crete log. OT protocols are known from various plausibly quantum-safe assumptions such as lat-
tices [PVW08, BD18, MR19], codes [DvMN08, DNM12, MR19], and isogenies of elliptic curves
[BOB18, Vit18, LGdSG21]. Unfortunately, many isogeny-based OT constructions [BOB18, dS-
GOPS20, Vit18] are now (classically) broken in light of the recent attacks on the Supersingular
Isogeny Diffie-Hellman (SIDH) assumption [CD22, MM22]. Hence, the only plausibly quantum-safe
isogeny-based OT constructions are the ones based on the Commutative SIDH (CSIDH) [CLM+18]
family of isogeny-based assumptions, which are not affected by the recent attacks on SIDH.

The CSIDH Family of Assumptions. The CSIDH family of (plausibly quantum-safe) isogeny-
based assumptions includes the computational CSIDH assumption [CLM+18] (the CSIDH-equivalent
of the traditional CDH assumption), the decisional CSIDH assumption [CSV20, ADMP20, BKW20]
(the CSIDH-equivalent of the traditional DDH assumption), the reciprocal CSIDH assumption
[LGdSG21], and certain variants of these assumptions [AEK+22]. Of these, the computational
CSIDH assumption is the weakest assumption (equivalently, the hardest problem to solve). The
decisional CSIDH assumption implies the computational CSIDH assumption, and has been shown
to be broken for certain families of elliptic curves [CSV20]. Finally, the reciprocal CSIDH as-
sumption is only quantum-equivalent to the computational CSIDH assumption; the corresponding
classical equivalence is not known (see discussion in [LGdSG21]).

OT from CSIDH-based Assumptions. Many recent works have constructed OT protocols
from the CSIDH family of isogeny-based assumptions. We broadly categorize these OT construc-
tions as: (i) OT protocols in the plain model, i.e., without any (trusted) setup assumptions, or
(ii) OT protocols in the setup model, i.e., assuming the existence of some (trusted) setup and/or
random oracles.

In the plain model, there exist round-optimal OT protocols achieving various security no-
tions from the decisional CSIDH assumption [ADMP20, KM20] and the reciprocal CSIDH as-
sumption [BPS22]. We present a summary of these protocols in Table 1. In the setup model,
round-optimal OT protocols are known from the decisional CSIDH assumption [ADMP20, BKW20,
AMPS21]. A recent work by Lai et al. [LGdSG21] proposed an elegant OT protocol from the recip-
rocal CSIDH assumption; however, their construction is not round-optimal. We summarize these
protocols in Table 2.

Notably, there exist no (round-optimal) OT protocols in the plain/setup model from the com-
putational CSIDH assumption, which is the weakest (and most widely studied) assumption in the
CSIDH family of isogeny-based assumptions. This motivates us to ask the following question:
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Table 1: Comparison of plausibly quantum-safe maliciously secure OT protocols in the plain model from the CSIDH family
of isogeny-based assumptions

Protocol Computational Assumption Rounds Security Model

[ADMP20]-1 decisional CSIDH 2 semantic
[BPS22]-1 reciprocal CSIDH 3 semantic
[KM20] decisional CSIDH 4 simulation-secure

[BPS22]-2 reciprocal CSIDH 4 simulation-secure
Our Protocol-1 computational CSIDH 4 simulation-secure

Table 2: Comparison of plausibly quantum-safe maliciously secure OT protocols in the setup model from the CSIDH family
of isogeny-based assumptions. The protocols of [ADMP20, AMPS21] are in the CRS model. All other protocols are in the
CRS+random oracle model.

Protocols Computational Assumption Rounds Security Model

[ADMP20]-2 decisional CSIDH 2 UC-secure
[BKW20] decisional CSIDH 2 UC-secure
[AMPS21] decisional CSIDH 2 UC-secure

[LGdSG21]-1 reciprocal CSIDH 3 simulation-secure
[LGdSG21]-2 reciprocal CSIDH 4 UC-secure

Our Protocol-2 computational CSIDH 2 UC-secure

Can we design round-optimal OT protocols from computational CSIDH?

1.1 Our Contributions

In this paper, we answer the above question in the affirmative by presenting the first round-
optimal, maliciously secure, and plausibly quantum safe OT protocols in various settings from the
computational CSIDH assumption. In particular, we propose two new round-optimal maliciously
secure OT protocols in the plain and common reference string1 (CRS) models, while relying on
the computational CSIDH assumption. These also yield the first round-optimal MPC protocols in
the respective settings from the computational CSIDH assumption. Our main contributions can
be summarized as follows.

Round Optimal OT and MPC in the Plain Model. We propose the first round-optimal (4-
round) OT protocol in the plain model while relying on the computational CSIDH assumption. Our
construction satisfies perfect correctness and simulation-based security against malicious corruption
of parties, which is the strongest notion of OT security that is achievable in the plain model. Our
result is captured by the following (informal) theorem.

Theorem 1. (Informal) Assuming computational CSIDH, there exists a 4-round OT protocol in the
plain model that achieves perfect correctness and (black-box) simulation-security against malicious
corruption of parties.

In Table 1, we present a comparison of our proposed OT construction with known construc-
tions of round-optimal OT in the plain model from the CSIDH family of assumptions. Addition-
ally, by invoking known relationships between round-optimal OT and MPC in the plain model
from [CCG+20], we achieve the following (informal) corollary.

1The setup string is structured and it is sampled from a given distribution.

4



Corollary 1. (Informal) Assuming computational CSIDH, there exists a 4-round MPC protocol in
the plain model with (black-box) simulation-security against malicious corruption of parties.

This is the first round optimal MPC protocol achieving (black-box) simulation security in the
plain model from the computational CSIDH assumption.

Round-Optimal OT and MPC assuming Trusted Setup. We propose the first round-
optimal (2-round) OT protocol in the CRS plus random oracle model2 while relying on the compu-
tational CSIDH assumption. Our construction satisfies perfect correctness and universal compos-
ability (UC)-security against malicious corruption of parties, which is the strongest notion of OT
security that is achievable in the trusted setup model. Informally, we prove the following theorem.

Theorem 2. (Informal) Assuming that the computational CSIDH assumption holds, there exists
a 2-round OT protocol in the CRS plus random oracle model that is UC-secure against malicious
corruption of parties.

In Table 2, we present a comparison of our proposed OT construction with known constructions
of round-optimal OT in the trusted setup model from the CSIDH family of assumptions. Finally,
by invoking known relationships between round-optimal OT and MPC from [GS18], we achieve the
following (informal) corollary.

Corollary 2. (Informal) Assuming that the computational CSIDH assumption holds, there exists
a 2-round MPC protocol in the CRS plus random oracle model that is UC-secure against malicious
corruption of parties.

This yields the first construction of round-optimal MPC in the CRS plus random oracle model
from the computational CSIDH assumption.

Efficient OT Extension. As an additional contribution, we propose the first UC-secure OT
extension protocol that relies on the computational CSIDH assumption. Concretely, we show that
an optimized variant of the recent 4-round OT protocol due to Lai et al. [LGdSG21] can be plugged
into the OT extension compiler due to Canetti et al. [CSW20a] to build a UC-secure 3-round OT
extension protocol in the random oracle model. This yields the most efficient (to our knowledge)
UC-secure OT extension protocol currently known from isogeny-based assumptions.3

Our construction of OT extension builds upon a maliciously secure base OT protocol that
requires a total of 4 isogeny computations. On the other hand, the state-of-the-art 4-round mali-
ciously secure protocol of [LGdSG21] incurs 12 isogeny computations, while relying on the same
hardness assumption as our construction (the reciprocal CSIDH assumption).

1.2 Related Work

In this section, we review existing OT constructions from other plausibly post-quantum secure
assumptions, such as lattices and codes, as well as constructions of OT relying on generic crypto-
graphic primitives that can be instantiated from these assumptions. We then elaborate on the prior
constructions of isogeny-based OT from the CSIDH family of assumptions. See Tables 1 and 2 for
a comparison our results with these prior OT protocols in the plain and setup models, respectively.

2The random oracles in our protocol are local to each session.
3We note that while prior works on OT from isogenies do not explicitly construct OT extension protocols, they

do yield base OT protocols that can be converted in a generic manner into full-fledged OT extension protocols.
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Lattice-based OT. To the best of our knowledge, the first lattice-based oblivious transfer pro-
tocol was designed by Peikert, Vaikuntanathan and Waters [PVW08], that relies on LWE [Reg05].
Their OT protocol follows a more generic framework on dual encryption and achieves round-
optimality as well as UC security in the CRS model. A recent result of Quach [Qua20] improves
the [PVW08] construction so that the CRS can be reused by multiple OT executions. Another
recent work by Büscher et al. [BDK+20] provided an instantiation of a lattice-based OT from ad-
ditive homomorphic encryption. The work of [AMPS21] presents the first adaptively secure OT
protocol from LPN in the crs model. Their protocol is UC-secure and requires two rounds. The
OT construction of Brakerski and Döttling [BD18] provided the first two-round SSP OT (without
a CRS).

An alternative to constructing an OT is to construct an oblivious pseudorandom function which
implies [JL09] an OT. Albrecht, Davidson, Deo and Smart [ADDS21] showed how to construct an
oblivious pseudorandom function from ideal lattices using non-interactive zero-knowledge argu-
ments [CSW22, PS19, CCH+19].

Code-based OT. There are two OT constructions based on code-based assumptions [DvMN08,
DNM12]. Both of these constructions use the specific assumption underlying the McEliece cryp-
tosystems [McE78]. Among these, only the latter achieves UC security. Recently, Bitansky and
Freizeit [BF22] showed how to realize a statistically sender-private (SSP) OT protocol with seman-
tic security against a computationally bounded sender and an unbounded receiver while relying on
the learning with parity (LPN) assumption plus Nissan Wigderson style derandomization.

Generic OT constructions. Generic approaches to realize [BGJ+18, MR19, FMV19, DGH+20]
OT rely on public-key encryption schemes with specific properties. Unfortunately, known public-key
encryption schemes from isogeny-based assumptions (including the CSIDH family of assumptions)
do not satisfy any of these properties. For example, to use any isogeny-based PKE in the framework
of [MR19], one inherently needs the ability to hash into a curve in the family of supersingular
elliptic curves, which is not known so far (see [Pet17, DMPS19, CPV20, BBD+22, MMP22] for
more details). For the constructions of Badrinarayanan et al. [BGJ+18] and Friolo et al. [FMV19]
in the plain model, one needs a PKE with dense public-key space – this is again not known to exist
from isogeny-based assumptions. Döttling et al. [DGH+20] provided a generic approach to obtain
2-round UC-secure OT in the CRS model from protocols satisfying very mild form of security,
known as elementary OT – this gives 2-round OT from LPN [ACPS09]. The work of [AMPS21]
builds on that to construct the first adaptively secure OT from LPN or isogenies by considering an
elementary OT with sampling properties.

Prior Isogeny-based OT. Prior works [BOB18, dSGOPS20, Vit18, BKW20] have realized
isogeny-based OT constructions from the well-known SIDH assumption and its variants. Unfortu-
nately, these constructions are now (classically) broken in light of the recent attacks on the SIDH
assumption [CD22, MM22, Rob22]. The construction of [BKW20] was, in fact, broken in its original
form by an earlier attack proposed in [BKM+21].

Prior works have realized OT protocols in the plain model achieving various security notions
from the decisional CSIDH assumption [ADMP20, KM20] and the reciprocal CSIDH assump-
tion [BPS22]. The authors of [ADMP20] showed how to construct a 2-round SSP OT protocol
with semantic security against a computationally bounded sender and an unbounded receiver from
the decisional CSIDH assumption. The authors of [KM20] showed how to construct a 4-round OT
protocol with full-fledged simulation security from any 2-round SSP OT protocol. The authors
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of [BPS22] showed how to construct a 3-round statistically receiver-private (SRP) OT protocol
with semantic security against a computationally bounded receiver and an unbounded sender from
the reciprocal CSIDH assumption. They also showed a construction of 4-round OT protocol with
full-fledged simulation security from any 3-round SRP OT protocol. See Table 1 for a comparison
of our proposed OT protocol in the plain model with these prior OT protocols.

In the setup model, round-optimal OT protocols are known from the decisional CSIDH assump-
tion [ADMP20, BKW20, AMPS21]. The OT construction of [BKW20] was not explicitly described,
but follows implicitly from the construction of oblivious PRF from decisional CSIDH (plus random
oracles) in the same paper. The work of [AMPS21] presents the first adaptively secure OT protocol
from isogenies. Their protocol is round optimal and relies on decisional CSIDH assumption. The
recent work by Lai et al. [LGdSG21] proposed an elegant OT protocol from the reciprocal CSIDH
assumption (plus random oracles); however, the simulation-secure and UC-secure versions of their
construction require 3 rounds and 4 rounds, respectively, and are hence not round-optimal.

