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Abstract

In this work, we present the first construction of a fully non-interactive publicly-verifiable delegation
scheme for committed programs. More specifically, we consider a setting where Alice is a trusted author
who delegates to an untrusted worker the task of hosting a program P , represented as a Boolean circuit.
Alice also commits to a succinct value based on P . Any arbitrary user/verifier without knowledge of P
should be convinced that they are receiving from the worker an actual computation of Alice’s program
on a given input x.

Before our work, the only object known to imply this challenging form of delegation was a SNARG/SNARK
for NP. This is because from the point of view of the user/verifier, the program P is an unknown wit-
ness to the computation. However, constructing a SNARG for NP from standard assumptions remains
a major open problem.

In our work, we show how to achieve delegation in this challenging context assuming only the hardness
of the Learning With Errors (LWE) assumption, bypassing the apparent need for a SNARG for NP.

1 Introduction

We consider a scenario where a trusted software author Alice wishes to make it possible for a set of users to
make use of her program P , which we treat as a (non-uniform) Boolean circuit. In particular, this program
P may have embedded within it a large proprietary database that Alice’s program makes use of. However,
Alice neither wants to release her program P nor does she want to host and execute the program herself.
Instead she wishes to delegate this computation to an untrusted Worker, and the User/Verifier wants to
be certain that they are receiving an output obtained via a computation of Alice’s actual program P . As
illustrated in Figure 1, the way this works is:

1. Alice sends the program P along with some computed state to the Worker, and Alice also publishes a
succinct hash HP of her program, which the User/Verifier obtains. This step is done once and for all.

2. An Input Provider chooses an input x, which is sent to both the Worker and the User/Verifier. Note
that the input provider could be some public source of information like a news channel of bulletin
board, and need not involve the User/Verifier.

3. Finally, the Worker computes the output y = P (x) along with a succinct proof Π, and sends both of
these to the User/Verifier. Steps 2 and 3 may be repeated polynomially many times.

As illustrated in Figure 1, this process involves no back–and–forth communication. The communication
is entirely unidirectional – which we call non-interactive – from left to right. Furthermore, we say that
this scenario is succinct if all communication to the User/Verifier, and the runtime of the User/Verifier, is
poly(log |P |, λ, |x|), where λ is a security parameter.

Remark 1.1. Note that on one hand, the Worker is trusted with the program P by Alice, whereas, it is not
trusted by the verifier. This asymmetry of trust is inherent in our setup and is well motivated. In a typical
real world situation, the verifier is typically a user on the internet who takes part in a one off interaction
with a cloud service for some computation. The need to prove honesty in this situation is significant. On
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Figure 1: The Delegation Setup

the other hand, Alice might be able to have an agreement with the cloud service before handing over her
program, which would make it hard for their Worker to breach trust without consequences.

Comparison to Prior Work. What we have just described is one of the most challenging variants of the
classical problem of publicly verifiable delegation which has been the subject of intense work for decades, for
many relaxed variations of the model that we describe above.

Specifically, delegation schemes without public verification based on standard assumptions for determinis-
tic and non-deterministic computations have been designed [TRMP12, CMT12, SMBW12, SVP+12, CKV10,
KP16, TKRR13, KRR14, BKK+18, BHK17, BK20, KRR13]. Restricting verification to a designated verifier
implies that the worker needs to produce a fresh proof unique for each particular verifier for any computation,
which is certainly not ideal. Another line of work [GGP10] achieves public verification but does not achieve
public delegation. In other words, the input provider needs to run a pre-processing algorithm corresponding
to the program P before being able to delegate. Another model which has been extensively explored is when
the User/Verifier is allowed to have interaction with the Worker, i.e., interactive delegation. Influenced by the
first work on interactive efficient arguments by Kilian [Kil92], there have been several works from standard
assumptions [KRR13, PHGR13, PRV12, BKP18] and some even unconditional soundness[GKR15, RRR19].
These are however not applicable in our setting where only one-way communication is permitted between
the parties, as can be seen in the acyclic graph in Figure 1.

With regard to non-interactive publicly verifiable delegation, Starting from the seminal work on compu-
tationally sound proofs by Micali [Mic00] in the random oracle model, there have been several constructions
on publicly verifiable non-interactive delegation schemes [BCC+17, BCCT13, DFH12, BCI+13, GGPR13,
Gro10, Lip12, PR17] based on the Random Oracle Model or non-standard knowledge assumptions. From
more standard assumptions, there have been several works recently [BKK+18, BHK17, BK20, KPY19]. An
illustrative example is the recent work of [KPY19] that proposed the first publicly verifiable non-interactive
delegation scheme from a falsifiable decisional assumption on groups with bilinear pairings. However, in con-
trast with the setting we describe above, they can only achieve succinct delegation when the Verifier knows
the program P . In our setting of Boolean circuits, this trivializes the delegation problem, since reading P ’s
description takes as long as evaluating P . Indeed, the case that we consider — where Alice’s program is
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large — is extremely well motivated: the program P could be an ML model with billions of painstakingly
learned parameters.

The SNARGs for NP barrier. Why has constructing a protocol that caters to the fully non-interactive
setting which we have defined been so elusive? Note that in our problem, the User/Verifier and Input
Provider do not know the program P . Hence, from User/Verifier’s perspective, P is an NP witness. Thus,
it certainly seems that finding a solution is intricately related to a major goal in the area of non interactive
succinct proof systems, i.e., SNARGs for NP. Unfortunately, the only known constructions of SNARGs for
NP base their soundness on the Random Oracle Model or non-standard knowledge assumptions. Finding a
solution solely relying on standard assumptions has been an open problem for over a decade. In fact, the
closest that we have come is the very recent work achieving SNARGs for P [CJJ21b] (see also [KVZ21]).

The major technical contribution in our work is to enable Non-Interactive Publicly Verifiable Succinct
Delegation for Committed Programs without having to use SNARGs for NP.

Our Contribution: We present the first complete solution to achieving succinct non interactive publicly
verifiable delegation for committed programs. Indeed, furthermore, we can also achieve zero-knowledge
guarantees as well. Our only computational assumption is the hardness of the Learning with Errors (LWE)
problem. Somewhat surprisingly, we show that SNARGs for NP are not required to solve this problem,
even though the statement being proved looks like an NP statement to the Verifier!

Instead, we show that many ideas from SNARGs for P [CJJ21b] can in fact be applied here. Although
P is unknown to the User/Verifier, we show that it suffices for Alice to communicate a tiny amount of
information of size poly(log |P |) about the program P (referred to as HP ) as shown in Figure 1. Because
Alice is the author of P , this HP can be trusted as correctly generated. We stress that Alice does not need
to know x to compute HP , hence this achieves public delegation and public verification in the completely
non-interactive model described above. This leads to our main theorem,

Theorem 1.2. Assuming the hardness of the LWE problem, Figure 2 gives a construction for publicly
verifiable non-interactive succinct delegation for committed programs with CRS size, proof size and verifier
time poly(λ, log |P |, |x|) and prover run time being poly(λ, |P |).

Finally, in order to get zero-knowledge, it suffices for Alice to commit to HP rather than sending it out
in the open. We then present a generic transformation to convert any delegation protocol of this form to
attain zero-knowledge.

Theorem 1.3. Assuming the hardness of the LWE problem and existence of a succinct delegation scheme,
Figure 5 gives a construction for publicly verifiable succinct delegation scheme with zero knowledge such that
CRS size, proof size and verifier time are poly(λ, log |P |) and prover run time is poly(λ, |P |).

Finally, we also show how to achieve zero knowledge versions of our delegation scheme, meeting the same
strong succinctness and efficiency goals, and under the same assumption (LWE).

We present a more detailed explanation in the Technical Overview.

2 Technical Overview

Our Delegation Scenario Let us briefly recall the setup of our delegation scenario. There are 4 parties,
namely, (1) Alice-the program author ProgAuth who sends a program P and some computed state state to a
Worker, (2) an Input Provider I that outputs some value x, (3) Worker W that takes as input (P, state, x)
and outputs P (x) and a proof Π, and (4) User/Verifier V gets as inputs (x, P (x),Π) and outputs 1 if and only
if Π was a valid proof. Assume that all the parties get the security parameter λ as an input. An additional
requirement is that |Π| and runtime of V is poly(λ, log |P |, |x|), andW runs in time poly(λ, |x|, |P |). Thus, any
non-interactive publicly verifiable succinct delegation scheme can be viewed as a collection of 4 algorithms:
sDel = (ProgAuth,W, I, V ) with the input output behaviour and efficiency guarantees as specified. Note that
this is indeed a P computation for the Worker but the primary challenge is that the verifier does not have
knowledge of the “witness” P , hence this is an NP computation from the verifier’s point of view. In this
work, we observe that it is indeed feasible to achieve our delegation scenario for all circuits without having
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to go through SNARGs for NP. Our technique is based on the recent work of Choudhuri et. al. [CJJ21b]
on SNARGs for P. We begin by giving a brief overview of their approach and elaborate the challenges of
directly incorporating their methodology for our setting.

Challenges of implementing [CJJ21b] Roughly, the work of [CJJ21b] uses Batch Arguments for NP
(BARGs), which they build from LWE. BARGs allow an efficient prover to compute a non-interactive and
publicly verifiable “batch proof” of many NP instances, with size poly(|w| log T ) for T -many NP statements
with each witness of size |w|. They begin by looking at P as a Turing machine and the steps of P ’s
computation are interpreted as an Index Circuit Cindex. Say, P terminates in T steps. Formally, they
construct a BARG for the Index Language Lindex, where

Lindex = {(Cindex, i)|∃wi, such that C(i, wi) = 1},

where i ∈ [T ] is an index. Let s0, s1, . . . , sT denote the encoding of internal states of P along with its tape
information, and let Step be its step function such that Step(si−1) = si The witness for the i

th intermediate
computation is then defined as wi = (si−1, si). The index circuit is built such that (Cindex, i) ∈ Lindex

essentially implies that the Turing machine step function was correctly computed on si−1 to yield si. Note
that this alone does not suffice as a proof because the BARG only confirms that (si−1, si) and (s′i, si+1) are
valid witnesses. If si−1, si, s

′
i, si+1 are generated by the step function of the same Turing machine P , they

they must be consistent with each other, i.e., si = s′i. However, this is not guaranteed by a BARG.
To resolve this issue, the prover also sends a Somewhere Extractable Hash (SE) to the witnesses (s0, {si−1, si}i∈[T ]).

The extraction property of this hash allows the verifier to check if the witness of two consecutive BARG
instances are indeed consistent with each other. At this stage, we would like to remind the reader of
their efficiency goals where crucially, they desire proof size and verification time to be poly(λ, log T ). How-
ever, note that |Cindex| grows linearly with |si| and the known constructions [HW15] of SE hashes can
only produce hashes with size poly(|si|). This means that total communication and verifier run time will
be at least poly(|si|). This is certainly no good if the Turing machine has massive states. To overcome
this final barrier, they make use of Hash Trees which compress the states si to a short hash hi such that
|hi| = poly(λ). Such trees [Mer88] also have a soundness property where a Prover must produce a succinct
proof Πi that the hash tree was indeed implemented correctly at the ith step of the Turing machine com-
putation. Once the succinctness guarantee is ensured, the prover then produces SE hashes corresponding to
(h0,Π0, {hi−1,Πi−1, hi,Πi}i∈[T ]) along with the openings to these hashes. To summarise, the proof consists
of two parts, (1) The BARG proof, and (2) A somewhere extractable hash of the witnesses. Relying on
the soundness of BARG, extraction correctness property of SE hash and soundness of the Hash Tree, a
User/Verifier can check if each of these T intermediate steps are indeed the correct states for P , i.e., the
computation was done honestly.

However, this approach only works if User/Verifier can confirm that the inputs used for the computation
by the Worker, i.e. (P, x) are indeed the correct starting values as provided by the Program Author and
Input Provider. This works fine for [CJJ21b] because in their setting, the User/Verifier actually knows (P, x).
Unfortunately, this is not at all true in our scenario. Thus, the techniques of Choudhuri et al. [CJJ21b] cannot
be implemented directly as the soundness of the BARG proof cannot provide any guarantees if there is no
way for to check that the initial inputs used by the Worker are correct.

Our Idea. We start with an alternate way of interpreting the computation of P on input x as the following:
Consider a Circuit-Universal Turing Machine TM which takes as input P, x, y and accepts (P, x, y) in
T = Õ(|P |) steps if P (x) = y. We can assume without loss of generality that P ∈ {0, 1}m, x ∈ {0, 1}n and
y ∈ {0, 1}, where m,n ≤ 2λ. Keeping this in mind, we introduce the notion of Semi-Trusted SNARGs for
NP. This new kind of SNARG is one that will work for general NP computations, but only with a little bit
of extra help from a trusted party that knows the witness – which in our delegation scenario is Alice, who
knows the witness P !

A Semi-Trusted SNARG is a tuple of algorithms: stSNARG = (Setup,TrustHash,P,V), where (1) Setup is
a randomised algorithm that takes as input the security parameter and outputs a Common Random String
(CRS). (2) a trusted deterministic TrustHash takes as input the (CRS, P ) and outputs a digest HP , (3) a
deterministic prover P which takes as input CRS and (P, x, y), and outputs a proof Π, and (4) a deterministic
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verifier V which gets CRS,(HP , x, y,Π) as input and outputs 1 iff Π is valid. It must be that |Π| and run
time of V is poly(λ, log T ), and P runs in time poly(λ, |x|, |P |, T ). A simple reduction shows that in the
CRS model (or alternatively in a model where Alice chooses the CRS), existence of stSNARG implies the
existence of sDel. We show this formally in Lemma 5.19. Hence, from here onwards, our goal is to construct
a Semi-Trusted SNARG for NP.