2 Preliminaries

Notation. For a ∈ N such that a ≥ 1, we denote by [a] the set of integers lying between 1 and
a (both inclusive). We use κ to denote the security parameter, and denote by poly(κ) and negl(κ)
any generic (unspecified) polynomial function and negligible function in κ, respectively. For a finite
set S, we use s ←R S to sample uniformly from the set S. For a probability distribution D on a

finite set S, we use s←R D to sample from D. We use the notations
s
≈ and

c
≈ to denote statistical

and computational indistinguishability of distributions, respectively.

2.1 Basic Cryptographic Primitives

Weak Unpredictable Function (wUF)[AMPS21]. Let K, X, and Y be sets indexed by
κ. A weak unpredictable function (wUF) family is a family of efficiently computable functions
{F (k, ·) : X → Y }k∈K such that for all PPT adversaries A we have the following:

Pr[AF
$
k (1κ, x∗) = F (k, x∗)] ≤ negl(κ),

where k ←R K, x∗ ←R X, and F $
k is a randomized oracle that when queried samples x←R X and

outputs (x, F (k, x)).

Weak Pseudorandom Function (wPRF). Let K, X, and Y be sets indexed by κ. A weak
pseudorandom function (wPRF) is a family of efficiently computable functions {F (k, ·) : X →
Y }k∈K such that for all PPT adversaries A we have the following:∣∣∣Pr[AF

$
k (1κ) = 1]− Pr[Aπ$

(1κ) = 1]
∣∣∣ ≤ negl(κ),

where k ←R k, F $
k is a randomized oracle that when queried samples x ←R X and outputs

(x, F (k, x)), and π$ is a randomized oracle that when queried samples x←R X and y ←R Y , and
outputs (x, y).

2.2 Cryptographic Group Actions

In this section we recall the definitions of cryptographic group actions from [ADMP20]. We note
here that the authors of [ADMP20] use the definitions of Brassard and Yung [BY91] and Cou-
veignes [Cou06] as starting points to provide definitions that allow for easy use of isogenies (in
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particular, isogeny families such as CSIDH [CLM+18] and CSI-FiSh [BKV19]) in cryptographic
protocols. We begin by recalling the definition of a group action.

Definition 1. (Group Action [BY91, Cou06, ADMP20]). A group G is said to act on a set X if
there is a map ? : G×X → X that satisfies:

1. Identity: If e is the identity element of G, then for any x ∈ X, we have e ? x = x.

2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh) ? x = g ? (h ? x).

Throughout this paper, we use the abbreviated notation (G,X, ?) to denote a group action.

Remark 1. If (G,X, ?) is a group action, for any g ∈ G the map πg : x 7→ g ? x defines a
permutation of X.

Properties of Group Actions. We consider group actions (G,X, ?) that satisfy one or more of
the following properties:

1. Abelian: The group G is abelian.

2. Transitive: For every x1, x2 ∈ X, there exists a group element g ∈ G such that x2 = g ? x1.
For such a transitive group action, the set X is called a homogeneous space for G.

3. Faithful: For each group element g ∈ G, either g is the identity element or there exists a set
element x ∈ X such that x 6= g ? x.

4. Free: For each group element g ∈ G, g is the identity element if and only if there exists some
set element x ∈ X such that x = g ? x.

5. Regular: Both free and transitive.

Remark 2. If a group action is regular, then for any x ∈ X, the map fx : g 7→ g ? x defines a
bijection between G and X; in particular, if G (or X) is finite, then we must have |G| = |X|.

Effective Group Action (EGA). We now recall the definition of an effective group action (ab-
breviated throughout as an EGA) from [ADMP20]. At a high level, an EGA is an abelian and
regular group action with certain special computational properties that allow it to be useful for
cryptographic applications. Formally, an abelian and regular group action (G,X, ?) is effective if
the following properties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element
in G.

(b) Equality testing, i.e., to decide if two bit strings represent the same group element in G.

(c) Sampling, i.e., to sample an element g from a distribution G on G. In this paper, We
consider distributions that are statistically close to uniform.

(d) Operation, i.e., to compute gh for any g, h ∈ G.

(e) Inversion, i.e., to compute g−1 for any g ∈ G.

8



2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.

(b) Unique representation, i.e., given any arbitrary set element x ∈ X, compute a string x̂
that canonically represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string repre-
sentation is known.

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G
and any x ∈ X, outputs g ? x.

Restricted Effective Group Action (REGA). From the point of view of cryptographic ap-
plications, one can view EGA as an abstraction that captures the CSI-FiSh [BKV19] family of
isogenies, where we can compute the group action operation ? efficiently for any element g in the
group G. However, this is not the case for the CSIDH family of isogenies [CLM+18], where we can
only compute the group action operation ? efficiently for “certain” elements in the group G (more
specifically, a generating set of small cardinality). To model such families of isogenies, the authors
of [ADMP20] introduced a weaker or restricted variant of EGA (abbreviated throughout as REGA).

Let (G,X, ?) be an abelian and regular group action where G and X are both finite, and let g =
(g1, . . . , gn) be a (not necessarily minimal) generating set for the group G, where n = poly(log(|G|)).
The action is said to be g-restricted effective, if the following properties are satisfied:

• There exist efficient algorithms for:

1. Membership testing, i.e., to decide if a bit string represents a valid set element.

2. Unique representation, i.e., to compute a string x̂ that canonically represents any given
set element x ∈ X.

• There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string repre-
sentation is known.

• There exists an efficient algorithm that given any i ∈ [n] and any bit string representation of
x ∈ X, outputs gi ? x and g−1i ? x.

When the group G is abelian, we represent a word on g as a vector in a ∈ Zn, canonically mapped
to G by

a = (a1, . . . , an) 7→
n∏
i=1

gaii .

EGA vs REGA. Note that unlike EGA, an REGA does not allow efficiently sampling directly
from the group G. In addition, an REGA is limited to evaluations of the form gi ? x. A natural
question is to ask is whether this limits the usefulness of REGA in cryptographic protocols, in
compared to the more “nicely behaved” EGA. In other words, given a cryptographic protocol built
from an EGA that requires computing actions using uniformly sampled group elements, can we
have a counterpart protocol built from an REGA that remains computationally efficient (at least in
an asymptotic sense)? It turns out that this is indeed the case provided that the protocol remains
secure as long as the action is computed using a group element that is sampled from a distribution
statistically close to uniform.
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More concretely, given an REGA, one can still use the generating set g to sample a group
element g from a distribution that is statistically close to uniform over G, while retaining the ability
to compute g ? x efficiently for any x ∈ X. The idea is to represent g as a word on g using a vector
a ∈ Zn, as described above, where a is sampled from a discrete Gaussian distribution [DG19]. In
particular, the authors of [DG19] argue that such a representation plausibly yields a group element
g that is distributed statistically close to uniform.

Throughout this paper, we focus on protocols based on group actions where it is sufficient to
rely on action computations where the group element g is sampled from a distribution that is
statistically close to uniform over G. Hence, all of our protocols can be instantiated using both
EGA and REGA (and hence from both CSI-FiSh [BKV19] and CSIDH [CLM+18]). For simplicity
of representation, we describe our constructions from an EGA; the corresponding REGA-based
constructions follow analogously.

Hardness Assumptions over EGA. We now define certain hardness assumptions pertaining
to an EGA following conventions introduced in [ADMP20].

Definition 2. (Weak Unpredictable EGA [ADMP20]). An EGA (G,X, ?) is weakly unpredictable if
the family of functions (more specifically, permutations) {πg : X → X}g∈G is weakly unpredictable,
where πg is defined as πg : x 7→ g ? x.

Definition 3. (Weak Pseudorandom EGA [ADMP20]). An EGA (G,X, ?) is weakly pseudorandom
if the family of functions (more specifically, permutations) {πg : X → X}g∈G is weakly pseudoran-
dom, where πg is defined as πg : x 7→ g ? x.

Throughout this paper, we will use the abbreviations wU-EGA and wPR-EGA to refer to a weak
unpredictable and weak pseudorandom (abelian and regular) EGA, respectively. We can similarly
define wU-REGA and wPR-REGA, where in the corresponding definitions, all group elements are
sampled from a distribution that is statistically close to uniform. Finally, we state the following
theorem (imported from [ADMP20]).

Theorem 3. ([ADMP20]). Assuming that the computational (resp., decisional) CSIDH assumption
holds, there exists a wU-REGA (resp., wPR-REGA).

All of the protocols proposed in this paper can be instantiated using both EGA and REGA (and
hence from both CSI-FiSh [BKV19] and CSIDH [CLM+18]). For simplicity of representation,
we describe our constructions from an EGA; the corresponding REGA-based constructions follow
analogously.

2.3 Oblivious Transfer (OT)

In this section, we present preliminary background material on oblivious transfer (OT) protocols.

The Ideal Functionality for OT. The ideal functionality FOT for any OT protocol is described
in Figure 1. We adopt this description essentially verbatim from prior works [CLOS02, PVW08,
DGH+20, CSW20b].

2.3.1 Two-Round Oblivious Transfer in the CRS Model

We first formally define a two-round oblivious transfer (OT) protocol in the CRS model. A two-
round OT protocol in the CRS model is a tuple of four algorithms of the form OT = (Setup, OTR,
OTS, OTD) described below:
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Figure 1: The ideal functionality FOT for Oblivious Transfer

FOT

FOT interacts with an ideal sender S and an ideal receiver R as follows:

– On input (Choose, rec, sid, b) from R where b ∈ {0, 1}; if no message of the form (rec, sid, b) has been
recorded in the memory, store (rec, sid, b) and send (rec, sid) to S.

– On input (Transfer, sen, sid, (m0,m1)) from S with m0,m1 ∈ {0, 1}n, if no message of the form
(sen, sid, (m0,m1)) is recorded and a message of the form (rec, sid, b) is stored, send (sent, sid,mb) to
R and (sent, sid) to S. Ignore future messages with the same sid.

Figure 2: The ideal functionality FDCRS

FDCRS

FDCRS (parameterized by a distribution D) is run by parties P1, . . . , Pn and an adversary S as follows:

– Whenever receiving a message of the form (sid, Pi, Pj) from a party Pi, sample crs ←R D and send
(sid, crs) to the party Pi and send (sid, crs, Pi, Pj) to the adversary S.

– Whenever receiving the message of the form (sid, Pi, Pj) from a party Pj , send (sid, crs) to both the
party Pj and the adversary S.

• Setup(1κ): Takes as input the security parameter κ and outputs a CRS string crs and a
trapdoor td.4

• OTR(crs, b ∈ {0, 1}): Takes as input the crs and a bit b ∈ {0, 1}, and outputs the receiver’s
message ot1 and the receiver’s (secret) internal state st.

• OTS(crs, ot1,m0,m1): Takes as input the crs, the receiver’s message ot1, a pair of input strings
(m0,m1), and outputs the sender’s message ot2.

• OTD(crs, st, ot2): Takes as input the crs, the sender’s message ot2, and the receiver’s internal
state st, and outputs a message string m′.

Correctness. A two-round OT protocol in the CRS model is said to be correct if for any b ∈
{0, 1} and any (m0,m1), letting (crs, td) ←R Setup(1κ) and (ot1, st) ←R OTR(crs, b), we have
OTD(crs, st,OTS(crs, ot1,m0,m1)) = mb.

UC Security. For UC security of OT against malicious adversaries (in the static corruption
setting), we directly use Canetti’s UC security framework for static corruptions [Can01].

Following the standard notation associated with Canetti’s UC security framework [Can01], we
use Z to denote the underlying environment. For a real protocol π and an adversary A, we use
EXECπ,A,Z to denote the real-world ensemble. Also, for an ideal functionality F and an adversary
S, we use IDEALF ,S,Z to denote the corresponding ideal-world ensemble.

4For standard two-round OT protocols, the setup algorithm need not output a trapdoor td, but we include it for
certain security properties described subsequently.
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The Ideal Functionality for CRS. For OT protocols in the CRS model, we also describe the
ideal functionality FDCRS (parameterized by a distribution D from which the CRS string is sampled)
in Figure 2. Again, we adopt this description essentially verbatim from prior works [CR03, PVW08,
DGH+20].

Receiver’s UC Security. We say that an OT protocol πOT satisfies receiver’s UC security if
for any (malicious) adversary A corrupting the sender, there exists a simulator S such that for all
environments Z, we have:

EXECπOT,A,Z
c
≈ IDEALFOT,S,Z ,

where the ideal OT functionality FOT is as described in Figure 1.

Sender’s UC Security. We say that an OT protocol πOT satisfies sender’s UC security if for
any (malicious) adversary A corrupting the receiver, there exists a simulator S such that for all
environments Z, we have:

EXECπOT,A,Z
c
≈ IDEALFOT,S,Z ,

where the ideal OT functionality FOT is again as described in Figure 1.
Note that in the above descriptions, we adopt the same style of security definitions as was used

in prior work [CLOS02, PVW08, DGH+20]. For all of our constructions of 2-round OT protocol in
the CRS model in Section 3, we prove UC-security as per the definition described above.

2.3.2 Four-Round Oblivious Transfer in the Plain Model

We also formally define a four-round oblivious transfer (OT) protocol in the plain model. A four-
round OT protocol in the plain model is a tuple OT = (OTR1,OTS1,OTR2,OTS2,OTD) described
below:

• OTR1(1
κ, b): Given κ and a bit b ∈ {0, 1}, output message ot1 and (secret) receiver state stR.

• OTS1(1
κ, (m0,m1), ot1): Given κ, a pair of strings (m0,m1), and a message ot1, output message

ot2 and (secret) sender state stS.

• OTR2(stR, ot2): Given receiver state stR and a message ot2, output message ot3 and an updated
receiver state stR.

• OTS2(stS, ot3): Given sender state stS and message ot3, output message ot4.

• OTD(stR, ot4): Given receiver state stR and message ot4, output string m′.

Correctness. A four-round OT protocol in the plain model is said to be correct if for any bit
b ∈ {0, 1} and any pair of strings m0,m1, letting

(ot1, stR) = OTR1(1
κ, b) , (ot2, stS) = OTS1(1

κ, (m0,m1), ot1),

(ot3, stR) = OTR2(stR, ot2) , ot4 = OTS2(stS, ot3),

and finally
m′ = OTD(stR, ot4),

we have m′ = mb with overwhelming probability.
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Simulation Security in the Plain Model. We say that any 4-round OT protocol in the plain
model is simulation-secure against maliciously corrupt parties if it implements the FOT functionality
in the plain model. For our construction of 4-round OT protocol in the plain model, we prove
security in the standalone setting.

2.4 Proof Systems

An n-round delayed-input interactive protocol for deciding a language L corresponding to a relation
R is denoted by 〈P,V〉 and it proceeds as follows:

• At the beginning of the protocol, P and V receive the size of the instance and execute the
first n− 1 rounds.

• At the start of the last round, P receives input (x,w) ∈ R and V receives x. Upon receiving
the last round message from P, V outputs 0 or 1.

For our protocols, we rely on ZK arguments and WI for NP that satisfy delayed-input soundness.
Fix any language L. Let 〈P,V〉 denote the execution of a protocol between a PPT prover P and a
verifier V, let Vout denote the output of the verifier and let VA〈P,V〉 denote the transcript together
with the state and randomness of a party A ∈ {P,V} at the end of an execution of a protocol.

Definition 4. (Delayed-input Zero Knowledge Argument). For any fixed language L, we
say 〈P,V〉 is a delayed-input zero knowledge argument system ZK for L if the following properties
hold:

• Completeness: For all x ∈ L,

Pr[Vout〈P,V〉 = 1] = 1− neg(κ),

where the probability is over the random coins of P and V.

• Adaptive Soundness: For all polynomial size P∗ and all x /∈ L sampled by P∗ adaptively
depending upon the first n− 1 rounds,

Pr[Vout〈P∗,V〉 = 1] = neg(κ).

• Zero Knowledge: There exists a PPT simulator S such that for all PPT V∗ and all x ∈ L,∣∣Pr[V∗(VA〈P(x,w),V∗〉) = 1]− Pr[V∗(SV
∗
(x)) = 1]| = neg(κ).

Four round delayed-input statistical zero knowledge arguments can be obtained from [LS91] by
relying on two round statistically hiding commitments.

Definition 5. (Delayed-input Witness Indistinguishability). For any fixed language L, we
say 〈P,V〉 is a delayed-input witness indistinguishability proof system WI for L if the following
properties hold:

• Completeness: For all x ∈ L,

Pr[Vout〈P,V〉 = 1] = 1− neg(κ),

where the probability is over the random coins of P and V.
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• Adaptive Soundness: For all P∗ and all x /∈ L sampled by P∗ adaptively depending upon the
first n− 1 rounds,

Pr[Vout〈P∗,V〉 = 1] = neg(κ).

• Witness Indistinguishability: For two valid witnesses w1 and w2, such that (x1, w1) ∈ L and
(x2, w2) ∈ L, the following holds for all polynomial size V∗ and all x ∈ L,∣∣Pr[V∗(VA〈P(x,w1),V

∗〉) = 1]− Pr[V∗(VA〈P(x,w2),V
∗〉) = 1]

∣∣ = neg(κ).

3 Round-Optimal UC-Secure OT from wU-EGA

In this section, we demonstrate how to construct a two-round UC-secure OT protocol in the CRS
model based on any weak unpredictable effective group action (EGA) (Definition 2). For back-
ground material on EGA, see Section 2.2. For simplicity, we begin with a construction of two-round
(round optimal) OT in the CRS model that is UC-secure against a malicious sender but only a
semi-honest receiver. Subsequently, we show how to augment the construction in order to also
achieve UC-security against a malicious receiver.

3.1 Warm-Up: 2-round UC-OT against Semi-Honest Receiver

We provide a brief overview of our protocol. The initial protocol is described as follows. The crs
consists of two set elements (x0, x1) = (g0 ? x, g1 ? x). The receiver has its input choice bit b. It
constructs the OT receiver message z by sampling a random group element r ←R G as follows:

z = r ? xb

The sender has input messages (m0,m1) ∈ {0, 1}κ. The sender uses z and the crs = (x0, x1) to
compute the second OT message by sampling random group elements k0, k1 ←R G as follows:

y0 = k0 ? x0, γ0 = H(k0 ? z)⊕m0,

y1 = k1 ? x1, γ1 = H(k1 ? z)⊕m1.

The receiver uses the randomness r to decrypt mb as follows:

mb = γb ⊕H(r ? yb).

Let td denote the trapdoor of the CRS as follows:

crs = (g0 ? x, g1 ? x), td = g1(g0)
−1,

The protocol is secure against a malicious sender since z perfectly hides b. If b = 0, then the honest
receiver constructs z = r ? x0. The same z can be opened to choice bit b = 1 with randomness r′

(by using the trapdoor td) as follows:

z = r ? x0 = r · (g1(g0)−1) ? x1 = r′ ? x1 where r′ = rg1(g0)
−1.

Using the above observation, the simulator constructs z = r ? x0 and extracts m0 and m1 using
randomness r and r′ respectively. Next, we argue security against a semi-honest receiver. We show
that if the receiver computes m1−b by querying H(k1 ? z) to the random oracle then one can build
an adversary for breaking the weak unpredictability property. The details of our reduction can
be found in Section. 3.1. Our reduction requires the knowledge of the receiver’s randomness r to
plug in the challenge instance of the weak unpredictability game into the sender’s OT messages.
Also, z perfectly hides b and as a result the simulator cannot extract the corrupt receiver’s choice
bit b during simulation. These are the reasons due to which the current construction only attains
malicious security against a corrupt sender. Our construction and proof sketch follows.
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The Construction. Let (G,X, ?) be a wU-EGA with x being a publicly available element in the
set X. Also let H : X → {0, 1}` be a hash function (modeled in the proof as a random oracle).
Our construction is a tuple of four PPT algorithms (Setup,OTR,OTS,OTD) as follows:

• Setup(1λ): Sample g0, g1 ←R G and output crs = (x0, x1) where

x0 = g0 ? x, x1 = g1 ? x.

• OTR(crs, b): Sample uniformly at random r ←R G and compute z = r ? xb. Output the
receiver message ot1 = z and the receiver state st = (b, r).

• OTS(crs, (m0,m1), ot1): Parse crs = (x0, x1) and ot1 = z. Sample uniformly at random
k0, k1 ←R G and output the sender message ot2 = (y0, y1, γ0, γ1), where

y0 = k0 ? x0, γ0 = H(k0 ? z)⊕m0,

y1 = k1 ? x1, γ1 = H(k1 ? z)⊕m1.

• OTD(st, ot2): Parse st = (b, r) and ot2 = (y0, y1, γ0, γ1), and output the recovered message as

m′ = γb ⊕H(r ? yb).

Correctness. Correctness of the scheme follows by inspection.

Security. We state and prove the following theorem.

Theorem 4. Assuming that (G,X, ?) be a wU-EGA and H is a random oracle, the above con-
struction implements the FOT functionality in the common reference string + random oracle model
against a malicious sender and a semi-honest receiver.

Security against Malicious Sender (Informal). Note that the receiver’s choice bit b is hidden
statistically. Also, note that z is in fact an equivocal commitment to b given the “discrete log” of
x1 w.r.t. x0, i.e. the group element g1(g0)

−1. Hence, the simulator can generate a CRS-trapdoor
pair (crs, td) as

crs = (g0 ? x, g1 ? x), td = g1(g0)
−1,

and recover both the sender messages m0 and m1.

Security against Semi-Honest Receiver (Informal). We will prove the following lemma:

Lemma 1. Assuming that (G,X, ?) be a wU-EGA and H is a random oracle, the above construc-
tion is UC-secure in the common reference string + random oracle model against a semi-honest
receiver.

Proof. Given an wU-EGA challenge of the form (x, x∗, y = k?x), the goal is to predict y∗ = k?x∗.
Suppose A is an adversary that breaks OT security. We show that there exists an adversary A′
for wu-EGA given A. The reduction proceeds as follows (the reduction already knows the corrupt
receiver’s choice bit b and output mb, and simulates hash function H as a random oracle):

• Simulate the CRS as crs = (x0, x1) where :

xb = x∗, x1−b = x.
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• On behalf of the receiver, sample r ←R G and compute z = r ? xb. Output the receiver
message ot1 = z.

• On behalf of the sender, sample k′ ←R G and output simulated sender OT message as
ot′2 = (y0, y1, γ0, γ1) where

yb = k′ ? xb, γb = H(k′ ? z)⊕mb, y1−b = y, γ1−b ←R {0, 1}`.

Let E be the event that A queries the random oracle with input k ? z. Let us denote the real
world (resp. simulated) OT sender message as ot2 (resp. ot′2). Then, we denote the advantage of
a corrupt receiver breaking sender privacy as follows.∣∣Pr[A(ot2)→ 1]− Pr[A(ot′2)→ 1]

∣∣
=
∣∣(Pr[A(ot2)→ 1|E] · Pr[E] + Pr[A(ot2)→ 1|E] · Pr[E])

−(Pr[A(ot′2)→ 1|E] · Pr[E]− Pr[A(ot′2)→ 1|E] · Pr[E])
∣∣

=
∣∣(Pr[A(ot2)→ 1|E] · Pr[E]− Pr[A(ot′2)→ 1|E] · Pr[E])

+(Pr[A(ot2)→ 1|E] · Pr[E]− Pr[A(ot′2)→ 1|E] · Pr[E])
∣∣

=
∣∣Pr[E] · (Pr[A(ot2)→ 1|E]− Pr[A(ot′2)→ 1|E])

−Pr[E] · (Pr[A(ot2)→ 1|E]− Pr[A(ot′2)→ 1|E])
∣∣

≤ Pr[E] ·
∣∣Pr[A(ot2)→ 1|E]− Pr[A(ot′2)→ 1|E]

∣∣
+ Pr[E] ·

∣∣Pr[A(ot2)→ 1
∣∣E]− Pr[A(ot′2)→ 1|E]

∣∣
≤ Pr[E] +

∣∣Pr[A(ot2)→ 1|E]− Pr[A(ot′2)→ 1|E]
∣∣.

where ot2 is computed honestly following the honest sender algorithm and (m0,m1), and ot′2 is com-
puted as described above. The second last inequality follows due to triangle inequality. Rearranging
the terms yields the following inequality :∣∣Pr[A(ot2)→ 1]− Pr[A(ot′2)→ 1]

∣∣− ∣∣Pr[A(ot2)→ 1|E]− Pr[A(ot′2)→ 1|E]
∣∣ ≤ Pr[E]

Note that the simulation is perfect assuming event E does not occur, since H is a random oracle
and since

y1−b = y = k ? x = k ? x1−b.

In such a case, an honestly computed γ1−b is indistinguishable from a random γ1−b if the adversary
A does not query H on k ? z. This follows from the random oracle assumption. Thus the following
occurs with negligible probability:

|Pr[A(ot2)→ 1|E]− Pr[A(ot′2)→ 1|E]| ≤ neg(κ).

This reduces the above equation to the following:∣∣Pr[A(ot2)→ 1]− Pr[A(ot′2)→ 1]
∣∣− neg(κ) ≤ Pr[E]

Next, we construct our adversary A′ for wU-EGA provided event E occurs, i.e. A queries H on
k ? z. The adversary A distinguishes ot2 and ot′2 if it obtains information about m1−b. Given the
simulated ensemble,

(crs, b,mb, ot1 = z, ot′2 = (y0, y1, γ0, γ1)),
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if A manages to recover message m1−b by querying (conditioned on occurrence of event E) the
random oracle on z∗ = k ? z, then the following holds true:

z∗ = k ? z = k ? (r ? xb) = r ? (k ? xb) = r ? (k ? x∗) = r ? y∗.

Hence, the adversary A′ recovers (with non-negligible probability)

y∗ = r−1 ? z∗,

thereby violating the weak unpredictability of the EGA. Thus, the advantage of an adversary A′
in the weak unpredictability game will be as follows:∣∣Pr[A(ot2)→ 1]− Pr[A(ot′2)→ 1]

∣∣ ≤ Pr[E] ≤ Pr[A′ wins wU-EGA game] ≤ neg(κ).