We briefly provide an informal explanation of our construction.
Like [CJJ21b], every intermediate state of the Universal Turing Machine is encoded into a succinct hash

(call it h0, . . . , hT ) accompanied with succinct proofs {Πi}i∈[T ]. The prover computes two independent copies
of Somewhere Extractable (SE) hashes (c1, c2) of the encoding {h0, {(h1,Π1), . . . , (hT ,ΠT )}} along with their
corresponding openings. Here h0 = (st0, HP , Hx, Hwork), where st0 is that hash of TM’s starting state which
is publicly known, Hx denote the hash of x, and Hwork is the hash of TM’s blank work tape. The use of
two independent SE hashes are pivotal for soundness which we elaborate later.

We point out that TrustHash computes HP using the same hash tree which is used for hashing the Turing
machine states by the Prover. This is crucial to ensure soundness of the protocol. We show in Figure 3
that once the public hash is fixed by TrustHash, one can hard code (y, c1, c2, T,HP , Hx) to the index circuit
Cindex for BARG. At this point, we can now follow the approach from [CJJ21b]. V can rely upon the binding
property/collision resistance of the hash to ensure that the prover has used P and x which were provided
by Alice and the input provider respectively. The main observation here is that once a trusted party fixed
a hash of the program P and V is convinced that computation was commenced with the correct inputs,
the soundness of BARG, extraction correctness of the SE hash and soundness of hash tree ensures that the
semi-trusted SNARG construction is sound.

While our proof of soundness closely follows the blueprint of [CJJ21b], we choose to present our proof in
a different, and arguably simpler, way. In [CJJ21b], No-Signaling Somewhere Extractable(NSSE) hashes are
use extensively. In our proof, we choose to omit explicit use of this notion, and instead we make direct use
of two independent SE hashes as mentioned above. A simple hybrid argument then gives a straightforward
proof for soundness. This shows that the “anchor and step” use of SE hashes, which dates to the introduction
of somewhere-binding hashes [HW15] in 2015, is directly sufficient for this proof of soundness.

Zero-Knowledge We have only discussed soundness guarantees thus far. However, in our delegation
scenario, it might also be extremely important to ensure that no information about P leaked to V during
the delegation process. Hence it is important to add zero-knowledge guarantees to our protocol. We finally
give a generic transformation to modify a semi-trusted SNARG to add zero knowledge guarantees. In order
to do so we make use of a statistically binding extractable commitment scheme and a NIZK, and roughly
make the following modifications:

• We add an additional commitment to 0 in the CRS which is never used in the proof but helps in
proving zero knowledge.

• The public hash output by TrustHash is a binding commitment CP of HP . It then sends (P,HP ) to
the worker W only.

• The SE hashes c1, c2 are also committed as a part of the proof and not published in the open.

• The prover wraps the BARG proof Π with a NIZK proof which proves that that the BARG verification
circuit indeed accepts the BARG proof.

• The Verifier then checks if the NIZK proof is valid.

The binding and hiding property of the commitment, and witness indistinguishability of NIZK guarantees
zero knowledge.

3 Preliminaries

We define the underlying primitives borrowed from prior work which are used as building blocks to perform
the Succinct Delegation in the setup.
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Definition 3.1 (Non-Interactive Zero Knowledge(NIZK) Arguments in the CRS model). A non interactive
zero knowledge argument for a language L in the Common Reference String (CRS) model is defined three
PPT algorithms:

• Setup(1n, 1λ) outputs a uniform random string crs given a statement of length n and security parameter
λ.

• Prover P (crs, x, w) outputs a proof π given a statement witness pair (x,w) in the NP relation R such
that |Π| = poly(|x|, |w|).

• Verifier V (crs, x, π) either accepts or rejects.

The following properties must be satisfied:

• Completeness: V (crs, x, π) must always accept if x ∈ L and π ← P (crs, x, w).

• Computational Soundness: for every non-uniform poly time prover P ∗, there exists a negligible function
ϵ(λ) such that for any n ∈ N and x /∈ L,

Pr[crs← Setup(1n, 1λ), π∗ ← P (crs, x), V (crs, x, π∗) accepts] ≤ ϵ(λ).

• Non Interactive Zero Knowledge: There exists a PPT simulator M such that for every x ∈ L such that
the distribution of the transcript output by Setup and P , i.e., (crs, P (crs, x, w)) : crs ← Setup(1n, 1λ)
is statistically indistinguishable from the output of M(x). Note that M is allowed to generate its own
CRS.

There has been a string of recent works, [PS19, CCH+19, HLR21] which show how to instantiate such
NIZKs from LWE.

Definition 3.2 (Statistically Binding Extractable Commitment Scheme). A Statistically binding commit-
ment scheme Combind in the CRS model is a tuple of efficiently polynomial time algorithms (Gen,TGen,C,Ext),
where,

• Gen(1λ, 1N ) which on input the security parameter λ and message length N outputs a common reference
string crs.

• TGen(1λ, 1N ) outputs a common reference string crs and trapdoor td.

• C(crs,m; r) takes as input crs, a message m to be committed, and uses randomness r to output a
commitment com such that |c| = poly(|m|).

• Ext(com, td) is a deterministic algorithm which takes as input a commitment com and trapdoor td, and
outputs a message m.

They have the following properties:

• CRS indistinguishability: The distribution of crs generated by Gen and TGen must be be indistin-
guishable.

• Statistical Binding: With high probability over the choice of crs ← Setup(1λ), there does not exists
r0, r1, and messages m0 ̸= m1 such that C(crs,m0; r0) = C(crs,m1; r1).

• Computational Hiding: For messages m0 ̸= m1, and randomness r0, r1 the distribution of (crs, com0)
is computationally indistinguishable from (crs, com1). Here, crs ← Setup(1λ), com0 ← C(crs,m0; r0),
and com1 ← C(crs,m1; r1).

• Extraction Correctness: For any security parameter λ ∈ N, message m, randomness r

Pr[
(
(crs, td)← TGen(1λ), com← C(m, crs; r)

)
=⇒ Ext(com, td) = m] = 1.

Note that Ext is a deterministic algorithm, hence this property itself implies statistical binding of
Combind.

Given a commitment com and crs, a valid corresponding pair (m, r) is known as the opening for com.

Any public key encryption scheme from LWE [LS19] can be used to construct a Statistically Binding
Extractable Commitment Scheme.
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3.1 Somewhere Extractable Hash

Somewhere Statistically Binding (SSB) Hashes were introduced in [HW15] and has been extensively used in
prior works[CJJ21b, CJJ21a]. An SSB hash works in two modes, namely, (1) normal mode where the key is
generated uniformly at random and (2) the trapdoor mode where the key is generated according to a subset
S denoting some bits of the message to be hashed. An extension of SSB hashes are somewhere extractable
(SE) hashes introduced in [CJJ21b]. Formally, a somewhere extractable (SE) hash is a tuple of algorithms
(Gen,TGen,Hash,Open,Verify,Ext) described below:

• SE.Gen(1λ, 1N , 1|S|): On input the security parameter, message length N , and the size of a subset
S ⊆ [N ], the “normal mode” key generation outputs a uniformly random key K.

• SE.TGen(1λ, 1N , S): On input the security parameter, message length and a subset S ⊆ [N ], the
“trapdoor mode” key generation algorithm outputs a hash key K∗ and a trapdoor td.

• SE.Hash(K,m ∈ {0, 1}N ): On input the hash key K, and vector m = (m1, . . . ,mN ), outputs a hash h.

• SE.Open(K,m, i): On input the hash key K, vector m = (m1, . . . ,mN ), and an index i ∈ [N ], it
outputs an opening πi to mi.

• SE.Verify(K, h,mi, i, πi): On input the hash key K, a hash h, a bit mi ∈ {0, 1}, and a local opening πi,
the verification algorithm either accepts (output 1) or rejects (output 0) the local opening.

• SE.Ext(h, td): On input a hash h and trapdoor td generated by TGen with respect to the subset S, the
deterministic extraction algorithm outputs an extraction string m∗

S on the subset S.

Furthermore, we need the SE Hash to have the following properties:

• Succinct Key. The size of the key is bounded by poly(λ, |S|, logN).

• Succinct Hash. The hash size is bounded by poly(λ, |S|, logN).

• Succinct Local Opening. The size of the local opening πi ← Open(K,m, i) is bounded by poly(λ, |S|, logN).

• Succinct Verification. The running time of the verification algorithm is bounded by poly(λ, |S|, logN).

• Key Indistinguishability. For any non-uniform PPT adversary A := (A1,A2) and any polynomial
N = N(λ), there exists a negligible function ν(λ) such that∣∣Pr[A2(K) = 1|S ← A1(1

λ, 1N ),K ← Gen(1λ, 1N , 1|S|)]−
Pr[A2(K

∗) = 1|S ← A1(1
λ, 1N ), (K∗, td)← TGen(1λ, 1N , S)]

∣∣ ≤ ν(λ).

• Opening Completeness. For any hash key K, any message m = (m1, . . . ,mN ), and index i, we
have

Pr[Verify(K, h,mi, i, πi) = 1|h← Hash(K,m), πi ← Open(K,m, i)] = 1.

• Extraction Correctness. For any subset S ⊆ [N ], any trapdoor key (K∗, td) ← TGen(1λ, 1N , S),
any hash h, index i ∈ S, bit mi∗ and proof πi∗ , we have,

Pr[Verify(K∗, h,mi∗ , i
∗, πi∗) = 1 =⇒ Ext(h, td)

∣∣
i∗

= mi∗ ] = 1.

We point out that this is indeed the somewhere statistical binding property of the hash as Ext(h, td) is
a deterministic function, hence the uniqueness of the extraction ensures binding of the hash.

[CJJ21b]+[HW15] show how to construct an SE hash from the LWE assumption.

7



3.2 Non Interactive Batch Arguments (BARG) for Index Language

Definition 3.3 (Circuit Satisfiability Language). We define the language SAT = {(C, x)|∃w such that C(x,w) =
1}, where C : {0, 1}n × {0, 1}m → {0, 1} is a boolean circuit, and x ∈ {0, 1}n is an instance.

A non interactive BARG for SAT involves a prover and verifier having as common input a circuit C,
and a series of T instances x1, . . . , xT . The prover then sends a single message to the verifier with a proof
that (C, x1), . . . , (C, xT ) ∈ SAT. In particular, a non interactive BARG has a tuple of four algorithms
(Gen,TGen,Prove,Verify) that are defined as follows:

• Gen(1λ, 1T , 1|C|): On input security parameter λ, number of instances and size of circuit, the CRS
generation algorithm outputs a uniformly sampled crs.

• TGen(1λ, 1T , 1|C|, i∗): On input the security parameter, number of instances, size of circuit and an
index i∗, the trapdoor CRS generation algorithm outputs crs∗.

• Prove(crs, C, x1, . . . , xT , w1, . . . , wT ): On input crs, circuit C, list of T instance and their corresponding
witnesses, the prover outputs a proof π.

• Verify(crs, C, x1, . . . , xT , π): On input crs, circuit C, list of T instances and proof π, the verifier decides
to accept (output 1) or reject(output 0) the proof.

BARGs satisfy the following properties:

• Succinct Communication. Size of π is boundede by poly(λ, log T, |C|).

• Compact CRS. The crs size is bounded by poly(λ, log T, |C|).

• Succinct Verification. Verification algorithm runs in time poly(λ, log T, |C|) + poly(λ, log T + n).

• CRS indistinguishability. For any non-uniform PPT adversary A := (A1,A2) and any polynomial
T = T (λ), there exists a negligible function ν(λ) such that∣∣Pr[A2(crs) = 1|i∗ ← A1(1

λ, 1T ), crs← Gen(1λ, 1T )]−
Pr[A2(crs

∗) = 1|i∗ ← A1(1
λ, 1T ), crs∗ ← TGen(1λ, 1T , i∗)]

∣∣ ≤ ν(λ).

Corollary 3.4. As a direct consequence of CRS indistinguishability, we have that for any non-uniform
PPT adversary A := (A1,A2) and any polynomial T = T (λ), and i ̸= j, there exists a negligible
function ν(λ) such that∣∣Pr[A2(crs

i) = 1|i← A1(1
λ, 1T ), crsi ← TGen(1λ, 1T , i)]−

Pr[A2(crs
j) = 1|j ← A1(1

λ, 1T ), crsj ← TGen(1λ, 1T , j)]
∣∣ ≤ ν(λ).

• Completeness. For any circuit C, T instances x1, . . . , xT such that (C, x1), . . . , (C, xT ) ∈ SAT and
witnesses w1, . . . , wT corresponding to respective instance, we have,

Pr[Verify(crs, C, x1, . . . , xT , π) = 1|crs← Gen(1λ, 1T , 1|C|), π ← Prove(crs, C, x1, . . . , xT , w1, . . . , wT )] = 1.

• Semi-Adaptive Somewhere Soundness.For any non-uniform PPT adversaryA and any polynomial
T = T (λ), there exists a negligible function ν(λ) such that

Pr[i∗ ∈ [T ] ∧ (C, xi∗) /∈ SAT ∧ Verify(crs∗, C, x1, . . . , xT , π) = 1|
i∗ ← A(1λ, 1T ), crs∗ ← TGen(1λ, 1T , i∗), (C, x1, . . . , xT , π)← A(crs∗)] ≤ ν(λ).
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• Somewhere Argument of Knowledge. There exists a PPT extractor E sucht that, for any non
uniform PPT adversary A, and any polynomial T , there exists a negligible function ν(λ) such that∣∣∣Pr[C(xi∗ , w) = 1|i∗ ← A(1λ, 1T ), crs∗ ← E(1λ, 1T , i∗), (C, x1, . . . , xT , π)← A(crs∗),

w ← E(C, x1, . . . , xT , π)]− Pr[Verify(crs, C, x1, . . . , xT , π) = 1|i∗ ← A(1λ, 1T ),

crs← Gen(1λ, 1T ), (C, x1, . . . , xT , π)← A(crs)]
∣∣∣ ≤ ν(λ).

In addition to this, crs∗ must be computationally indistinguishable from crs.

Definition 3.5 (Index Language). We define an Index Language as the following:

Lindex = {(C, i)|∃w, such that C(i, w) = 1},

where C is a boolean function and i is an index.

Note that non interactive batch arguments for index language is a special case of non interactive BARGs
for circuit satisfiability when the instances (x1, . . . , xT ) are indices (1, . . . , T ). In this case, one removes the
instances from input to the prover and verifier algorithm. Since, the verifier does not read the instances, it
reduces the succinct verification time to poly(λ, log T, |C|).

[CJJ21b] show the existence of non interactive BARGs for index language with succinct verification
property from the LWE assumption.

3.3 Hash Tree

To enable Turing Machine Delegation when the state space is unbounded, we use the notion of Hash Tree
as defined in [KPY19]. Formally, a hash tree consists of a tuple of six algorithms:

• HT.Gen(1λ) : On input security parameter λ, outputs a hash key dk.

• HT.Hash(dk, D): On input the hash key and a string D ∈ {0, 1}L, outputs the hash tree tree and its
root rt.

• HT.Read(tree, l): On input the hash tree and a memory location l ∈ [2λ], it outputs a bit b that is read
from lth location of the string corresponding to the tree and a proof π.

• HT.Write(tree, l, b):On input the hash tree, a memory location l ∈ [L + 1] and bit b, it outputs a new
tree tree′, root rt′ along with a proof π′.

• HT.VerRead(dk, rt, l, b, π): On input the hash key dk, hash tree root rt,memory location l, bit b and
proof π, outputs 0 or 1 to reject or accept the proof that b is indeed the correct bit read at location l.

• HT.VerWrite(dk, rt, l, b, rt′, π′) : On input hash key dk, tree root rt′, memory location l, bit b, new root
rt′ an proof π, either accepts (output 1) or rejects (output 0) the proof.

A hash tree scheme must satisfy the following properties:

• Completeness of Read. For every λ ∈ N, D ∈ {0, 1}L such that L < 2λ and l ∈ [L],

Pr[HT.VerRead(dk, rt, l, b, π) = 1 ∧D[l] = b
∣∣∣dk← HT.Gen(1λ), (tree, rt) := HT.Hash(dk, D),

(b, π) := HT.Read(tree, l)] = 1.

• Completeness of Write. For every λ ∈ N, D ∈ {0, 1}L such that L < 2λ, l ∈ [L + 1], b ∈ {0, 1}.
Further if l ≤ L. then let D′ be the string D with its lth location set to b, otherwise let D′ be the
string D appended with b at the end, i.e., D′ = D∥b. Then,

Pr[HT.VerWrite(dk, rt, l, b, rt′, π) = 1 ∧ (tree′, rt′) = HT.Hash(dk, D′)
∣∣∣dk← HT.Gen(1λ),

(tree, rt) := HT.Hash(dk, D), (tree′, rt′, π) := HT.Write(tree, l, b)] = 1.

9



• Efficiency. The running time of HT.Hash is |D|·poly(λ). The length of the root rt and proofs produced
by HT.Read and HT.Write are poly(λ).

• Soundness of Read. For every polynomial size adversary A, there exists a negligible function negl(λ)
such that for every λ, we have

Pr[b1 ̸= b2,HT.VerRead(dk, rt, l, b1, π1) = 1,HT.VerRead(dk, rt, l, b2, π2) = 1
∣∣dk← HT.Gen(1λ),

(rt, l, b1, π1, b2, π2)← A(dk)] ≤ negl(λ).

• Soundness of Write. For every polynomial size adversary A, there exists a negligible function negl(λ)
such that for every λ, we have

Pr[rt1 ̸= rt2,HT.VerWrite(dk, rt, l, b, rt1, π1) = 1,HT.VerWrite(dk, rt, l, b, rt2, π2) = 1
∣∣dk← HT.Gen(1λ),

(rt, l, b, rt1, π1, rt2, π2)← A(dk)] ≤ negl(λ).

Theorem 3.6 (Existence of hash trees [Mer88]). A hash tree scheme as defined above can be efficiently
constructed from any collision resistant hash function.

4 Publicly Verifiable Non Interactive Succinct Delegation

We formally define the notion of Publicly Verifiable Non Interactive Succinct Delegation (sDel) which is
similar to the definition proposed in prior works [KPY18]. Such a delegation scheme in the CRS model
involves the following PPT algorithms, (1)Software/Program Author ProgAuth (3)Cloud Worker W , and
(3) Verifier VAn sDel comprises of the following polynomial time algorithms:

• sDel.Setup(1λ): A randomized setup algorithm which on input security parameter λ and outputs crs.

• sDel.ProgAuth(1λ, crs): A program author which takes as input λ, outputs a (not public) program
P ∈ {0, 1}m, m ≤ 2λ ∈ N, state and a public digest HP .

• sDel.W (crs, P, state, HP , x): A deterministic cloud worker which on input crs, program P , input x ∈
{0, 1}n, n ≤ 2λ ∈ N outputs a value y and proof Π.

• sDel.V (crs, x, y,HP ,Π): A deterministic verifier which on input crs, digest HP , x, y,Π either accepts or
rejects.

A publicly verifiable succinct delegation scheme (sDel.Setup, sDel.ProgAuth, sDel.W, sDel.V ) satisfies the
following properties:

• Completeness. For every PPT program generating algorithm sDel.ProgAuth, every λ, n,m ∈ N, and
for all x ∈ {0, 1}n such that n,m < 2λ, we have

Pr[sDel.V (crs, x, y,HP ,Π) = 1 ∧ P (x) = y
∣∣crs← sDel.Setup(1λ),

((P, state), HP )← sDel.ProgAuth(1λ, crs),

(y,Π)← sDel.W (crs, P, state, HP , x)] = 1.

• Efficiency. sDel.Setup runs in time poly(λ), sDel.W runs in time poly(λ, |P |, |x|) and outputs a proofs
of length poly(λ, log |P |, |x|), and sDel.V runs in time poly(λ, log |P |, |x|).

• Soundness. For every PPT adversary A := (A1,A2), every PPT program generating algorithm
sDel.ProgAuth, and the tuple n = n(λ),m = m(λ), there exists a negligible function negl(λ) such that
for every λ ∈ N,

Pr[sDel.V (crs, x, y,HP ,Π) = 1 ∧ P (x) ̸= y
∣∣, crs← sDel.Setup(1λ),

((P, state), HP )← sDel.ProgAuth(1λ, crs), (x, aux)← A1(1
λ, crs),

(y,Π)← A2(crs, P, state, HP , x, aux)] ≤ negl(λ).
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To construct sDel, we introduce a notion of Semi-Trusted Succinct Non-Interactive Arguments stSNARG
which we formally introduce and construct in Section 5. After that, we prove the following lemma (cf.
Lemma 5.19) which shows how to construct sDel using stSNARG as a building block.

Lemma 4.1. Assuming T = poly(m,n), T,m, n ≤ 2λ, the stSNARG protocol in Figure 2 implies the uncon-
ditional existence of a publicly verifiable non interactive succinct delegation scheme sDel as defined above.

4.1 sDel with Zero-Knowledge

A publicly verifiable non interactive succinct delegation scheme with zero knowledge zk− sDel is defined by
the following efficient algorithms:

• zk− sDel.Setup(1λ): A randomized setup algorithm which on input security parameter λ and outputs
crs.

• zk− sDel.ProgAuth(1λ, crs): A program author which takes as input λ, generates a program P ∈
{0, 1}m, m ≤ 2λ ∈ N. Additionally, it computes a digest HP and creates a statistically binding and
extractable commitment CP of HP under randomness r. Finally it sends a private output (P, state)
and public output CP . Here state contains the randomness r and HP encoded in it along with any
other state information.

• zk− sDel.W (crs, P, state, CP , x): A deterministic cloud worker which on input crs, program P , com-
mitment CP , x ∈ {0, 1}n, n ≤ 2λ ∈ N outputs a value y and proof Π.

• zk− sDel.V (crs, x, y, CP ,Π): A deterministic verifier which on input (crs, CP , x, y,Π) either accepts or
rejects.

Apart from the Completeness, Efficiency and Soundness guarantees mentioned above, a publicly verifiable
succinct delegation scheme (zk− sDel.Setup, zk− sDel.ProgAuth, zk− sDel.W, zk− sDel.V ) satisfies the fol-
lowing additional property:

Non Interactive Zero Knowledge. For all λ, n,m ∈ N such that n,m ≤ 2λ, ∀, x ∈ {0, 1}n and
y ∈ {0, 1}, there exists a PPT simulator Sim := (Sim1,Sim2,Sim3) such that the distributions of

(crs, x, y, CP ,Π)
∣∣(crs, aux) ← Sim1(1

λ), (CP , aux
′) ← Sim2(crs, aux), (y,Π) ← Sim3(aux

′, crs, x, CP )

and

(crs, x, y, CP ,Π)
∣∣crs← zk− sDel.Setup(1λ), ((P, state), CP )← zk− sDel.ProgAuth(1λ, crs),

(y := P (x),Π)← zk− sDel.W (crs, P, state, x, CP )

are indistinguishable.
In Section 6, we present a generic construction of a semi trusted non-interactive succinct arguments

with zero-knowledge (ZKstSNARG) from stSNARG. Analogous to the previous lemma, we get the following
corollary(cf. Corollary 6.6) from Lemma 5.19

Corollary 4.2. Assuming T = poly(m,n), T,m, n ≤ 2λ, the ZKstSNARG protocol in Figure 5 implies the
unconditional existence of a publicly verifiable non interactive succinct delegation scheme with zero knowledge.

5 Semi-Trusted Succinct Non-Interactive Argument (stSNARG)

We introduce a notion of “Semi-Trusted” SNARGs which is similar to the general definition of SNARGs with
an addition “trusted” polynomial time algorithm that outputs a hash for the witness. Further, we provide
an explicit construction of an stSNARG for all of NP . Note that any SNARG for arbitrary NP language
L can be reformulated as a Turing Machine which takes in as input an instance x along with witness w and
accepts x,w in T steps if x ∈ L [CJJ21b]. In this work, we modify the definition of [CJJ21b] by using a
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Universal Turing Machine TM which takes as input an instance (x, y), a witness which is a program P and
accepts (P, x, y) in T steps if P (x) = y. We formalise this notion as follows:

Let TM be a Universal Turing Machine which takes as input a program P ∈ {0, 1}m for some m < 2λ,
and x ∈ {0, 1}n for some n < 2λ and y ∈ {0, 1} which serve as an input and output for P respectively. TM
accepts (P, x, y) in T steps if P (x) = y. A prover produces a proof Π to convince a verifier that TM accepts
P, x, y in T . A publicly verifiable semi-trusted SNARG (stSNARG) for TM has the following polynomial
time algorithms:

• stSNARG.Setup(1λ, 1T ): A randomized setup algorithm which on input security parameter λ, and
number of Turing Machine steps T , outputs crs.

• stSNARG.TrustHash(crs, P ): A deterministic and honest algorithm which on input crs and a program
P ∈ {0, 1}m for some m < 2λ, outputs a succinct and public digest HP of P corresponding to crs.

• stSNARG.P(crs, P, x, y,HP ): A deterministic prover algorithm which on input the crs, P ∈ {0, 1}m for
some m < 2λ, x ∈ {0, 1}n for some n < 2λ, y ∈ {0, 1} and the digest HP outputs a proof Π.

• stSNARG.V(crs, x, y,HP ,Π): A deterministic verification algorithm which on input crs, x, y, digest HP

and proof Π, either accepts(output 1) or rejects(output 0) it.

A Universal Turing Machine TM on input (P, x, y) outputs 1 if it accepts (P, x, y) within T steps. We
define the NP language LT M as,

LT M := {(P, x, y, T,HP , crs)
∣∣TM(P, x, y) = 1 ∧ stSNARG.TrustHash(crs, P ) = HP }.

Note that here P is not considered a part of the witness although it is unknown to the verifier because
a typical NP statement puts a there exists constraint on the witness. In that case, the statement becomes
trivial because there will always exist a program P which on input x ignores the input and outputs y. We
need to ensure that P is the program output by the program author independent of x. Moreover, this is
indeed a P statement for the prover.