This completes the proof of Lemma 1 and, hence, the proof of Theorem 4.

3.2 2-round Maliciously secure UC-OT

We now show how to augment the construction in order to also achieve UC-security against a
malicious receiver. We add security against a malicious receiver by forcing the receiver to send a
non-interactive witness indistinguishable (NIWI) proof of knowledge) π proving correct construction
of its OT message corresponding to the following statement:

∃b ∈ {0, 1}, r ∈ G : z = r ? xb

The sender verifies the proof as part of the OT protocol. The proof allows a simulator to extract
the choice bit b and randomness r to complete reduction. The knowledge of r is required for the
security reductions among the hybrids. The NIWI can be performed by applying Fiat-Shamir
Transform on the Sigma protocols of [DG19].5 This yields the first round optimal OT from weak
unpredictability property and it can be instantiated based on computational CSIDH assumption.

Additional Requirement. Let (G,X, ?) be a wU-EGA with x being a publicly available element
in the set X. We denote the NIWI proof of knowledge (NIWI-POK) system as follows:

NIWI = (NIWI.Prove,NIWI.Verify),

that is capable of generating proofs for OR relations of the following form with respect to a tuple
(x0, x1, z) ∈ X ×X ×X:

∃r ∈ G : (z = r ? x0) ∨ (z = r ? x1),

where the tuple (x0, x1, z) is the proof statement and the witness is a tuple of the form (r, b) ∈
G× {0, 1}. We describe the corresponding protocol next.

3.2.1 The NIWI Construction for 2 round UC-OT

We build upon [DG19] to construct a NIWI (non-interactive witness indistinguishable) OR proof
system, wherein the simulator can always simulate the proof without programming the random
oracle. For proof of knowledge, we rely on the well-known transformation from [Pas03] to obtain a
poly-time straight-line NIWI proof of knowledge (NIWIpok), in the non-programmable RO model.
A similar transformation was also used in [CJS14] paper to construct a NIWIpok in the non-
programmable RO+CRS model. We refer to Sec. 2.4 for formal definitions.

5The recent work of [BDK+21] constructs a similar NIZK. But it is based on the decisional CSIDH assumption,
and is hence insufficient for our purpose.
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Construction. Let (G,X, ?) be an EGA with (x0 = g0 ? x, x1 = g1 ? x) being the crs. Let H be
the random oracle. The prover and verifier has the input statement z. The prover possesses choice
bit b and private randomness r such that z = r ? xb. The prover proves the following statement:

∃r ∈ G : (z = r ? x0) ∨ (z = r ? x1)

We denote 1− b as b for a bit b ∈ {0, 1}. The NIWI protocol is as follows:

• Prove((x0, x1, z), (r, b)):
Compute the first message of the Sigma protocol by repeating the following steps κ times for
i ∈ [κ]:

– Sample si,0, si,1 ←R G and a bit ei,b ←R {0, 1}.
– Compute wi,b = si,b ? xb.

– If ei,b == 0 then set wi,b = si,b ? xb.

– If ei,b == 1 then set wi,b = si,b ? z.

Compute responses to challenge bits 0 and 1 for each repetition and commit to the openings
by repeating the following steps κ times for i ∈ [κ]:

– Computing opening for challenge bit 0: Set E0
i,b = E0

i,b
= ei,b. Compute openings as

d0i,0, d
0
i,1 where :

– d0
i,b

= si,b

– d0i,b == si,b if E0
i,b == 0.

– d0i,b == r−1si,b if E0
i,b == 1.

Denote the openings as σ0i = (E0
i,0, E

0
i,1, d

0
i,0, d

0
i,1). Commit to the openings as C0

i =

H(σ0i ).

– Computing opening for challenge bit 1: Set E1
i,b

= ei,b and E1
i,b == 1 − ei,b. Compute

openings as d1i,0, d
1
i,1 where :

– d1
i,b

= si,b

– d1i,b == si,b if E1
i,b == 0.

– d1i,b == r−1si,b if E1
i,b == 1.

Denote the openings as σ1i = (E1
i,0, E

1
i,1, d

1
i,0, d

1
i,1). Commit to the openings as C1

i =

H(σ1i ).

Compute the challenge string c = {ci}i∈κ = H({wi,0, wi,1, crs, z, C0
i , C

1
i }i∈[κ]).

Send the NIWI proof pf = {wi,0, wi,1, C0
i , C

1
i , σ

ci
i }i∈[κ].

• Verify((x0, x1, z), pf):
Parse the proof as pf = {wi,0, wi,1, C0

i , C
1
i , σi}i∈κ. Compute the challenge string c = {ci}i∈κ =

H({wi,0, wi,1, crs, z, C0
i , C

1
i }i∈[κ]). Repeat the following steps for i ∈ [κ]:

– Abort if Ccii 6= H(σi).
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– Parse the opening σi = (Ei,0, Ei,1, di,0, di,1).

– Abort if Ei,0 ⊕ Ei,1 6= ci.

– For β ∈ {0, 1} : Perform the following checks for the βth branch corresponding to
challenge Ei,β:

– If Ei,β == 0: Abort if wi,β 6= di,β ? xβ.

– If Ei,β == 1: Abort if wi,β 6= di,β ? z.

The verifier accepts the proof if it has not aborted.

Proof of Knowledge. We assume the existence of two witness extractor algorithms (Ext1,Ext2).
The witness extractor Ext1 relies on the observability of the random oracle to either uniquely
extract the witness b or extract the randomness r of the prover. The extractor Ext1 observes the
random oracle queries on σ0i and σ1i to extract (d0i,0, d

1
i,0) and (d0i,1, d

1
i,1). For bit γ ∈ {0, 1}, if

E0
i,γ 6= E1

i,γ then the extractor sets the receiver’s choice bit as b = γ and extracts the randomness

r from d0i,γ and d1i,γ such that z = r ? xγ . If the extractor is able to repeat the same process for
γ from a repetition j 6= i ∈ [κ] then it would extract r′ such that z = r′ ? xγ . The knowledge
of r and r′ allows the extractor to compute the trapdoor g2 of the crs such that x1 = g2 ? x0.
This breaks computational CSIDH assumption corresponding to the challenge instance (x, x0, x1).
Otherwise, the extractor uniquely extracts the adversary’s choice bit and randomness. The only
other way the corrupt prover can construct an accepting proof and yet hamper witness extraction
if it correctly predicts the challenge string c. However, that occurs with negligible probability for
κ sessions in the random oracle model. This follows from the witness extraction property of the
[Pas03] transformation. The extractor Ext2 rewinds the prover in the random oracle queries and
programs the random oracle to return different challenge strings, which allows it to extract the
randomness r from two pairs of accepting proofs. Looking ahead, this extractor will be used to
argue indistinguishability between hybrids and perform security reductions. It will not be used in
simulation and hence rewinding the prover does not hinder UC-security of the OT protocol.

Witness-Indistinguishability. The simulator correctly simulates the proof by setting z = r?x0
and b = 0 and running the honest prover algorithm. The first message (wi,0, wi,1, ), the commitments
(C0

i , C
1
i ) and opening σci hides (r, b) since the commitment Ccii hides the openings σcii in the random

oracle model.

3.2.2 Our Protocol 1 - The 2-round Maliciously Secure UC-OT Construction

Let (G,X, ?) be a wU-EGA with x being a publicly available element in the set X. Also let
H : X → {0, 1}` be a hash function (modeled in the proof as a random oracle). Our construction
is a collection of four PPT algorithms (Setup,OTR,OTS,OTD) as follows:

• Setup(1λ): Sample g0, g1 ←R G, and output crs = (x0, x1), where

x0 = g0 ? x, x1 = g1 ? x.

• OTR(crs, b): Sample uniformly at random r ←R G and compute z = r ? xb. Output the
receiver message ot1 = (z,π) and the receiver state st = (b, r), where

π ←R NIWI.Prove((x0, x1, z), (r, b)).
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• OTS(crs, (m0,m1), ot1): Parse ot1 = (z,π) and proceed as follows:

– If NIWI.Verify((x0, x1, z), π) = 0, output ⊥.

– Otherwise, sample uniformly at random k0, k1 ←R G and output the sender message
ot2 = (y0, y1, γ0, γ1), where

y0 = k0 ? x0, γ0 = H(k0 ? z)⊕m0,

y1 = k1 ? x1, γ1 = H(k1 ? z)⊕m1.

• OTD(st, ot2): Parse st = (b, r) and ot2 = (y0, y1, γ0, γ1), and output the recovered message as

m′ = γb ⊕H(r ? yb).

Correctness. Correctness of the scheme follows by inspection.

Security. The security of our protocol is summarized below.

Theorem 5. Assuming that (G,X, ?) is a wU-EGA, NIWI is a NIWI proof of knowledge, and H is
a random oracle, the above construction implements the FOT functionality in the common reference
string + random oracle model and it is UC-secure against malicious adversaries.

Proof. At a high level, the proof is very similar to the proof for our semi-honest construction,
with the additional guarantees provided by the (NIWI-POK) system allowing us to prove security
against a malicious receiver. The detailed proof is presented below. We consider the corruption
cases for a maliciously corrupt sender and a maliciously corrupt receiver as follows.

Security against Malicious Sender. We provide the simulation algorithm S1 against a corrupt
sender as follows:

• Setup(1λ): Sample g0, g1 ←R G and output crs = (x0, x1), where

x0 = g0 ? x, x1 = g1 ? x.

Output the trapdoors of the crs as td = (g0, g1) to the simulator S1.

• OTR(crs): The simulator samples uniformly at random r ←R G and computes z = r ? x0. It
computes the simulated proof π as follows:

π ←R NIWI.Prove((x0, x1, z), (r, 0)).

Outputs the simulated receiver message as ot1 = (z, π) and the receiver state st = (0, r).

• OTS(crs, (m0,m1), ot1): The corrupt sender sends ot2 = (y0, y1, γ0, γ1).

• OTD(st, ot2): Parse st = (0, r), ot2 = (y0, y1, γ0, γ1), setup trapdoor td = (g0, g1) and compute
the recovered messages as

m0 = γ0 ⊕ (r ? y0).

m1 = γ1 ⊕ (rg−11 g0 ? y0).

It invokes the FOT functionality with sender’s messages (m0,m1) and completes simulation.
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We argue security against a corrupt sender as follows.

• Hyb0 : This is the real world execution of the protocol.

• Hyb1 : Same as Hyb0, except the simulator constructs π for witness (r, 0). Indistinguishability
follows from the WI property of the NIWI protocol.

• Hyb2 : Same as Hyb1, except the simulator sets z = r?x0 and extracts sender’s input messages
(m0,m1) following the simulation algorithm. The receiver’s OT message - (z, π) perfectly
hides the choice bit b between Hyb1 and Hyb2. z = r ? x0 can also be opened to choice bit
using randomness rg−11 g0. This is the ideal world execution of the protocol.

Security against Malicious Receiver (Informal). We provide the simulation algorithm S2
against a corrupt receiver as follows:

• Setup(1λ): Sample g0, g1 ←R G and output crs = (x0, x1), where

x0 = g0 ? x, x1 = g1 ? x.

Output the trapdoors of the crs as td = (g0, g1) to the simulator S2.

• OTR(crs): The receiver sends OT message as ot1 = (z, π).

• OTS(crs, (m0,m1), ot1):

– S2 invokes NIWI.Ext1(π) to get b ∈ {0, 1,⊥}. If b = ⊥ then it aborts else S2 invokes FOT

with input choice bit b to obtain mb.

– S2 samples uniformly at random k0, k1 ←R G and outputs the simulated sender message
ot2 = (y0, y1, γ0, γ1), where

yb = kb ? xb, γb = H(kb ? z)⊕mb,

yb = kb ? xb, γb ← {0, 1}
|mb̄|

• OTD(st, ot2): The corrupt receiver performs its own adversarial algorithm. S2 aborts if the
corrupt receiver invokes the random oracle on kb ? z.

We argue security against a corrupt receiver as follows. The simulator extracts the receiver’s
choice bit from the NIWI proof and aborts if extraction fails. Soundness of the NIWI protocol
ensures that extraction succeeds if the proof π verifies. CSIDH assumption ensures that a cor-
rupt receiver cannot query kb ? z to the random oracle H. We provide the formal hybrids and
indistinguishability argument as follows:

– Hyb0 : This is the real world execution of the protocol.

– Hyb1 : Same as Hyb0, except the simulator aborts if the NIWI extractor returns b = ⊥.
Indistinguishability follows from the correctness of extractor NIWI.Ext1 of the NIWI protocol.
If an adversary distinguishes between the two hybrids by producing a proof π that verifies
but not extractable, then the adversary for the NIWI protocol produces this proof as the
response; hence breaking the soundness of the NIWI protocol.
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– Hyb2 : Same as Hyb1, except the simulator aborts if corrupt receiver queries the random
oracle on kb ? z. We prove that the two hybrids are indistinguishable if (G,X, ?) is weak
unpredictable EGA. This is the ideal world execution of the protocol and it completes our
simulation.