A publicly verifiable stSNARG scheme (stSNARG.Setup, stSNARG.TrustHash, stSNARG.P, stSNARG.V)
satisfies the following properties:

• Completeness. For every λ, T, n,m ∈ N such that T, n,m < 2λ, program P ∈ {0, 1}m, input
x ∈ {0, 1}n and output y ∈ {0, 1} such that (P, x, y, T,HP , crs) ∈ LT M, we have

Pr[stSNARG.V(crs, x, y,HP ,Π) = 1
∣∣crs← stSNARG.Setup(1λ, 1T ), HP ← stSNARG.TrustHash(crs, P ),

Π← stSNARG.P(crs, P, x, y,HP )] = 1.

• Efficiency. stSNARG.Setup runs in time poly(λ, T ), stSNARG.TrustHash runs in time poly(λ, |P |, T ),
stSNARG.P runs in time poly(λ, |x|, |P |, T ) and outputs a proofs of length poly(λ, log T ), and stSNARG.V
runs in time poly(λ, log T ).

• Soundness. For every PPT adversary A := (A1,A2) and the tuple T = T (λ), n = n(λ),m = m(λ),
there exists a negligible function negl(λ) such that for every λ ∈ N,

Pr[stSNARG.V(crs, x, y,HP ,Π) = 1 ∧ (P, x, y, T,HP , crs) /∈ LT M
∣∣, crs← stSNARG.Setup(1λ, 1T ),

(P, aux)← A1(1
λ, crs), HP ← stSNARG.TrustHash(crs, P ), (x, y,Π)← A2(crs, P,HP , aux)] ≤ negl(λ).
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Protocol 1 (Semi-Trusted SNARG).

• stSNARG.Setup(1λ, 1T ) :

– SE.Keven ← SE.Gen(1λ, 1Mλ,T , 1Lλ)a

– SE.Kodd ← SE.Gen(1λ, 1M , 1L)

– BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)

– dk← HT.Gen(1λ)

– return crs := (SE.Keven, SE.Kodd,BARG.crs, dk).

• stSNARG.TrustHash(crs, P )

– (tree20, rt
2
0)← HT.Hash(dk, P ), HP ← rt20

– return HP .

• stSNARG.P(crs, P, x, y,HP ) :

– □ := empty string

– (tree10, rt
1
0)← HT.Hash(dk, x), (tree20, rt

2
0)← HT.Hash(dk, P ), (tree30, rt

3
0)← HT.Hash(dk,□)

– initialize s with the start state of TM
– st0 := (0, 0, 0, s)

– h0 := (st0, rt
1
0, rt

2
0, rt

3
0)

– for every i = 1 to T ,

rt1i ← rt1i−1, rt
2
i ← rt2i−1

(l1i , l
2
i , l

3
i )← StepR(sti−1){

(bji ,Π
j
i )← HT.Read(treeji−1, l

j
i )
}
j∈[3]

(b′i, l
′
i, sti)← StepW(sti−1, b

1
i , b

2
i , b

3
i )

(tree3i , rt
3
i ,Π

′
i)← HT.Write(tree3i−1, l

′3
i , b′3i )

hi ← (sti, rt
1
i , rt

2
i , rt

3
i )

– A :=
(
h0,

(
h1, {bj1,Π

j
1}j∈[3],Π

′
1

)
, . . . ,

(
hT , {bjT ,Π

j
T }j∈[3],Π

′
T

))
– ceven ← SE.Hash (SE.Keven, A) and codd ← SE.Hash (SE.Kodd, A)

– c := (ceven, codd)

– Ix ← {[i1, i2]
∣∣A[i1, i2] = x}

– ρh0 ← SE.Open(SE.Keven, A, Ih0)
b

– for every i ≤ [⌊T/2⌋],
for B ∈ {h2i, {bj2i,Π

j
2i}j∈[3],Π

′
2i}, ρB ← SE.Open(SE.Keven, A, IB)

– for every i ≤ [⌊T/2⌋],
for B ∈ {h2i+1, {bj2i+1,Π

j
2i+1}j∈[3],Π

′
2i+1}, ρB := SE.Open(SE.Kodd, A, IB)

– Let Cindex be as defined in Figure 3

– Π := BARG.P
(
crs, Cindex, h0, {hi−1, hi, {bji ,Π

j
i}j∈[3],Π

′
i, ρhi−1 , ρhi , {ρbji , ρΠj

i
}j∈[3], ρΠ′

i
}i∈[T ]

)
– return (c,Π)c.

• stSNARG.V(crs, (x, y), HP , (c,Π)) :

– Compute Cindex

– return 1 if and only if BARG.V(BARG.crs, Cindex,Π) = 1.

aMλ,T = O(T poly(λ)) and Lλ = O(poly(λ)) are arbitrary and efficiently computable values which can be fixed in
advance and hardcoded to the Setup algorithm during instantiation. We ignore the subscripts and often use M and L for
simpler notation.

bNote that for simplification, we abuse notation here by specifying opening to more than a single bit.
cWe often abuse notation and use (c,Π) to denote a proof. This can be done without loss of generalization by defining

a new proof Π′ = (c∥Π).

Figure 2: Semi-Trusted SNARG13



Circuit 1 (Circuit Cindex).

• Hard-coded: y, c, start, ϕ, SE.Keven,SE.Kodd, T,HP , Hx := HT.Hash(dk, x)

• Input:(
i, (hi := (sti, rt

1
i , rt

2
i , rt

3
i ), ρhi

)
), if i = 0(

i, ({hi−1, hi, {bji ,Π
j
i}j∈[3],Π

′
i, ρhi−1 , ρhi , {ρbji , ρΠj

i
}j∈[3], ρΠ′

i
})
)
, ∀i ∈ [T ]

• Output: return 1 if and only if

– if i = 0

a. st0 = start

b. Hx = rt10

c. HP = rt20

d. HT.Hash(dk,□) has rt30 as root

– else

∗ if i is even:

a. SE.Verify(SE.Kodd, codd, hi−1, ρhi−1) = 1

b. SE.Verify(SE.Keven, ceven, hi, ρhi) = 1

c.
{
SE.Verify(SE.Keven, ceven, b

j
i , ρbji

) = 1
}

j∈[3]

d.
{
SE.Verify(SE.Keven, ceven,Π

j
i , ρΠj

i
) = 1

}
j∈[3]

e. SE.Verify(SE.Keven, ceven,Π
′
i, ρΠ′

i
) = 1

∗ if i is odd:

a. SE.Verify(SE.Keven, ceven, hi−1, ρhi−1) = 1

b. SE.Verify(SE.Kodd, codd, hi, ρhi) = 1

c.
{
SE.Verify(SE.Kodd, codd, b

j
i , ρbji

) = 1
}

j∈[3]

d.
{
SE.Verify(SE.Kodd, codd,Π

j
i , ρΠj

i
) = 1

}
j∈[3]

e. SE.Verify(SE.Kodd, codd,Π
′
i, ρΠ′

i
) = 1

∗ ϕ(hi−1, hi, {bji ,Π
j
i}j∈[3],Π

′
i) = 1

∗ if i = T

a. HT.Hash(dk, y) has rt3T as root.

b. stT indeed encodes the accept state.

Figure 3: Circuit Cindex

5.1 Our Construction

Our construction is formulated similar to that of [CJJ21b]. Specifically, we use the notion of non-interactive
BARG for index language and SE Hash functions in our scheme.

Setup for Universal Turing Machine. For a cleaner analysis, we assume without loss of generality that
TM consists of three tapes, namely, Tp1,Tp2,Tp3. Tp1 and Tp2 are read only tapes that store x and P
respectively. Tp3 is the work tape which is initialized with □ to denote an empty string.

Transition steps for TM. TM’s state information along with the head locations of the three tapes are
encoded as st. To handle Turing Machines with arbitrarily long tapes, we encode {Tpi}i∈[3] using three Hash
Trees as defined in Section 3.3 and produce tree roots rt1, rt2, rt3 respectively.

Let the each intermediate transition state of TM be encoded as hi := (sti, rt
1
i , rt

2
i , rt

3
i ) for i ∈ [T ]. A

single step of TM can be interpreted in the manner described below which is similar to one described for a
RAM in [KPY19]. We break down the step function at the ith stage into two deterministic polynomial time
algorithms:

• StepR: On input sti−1 of TM, outputs head positions l1i−1, l
2
i−1, l

3
i−1 which denote the memory locations

of Tp1,Tp2,Tp3 which TM in the current state sti−1 would read from.
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• StepW: On input sti−1, and bits b1i−1, b
2
i−1, b

3
i−1 outputs bit b′, location l′ and sti such that TM upon

reading b1i−1, b
2
i−1, b

3
i−1 at locations l1i−1, l

2
i−1, l

3
i−1 using HT.Read, would write b′ at location l′ of Tp3,

thereby transition to new state sti.

Now, we translate the ith single step of TM to the circuit ϕ which is defined such that on input di-
gests hi−1 := (sti−1, rt

1
i−1, rt

2
i−1, rt

3
i−1) and hi := (sti, rt

1
i , rt

2
i , rt

3
i ), bits b1i , b

2
i , b

3
i , and proofs Π1

i ,Π
2
i ,Π

3
i ,Π

′
i,

ϕ(hi−1, hi, b
1
i , b

2
i , b

3
i ,Π

1
i ,Π

2
i ,Π

3
i ,Π

′
i) = 1 if and only if the following hold:

1. (l1i , l
2
i , l

3
i )← StepR(sti−1)

2. (b′, l′, st′)← StepW(sti−1, b
1
i , b

2
i , b

3
i )

3. st′ = sti

4. HT.VerRead(dk, rt1i−1, l
1
i , b

1
i ,Π

1
i ) = 1

5. HT.VerRead(dk, rt2i−1, l
2
i , b

2
i ,Π

2
i ) = 1

6. HT.VerRead(dk, rt3i−1, l
3
i , b

3
i ,Π

3
i ) = 1

7. rt1i = rt1i−1

8. rt2i = rt2i−1

9. HT.VerWrite(dk, rt3i−1, l
′, b′, rt3i ,Π

′
i) = 1

Here, dk denote the hash keys used to build the three hash trees. Note that the efficiency of hash tree
implies that ϕ can be constructed such that it can represented as a formula in L = poly(λ) variables. For
the T steps of TM, we have the following formula over M = O(L · T ) variables:

Φ(h0, {hi, b
1
i , b

2
i , b

3
i ,Π

1
i ,Π

2
i ,Π

3
i ,Π

′
i}i∈[T ]) =

∧
i∈[T ]

ϕ(hi−1, hi, b
1
i , b

2
i , b

3
i ,Π

1
i ,Π

2
i ,Π

3
i ,Π

′
i)

Following the techniques in [CJJ21b], we use a combination of SE Hash along with ϕ to produce the circuit
for index languages (Section 3.2).

Our semi-trusted SNARG scheme is given in Figure 2 and the corresponding index language circuit is
shown as Figure 3.

Theorem 5.1. Assuming the existence of Somewhere Extractable Hash functions, non-interactive Batch
Arguments for Index Languages, and Collision Resistant Hash Trees as described in section 3,, Figure 2
is a publicly verifiable non-interactive semi-trusted SNARG with CRS size, proof size and verifier time
poly(λ, log T ) and prover run time being poly(λ, T ).

Completeness. Here we give a sketch arguing completeness of our scheme. Our construction in Figure 2
tells that

Pr[stSNARG.V(crs, x, y,HP ,Π) = 1
∣∣crs← stSNARG.Setup(1λ, 1T ), HP ← stSNARG.TrustHash(crs, P ),

Π← stSNARG.P(crs, P, x, y,HP )] = Pr[BARG.V(BARG.crs, Cindex,Π) = 1
∣∣

crs← stSNARG.Setup(1λ, 1T ), HP ← stSNARG.TrustHash(crs, P ),Π← stSNARG.P(crs, P, x, y,HP )]

where Cindex is the index circuit as shown in Figure 3. Observing stSNARG.P algorithm in our scheme tells it
is sufficient to show that if the prover is honest and uses a valid witness, then (Cindex, i) ∈ Lindex,∀i ∈ {0}∪[T ].
If we can argue that this is indeed the case, then the completeness of BARG gives the desired result.

If (P, x, y, T,HP , crs) ∈ LT M, then (Cindex, 0) ∈ Lindex is trivially true by observation. Now, let us look at
(Cindex, 1). We start by analysing that ϕ(h0, h1, {bj1,Π

j
1}j∈[3],Π

′
1) = 1 is true. {rti1 = rti0}i∈[2] follow from the

read-only nature of tapes Tp1,Tp2. Since,
{
(bj1,Π

j
1)← HT.Read(treej0, l

j
1)
}
j∈[3]

, the hash tree completeness

of read ensures that {HT.VerRead(dk, rti0, li1, bi1,Πi
1) = 1}i∈[3] = 1 and {Tpi[li1] = bi1}i∈[3]. This along with the

correctness of Turing Machine StepR function implies that b11, b
2
1, b

3
1 are indeed the correct input for the StepW

function of TM. Finally, (tree31, rt
3
1,Π

′
1)← HT.Write(tree30, l

′
1, b

′
1) implies HT.VerWrite(dk, rt30, l

′, b′, rt31,Π
′
1) =

1 from the hash tree completeness of write property. The same property also ensures that Tp3 changes only
at the l′th memory location. When paired with the correctness of StepW, we get that st1 = st′

The completeness of the SE hash implies that the verification algorithm certainly accepts all the local
openings. Thus, (Cindex, 1) ∈ Lindex. Now, (Cindex, T ) ∈ Lindex because TM accept (P, x, y) in T steps. We
can show in a similar manner that for all other i, (Cindex, i) ∈ Lindex. This proves the completeness of the
scheme in Figure 2.
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Efficiency.