Lemma 2. If (G,X, ?) is a weak unpredictable EGA, then Hyb1 and Hyb2 are computationally
indistinguishable to adversary A.

Proof Sketch. Suppose the reduction is given an weak unpredictable EGA challenge of the form

(x, x∗, y = k ? x),

and the goal is to predict y∗ = k?x∗. The reduction guesses the receiver’s choice bit as b′ ←R {0, 1}
and it proceeds as follows :

• Sample uniformly at random h←R G and set:

xb = x∗, x1−b = h ? x.

Simulate the CRS as crs = (x0, x1).

• Upon receiving receiver’s message (z, π), the reduction extracts receiver’s randomness (r, b)
from π by running the extractor NIWI.Ext2 (which involves rewinding6 the prover in the NIWI
protocol). It aborts the reduction if b 6= b′ else it invokes the FOT functionality with b == b′

to get mb.

• On behalf of the sender, sample k′ ←R G and output ot2 = (y0, y1, γ0, γ1) where

yb = k′ ? xb, γb = H(k′ ? z)⊕mb,

y1−b = h ? y, γ1−b ←R {0, 1}`.

Note that the simulation is perfect since H is a random oracle and since

y1−b = h ? y = h ? (k ? x) = k ? x1−b.

Now, if there exists an adversary A that, given the simulated ensemble

(crs, b,mb, ot1 = (z, π), ot2 = (y0, y1, γ0, γ1)),

and given the ability to query H, manages to recover (with non-negligible probability) even one
bit of information about the message m1−b, it must query the random oracle H on the set element
z∗ = k ? z. Now observe that

z∗ = k ? z = k ? (r ? xb) = r ? (k ? xb) = r ? (k ? x∗) = r ? y∗.

Hence, the reduction recovers (with non-negligible probability)

y∗ = r−1 ? z∗,

thereby violating the weak unpredictability of the EGA.
This completes the proof of Theorem 5.

6Rewinding occurs only in the security reduction and not in the simulation; hence it does not hamper UC-security
of the OT protocol.
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Instantiation from wU-REGA. We finally note that our constructions and proofs work in
essentially the same way from a restricted EGA provided that we can sample group elements from
a distribution that is statistically close to uniform over the group G while retaining the ability
to efficiently compute the action. We note that this is plausibly the case with respect to the
instantiation of restricted EGA from CSIDH and other similar isogeny-based assumptions. We
refer the reader to [DG19, ADMP20] for more details.

Leveraging this observation and Theorem 3 together with Theorem 5, we get the following
corollary.

Corollary 3. If the computational CSIDH assumption holds and if H is a random oracle, there
exists a 2-round OT protocol that implements the FOT functionality in the common reference string
+ random oracle model and achieves UC-security against malicious adversaries.

4 Round Optimal OT in Plain Model from wU-EGA

In this section we construct our round optimal OT with simulation-based security in the plain
model from wU-EGA assumption.

4.1 Overview

We build upon the two round semi-honest OT protocol from Sec. 3.1. It can be observed that
the receiver’s choice bit b is perfectly hidden in the receiver OT message ot1 = z (computed using
randomness g ∈ G), even if the OT parameters (x0, x1) are generated by a malicious sender. We
need to extract the receiver’s choice bit and randomness to enable simulation security against a
corrupt receiver. We rely on a three round WI proof of knowledge (denoted as WI) for this purpose,
where the receiver proves that for statement (x0, x1, z) and witness (g, b) the following holds true:

C1((x0, x1, z), (g, b)) = 1, iff z = g ? xb.

We require the WI proof system to be input-delayed where only the last message of the WI proof
system depends on the statement being proven. We refer to Sec. 2.4 for formal definitions. In our
protocol the receiver sends the first message πWI

1 of the proof in the first round, the sender sends the
OT parameters (x0, x1) and the second round message πWI

2 of the proof in the second round, the
receiver computes z and the final round message πWI

3 of the proof as the third OT message and the
sender verifies the proof and sends (y0, y1, γ0, γ1) as the final OT message. The receiver uses (g, b) to
decrypt mb. The simulator against a corrupt receiver invokes the witness extractor of WI to extract
(g, b). The knowledge of g also allows us to break wU-EGA assumption when a malicious receiver
computes both (m0,m1). Meanwhile, receiver privacy follows the witness indistinguishability of the
proof system. For every z, there always exists g0 and g1 such that z = g0 ? x0 = g1 ? x1.

Next, we need to extract a corrupt sender’s input messages (m0,m1) from (y0, y1, γ0, γ1) to
enable simulation security against a corrupt sender. We rely on a four round ZK proof of knowledge
(denoted as ZK) for this purpose, where the sender proves that for statement (x, x0, x1) and witness
(g0, g1) the following holds true:

C2((x0, x1), (g0, g1)) = 1, iff x0 = g0 ? x, x1 = g1 ? x.

We require the ZK proof system to be input-delayed where only the last message of the WI proof
system depends on the statement being proven. We refer to Sec. 2.4 for formal definitions. In our
protocol the receiver sends the first message πZK1 of the proof along with πWI

1 in the first round, the
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sender sends the OT parameters (x0, x1), the second round message πZK2 of the proof and π2WI in
the second round, the receiver computes z and πWI

3 and the third round message πZK3 of the proof
as the third OT message and the sender verifies the WI proof, computes the final round message
of ZK proof as πZK4 and sends (y0, y1, γ0, γ1, π

ZK
4 ) as the final OT message. The receiver verifies

the ZK proof and then computes the output. The simulator against a corrupt sender invokes the
witness extractor of ZK to extract (g0, g1) and compute (m0,m1). Meanwhile, the simulator against
a corrupt receiver uses the ZK simulator to simulate the ZK proof.

The three round input-delayed WI proof system can be obtained[PRS02, KM20, BPS22] from
non-interactive commitment schemes using the protocol of [FLS99]. The commitment scheme
can be obtained from wU-EGA assumption via injective trapdoor one way function. The four
round input-delayed ZK proof system can be constructed [PRS02, KM20, BPS22] from two-round
statistically hiding commitment scheme which in turn can be constructed7 from wU-EGA. As a
result, we obtain the first round-optimal OT in plain model from wU-EGA which satisfies simulation
security. Formal details of the protocol follows.

4.2 Our Protocol-2

Let WI = (WI1,WI2,WI3,WI4) be a three round delayed input WI proof of knowledge for the
following language L1 consisting of statement (x0, x1, z), witness (g, b) and NP verification circuit
C1 described as follows, where x0, x1, z ∈ X, g ∈ G, b ∈ {0, 1}.

C1((x0, x1, z), (g, b)) = 1, if z = g ? xb

= 0, otherwise

Let ZK = (ZK1,ZK2,ZK3,ZK4,ZK5) be a four round delayed input ZK proof of knowledge for the
following language L2 consisting of statement (x, x0, x1), witness (g0, g1) and NP verification circuit
C2 described as follows, where x, x0, x1 ∈ X, g0, g1 ∈ G.

C2((x, x0, x1), (g0, g1)) = 1, if x0 = g0 ? x, x1 = g1 ? x

= 0, otherwise

Receiver has choice bit b ∈ {0, 1}. Sender has input bit-messages (m0,m1) ∈ {0, 1}. x is a public
set element. H : X → {0, 1} is the Goldreich-Levin hash function. We describe our OT protocol
as follows:

• OTR1(1
κ, b): The receiver performs the following:

– Runs the first round of WI on the security parameter to obtain (πWI
1 , stWI

R )←WI1(1
κ, C1)

for L1 with NP-verification circuit C1.

– Runs the first round of ZK on the security parameter to obtain (πZK1 , stZKR )← ZK1(1
κ, C2)

for L2 with NP-verification circuit C2.

– Sends ot1 = (πWI
1 , πZK1 ) as the first OT message and saves stR = (b, stWI

R , stZKR ) as the
internal receiver state.

7The verifier sends (x0, x1) as the first round message by sampling g0, g1 ←R G and computing x0 = g0 ? x, x1 =
g1?x. The committer commits to bit b by sampling g and computing the commitment as z = g?xb. The decommitment
is (g, b). Bit b remains perfectly hidden. Binding follows from wU-EGA assumption since openings (s0, 0) and (s1, 1)
for bits 0 and 1 help to find r = s0 · s−1

1 such that x1 = r ? x0.
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• OTS1(1
κ, (m0,m1), ot1): The sender computes the following:

– Samples g0, g1 ←R G and computes the OT parameters as x0 = g0 ? x and x1 = g1 ? x.

– Computes second message of WI as (πWI
2 , stWI

S )←WI2(1
κ, C1, πWI

1 ).

– Computes second message of ZK as (πZK2 , stZKS )← ZK2(1
κ, C2, πZK1 ).

– Sends ot2 =
(
x0, x1, π

WI
2 , πZK2

)
as the second OT message and it stores

stS = (m0,m1, x0, x1, ot1, st
WI
S , stZKS )

as the internal sender state.

• OTR2(stR, ot2): The receiver does the following:

– Samples g ←R G and computes z = g ? xb.

– Compute third message of WI as πWI
3 ← WI3((x0, x1, z), (g, b), st

WI
R , πWI

2 ) corresponding
to statement (x0, x1, z) and witness (g, b).

– Compute third message of ZK as (πZK3 , stZKR )← ZK3(st
ZK
R , πZK2 ).

– Sends the third OT message ot3 = (z, πWI
3 , πZK3 ) and updates its internal state as stR =

(b, g, stZKR ).

• OTS2(stS, ot3): The sender computes the following:

– The sender aborts if the WI proof fails to verify on statement (x0, x1, z), i.e.

WI4((x0, x1, z), st
WI
S , πWI

3 ) = 0.

– The sender computes the fourth message of ZK as πZK4 ← ZK3((x, x0, x1), (g0, g1), st
ZK
S , πZK3 )

corresponding to statement (x, x0, x1) and witness (g0, g1).

– Sample uniformly at random k0, k1 ←R G and compute (y0, y1, γ0, γ1), where

y0 = k0 ? x0, γ0 = H(k0 ? z)⊕m0,

y1 = k1 ? x1, γ1 = H(k1 ? z)⊕m1.

– The sender sends fourth OT message ot4 = (y0, y1, γ0, γ1, π
ZK
4 ) to the receiver.

• OTD(stR, ot2): The receiver computes the following:

– The receiver aborts if the ZK proof fails to verify on statement (x, x0, x1), i.e.

ZK5((x, x0, x1), st
ZK
R , πZK4 ) = 0.

– The receiver parses stR = (b, g) and ot4 = (y0, y1, γ0, γ1, π
ZK
4 ), and outputs the recovered

message as m′ where
m′ = γb ⊕H(r ? yb).

25



We show that the above protocol provides indistinguishability based security against a malicious
sender and simulation based security against a corrupt receiver by proving the following theorem.

Theorem 6. Let WI = (WI1,WI2,WI3,WI4) be a three round delayed input WI proof of knowledge
for the following language L1, ZK = (ZK1,ZK2,ZK3,ZK4,ZK5) be a four round delayed input ZK
proof of knowledge for the following language L2, and (G, X, ?) be a wU-EGA, then the above
construction provides receiver privacy against a malicious sender and provides simulation-based
security against a malicious receiver.

Proof Overview. We first argue that our protocol satisfies simulation-based security against a
corrupt sender and then we argue the same against a corrupt receiver.

Simulation against Corrupt Sender. Assume x1 = r ?x0. It can be observed that z perfectly hides
b since for every g0 ∈ G there exists g1 = g0 · r−1 such that z = g0 ?x0 = g1 ?x1. When b == 0, the
WI proof is constructed with the group element g0 such that z = g0 ? x0. Meanwhile, when b == 1
the WI proof is constructed using g1 as z = g1 ? x1 where g0 and g1 satisfies the above relation.
A malicious sender distinguishing between a run of the OT protocol with receiver input choice bit
b = 0 from a run of the OT protocol with receiver input choice bit b = 1 breaks the WI property of
the proof system. Moreover, the simulator can extract both m0 and m1 given the trapdoors g0 and
g1. The simulator obtains these trapdoors by invoking the ZK witness extractor algorithm ExtZK

on πZK.

Simulation against Corrupt Receiver. The simulator invokes the WI witness extractor algorithm,
denoted as ExtWI, to extract the witness (g, b) from the proof. The simulator invokes the FOT

functionality with the extracted choice bit b to obtain mb. The simulator constructs ot4 with
inputs (m0,m1), where m1−b = 0. The ZK proof is constructed by invoking the ZK simulator,
denoted as SZK. An adversary breaks the security of the protocol if the WI proof is accepting
and yet the witness extractor failed to extract a witness, or the corrupt receiver distinguishes the
simulated ZK proof from a real one. In the later case, it breaks ZK property. In the former case,
the corrupt receiver breaks the proof of knowledge property of the WI protocol. The other case,
where the extractor extracts multiple valid witnesses also leads to an abort by the simulator. That
event occurs when the receiver breaks the wU-EGA property.

Detailed Proof. We now present the detailed proof. We first show that our protocol satisfies
simulation-based security against a corrupt sender and then we show the same against a corrupt
receiver.