• Runtime of stSNARG.Setup is poly(λ, T ). This follows from the efficiency of underlying primitives.

• stSNARG.TrustHash computes HP in time |P | · poly(λ) which is poly(|P |, λ).

• |Cindex| = poly(λ, log T ). This follows from the efficiency of the SE hash and the efficiency of hash tree
construction.

• CRS Size: By the corresponding properties of the underlying primitives, |crs| = poly(λ, log T ).

• The prover’s computation time is dominated by the hashes corresponding to x, P and the Turing
Machine step functions that is run T times. This requires a total time of poly(λ, |x|) + poly(λ, |P |) +
poly(λ, T ) = poly(λ, |x|, |P |, T ).

• Proof Length: |c|+ |Π| = poly(λ, log T ) + poly(λ, log T, |Cindex|) = poly(λ, log T ).

• Verifier Time: Time taken to compute Cindex and verify the BARG. This is poly(λ, log T, |Cindex|) =
poly(λ, log T ).

Soundness. Let us assume for the sake of contradiction that our scheme in Figure 2 is not sound, i.e.,
there exists a PPT adversary A := (A1,A2), a value T and a polynomial function poly(λ) such that for
infinitely many values of λ ∈ N,

Pr[GA = 1] ≥ 1

poly(λ)
,

where A plays Game G described below

Real Game G

– crs← stSNARG.Setup(1λ, 1T )

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y)(c,Π))← A2(crs, P,HP , aux)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M, return 1

– else return 0

Let Si denote the following set:

Si =

{
h0 if i = 0{
hi, {bi}j∈[3], {Πi}j∈[3],Π

′
i

}
if i ∈ [T ]

Let D denote the string
(
h0,
{
hi, {bi}j∈[3], {Πi}j∈[3],Π

′
i

}
i∈[T ]

)
. ISi

⊂ |D| denotes the following:

ISi
=
{
[a, b]

∣∣a, b ∈ |D|, D[a, b] = Si

}
.

In game G, say we have (tree10, rt
1
0) ← HT.Hash(dk, x), (tree20, rt

2
0) ← HT.Hash(dk, P ), (tree30, rt

3
0) ←

HT.Hash(dk,□). Also, let st0 := (0, 0, 0, s), where s is the start state of TM. We say that h̄0 := (st0, rt
1
0, rt

2
0, rt

3
0)

defines a unique “true” digest for the starting step of TM.
If stSNARG.V(crs, x,HP , c,Π) = 1, then Algorithm Step(x, P, crs, i) in Figure 4 computes the unique

true digest h̄i after the ith Turing Machine Step along with the other uniquely correct values of the set
S̄i := {h̄i, {b̄i}j∈[3], {Π̄i}j∈[3], Π̄

′
i}. We use the notation Step(x, P, crs, i).x to denote x ∈ S̄i. We proceed by

performing an induction on the following sequence outer hybrid games Gi, i from 1 to T . We use a sequence
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of inner hybrid games to transition between subsequent outer hybrids. Our induction hypothesis is that,
under suitable assumptions, for all i ∈ 1 to T , there exists a negligible function λ such that,

Pr[GA = 1] ≤ Pr[GA
i = 1] + negl(λ).

Algorithm Step(x, y, P, crs, i)

• □ := empty string

• (tree10, rt
1
0) := HT.Hash(dk, x), (tree20, rt

2
0) := HT.Hash(dk, P ), (tree30, rt

3
0) := HT.Hash(dk,□)

• initialize s with the start state of TM

• st0 := (0, 0, 0, s)

• h̄0 := (st0, rt
1
0, rt

2
0, rt

3
0)

• if i = 0, return S̄0 := (st0, rt
1
0, rt

2
0, rt

3
0)

• else

– for count = 1 to i,

(l1count, l
2
count, l

3
count)← StepR(stcount−1){

(bkcount,Π
k
count) := HT.Read(treekcount−1, l

k
count)

}
k∈[3]

(b′3count, l
′3
count, stcount) := StepW(stcount−1, b

1
count, b

2
count, b

3
count)

(tree3count, rt
3
count,Π

′
count) := HT.Write(tree3count−1, l

′3
count, b

′3
count)

– h̄i := (sti, rt
1
i , rt

2
i , rt

3
i )

– b̄i := (b1i , b
2
i , b

3
i )

– l̄i := (l1i , l
2
i , l

3
i )

– r̄ti := rt1i−1, rt
2
i−1, rt

3
i

– Π̄i := (Π1
i ,Π

2
i ,Π

3
i ,Π

′
i)

– return S̄i := (h̄i, b̄i, r̄ti, Π̄i)

Figure 4: Turing Machine ith step.

Intuitively, the ith game Gi is similar to the real life soundness game with the following two changes: (1)
The key generation for the SE hash and BARG is done in the trapdoor mode at the ith game. This allows
for extractability of the ith block of the string D from the commitment c. (2) The adversary wins the game
if they break the soundness assumption as the real life game G and the extracted block is indeed the correct
one.

Outer Hybrid Game Gi

– if i is even

SE.Keven ← SE.TGen(1λ, 1M , ISi
)

SE.Kodd ← SE.TGen(1λ, 1M , ISi−1)

– if i is odd

SE.Keven ← SE.TGen(1λ, 1M , ISi−1)

SE.Kodd ← SE.TGen(1λ, 1M , ISi
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, i)

– dk← HT.Gen(1λ)
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– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– Parse c as (codd, ceven)

– if i is even and i ̸= 0

(hi, {bki }k∈[3], {Πk
i }k∈[3],Π

′
i)← SE.Exteven(ceven,SE.Keven)

(hi−1, {bki−1}k∈[3], {Πk
i−1}k∈[3],Π

′
i−1)← SE.Extodd(codd,SE.Kodd)

– if i is odd

(hi, {bki }k∈[3], {Πk
i }k∈[3],Π

′
i)← SE.Extodd(codd,SE.Kodd)

if i− 1 > 0 then (hi−1, {bki−1}k∈[3], {Πk
i−1}k∈[3],Π

′
i−1)← SE.Exteven(ceven,SE.Keven)

if i− 1 = 0 then h0 ← SE.Exteven(ceven,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hi = Step(x, y, P, crs, i).h̄i,
return 1

– else return 0

Base Case: Assuming key indistinguishability and soundness of SE hash and BARG, we need to show that
Pr[GA = 1] ≤ Pr[GA

1 = 1] + negl(λ).
We proceed by using a sequence of hybrids via an intermediate game G0.

Hybrid Game Ga

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.Gen(1λ, 1M )

– BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧
((x, y), T, P,HP , crs) /∈ LT M, return 1

– else return 0

Hybrid Game Gb

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1
)

– BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧
((x, y), T, P,HP , crs) /∈ LT M, return 1

– else return 0

Lemma 5.2. Assuming key indistinguishability of SE,
∣∣Pr[GA = 1]− Pr[GA

a = 1]
∣∣ ≤ negl(λ).

Proof. The only difference in Game G and Ga is that the key generation algorithm of the SE hash (SE.Gen)
is replaced by the trapdoor key generation (SE.TGen).

If
∣∣Pr[GA = 1]− Pr[GA

a = 1]
∣∣ > negl(λ), then one can construct a PPT adversary B that breaks the key

indistinguishability of SE using IS0
with Key as input from the key generation algorithm of the SE hash as

follows:

Adversary B playing SE key indistinguishability game.

– SE.Keven ← Key

– SE.Kodd ← SE.Gen(1λ, 1M )

– BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)
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– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M, return 1

– else return 0

Here, Key is either SE.Gen(1λ, 1M ) or SE.TGen(1λ, 1M , IS0) based on whether A is interacting with game
G or Ga respectively. Adversary B breaks the key indistinguishability of SE hash if the probability that it
returns 1 is significantly different when A interacts with the key generation algorithm in normal mode vs
trapdoor mode. Now, the probability that B returns 1 in either case is exactly equal to the probability that
A wins the corresponding games, hence, B breaks if

∣∣Pr[GA = 1]− Pr[GA
a = 1]

∣∣ ≥ negl(λ). This leads to a
contradiction of our assumption.

Lemma 5.3. Assuming key indistinguishability of SE,
∣∣Pr[GA

a = 1]− Pr[GA
b = 1]

∣∣ ≤ negl(λ).

This again follows from the key-indistinguishability of SE as shown in the previous lemma, hence we skip
the proof.

Hybrid Game Gab

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M, return 1

– else return 0

Lemma 5.4. Assuming key indistinguishability of BARG,
∣∣Pr[GA

b = 1]− Pr[GA
ab = 1]

∣∣ ≤ negl(λ).

Proof. The only difference in Game Gb and Gab is that the key generation algorithm of the BARG (BARG.Gen)
is replaced by the trapdoor key generation (BARG.TGen) at index 0.

If
∣∣Pr[GA

b = 1]− Pr[GA
ab = 1]

∣∣ > negl(λ), then one can construct a PPT adversary B getting Key as input
that breaks the key indistinguishability of BARG as follows:

Adversary B playing BARG key indistinguishability game.

– SE.Keven ← SE.TGen(1λ, 1M , IS0)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1
)

– BARG.crs← Key

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)
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– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M, return 1

– else return 0

Here, Key is either BARG.Gen(1λ, 1T+1, 1|Cindex|) or BARG.TGen(1λ, 1T+1, 1|Cindex|, 0) based on whether A
is interacting with game Gb or Gab respectively. Adversary B breaks the key indistinguishability of BARG if
the probability that it returns 1 is significantly different when A interacts with the key generation algorithm
in normal mode vs trapdoor mode. Now, the probability that B returns 1 in either case is exactly equal to
the probability that A wins its corresponding game, hence, B breaks if

∣∣Pr[GA
b = 1]− Pr[GA

ab = 1]
∣∣ ≥ negl(λ).

This leads to a contradiction of our assumption.

Hybrid Game G0

– SE.Keven ← SE.TGen(1λ, 1M , IS0)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– h0 ← SE.Exteven(ceven,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧h0 = Step(x, y, P, crs, 0).h̄,
return 1

– else return 0

Lemma 5.5. Assuming soundness of BARG,∣∣Pr[GA
ab = 1]− Pr[GA

0 = 1]
∣∣ ≤ negl(λ).

Proof. The only difference in Games Gab and G0 is that there is an additional step which computes the true
digest at index 0 and extracts at the 0th index from ceven using the extraction function of SE. Finally, the
adversary wins if and only if the extracted value matches the true digest along with the usual win conditions
in the previous game.

Note that,∣∣Pr[GA
ab = 1]− Pr[GA

0 = 1]
∣∣ ≤ Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M∧

h0 ̸= Step(x, P, crs, 0).h̄] ≤ Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 ̸= Step(x, P, crs, 0).h̄].

Let us assume that there exists a PPT adversary A such that for infinitely many values of λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 ̸= Step(x, y, P, crs, 0).h̄] ≥ 1

poly(λ)
.

Notice that h0 ̸= Step(x, P, crs, 0).h̄ implies that at least one of the conditions st0 = start, Hx = rt10,
HP = rt20 and HT.Hash(dk,□) having rt30 as root must not be true. If this is indeed true then our construction
of Cindex in Figure 3 implies that (Cindex, 0) /∈ Lindex.

We now construct the following PPT adversary B playing the semi-adaptive somewhere soundness game
of the BARG as follows:

Adversary B playing semi adaptive somewhere soundness game of BARG.

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1
)
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– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– return (Cindex,Π)

By our assumption, it is clear that BARG.V(BARG.crs, Cindex,Π) = 1 with non negligible probability
but (Cindex, 0) /∈ Lindex. Thus, B will break the semi-adaptive somewhere soundness of BARG at index 0.
Therefore, it must be the case that for every PPT adversary A, there exists a negligible function negl(λ)
such that for all λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 ̸= Step(x, y, P, crs, 0).h̄] ≤ negl(λ)

=⇒
∣∣Pr[GA

ab = 1]− Pr[GA
0 = 1]

∣∣ ≤ negl(λ)

.

Hybrid Game G0,a

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– h0 ← SE.Exteven(ceven,SE.Keven)

– (h1, {bk1}k∈[3], {Πk
1}k∈[3],Π

′
i)← SE.Extodd(codd,SE.Kodd)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧h0 = Step(x, y, P, crs, 0).h̄,
return 1

– else return 0

Lemma 5.6.
Pr[GA

0 = 1] = Pr[GA
0a = 1].

This lemma follows from a straightforward observation that both the games are indeed identical except
an additional extraction of c at index 1 which is not being used anywhere in the game.

Hybrid Game G0,b

– SE.Keven ← SE.TGen(1λ, 1M , IS0)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)
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– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– h0 ← SE.Exteven(ceven,SE.Keven)

– (h1, {bk1}k∈[3], {Πk
1}k∈[3],Π

′
i)← SE.Extodd(codd,SE.Kodd)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧h0 = Step(x, y, P, crs, 0).h̄,
return 1

– else return 0

Lemma 5.7. Assuming key indistinguishability of BARG,
∣∣∣Pr[GA

0,b = 1]− Pr[GA
0,a = 1]

∣∣∣ ≤ negl(λ).

The only difference in the above transition is that the BARG key is generated with a trapdoor at index 1
rather than 0. Hence, the lemma follows from the key-indistinguishability of BARG as shown in Lemma 5.4.

Hybrid Game G0,c

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– h0 ← SE.Exteven(ceven,SE.Keven)

– (h1, {bk1}k∈[3], {Πk
1}k∈[3],Π

′
i)← SE.Extodd(codd,SE.Kodd)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧h0 = Step(x, y, P, crs, 0).h̄∧
{bk1}k∈[3] = Step(x, y, P, crs, 1).b̄ ∧ {rtk1}k∈[3] = Step(x, y, P, crs, 1).r̄t ∧ st1 = Step(x, y, P, crs, 1).s̄t,
return 1

– else return 0

Lemma 5.8. Assuming semi-adaptive somewhere soundness of BARG, extraction correctness of SE, read
and write soundness of HT, ∣∣Pr[GA

0,b = 1]− Pr[GA
0,c = 1]

∣∣ ≤ negl(λ).

Proof. The only difference in Games G0,b and G0,c is that we have added some additional conditions for the
adversary to win along with the ones in the previous game.

Note that,∣∣Pr[GA
0,b = 1]− Pr[GA

0,c = 1]
∣∣ ≤ Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 = Step(x, P, crs, 0).h̄

∧
(
{bk1}k∈[3] ̸= Step(x, y, P, crs, 1).b̄ ∨ {rtk1}k∈[3] ̸= Step(x, y, P, crs, 1).r̄t ∨ st1 = Step(x, y, P, crs, 1).s̄t

)
].

Let us assume that there exists a PPT adversary A such that for infinitely many values of λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 = Step(x, y, P, crs, 0).h̄

∧
(
{bk1}k∈[3] ̸= Step(x, y, P, crs, 1).b̄ ∨ {rtk1}k∈[3] ̸= Step(x, y, P, crs, 1).r̄t ∨ st1 = Step(x, y, P, crs, 1).s̄t

)
] ≥ 1

poly(λ)
.

Notice that h0 = Step(x, P, crs, 0).h̄ implies that the conditions st0 = start, Hx = rt10, HP = rt20 and
HT.Hash(dk,□) having rt30 as root are true. In other words, h0 is indeed the true digest at step 0.

Assuming extraction correctness of SE, read and write soundness of HT, we construct the following PPT
adversary B playing the semi-adaptive somewhere soundness game of the BARG as follows:
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Adversary B playing semi adaptive somewhere soundness game of BARG.

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– return (Cindex,Π)

By our assumption, it is clear that BARG.V(BARG.crs, Cindex,Π) = 1 with non negligible probability.
Thus, B will break the semi-adaptive somewhere soundness of BARG at index 1 if (Cindex, 1) /∈ Lindex. Thus,
if (Cindex, 1) /∈ Lindex it must be the case that for every PPT adversary A, there exists a negligible function
negl(λ) such that for all λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex,Π) = 1 ∧ h0 = Step(x, y, P, crs, 0).h̄

∧
(
{bk1}k∈[3] ̸= Step(x, y, P, crs, 1).b̄ ∨ {rtk1}k∈[3] ̸= Step(x, y, P, crs, 1).r̄t ∨ st1 ̸= Step(x, y, P, crs, 1).s̄t

)
] ≤ negl(λ)

=⇒
∣∣Pr[GA

0,b = 1]− Pr[GA
0,c = 1]

∣∣ ≤ negl(λ).

It is now left to show that (Cindex, 1) /∈ Lindex.

Case 1 If the SE verifications in Cindex do not all return 1, then by construction of Cindex, we have that
(Cindex, 1) /∈ Lindex.

Case 2 All SE verifications return 1. Extraction Correctness/ Somewhere binding property of SE hash implies
that h0 = (st0, rt

1
0, rt

2
0, rt

3
0), h1, {bk1 ,Πk

1}k∈[3],Π
′
1 were indeed committed by the prover as the Turing

machine output at step 0 and step 1. Now, let us analyze ϕ(h0, h1, {bk1 ,Πk
1}k∈[3],Π

′
1). By assumption,

we know that h0 = h̄0, i.e., ¯st0, r̄t
1
0, r̄t

2
0, r̄t

3
0 = st0, rt

1
0, rt

2
0, rt

3
0. StepR being a deterministic function

ensures that (l11, l
2
1, l

3
1) are indeed the correct Turing machine memory locations to be read at step 1.

Thus (l̄11, l̄
2
1, l̄

3
1) = (l11, l

2
1, l

3
1). This along with the deterministic nature of hash tree read write operations

means that we must have,

– (l̄11, l̄
2
1, l̄

3
1)← StepR(s̄t0)

–
{
(b̄j1, Π̄

k
1) := HT.Read( ¯treek0 , l̄

k
1)
}
k∈[3]

(b̄′31 , l̄
′3
1 , s̄t1) := StepW(s̄t0, b̄

1
1, b̄

2
1, b̄

3
1)

( ¯tree31, r̄t
3
1, Π̄

′
1) := HT.Write( ¯tree30, l̄

′3
1 , b̄

′3
1 )

Read and Write Completeness of the hash tree implies

HT.VerRead(dk1, r̄t
1
0, l̄

1
1, b̄

1
1, Π̄

1
1) = 1

HT.VerRead(dk2, r̄t
2
0, l̄

2
1, b̄

2
1, Π̄

2
1) = 1

HT.VerRead(dk3, r̄t
3
0, l̄

3
1, b̄

3
1, Π̄

3
1) = 1

HT.VerWrite(dk3, r̄t
3
0, l̄

′3
1 , b̄

′3
1 , r̄t

3
1Π̄

′
1) = 1

If {bk1}k∈[3] ̸= Step(x, y, P, crs, 1).b̄, then the read soundness assumption of HT implies that(
HT.VerRead(dk, r̄t10, l̄

k
1 , b

k
1 ,Π

k
1) = 1

)
k∈[3]

happens with a negligible probability. Thus, with all but

negligible probability we have that (Cindex, 1) /∈ Lindex and we are done.

Let us say this is not the case, i.e., {bk1}k∈[3] = Step(x, y, P, crs, 1).b̄, then the deterministic nature
of the Turing machine write function StepW implies that st1 = s̄t1. Thus, for our assumption to be
valid, it must be that {rtk1}k∈[3] ̸= Step(x, y, P, crs, 1).r̄t. If rt11 ̸= ¯rt11 = rt10 or rt21 ̸= ¯rt21 = rt20, then
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the definition of ϕ implies that (Cindex, 1) /∈ Lindex. If this is not the case, then the only other possible
option is rt31 ̸= ¯rt31. Now, the write soundness of HT implies that with all but negligible probability,
HT.VerWrite(dk3, r̄t

3
0, l̄

′3
1 , b̄

′3
1 , rt

3
1,Π1) ̸= 1 must hold. If this is indeed true then our construction of Cindex

in Figure 3 implies that (Cindex, 1) /∈ Lindex.

Hybrid Game G0,d

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– h0 ← SE.Exteven(ceven,SE.Keven)

– (h1, {bk1}k∈[3], {Πk
1}k∈[3],Π

′
i)← SE.Extodd(codd,SE.Kodd)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧h0 = Step(x, y, P, crs, 0).h̄∧
{bk1}k∈[3] = Step(x, y, P, crs, 1).b̄ ∧ rt31 = Step(x, y, P, crs, 1).r̄t ∧ st1 = Step(x, y, P, crs, 1).s̄t ∧ h1 =
Step(x, y, P, crs, 1).h̄, return 1

– else return 0

Lemma 5.9.
Pr[GA

0,c = 1] = Pr[GA
0,d = 1].

Proof. Note that by definition, h1 = st1, rt
1
1, rt

2
1, rt

3
1. We already have that rt11, rt

2
1, rt

3
1 = Step(x, y, P, crs, 1).r̄t

and st1 = Step(x, y, P, crs, 1).s̄t. Thus h1 = Step(x, y, P, crs, 1).h̄ if and only if rt31 = Step(x, y, P, crs, 1).r̄t ∧
st1 = Step(x, y, P, crs, 1).s̄t.

Hybrid Game G0,e

– SE.Keven ← SE.TGen(1λ, 1M , IS0
)

– SE.Kodd ← SE.TGen(1λ, 1M , IS1)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– h0 ← SE.Exteven(ceven,SE.Keven)

– (h1, {bk1}k∈[3], {Πk
1}k∈[3],Π

′
i)← SE.Extodd(codd,SE.Kodd)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧h1 = Step(x, y, P, crs, 1).h̄,
return 1

– else return 0

Lemma 5.10.
Pr[GA

0,d = 1] ≤ Pr[GA
0,e = 1].
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Proof. The number of conditions for the adversary to win simply decreases from Game G0,d to Game G0,e,
thus the probability of success must not increase.

A closer observation shows that G0,e is indeed identical to the case when one puts i = 1 in game Gi.
Combining these together, we show the base case of the induction to be true. Thus,

Pr[GA = 1] ≤ Pr[GA
1 = 1] + negl(λ).

Assuming that our induction hypothesis holds for some j ∈ [T − 1], we prove that it holds for j + 1 as
well. We note that by chain rule, it suffices to show that Pr[GA

j = 1] ≤ Pr[GA
j+1 = 1]+ negl(λ). We show this

by a sequence of inner hybrids to transition from Game Gj to Gj+1.

Inner Hybrid Game Gj,a

– if j is even

SE.Keven ← SE.TGen(1λ, 1M , ISj )

SE.Kodd ← SE.TGen(1λ, 1M , ISj+1
)

– if j is odd

SE.Keven ← SE.TGen(1λ, 1M , ISj+1
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj )

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y)(c,Π))← A2(crs, P, aux)

– if j is even

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(ceven,SE.Keven)

(hj−1, {bkj−1}k∈[3], {Πk
j−1}k∈[3],Π

′
j−1)← Extodd(codd,SE.Kodd)

– if j is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(codd,SE.Kodd)

(hj−1, {bkj−1}k∈[3], {Πk
j−1}k∈[3],Π

′
j−1)← Exteven(ceven,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j ,
return 1

– else return 0

The only difference between Games Gj and Gj,a is that the SE hash is binding at both indices j and j+1
instead of j and j − 1.

Lemma 5.11. Assuming key indistinguishability of SE,
∣∣Pr[GA

j = 1]− Pr[GA
j,a = 1]

∣∣ ≤ negl(λ).

Proof. If
∣∣Pr[GA

j = 1]− Pr[GA
j,1 = 1]

∣∣ > negl(λ), then one can construct a PPT adversary B that breaks the
key indistinguishability of SE with Key as input from the key generation algorithm of SE hash as follows:

Adversary B playing SE key indistinguishability game.

– if j is even

SE.Keven ← SE.TGen(1λ, 1M , ISj
)

SE.Kodd ← Key

– if j is odd
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SE.Keven ← Key

SE.Kodd ← SE.TGen(1λ, 1M , ISj
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if j is even

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(ceven,SE.Keven)

– if j is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(codd,SE.Kodd)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j ,
return 1

– else return 0

Here, Key is either SE.TGen(1λ, 1M , ISj−1) or SE.TGen(1λ, 1M , ISj+1) based on whether A is interact-
ing with game Gj or Gj,a respectively. Adversary B breaks the key indistinguishability of SE hash if the
probability that it returns 1 is significantly different when A interacts with the key generation algorithm in
normal mode vs trapdoor mode. Now, the probability that B returns 1 in either case is exactly equal to the
probability that A wins the corresponding games, hence, B breaks if

∣∣Pr[GA = 1]− Pr[GA
a = 1]

∣∣ ≥ negl(λ).
This leads to a contradiction of our assumption.

Inner Hybrid Game Gj,b

– if j is even

SE.Keven ← SE.TGen(1λ, 1M , ISj
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj+1
)

– if j is odd

SE.Keven ← SE.TGen(1λ, 1M , ISj+1)

SE.Kodd ← SE.TGen(1λ, 1M , ISj
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y)(c,Π))← A2(crs, P, aux)

– if j is even

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(ceven,SE.Keven)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Extodd(codd,SE.Kodd)

– if j is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(codd,SE.Kodd)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Exteven(ceven,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j ,
return 1
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– else return 0

Lemma 5.12.
Pr[GA

j,a = 1] = Pr[GA
j,b = 1]

Proof. The only difference between Games Gj,a and Gj,b is that extraction for one of the SE hashes changes
from ISj−1 to ISj+1 . However, this does not affect the reduction in any way as extraction at indices j − 1
and j + 1 are not used by the reduction at any stage.

Inner Hybrid Game Gj,c

– if j is even

SE.Keven ← SE.TGen(1λ, 1M , ISj
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj+1
)

– if j is odd

SE.Keven ← SE.TGen(1λ, 1M , ISj+1
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj )

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j + 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if j is even

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(c,SE.Keven)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Extodd(c,SE.Kodd)

– if j is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(c,SE.Kodd)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Exteven(c,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j ,
return 1

– else return 0

Game Gj,c has the BARG key generation with a trapdoor at j + 1.