Simulation against Corrupt Sender. Assume x1 = r ? x0. It can be observed that z perfectly
hides b since for every g0 ∈ G there exists g1 = g0 · r−1 such that z = g0 ? x0 = g1 ? x1. When
b == 0, the WI proof is constructed with the group element g0 such that z = g0 ? x0. Meanwhile,
when b == 1 the WI proof is constructed using g1 as z = g1 ? x1 where g0 and g1 satisfies the
above relation. A malicious sender distinguishing between a run of the OT protocol with receiver
input choice bit b = 0 from a run of the OT protocol with receiver input choice bit b = 1 breaks
the WI property of the proof system. Moreover, the simulator can extract both m0 and m1 given
the trapdoors g0 and g1. The simulator obtains these trapdoors by invoking the witness extractor
algorithm ExtZK = (ExtZK1 ,ExtZK2 ,ExtZK3 ) on the ZK proof. We present the simulation algorithm as
follows:
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• OTR1(1
κ): The simulated receiver performs the following:

– Runs the first round of WI on the security parameter to obtain (πWI
1 , stWI

R )←WI1(1
κ, C1).

– Computes first round of message of ZK by invoking the witness extractor as (πZK1 , stZKR )←
ExtZK1 (1κ, C2).

– Sends ot1 = (πWI
1 , πZK1 ) as the first OT message and saves stR = (stWI

R , stZKR ) as the
internal receiver state.

• OTS1(1
κ, (m0,m1), ot1): The corrupt sender sends ot2 =

(
x0, x1, π

WI
2 , πZK2

)
as the second OT

message.

• OTR2(stR, ot2): The simulated receiver does the following:

– Samples g ←R G and computes z = g ? x0.

– Compute third message of WI as πWI
3 ← WI3((x0, x1, z), (g, 0), stWI

R , πWI
2 ) corresponding

to statement (x0, x1, z) and witness (g, 0).

– Computes third round message of ZK by invoking the witness extractor as (πZK3 , stZKR )←
ExtZK2 (stZKR , πZK2 ).

– Sends the third OT message ot3 = (z, πWI
3 , πZK3 ) and updates its internal state as stR =

(0, g, stZKR ).

• OTS2(stS, ot3): The corrupt sender sends fourth round OT message ot4 = (y0, y1, γ0, γ1, π
ZK
4 )

to the receiver.

• OTD(stR, ot2): The simulated receiver computes the following:

– Extract witness (g0, g1) by invoking the ZK witness extractor as (g0, g1)← ExtZK3 ((x,x0,
x1), st

ZK
R ). The simulator aborts if extraction fails.

– The simulator computes (m0,m1) as follows:

m0 = γ0 ⊕H(g ? y0), m1 = γ1 ⊕H((g · g−11 · g0) ? y1)

The simulator invokes FOT with (m0,m1) to complete simulation.

Next, we provide the hybrids and the indistinguishability argument as follows:

• Hyb0 : This is the real world execution of the protocol with the receiver’s input as b.

• Hyb1 : Same as Hyb0, except (πZK1 , πZK3 ) are computed by invoking the ZK witness extractor
algorithm ExtZK and the simulator aborts if the extractor fails to extract a valid witness
(g0, g1) from the ZK proof.

Indistinguishability follows due to the correctness of the witness extraction algorithm of ZK
proof system.
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• Hyb2 : This is same as Hyb1, except the simulator always sets z = g ? x0 and the WI proof
is constructed using the witness (g, 0). The simulator also extracts (m0,m1) following the
simulation algorithm. This is the ideal world execution of the protocol.

The adversary distinguishes between the two hybrids if it successfully breaks the WI property
of the WI proof system. To simulate the reduction, the simulator considers (g, 0) and (g ·
g−11 g0, 1) as the two witnesses for the statement (x0, x1, z) corresponding to NP verification
circuit C2. The WI challenger returns a proof which is returned to the adversary. The
adversary distinguishing between the Hyb1 and Hyb2 is used to distinguish between the case
where (g · g−11 g0, 1) is used as the witness from the case where (g, 0) is used as the witness.
Note that z perfectly hides the (g, b).

Simulation against Corrupt Receiver. The simulator invokes the WI witness extractor al-
gorithm, denoted as ExtWI = (ExtWI

1 ,ExtWI
2 ), to extract the witness (g, b) from the proof. The

simulator invokes the FOT functionality with the extracted choice bit b to obtain mb. The simula-
tor constructs ot4 with inputs (m0,m1), where m1−b = 0. The ZK proof is constructed by invoking
the ZK simulator, denoted as SZK = (SZK1 ,SZK2 ). An adversary breaks the security of the protocol
if the WI proof is accepting and yet the witness extractor failed to extract a witness, or the cor-
rupt receiver distinguishes the simulated ZK proof from a real one. In the later case, it breaks ZK
property. In the former case, the corrupt receiver breaks the proof of knowledge property of the
WI protocol. The other case, where the extractor extracts multiple valid witnesses also leads to an
abort by the simulator. That event occurs when the receiver breaks the wU-EGA property. We
present the simulation algorithm as follows:

• OTR1(1
κ, b): The corrupt receiver sends ot1 = (πWI

1 , πZK1 ) as the first OT message.

• OTS1(1
κ, ot1): The simulated sender computes the following:

– Samples g0, g1 ←R G and computes the OT parameters as x0 = g0 ? x and x1 = g1 ? x.

– Computes second message of WI by invoking the witness extractor as (πWI
2 , stWI

S ) ←
ExtWI

1 (1κ, C1, πWI
1 ).

– Computes second message of ZK by invoking the Zero Knowledge simulator as (πZK2 , stZKS )←
SZK1 (1κ, C2, πZK1 ).

– Sends ot2 =
(
x0, x1, π

WI
2 , πZK2

)
as the second OT message and it stores stS=(x0, x1, ot1,

stWI
S , stZKS ) as the simulated sender state.

• OTR2(ot2): The corrupt receiver sends the third OT message as ot3 = (z, πWI
3 , πZK3 ).

• OTS2(stS, ot3): The simulated sender computes the following:

– The simulator extracts the witness (g, b) by invoking the WI extractor as (g||b) =
ExtWI

2 ((x0, x1, z), st
WI
S , πWI

3 ). The sender aborts if the extractor fails to extract a sin-
gle witness, or the extractor extracts two valid witnesses- (g0, 0) and (g1, 1) .

– The simulator computes fourth message of ZK by invoking the Zero Knowledge simulator
as πZK4 ← SZK2 ((x, x0, x1), st

ZK
S , πZK3 ).

– The simulator invokes FOT functionality with extracted input choice bit b to obtain
mb. The simulator computes (y0, y1, γ0, γ1) with sender input message (m0,m1) where
m1−b = 0.
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– The sender sends fourth OT message ot4 = (y0, y1, γ0, γ1, π
ZK
4 ) to the receiver and con-

cludes the simulation.

Next, we provide the hybrids and the indistinguishability argument as follows:

• Hyb0 : This is the real world execution of the protocol with the sender’s input as (m0,m1).

• Hyb1 : Same as Hyb0, except (πZK2 , πZK4 ) are computed by invoking the ZK simulation algorithm
SZK.

Indistinguishability follows due to the zero knowledge property of the proof system.

• Hyb2 : This is same as Hyb1, except the simulator aborts if the witness extractor fails to
extract a single witness.

The adversary distinguishes between the two hybrids if it constructs an accepting proof on
which the witness extractor fails to extract. This breaks the WI proof of knowledge property
where the proof is the adversarial response to the proof of knowledge challenger.

• Hyb3 : This is same as Hyb2, except the simulator aborts if the witness extractor extracts two
valid witnesses (g0, 0) and (g1, 1).

The adversary distinguishing between the two hybrids can be used to break the one-wayness
of the group action. The adversary outputting (g0, 0) and (g1, 1) on challenger input (x0, x1)
can be used to find r = g0 · g−11 such that x1 = r ? x0.

• Hyb4 : Same as Hyb3, except the simulator extracts an unique witness (g, b) from the witness
extractor algorithm, invokes FOT functionality with extracted input choice bit b to obtain mb.
The simulator computes ot4 with sender input message (m0,m1) where m1−b = 0. This is the
ideal world execution of the protocol.

An adversary distinguishing between the two hybrids can be used to break the wU-EGA
property of (G, X, ?). The reduction is similar to the proof of Lemma. 1, with the random
oracle being replaced by the Goldreich-Levin hash function H.

Realization from wU-EGA. The three round input-delayed WI proof system can be obtained
[PRS02, KM20, BPS22] from non-interactive commitment schemes using the protocol of [FLS99].
The commitment scheme can be obtained from wU-EGA assumption via injective trapdoor one way
function. The four round input-delayed ZK proof system can be constructed [PRS02, KM20, BPS22]
from two-round statistically hiding commitment scheme which in turn can be constructed from
wU-EGA. As a result, we obtain the first round-optimal OT in plain model from wU-EGA which
satisfies simulation security. Our result is summarized in Thm. 7.

Theorem 7. Assuming (G, X, ?) is a wU-EGA, there exists a four-round oblivious transfer protocol
in the plain model that provides simulation based security against malicious corruptions of the
parties.

5 OT Extension from Reciprocal EGA

In this section, we discuss our three round OT extension protocol following a roadmap of obser-
vations. The maliciously secure OT protocol in [LGdSG21] fails to achieve UC security in three
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rounds, and would require four rounds.8 However, their construction relies on an efficient two round
semi-honest OT protocol. We observe that this semi-honest protocol can be used to implement a
batch of ` = O(κ) OTs, satisfying malicious security notions which are weaker than UC-security.
This semi-honest to malicious security transformation requires a few additional checks, incurring
O(1) cheap symmetric operations per OT. Finally, we show that this weaker notion of malicious
security suffices for [KOS15] OT extension by applying the result of [CSW20a]. We begin by
introducing some additional definitions and notations surrounding EGA and REGA.

5.1 Reciprocal EGA and Reciprocal CSIDH

The OT protocol of Lai et al. [LGdSG21] is based on the reciprocal CSIDH assumption. This
assumption is known to be quantum-equivalent to the computational CSIDH assumption, and
does not have an analogue in the Diffie-Hellman setting. The construction of Lai et al. relies on
crucially on the quadratic twist of an elliptic curve, which can be computed efficiently in the CSIDH
setting. In this section, we present an abstraction of the quadratic twist and the reciprocal CSIDH
assumption in the framework of (R)EGA. In particular, our abstraction captures all of the properties
of quadratic twist and its associated hardness assumptions used by Lai et a.l (see [LGdSG21] for
more details on the quadratic twist and its efficient computation in the CSIDH setting).

The Twist Map. Let (G,X, ?) be an EGA (equivalently an REGA) as described above. We
define a “twist” as a map T : X → X that satisfies the following properties:

• For any g ∈ G and any x ∈ X we have T (g ? x) = g−1 ? T (x).

• For any x ∈ X and any uniform g ←R G, we have: g ? x ≈s T (g ? x).

• There exists a “twist-invariant” element x0 ∈ X such that T (x0) = x0.

The Reciprocal EGA Assumption. Given an EGA (G,X, ?), we say that the reciprocal as-
sumption holds if for any security parameter κ ∈ N and for any PPT adversary A, the following
holds with overwhelmingly large probability:

Pr[ExptrecEGA(κ,A) = 1] < negl(κ),

where the experiment ExptrecEGA(κ,A) is as defined in Figure 3.

Remark 3. We can similarly define a reciprocal REGA assumption where, in the corresponding
experiment, all group elements (more concretely, the group elements g and s) are sampled from a
distribution that is statistically close to uniform over the group G.

Finally, we import the following theorem from [LGdSG21].

Theorem 8. ([LGdSG21]). Assuming that the reciprocal CSIDH assumption holds, there exists an
REGA satisfying the reciprocal REGA assumption.

5.2 The Ideal Functionality FSF-ROT

We present in Figure 4 the ideal functionality FSF-ROT for executing a batch of ` (sender) random
oblivious transfer with selective failure.

8This was pointed out by the authors of [LGdSG21] in their Eurocrypt 2021 presentation.
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Experiment ExptrecEGA(κ,A):

1. The challenger generates the description of an EGA (G,X, ?) along with the “twist” map
T : X → X and a special “twist-invariant” element xT ∈ X.

2. The challenger then samples g ←R G, sets x = g ? xT , and provides to the adversary A
the tuple (G,X, ?, T , xT , x).

3. The adversary A outputs an element z ∈ X.

4. The challenger samples s←R G and provides to the adversary A the set element y = s?x.

5. The adversary A eventually outputs a pair of set elements (z0, z1) ∈ X ×X.

6. Output 1 if (z0, z1) = (s ? z, s−1 ? z). Output 0 otherwise.

Figure 3: The Reciprocal EGA Experiment

5.3 Some Observations on the FSF-ROT Functionality

Before presenting our protocol we discuss the observations made by CSW that allow optimizing the
base OT protocol in KOS. CSW showed that the following weakening for the base OTs suffices.