Lemma 5.13. Assuming key indistinguishability of BARG,
∣∣∣Pr[GA

j,b = 1]− Pr[GA
j,c = 1]

∣∣∣ ≤ negl(λ).

This follows from the key indistinguishability of BARG as shown in the proof of Lemma 5.4 , hence we
skip the detailed proof.

Inner Hybrid Game Gj,d

– if j is even

SE.Keven ← SE.TGen(1λ, 1M , ISj )

SE.Kodd ← SE.TGen(1λ, 1M , ISj+1
)

– if j is odd

SE.Keven ← SE.TGen(1λ, 1M , ISj+1
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj )

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j + 1)
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– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs, aux)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if j is even

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(c,SE.Keven)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Extodd(c,SE.Kodd)

– if j is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(c,SE.Kodd)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Exteven(c,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j∧
{bkj+1}k∈[3] = Step(x, y, P, crs, j+1).b̄j+1∧rt3j+1 = Step(x, y, P, crs, j+1).r̄tj+1∧st1 = Step(x, y, P, crs, 1).s̄t,
return 1

– else return 0

Game Gj,c is identical to Gj,d except that we added additional conditions for the adversary to win the
game.

Lemma 5.14. Assuming extraction correctness of SE, read and write soundness of HT and semi-adaptive

somewhere soundness of BARG,
∣∣∣Pr[GA

j,c = 1]− Pr[GA
j,d = 1]

∣∣∣ ≤ negl(λ).

The proof for this lemma is identical to the one for Lemma 5.8.

Inner Hybrid Game Gj,e

– if j is even

SE.Keven ← SE.TGen(1λ, 1M , ISj
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj+1)

– if j is odd

SE.Keven ← SE.TGen(1λ, 1M , ISj+1)

SE.Kodd ← SE.TGen(1λ, 1M , ISj
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j + 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if j is even

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(c,SE.Keven)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Extodd(c,SE.Kodd)

– if j is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(c,SE.Kodd)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Exteven(c,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j∧
{bkj+1}k∈[3] = Step(x, y, P, crs, j+1).b̄j+1∧rt3j+1 = Step(x, P, crs, j+1).r̄tj+1∧st1 = Step(x, y, P, crs, 1).s̄thj+1 =

Step(x, y, P, crs, j + 1).h̄, return 1
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– else return 0

Again, Game Gj,e is similar to Gj,d with modified winning conditions.

Lemma 5.15. Assuming semi-adaptive somewhere soundness of BARG, |Pr[GA
j,d = 1] − Pr[GA

j,e = 1]| ≤
negl(λ).

This follows directly from the definition of hj+1 as analyzed in proof of lemma 5.9.

Inner Hybrid Game Gj,f

– if j is even

SE.Keven ← SE.TGen(1λ, 1M , ISj )

SE.Kodd ← SE.TGen(1λ, 1M , ISj+1)

– if j is odd

SE.Keven ← SE.TGen(1λ, 1M , ISj+1
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j + 1)

– dk← HT.Gen(1λ)

– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if j is even

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(c,SE.Keven)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Extodd(c,SE.Kodd)

– if j is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(c,SE.Kodd)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Exteven(c,SE.Keven)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj+1 = Step(x, y, P, crs, j+
1).h̄, return 1

– else return 0

Game Gj,f has a more relaxed winning condition than Gj,e. This gives us the following lemma.

Lemma 5.16. Pr[GA
j,e = 1] ≤ Pr[GA

j,f = 1].

Again, this is identical to Lemma 5.10

Inner Hybrid Game Gj,g

– if j + 1 is even

SE.Keven ← SE.TGen(1λ, 1M , ISj+1
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj
)

– if j + 1 is odd

SE.Keven ← SE.TGen(1λ, 1M , ISj
)

SE.Kodd ← SE.TGen(1λ, 1M , ISj+1
)

– BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, j + 1)

– dk← HT.Gen(1λ)
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– crs := (SE.Keven,SE.Kodd,BARG.crs, dk).

– (P, aux)← A1(1
λ, crs, aux)

– HP ← stSNARG.TrustHash(crs, P )

– ((x, y), (c,Π))← A2(crs, P, aux)

– if j + 1 is even

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Exteven(c,SE.Keven)

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Extodd(c,SE.Kodd)

– if j + 1 is odd

(hj , {bkj }k∈[3], {Πk
j }k∈[3],Π

′
j)← Exteven(c,SE.Keven)

(hj+1, {bkj+1}k∈[3], {Πk
j+1}k∈[3],Π

′
j+1)← Extodd(c,SE.Kodd)

– if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M∧hj+1 = Step(x, y, P, crs, j+
1).h̄, return 1

– else return 0

Game Gj,g is identical to Gj,f with the indices renamed. Thus, Pr[GA
j,g = 1] = Pr[GA

j,f = 1]. Observe Gj,g

is identical to outer Game Gj+1.
Thus, combining the lemmas above, we get

Lemma 5.17. Assuming extraction correctness of SE, semi-adaptive somewhere soundness of BARG, read
and write soundness of HT,

Pr[GA
j = 1] ≤ Pr[GA

j+1 = 1] + negl(λ).

This follows from the combination of previous lemmas where we showed that the winning probability in
the sequence of inner hybrids are either negligibly close to each other or increases (from Game Gj,e to Game
Gj,f ).

Finally, we will show that the winning probability of A is 0 in the final game GT .

Lemma 5.18. Assuming extraction correctness of SE hash,

Pr[GA
T = 1] = 0.

Proof. The extraction correctness of SE ensures that hT was indeed the state committed by the prover. Now,
hT = h̄T cannot be true since our assumption of (x, T, P,HP , crs) /∈ LT M means that Turing Machine state
after T steps cannot be an accept state. Thus, the adversary’s win conditions cannot be simultaneously
satisfied.

Note that this step does not require us to resort to BARG soundness. Due to our specific construction of
h̄T , all we need ensure is that the state committed by the prover does not correspond to the correct state.

Compiling the lemmas together and using chain rule, it must be true that

Pr[GA = 1] ≤ negl(λ)

which is a contradiction to our assumption that the scheme is not sound.

Lemma 5.19. Assuming T = poly(m,n), T,m, n ≤ 2λ, the stSNARG protocol in Figure 2 implies the
unconditional existence of a publicly verifiable non interactive succinct delegation scheme sDel as defined
above.

Proof. We provide an explicit construction of sDel assuming a semi-trusted SNARG stSNARG. Without loss
of generality, we can assume that T is known a-priory.

• sDel.Setup(1λ): Run stSNARG.Setup to generate crs.

• sDel.ProgAuth(1λ, crs): Generate a program P ∈ {0, 1}m, state and run stSNARG.TrustHash(crs, P ) to
get HP .
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• sDel.I(1λ, crs): Generate x ∈ {0, 1}n .

• sDel.W (crs, P, state, HP , x): Generate y ∈ {0, 1} and run stSNARG.P(crs, P, x, y,HP ) to get Π.

• sDel.V (crs, x, y,HP ,Π): Run stSNARG.V(crs, x, y,HP ,Π) return V’s output.

Completeness of sDel follows from the completeness of stSNARG in a straightforward way. The proof size
and verifier run time of stSNARG is poly(λ, log T )=poly(λ, log |P |, log |x|). Similarly, the prover run time of
sDel is also poly(λ, |P |, |x|).

Soundness: Let us assume the there exists an adversary A := (A1,A2) which wins the sDel soundness
game as described above. We use A to construct an adversary B := (B1,B2) which can win the stSNARG
soundness game as shown in Game G (cf. Previous Section on semi-trusted SNARGS). Following is the
reduction.

Adversary B := (B1,B2) playing stSNARG soundness.

B1(1λ, crs)

∗ ((P, state), HP )← sDel.ProgAuth(1λ, crs)

∗ Output (P, aux = (state, HP ))

B2(crs, P,H∗
P , aux)

∗ (x, aux′)← A1(1
λ, crs)

∗ (y,Π)← A2(crs, P, aux, x, aux
′)

∗ Return ((x, y), (c,Π))

Note that in the reduction above, H∗
P = stSNARG.TrustHash(crs, P ) which is input to B2. In fact, our

construcction of sDel ensures that H∗
P = HP , but this is not relevant for the context of this reduction. By

our assumption that sDel is not sound, we have that P (x) ̸= y and stSNARG.V(crs, x, y,HP ,Π) = 1. Also
by definition, P (x) ̸= y =⇒ ((x, y), T, P,H∗

P , crs) /∈ LT M Thus, B clearly wins the stSNARG soundness
game.

6 Semi-Trusted Succinct Non-Interactive Argument with Zero Knowl-
edge (ZK-stSNARG)

A publicly verifiable semi-trusted non interactive argument with zero-knowledge scheme
ZKstSNARG : (ZKstSNARG.Setup,ZKstSNARG.TrustHash,ZKstSNARG.P,ZKstSNARG.V) is defined as

• ZKstSNARG.Setup(1λ, 1T ): A randomized setup algorithm which on input security parameter λ, and
number of Turing Machine steps T , outputs crs.

• ZKstSNARG.TrustHash(crs, P ): A deterministic an honest algorithm which on input crs and a program
P ∈ {0, 1}m for some m < 2λ, computes a succinct digest HP of P . It then produces a statistically
binding and extractable commitment CP of HP under randomness r1. It then gives out a pair public
output POut = CP and private output SOut = (HP , r). Here SOut is made available to the prover
only.

• ZKstSNARG.P(crs, P, x, y,SOut,POut): A deterministic prover algorithm which on input the crs, P ∈
{0, 1}m for some m < 2λ, x ∈ {0, 1}n for some n < 2λ, y ∈ {0, 1}, SOut, and POut outputs a proof Π.

• ZKstSNARG.V(crs, x, y,POut,Π): A deterministic verification algorithm which on input crs, x, y, public
output POut of stSNARG.TrustHash and proof Π, either accepts(output 1) or rejects(output 0) it.

We define the following language

LT M := {(P, x, y, T,POut, crs)
∣∣∃(HP , r1) such that TM(P, x, y) = 1∧(POut, (HP , r1)) = ZKstSNARG.TrustHash(crs, P )}.

A ZKstSNARG satisfies the following properties:
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• Completeness. For every λ, T, n,m ∈ N such that T, n,m < 2λ, program P ∈ {0, 1}m, input
x ∈ {0, 1}n and output y ∈ {0, 1} such that (P, x, y, T,POut, crs) ∈ LT M, we have

Pr[ZKstSNARG.V(crs, x, y,POut,Π) = 1
∣∣crs← ZKstSNARG.Setup(1λ, 1T ),

(POut,SOut))← ZKstSNARG.TrustHash(crs, P ),Π := ZKstSNARG.P(crs, x, y,POut,SOut)] = 1.

• Efficiency. ZKstSNARG.Setup runs in time poly(λ, T ), ZKstSNARG.TrustHash runs in time poly(λ, |P |, T ),
ZKstSNARG.P runs in time poly(λ, |x|, |P |, T ) and outputs a proofs of length poly(λ, log T ), and ZKstSNARG.V
runs in time poly(λ, log T ).

• Soundness. For every PPT adversary A := (A1,A2) and the tuple T = T (λ), n = n(λ),m = m(λ),
there exists a negligible function negl(λ) such that for every λ ∈ N,

Pr[ZKstSNARG.V(crs, x, y,POut,Π) = 1 ∧ (P, x, y, T,POut,SOut, crs) /∈ LT M
∣∣

crs← ZKstSNARG.Setup(1λ, 1T ), (P, aux)← A1(1
λ),

(POut,SOut)← ZKstSNARG.TrustHash(crs, P ), (x, y,Π)← A2(crs, P,POut,SOut, aux)] ≤ negl(λ).

• Non Interactive Zero Knowledge. For all (P, x, y, T,POut, crs) ∈ LT M, there exists a PPT simu-
lator Sim := (Sim1,Sim2,Sim3) such that the distributions of

(crs, x, y,POut,Π)
∣∣(crs, aux)← Sim1(1

λ, 1T ),

(POut, aux′)← Sim2(crs, aux),

Π← Sim3(aux
′, crs, (x, y),POut)

and

(crs, x, y,POut,Π)
∣∣crs← ZKstSNARG.Setup(1λ, 1T ),

(POut,SOut)← ZKstSNARG.TrustHash(crs, P ),

Π← ZKstSNARG.P(crs, P, x, y,POut,SOut)

are indistinguishable.

To extend our delegation scheme to achieve non interactive zero knowledge, we use the following additional
primitives, namely (1) a statistically binding extractable commitment scheme Combind as defined in Section 3,
and (2) a Non Interactive Zero Knowledge argument NIZK := (NIZK.Gen,NIZK.P,NIZK.V).

The protocol in Figure 5 demonstrates the extension of stSNARG to achieve Zero-Knowledge. The CRS
in Figure 5 contains a statistically binding commitment to 0. This lets us extend LT M to the language,

Lhyb :=

{
(P, x, y, T, CP , crs)

∣∣∃(HP , r1) such that TM(P, x, y) = 1∧(CP , (HP , r1)) = ZKstSNARG.TrustHash(crs, P )

∨
(
∃r such that crs contains a commitment to 1 under randomness r

)
.