• Security for a batch of ` OTs: The base OT protocols are run in a batch of ` = O(κ) > 3µ
OTs together. Simulation based security should hold for non-aborting parties for the batch
together. This is weaker than concurrent composition of ` OTs, which are individually proven
to be simulation secure.

• Allow selective failure attacks: The receiver in the base OT protocols possess random choice
bits. KOS observed that even if a corrupt sender launches a selective failure on O(κ) receiver’s
random choice bits, still it suffices for the OT extension protocol. The same observation was
used by CSW.

• Indistinguishability-based security for an aborting receiver: The base OT protocols are run on
random inputs. They need to satisfy simulation based security for a non-aborting receiver,
i.e. the simulator needs to extract the input choice bits of a corrupt receiver only if a corrupt
receiver does not abort. If the receiver aborts then the simulator does not need to extract
the receiver’s choice. Instead, the base OTs need to only satisfy sender privacy. This permits
a three round OT protocol with receiver sending the first and last message. The receiver is
allowed to abort/send a junk third round OT message after it has computed its OT output
from the sender’s OT message. In such a scenario only sender privacy is required and hence
the maliciously secure three round OT protocol of [LGdSG21] suffices for the base OT protocol
even if it does not satisfy UC-security.

The first two properties are captured by CSW using the FSF-ROT functionality which captures a
batch of ` OT protocols with selective failure. As per the third property, the OT protocol im-
plementing FSF-ROT functionality needs to only provide indistinguishability based security for an
aborting receiver. In what follows, we show how to efficiently construct an OT protocol implement-
ing this ideal functionality from reciprocal EGA.
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Figure 4: The ideal functionality FSF-ROT for executing a batch of ` (Sender) Random Oblivious
Transfer with Selective Failure

FSF-ROT

FSF-ROT interacts with a sender S and receiver R for i ∈ [`]:

– On input (Choose, rec, sid,b) from R , parse b = {bi}i∈[`] where bi ∈ {0, 1}, perform the following for
i ∈ [`]:

• If R is corrupt then store (rec, sid, i, bi) and send (rec, sid, i) to S.

• If R is honest then sample bi ← {0, 1} and then store (rec, sid, i, bi) and send (rec, sid, i) to S.

If a message of the form (sen, sid, i, a0,i, a1,i) is stored, send (sent, sid, i, abi,i) to R and (sent, sid, i, (a0,i, a1,i))

to S for i ∈ [`]. Ignore future messages with same sid.

– On input (Transfer, sen, sid, (a0,a1)) from S where a0,a1 ∈ {0, 1}`×κ ∪ ⊥, parse a0 = {a0,i}i∈[`], a1 =

{a1,i}i∈[`], and perform the following for i ∈ [`]:

• If S is corrupt then store (sen, sid, i, (a0,i, a1,i)) in memory and send (Received, sid, i) to R and S

for i ∈ [`].

• If S is honest then sample a0,i, a1,i ← {0, 1}κ, store (sen, sid, i, (a0,i, a1,i)) in memory and send
(Received, sid, i) to R and S.

If a message of the form (rec, sid, i, bi) is stored, send (sent, sid, i, (bi, abi,i)) to R and (sent, sid, i, (a0,i, a1,i))

to S for i ∈ [`]. Ignore future messages with same sid.

– On input (Guess, sen, sid, i, b′) from a corrupt S, if (rec, sid, i, b) exists in memory, b′ ∈ {0, 1,⊥} and there
does not exist (sen, sid, i, (Guess, ·)) in memory then store (sen, sid, i, (Guess, b′)) in memory and perform
the following:

• If b′ = ⊥, send (Cheat-Detected, S) to R and (Cheat-Detected) to S.

• If b′ = b, send (Cheat-Undetected) to S.

• If b′ 6= b, send (Cheat-Detected, S) to R and (Cheat-Detected) to S.

– On input (Abort, rec, sid) from R or (Abort, sen, sid) from S, send (Abort, sid) to R and S. Ignore future
messages with same sid.

5.4 Our Construction

We now present our construction of OT extension. We begin by briefly recalling the semi-honest
OT construction of [LGdSG21], which is the starting point of our construction.

5.4.1 OT construction of [LGdSG21]

Let (G,X, ?) be an EGA with x0 being a publicly available element in the set X where reciprocal
EGA assumption holds. Let H : X → {0, 1}κ be a hash function (modeled in the proof as a
random oracle). Let T : X → X denote the twist operation. Receiver R has input choice bit
b ∈ {0, 1} and sender has inputs messages (m0,m1) ∈ {0, 1}κ. It is a tuple of five PPT algorithms
(Setup,OTR,OTS1,OTD) as follows:

• Setup(1λ): Sample a trusted set element x0 such that T (x0) = x0. Sample g ←R G and
output crs = x = g ? x0.

• OTR(crs,b): Sample r ←R G and compute z ∈ X as follows:

z = r ? x if b = 0, z = T (r ? x) if b = 1,
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Output the receiver message ot1 = z and the receiver state st = (b, r).

• OTS(crs, ot1): Sample uniformly at random s←R G and compute sender’s OT message y ∈ X
and sender’s random pads - (a0, a1) ∈ {0, 1}κ as follows:

y = s ? x, c0 = H(s ? z)⊕m0 c1 = H(s ? T (z))⊕m1.

Send the sender OT message as ot2 = (y, c0, c1).

• OTD(st, ot2): Parse st = (b, r) and ot2 = (y, c0, c1), and recover the output message mb =
cb ⊕H(r ? y).

Security against Malicious Sender. At a high level, the protocol is secure against a malicious
sender since z statistically hides b since (r?x) and T (r?x) are statistically indistinguishable. In fact
a corrupt sender’s input can be extracted by a simulator. The simulator sets z = r ?x and extracts
m0 = H(r ? y) by following the protocol. Meanwhile, m1 can be extracted using the knowledge of
trapdoor g as follows:

H(T (g · r ? T (g−1 ? y)))⊕ γ1
= H(T (g · r ? T (g−1 ? y)))⊕H(s ? ((r · g)−1 ? T (x0)))⊕m1

= H(T (g · r ? T (g−1 ? y)))⊕H(s · r−1 · g−1 ? x0)⊕m1

= H((g · r)−1 ? (g−1 ? y))⊕H(s · r−1 · g−1 ? x0)⊕m1

= H((g · r)−1 ? (s ? x0))⊕H(s · r−1 · g−1 ? x0)⊕m1 = m1.

A corrupt receiver cannot compute both m0 and m1 since it requires to query H on (q0, q1) =
(s ? z, s ? T (z)). Given q1, one can compute s−1 ? z = T (z). This breaks the reciprocal EGA
assumption since the adversary computes (s ? z, s−1 ? z) where y = s ? x is generated by the
challenger after it receives adversarially generated set element z ∈ X. However, the simulator is
unable to extract a corrupt receiver’s input choice bit since it is statistically hidden.

Security against Malicious Receiver. To achieve security against a malicious receiver, the
work of [LGdSG21] adds an interactive challenge-proof-verify mechanism. The sender computes a
challenge that challenges the receiver to prove that it knows randomness r such that z = r ? x or
z = T (r ? x). Upon receiving the challenge, the receiver decrypts mb and computes the proof using
randomness r. It sends the proof to the sender, who verifies it and completes the protocol. The
proof is sent in the third round of the protocol, thus blowing up the round complexity to three
rounds. This approach successfully extracts a corrupt receiver’s input if it computes a correct proof
to the sender’s challenger. However, their challenge-proof-verify mechanism incurs an additional
overhead of 7 isogeny computation. We note that this 3 round maliciously secure OT construction
suffices for simulation-based security but they would need an additional round for UC security. We
refer to their Eurocrypt presentation for details.

5.4.2 Constructing OT Extension Protocols from Reciprocal (R)EGA

We build an inexpensive challenge-proof-verify mechanism on top of the above semi-honest by
relying only on symmetric key operations to obtain custom OT protocols. These custom OT
protocols are used to instantiate the maliciously secure base OT protocols in the [KOS15] (KOS)
OT extension paradigm using ideas from [CSW20a].
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Observations from [CSW20a]. The work of [CSW20a] (abbreviated henceforth as CSW) made
crucial observations that suffices for the base-OT protocols in KOS: 1) The base OT protocols are
run in a batch of ` = O(κ) > 3µ OTs together, where µ is the statistical security parameter.
Simulation based security should hold for non-aborting parties for the batch together. 2) A corrupt
sender is allowed to launch selective failure attack on the base-OTs since the receiver possesses
random choice bits. 3) The base-OT protocols needs to satisfy simulation-based security only
for non-aborting parties, in case of an abort semantic security suffices. The OT functionality
FSF-ROT with selective failure attack, which is weaker than UC-OT functionality, suffices for the
base OT in KOS. We show a technique that builds upon the semi-honest OT protocol of [LGdSG21]
to implement FSF-ROT against malicious adversaries. Our transformation only relies on cheap
symmetric key operations. This reduces our isogeny computations for each base OT to 5 and it
also yields the first OT extension protocol based on isogenies.

5.4.3 Overview of Our Construction

We build upon the semi-honest protocol of [LGdSG21]. Recall that their two round protocol (de-
scribed in Sec. 5.4.1) is secure against a malicious sender and a semi-honest receiver since the
simulator fails to extract the corrupt receiver’s input. They add a challenge-proof-verify mecha-
nism to tackle a malicious receiver but that doubles their isogeny computations. Instead, we take a
different route and construct the same challenge-proof-verify mechanism by solely relying on sym-
metric key operations. Our mechanism is inspired from the the work of CSW and we describe it
as follows.

Let us denote the two messages of the OT sender for the ith OT as p0,i and p1,i respectively.
Let H1 : X → {0, 1}κ, H2 : {0, 1}κ → {0, 1}κ, H3 : {0, 1}`κ → {0, 1}κ, H4 : {0, 1}2κ → {0, 1}κ be
different hash functions (modeled in the proof as a random oracle). Let us denote the choice bit of
the receiver for the ith OT as bi. The sender constructs a challenge challi using the two messages
as follows:

challi = u0,i ⊕ u1,i, where u0,i = H2(i, p0,i), u1,i = H2(i, p1,i).

The receiver is required to compute the response as u0,i and send it back to the sender as the proof.
The receiver decrypts pbi,i and computes u0,i as follows:

u0,i = challi · bi ⊕H2(pbi,i).

Note that the receiver needs to query the random oracle H2 in order to compute u0,i correctly
and hence the simulator successfully extracts bi if the receiver computes the correct response u0,i.
However, a corrupt sender can extract bi by constructing challi maliciously. It samples a random
chall′i and sends it to the receiver. If the receiver responds with the correct u0,i then the sender sets
bi = 0 else it sets bi = 1.

We tackle this problem by relying on the observation that the OT protocol can allow selective
failure attack and it can allow the sender to guess O(κ) choice bits of the receiver. This suffices for
the KOS base OT protocols. Using this observation we make the sender prove that the batch of `
challenges were correctly computed. The sender computes the response ans of receiver proof using
a random oracle H3 as follows:

ans = H3(u0,1, u0,2, . . . u0,`).

The sender sends proof of correct computation by sending the proof pf = H2(ans) to the receiver
alongwith the challenger. The sender sets the output of ` random OTs as (a0,a1) where a0 =
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{a0,i}i∈[`] and a1 = {a1,i}i∈[`] is defined as follows for i ∈ [`]:

a0,i = H4(ans, p0,i), a1,i = H4(ans, p1,i).

Upon receiving the sender’s OT message, the receiver computes pbi,i corresponding to its choice
bit bi. It computes {u0,i}i∈[`] and recomputes ans to verify pf. If the verification succeeds then the
receiver sends ans to the sender as the response and computes the OT output as abi,i = H4(ans, pbi,i).
If a corrupt receiver computes the correct ans then a simulator extracts every {bi}i∈[`] by observing
the queries made to H2 and H3. Without computing the correct ans the corrupt receiver cannot
compute the OT output abi,i. Hence, the simulator successfully extracts all the choice bits of the
receiver if the receiver needs to compute the output of any single OT. Meanwhile, a corrupt sender
can launch a selective failure attack only if it correctly guesses the value of receiver computed ans
to verify pf. This is performed by guessing the u0,i values computed by the receiver and for that
the sender needs to guess the receiver’s choice bit in the OT protocols. The base OT protocols in
KOS are random OTs. The sender guesses κ choice bits of the receiver with only 2−κ probability.
Thus, our OT protocol allows selective failure attack and it implements the FSF-ROT functionality.

5.4.4 Our Protocol-3

Let (G,X, ?) be an EGA with x0 being a publicly available element in the set X where reciprocal
EGA assumption holds. Also let H1 : X → {0, 1}κ, H2 : {0, 1}κ → {0, 1}κ, H3 : {0, 1}`κ →
{0, 1}κ, H4 : {0, 1}2κ → {0, 1}κ be different hash functions (modeled in the proof as a random
oracle). Our construction is a tuple of five PPT algorithms (Setup,OTR1,OTS1,OTR2,OTS2):

• Setup(1λ): Sample a trusted set element x0 such that T (x0) = x0. Sample g ←R G and
output crs = x = g ? x0.

• OTR1(crs,b): Sample r←R G
` and compute z ∈ X` as follows for i ∈ [`]:

zi = ri ? x, if bi = 0,

zi = T (ri ? x), if bi = 1,

Output the receiver message ot1 = z and the receiver state st = (b, r).

• OTS1(crs, ot1): Sample uniformly at random s ←R G` and compute sender’s OT message
y ∈ X` and sender’s random inputs messages as (p0,p1) ∈ {0, 1}κ×` as follows for i ∈ [`]:

yi = si ? x, p0,i = H1(i, si ? zi) p1,i = H1(i, si ? T (zi)).

Compute the challenge chall for receiver proof as follows for i ∈ [`]:

challi = u0,i ⊕ u1,i, where u0,i = H2(i, p0,i), u1,i = H2(i, p1,i).

Compute the response ans of receiver proof as follows:

ans = H3(u0,1, u0,2, . . . u0,`).

Compute the sender’s proof pf = H2(ans). Send the sender OT message as ot2 = (y, chall, pf).
Store (ans,p0,p1) as the internal state.
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• OTR2(st, ot2): Parse st = (b, r) and ot2 = (y, chall, pf), and recover the output pads p =
{pi}i∈[`] as follows for i ∈ [`]:

pi = H1(ri ? yi).

Compute the intermediate proof response as follows for i ∈ [`]:

u′i = challi · bi ⊕H2(i, pi)

Compute the receiver’s proof response ans′ as follows:

ans′ = H3(u
′
1, u
′
2, . . . u

′
`)

The receiver aborts if H2(ans
′) 6= pf. Else, the receiver responds to the sender’s challenge by

sending ot3 = ans′ to the sender. The receiver computes the OT output as m = {mi}i∈[`] for
i ∈ [`]:

mi = H4(ans
′, pi)

Output (b,m) as the random OT receiver output.

• OTS2(ans, ot3): Parse ot3 = ans′. The sender aborts if ans′ 6= ans. Else, the sender sets the
output as (a0,a1) where a0 = {a0,i}i∈[`] and a1 = {a1,i}i∈[`] is defined as follows for i ∈ [`]:

a0,i = H4(ans, p0,i), a1,i = H4(ans, p1,i).

Correctness. Correctness of the scheme follows by inspection. It can be verified that mi = abi,i
for i ∈ [`] for honest execution.

Security Proof. The security of our protocol is summarized by the following theorem.

Theorem 9. Given a set element x ∈ X and a group G, let G ? X be the distribution on X of
g ? x for g ←R G, and let T (G ? X) be the distribution on x of T (g ? x) for g ←R G. If g ? x
and T (g ? x) are statistically indistinguishable and reciprocal EGA assumption holds in (G,X, ?)
then the above protocol securely implements FSF-ROT functionality (Figure. 4) against a maliciously
corrupt sender and a maliciously corrupt non-aborting receiver in the random oracle model.

We prove security of our protocol by considering two corruption cases.

Security against Malicious Sender. We prove simulation based security against a maliciously
corrupt sender by proving Lemma. 3.

Lemma 3. Given a set element x ∈ X and a group G, let G ?X be the distribution on X of g ? x
for g ←R G, and let T (G?X) be the distribution on x of T (g ?x) for g ←R G. If g ?x and T (g ?x)
are statistically indistinguishable then the above protocol securely implements FSF-ROT functionality
(Figure. 4) against a maliciously corrupt sender in the random oracle model.

Proof. Our simulator against a corrupt sender is as follows:

• Setup(1λ): Sample g ←R G and output crs = x = g?x0. The simulator possesses the trapdoor
g.
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• OTR1(crs,b): Perform this step following honest receiver algorithm. Sample uniformly at
random b←R {0, 1}` and r←R G

` and compute z ∈ X` as follows for i ∈ [`]:

zi = ri ? x, if bi = 0,

zi = T (ri ? x), if bi = 1,

Output the receiver message ot1 = z and the receiver state st = (b, r).

• OTS1(crs, ot1): The malicious sender sends OT message as ot2 = (y, chall, ans).

• OTR2(st, ot2): Parse st = (b, r) and ot2 = (y, chall, pf), and recover the output messages m
as follows:

mi = H1(ri ? yi) = pbi,i.

Compute the receiver proof response as follows :

u′i = challi · bi ⊕H2(i,mi) ( for i ∈ [`])

ans′ = H3(u
′
1, u
′
2, . . . u

′
`)

The simulator aborts if H2(ans
′) 6= pf. Else, the receiver responds to the sender’s challenge

by sending ot3 = ans′ to the sender. Extract pbi,i as follows:

pbi,i = H1(T (g · ri ? T (g−1 ? yi))).

The simulator observes the random oracle queries made by the sender to H1, H2 and H3, and
performs the following:

– For i ∈ [`], if the sender has queried (i,pdi,i) and not queried (i,pdi,i) to H2, for di ∈
{0, 1}, then invoke FSF-ROT with a guess for selective failure attack as - (Guess, sen, i, di).
If it returns (Cheat-Detected, S) then abort else continue. The simulator aborts if
the malicious sender guesses > µ choice bits successfully in the protocol.

– For i ∈ [`], if S has not queried both (i, p0,i) and (i, p1,i) to H2 then invoke FSF-ROT with
- (Guess, sen, i,⊥) and abort the protocol.

– Aborts if S has not queried (u′1, u
′
2, . . . , u

′
`) to H3.

– Aborts if S has not queried ans′ to H2.

If all the checks pass then the simulator computes a0 = {a0,i}i∈[`] and a1 = {a1,i}i∈[`] as
follows for i ∈ [`]:

a0,i = H4(ans
′, p0,i), a1,i = H4(ans

′, p1,i).

The simulator invokes FSF-ROT with input (Transfer, S, sid, (a0,a1)) and completes the sim-
ulation.

• OTS2(∗, ot3): Performs its own adversarial algorithm.

The corrupt sender forwards its view to the simulator which is the ideal world view of the adversary.
We argue security against a maliciously corrupted sender by showing that the real world view of
the adversary is indistinguishable from the ideal world view of the adversary as follows.
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• Hyb0 : Real world execution of the protocol.

• Hyb1 : Same as Hyb0, except the simulator aborts if the malicious sender has not queried
ans′ to H2. The adversarial sender distinguishes the two hybrids if it predicts pf = H2(ans

′)
without querying ans′ to H2. This event occurs with negligible probability in the random
oracle model.

• Hyb2 : Same as Hyb1, except the simulator aborts if the malicious sender has not queried
u′ = (u′1, u

′
2, . . . , u

′
`) to H3. The adversarial sender distinguishes the two hybrids if it predicts

ans′ = H3(u
′) without querying u′ to H3 or it finds a collision - (u′,u′′), in H3 such that

ans′ = H3(u
′) = H2(u

′′) and u′ 6= u′′. Both events occur with negligible probability in the
random oracle model.

• Hyb3 : Same as Hyb2, except the simulator invokes the FSF-ROT functionality with (Guess,
sen, i,⊥) and aborts the protocol if the sender has not queried both (i, p0,i) and (i, p1,i) to H2

for some i ∈ [`]. The adversarial sender distinguishes the two hybrids if it predicts H2(i, p0,i)
or H2(i, p1,i) without querying H2 on (i, p0,i) or (i, p1,i) respectively. This event occurs with
negligible probability in the random oracle model.

• Hyb4 : Same as Hyb3, except the simulator extracts both (a0,a1) following the simulation
algorithm and simulates the selective failure attacks as per the simulation algorithm. The
simulator aborts if the adversarial sender launches selective failure attack on > µ OTs. The
receiver OT message ot1 statistically hides b since ri ? x and T (ri ? x) are statistically indis-
tinguishable. The only other way a corrupt sender distinguishes between the two is when it
passes all the checks in real protocol, whereas in the ideal world the simulator aborts. This oc-
curs with statistically negligible probability 2−µ since the adversary has to successfully launch
a selective failure attack on > µ invocations of FSF-ROT. This is the ideal world execution of
the protocol and it completes our simulation.

This completes the proof of Lemma 3.

Security against a Malicious Receiver. Next, we show that our protocol provides simulation
based security against a non-aborting malicious receiver by proving Lemma. 4.

Lemma 4. If the reciprocal EGA assumption holds in (G,X, ?) then the above protocol securely
implements FSF-ROT functionality (Figure. 4) against a maliciously corrupt non-aborting receiver
in the random oracle model.

Proof. Our simulation algorithm against a corrupt receiver is as follows:

• Setup(1λ): Sample g ←R G and output crs = x = g ? x0.

• OTR1(crs,b): The malicious receiver sends ot1 = z.

• OTS1(crs, ot1): Sample uniformly at random s ←R G` and compute sender’s OT message
y ∈ X` and sender’s random pads as (p0,p1) ∈ {0, 1}κ×` as follows for i ∈ [`]:

yi = si ? x, p0,i = H1(i, si ? zi) p1,i = H1(i, si ? T (zi)).
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Compute the challenge chall for receiver proof as follows for i ∈ [`]:

challi = u0,i ⊕ u1,1, where u0,i = H2(i, p0,i), u1,i = H2(i, p1,i).

Compute the response ans of receiver proof as follows:

ans = H3(u0,1, u0,2, . . . u0,`).

Compute the sender’s proof pf = H2(ans). Send the sender OT message as ot2 = (y, chall, ans).
Store ans as the internal state.

• OTR2(st, ot2): The corrupt receiver sends ot3 = ans′.

• OTS2(ans, ot3): Parse ot3 = ans′ and abort if ans 6= ans′. The simulator extracts the receiver’s
input b as follows for i ∈ [`]:

– Set bi = 0 if receiver has queried (i, si ? zi) to H1.

– Set bi = 1 if receiver has queried (i, si ? T (zi)) to H1.

The simulator aborts if one of the following event occurs:

– For i ∈ [`], the receiver did not query both (i, si ? zi) and (i, si ? T (zi)) to H1.

– For i ∈ [`], the receiver queried both (i, si ? zi) and (i, si ? T (zi)) to H1.

– For any i ∈ [`], the receiver did not query both p0,i and p1,i to H2.

– The receiver did not query (u0,1, u0,2, . . . , u0,`) to H3.

Invoke FSF-ROT with input (Choose, rec, sid,b) as a corrupt receiver to obtain m = {mi}
as output. The simulator programs the random oracle H4 as follows such that the receiver
obtains the correct output:

H4(ans, pbi,i) = mi (for i ∈ [`]).

• Hyb0 : Real world execution of the protocol.

• Hyb1 : Same as Hyb0, except the simulator aborts if the receiver did not query (u0,1, . . . , u0,`)
to H3. The receiver distinguishes between the two hybrids if it successfully predicts the
output of H3(u0,1, u0,2, . . . , u0,`) as ans without querying. This event occurs with negligible
probability in the random oracle model.

• Hyb2 : Same as Hyb1, except the simulator aborts if for any i ∈ [`], the receiver did not query
both p0,i and p1,i to H2. The receiver distinguishes between the two hybrids if it successfully
predicted the output of H2 without querying. This event occurs with negligible probability
in the random oracle model.

• Hyb3 : Same as Hyb2, except the simulator aborts if for any i ∈ [`], the receiver did not query
both (i, si ? zi) and (i, T (si ? zi)) to H1. The receiver distinguishes between the two hybrids if
it successfully predicted the output of H1 without querying. This event occurs with negligible
probability in the random oracle model.
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• Hyb4 : Same as Hyb3, except the simulator aborts if for any i ∈ [`], the receiver queried both
(i, si?zi) and (i, T (si?zi)) toH1. Else, the simulator uniquely extracts the receiver’s choice bits
and invokes FSF-ROT functionality with receiver’s input to obtain the output and it programs
H4 such that receiver gets the correct output. If the receiver successfully distinguishes between
the two hybrids then one can break the reciprocal CSIDH assumption as follows. When the
receiver sends zi, forward z∗ = zi to the reciprocal CSIDH challenger and receive y∗ = s∗ ? x
as the challenge and return yi = y∗ to the receiver as part of the sender OT message. When
receiver queries both (i, si ? zi) and (i, si ? T (zi)) to H1, return (s∗ ? z∗) = (si ? zi) and
(s∗−1 ? z∗) = T (si ? T (zi)) to the reciprocal CSIDH challenger as the response. This breaks
reciprocal CSIDH assumption and hence proves that the two hybrids are indistinguishable.
This is our ideal execution of the protocol and it completes our security proof.

This completes the proof of Lemma 4, and hence, the proof of Theorem 9.

Further Optimizations. It can be observed that the sender can reuse the randomness s for
multiple OT protocols by using reusing the same y for all the OT protocols. This translates
into a poly(κ) loss in the security parameter since the reduction to reciprocal EGA assumption
needs to guess the session where a corrupt receiver breaks the assumption. The security loss can
be compensated by increasing the security parameter accordingly. This optimization reduces the
number of isogeny computations to 4 for each OT. Meanwhile, the semi-honest OT protocol of
[LGdSG21] requires 5 isogeny computations.
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