}

such that any witness to LT M is vacuously a witness to Lhyb due to binding property of the commitment.
We use NIZK for the following NP language:
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L :=

{
(c.com,Π.com, (crs, x, y, T ), CP )

∣∣∣∃r1, r2, r3, r4, c,Π, HP such that(
CP = Com.C(Combind.Key1, HP ; r1) ∧ c.com = Com.C(Combind.Key2, c; r2)

∧Π.com = Com.C(Combind.Key3,Π; r3) ∧ stSNARG.V(crs, ((x, y), T,HP ), (c,Π)) = 1

)

∨ crs contains Com.C(Combind.Key4, 1; r4)

}

Also, note that in this construction, the underlying stSNARG is built for the index circuit C ′
index.

Protocol 2 (Semi-Trusted Non-Interactive Argument with Zero-Knowledge).

• ZKstSNARG.Setup(1λ, T ) :

– crs1 ← stSNARG.Setup(1λ, 1T )

– Combind.Key1 ← Com.Gen(1λ)

– Combind.Key2 ← Com.Gen(1λ)

– Combind.Key3 ← Com.Gen(1λ)

– Combind.Key4 ← Com.Gen(1λ), r4←$ {0, 1}λ, z ← Com.C(Com.Key4, 0; r4)

– NIZK.crs← NIZK.Gen(1λ)

– return (crs1,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs).

• ZKstSNARG.TrustHash(crs, P )

– HP ← stSNARG.TrustHash(crs, P )

– r1←$ {0, 1}λ, CP ← Com.C(Combind.Key1, HP ; r1) return (SOut := (P, r1),POut := CP ).

• ZKstSNARG.P(crs, x, y, SOut,POut) :

– (c,Π)← stSNARG.P(crs, x, y,HP )

– r2←$ {0, 1}λ, c.com← Com.C(Combind.Key2, c; r2)

– r3←$ {0, 1}λ,Π.com← Com.C(Combind.Key3,Π; r3)

– NIZK.Π← NIZK.Prove (NIZK.crs, (c.com,Π.com, (crs, x, y, T ), CP ) , ((HP , r1), (c, r2), (Π, r3),⊥))
– return (c.com,Π.com,NIZK.Π).

• ZKstSNARG.V(crs, (x, y),POut = CP , c.com,Π.com,NIZK.Π) :

– return 1 if and only if NIZK.V(NIZK.crs, (c.com,Π.com, (crs, x, y, T ), CP ),NIZK.Π) = 1.

Figure 5: Semi-Trusted Universal Turing Machine Delegation with Non Interactive Zero-Knowledge

Theorem 6.1. Assuming the existence of semi-trusted SNARGs and Extractable Statistically Binding Com-
mitment Schemes, and NIZK as described in sections 3 and 5, Figure 5 is a publicly verifiable non-interactive
semi-trusted SNARG with zero knowledge such that CRS size, proof size and verifier time are poly(λ, log T )
and prover run time is poly(λ, T ).

Completeness. An honest prover ignores the additional commitment to 0 in the CRS and follows Figure 5.
Also, observe that for any honest prover, any witness to an instance in Lhyb is also a witness for the language
Lhyb with the same instance. Now, BARG.V(BARG.crs, Cindex,Π) = 1 follows from the completeness of the
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Circuit 2 (Circuit C ′
index).

• Hard-coded: y, start, ϕ, SE.Keven, SE.Kodd, T,Hx := HT.Hash(dk, x)

• Input:(
i, (c,HP , hi := (sti, rt

1
i , rt

2
i , rt

3
i ), ρhi

)
), if i = 0(

i, (c,HP , {hi−1, hi, {bji ,Π
j
i}j∈[3],Π

′
i, ρhi−1 , ρhi , {ρbji , ρΠj

i
}j∈[3], ρΠ′

i
})
)
, ∀i ∈ [T ]

• Output: return 1 if and only if

– if i = 0

a. st0 = start

b. Hx = rt10

c. HP = rt20

d. HT.Hash(dk,□) has rt30 as root

– else

∗ if i is even:

a. SE.Verify(SE.Kodd, codd, hi−1, ρhi−1) = 1

b. SE.Verify(SE.Keven, ceven, hi, ρhi) = 1

c.
{
SE.Verify(SE.Keven, ceven, b

j
i , ρbji

) = 1
}

j∈[3]

d.
{
SE.Verify(SE.Keven, ceven,Π

j
i , ρΠj

i
) = 1

}
j∈[3]

e. SE.Verify(SE.Keven, ceven,Π
′
i, ρΠ′

i
) = 1

∗ if i is odd:

a. SE.Verify(SE.Keven, ceven, hi−1, ρhi−1) = 1

b. SE.Verify(SE.Kodd, codd, hi, ρhi) = 1

c.
{
SE.Verify(SE.Kodd, codd, b

j
i , ρbji

) = 1
}

j∈[3]

d.
{
SE.Verify(SE.Kodd, codd,Π

j
i , ρΠj

i
) = 1

}
j∈[3]

e. SE.Verify(SE.Kodd, codd,Π
′
i, ρΠ′

i
) = 1

∗ ϕ(hi−1, hi, {bji ,Π
j
i}j∈[3],Π

′
i) = 1

∗ if i = T

a. HT.Hash(dk, y) has rt3T as root.

b. stT indeed encodes the accept state.

Figure 6: Circuit C ′
index

underlying SE hash, BARG, and read and write completeness of HT as seen in the completeness proof from
the previous section. Clearly, the result will follow from the completeness of the underlying NIZK.

Efficiency. The following points follow from the above lemma, and the efficiency of the SE hash and hash
tree construction.

• |C ′
index| = poly(λ, log T ).

• CRS Size: By the corresponding properties of the underlying primitives, |crs| = poly(λ, log T ). The
only addition here are the NIZK CRS and the commitment keys which are poly(λ).

• Proof Length: |c.com|+ |Π.com|+ |NIZK.Π| = poly(λ, log T )+poly(λ, |C ′
index|)+poly(λ) = poly(λ, log T ).

• Verifier Time: Time taken to compute C ′
index and verify the NIZK. This is poly(λ, log T, |C ′

index|) =
poly(λ, log T ).

Soundness. Let us assume for the sake of contradiction that our scheme in Figure 5 is not sound, i.e.,
there exists a PPT adversary A := (A1,A2), a value T and a polynomial function poly(λ) such that for
infinitely many values of λ ∈ N,

Pr[GA = 1] ≥ 1

poly(λ)
,
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where A plays Game G described below,

Real Game G

– crs← stSNARG.Setup(1λ, 1T )

– (P, aux)← A1(1
λ, crs)

– (CP , (H̄P , r̄1))← stSNARG.TrustHash(crs, P )

– ((x, y)(c.com,Π.com.NIZK.Π))← A2(crs, P, CP , H̄P , r̄1, aux)

– if ZKstSNARG.V(crs, (x, y),POut = CP , c.com,Π.com,NIZK.Π) = 1∧(P, x, y, T,POut, crs) /∈ LT M,
return 1

– else return 0

We proceed by using a sequence of hybrids.

Hybrid Game G1

– crs1 ← stSNARG.Setup(1λ, 1T )

– Combind.Key1 ← Com.TGen(1λ)

– Combind.Key2 ← Com.Gen(1λ)

– Combind.Key3 ← Com.Gen(1λ)

– Combind.Key4 ← Com.Gen(1λ), r4←$ {0, 1}λ, z ← Com.C(Com.Key4, 0; r4)

– NIZK.crs← NIZK.Gen(1λ)

– crs := (crs1,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs)

– (P, aux)← A1(1
λ, crs)

– (CP , (H̄P , r))← stSNARG.TrustHash(crs, P )

– ((x, y)(c.com,Π.com.NIZK.Π))← A2(crs, P, CP , H̄P , r̄1, aux)

– if ZKstSNARG.V(crs, (x, y),POut = CP , c.com,Π.com,NIZK.Π) = 1∧(P, x, y, T,POut, crs) /∈ LT M,
return 1

– else return 0

Lemma 6.2. Assuming CRS indistinguishability of Combind, |Pr[GA = 1]− Pr[GA
1 = 1]| ≤ negl(λ).

Proof. The only difference in Game G and G1 is that the key generation algorithm of the commitment Combind

(Com.Gen) is replaced by the trapdoor key generation (Com.TGen).
If
∣∣Pr[GA = 1]− Pr[GA

1 = 1]
∣∣ > negl(λ), then one can construct a PPT adversary B that breaks the CRS

indistinguishability of Combind with Key as input from the key generation algorithm of the SE hash as follows:

Adversary B playing Combind CRS indistinguishability game.

– crs1 ← stSNARG.Setup(1λ, 1T )

– Combind.Key1 ← Key

– Combind.Key2 ← Com.Gen(1λ)

– Combind.Key3 ← Com.Gen(1λ)

– Combind.Key4 ← Com.Gen(1λ), r4←$ {0, 1}λ, z ← Com.C(Com.Key4, 0; r4)

– NIZK.crs← NIZK.Gen(1λ)

– crs := (crs1,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs)

– (P, aux)← A1(1
λ, crs)

– (CP , (H̄P , r̄1))← stSNARG.TrustHash(crs, P )

– ((x, y)(c.com,Π.com.NIZK.Π))← A2(crs, P, CP , H̄P , r̄1, aux)
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– if ZKstSNARG.V(crs, (x, y),POut = CP , c.com,Π.com,NIZK.Π) = 1∧(P, x, y, T,POut, crs) /∈ LT M,
return 1

– else return 0

Here, Key is either SE.Gen(1λ) or SE.TGen(1λ) based on whether A is interacting with game G or Ga

respectively. Adversary B here breaks the CRS indistinguishability of SE hash if the probability that it
returns 1 is significantly different when A interacts with the key generation algorithm in normal mode vs
trapdoor mode. Now, the probability that B returns 1 in either case is exactly equal to the probability that
A wins the corresponding games, hence, B breaks if

∣∣Pr[GA = 1]− Pr[GA
a = 1]

∣∣ ≥ negl(λ). This leads to a
contradiction of our assumption.

Hybrid Game G2

– crs1 ← stSNARG.Setup(1λ, 1T )

– Combind.Key1 ← Com.TGen(1λ)

– Combind.Key2 ← Com.TGen(1λ)

– Combind.Key3 ← Com.TGen(1λ)

– Combind.Key4 ← Com.TGen(1λ), r4←$ {0, 1}λ, z ← Com.C(Com.Key4, 0; r4)

– NIZK.crs← NIZK.Gen(1λ)

– crs := (crs1,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs)

– (P, aux)← A1(1
λ, crs)

– (CP , (H̄P , r̄1))← stSNARG.TrustHash(crs, P )

– ((x, y)(c.com,Π.com.NIZK.Π))← A2(crs, P, CP , H̄P , r̄1, aux)

– if ZKstSNARG.V(crs, (x, y),POut = CP , c.com,Π.com,NIZK.Π) = 1∧(P, x, y, T,POut, crs) /∈ LT M,
return 1

– else return 0

Lemma 6.3. Assuming CRS indistinguishability of Combind, |Pr[GA
1 = 1]− Pr[GA

2 = 1]| ≤ negl(λ).

One can define two intermediate hybrids by changing one Combind key generation algorithm at a time.
The proof then is straightforward from that of the previous lemma.

Hybrid Game G3

– crs1 ← stSNARG.Setup(1λ, 1T )

– Combind.Key1 ← Com.TGen(1λ)

– Combind.Key2 ← Com.TGen(1λ)

– Combind.Key3 ← Com.TGen(1λ)

– Combind.Key4 ← Com.TGen(1λ), r4←$ {0, 1}λ, z ← Com.C(Com.Key4, 0; r4)

– NIZK.crs← NIZK.Gen(1λ)

– crs := (crs1,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs)

– (P, aux)← A1(1
λ, crs)

– (CP , (H̄P , r̄1))← stSNARG.TrustHash(crs, P )

– ((x, y)(c.com,Π.com.NIZK.Π))← A2(crs, P, CP , H̄P , r̄1, aux)

– ĉ← Com.Ext(Combind.Key2, c.com)

– Π̂← Com.Ext(Combind.Key3,Π.com)

– if ZKstSNARG.V(crs, (x, y),POut = CP , c.com,Π.com,NIZK.Π) = 1∧(P, x, y, T,POut, crs) /∈ LT M,
return 1
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– else return 0

Lemma 6.4. Pr[GA
2 = 1] = Pr[GA

3 = 1].

This lemma is obvious from the fact that the additional terms extracted have never been used in the
hybrids.

Lemma 6.5. Assuming extraction correctness/statistical binding property of Combind, and soundness of
stSNARG we have that,

|Pr[GA
3 = 1]| ≤ negl(λ).

Proof. For the sake of contradiction, let us say this is not the case. In other words, (P, x, y, T,POut,SOut, crs) /∈
LT M but NIZK.V(NIZK.crs, (c.com,Π.com, (crs, x, y, T ), CP ),NIZK.Π) = 1. Assuming extraction correct-
ness/binding property of Combind, we construct an adversary B which breaks the soundness of stSNARG as
follows:

Adversary B playing stSNARG soundness game

– crs1 ← stSNARG.Setup(1λ, 1T )

– Combind.Key1 ← Com.TGen(1λ)

– Combind.Key2 ← Com.TGen(1λ)

– Combind.Key3 ← Com.TGen(1λ)

– Combind.Key4 ← Com.TGen(1λ), r4←$ {0, 1}λ, z ← Com.C(Com.Key4, 0; r4)

– NIZK.crs← NIZK.Gen(1λ)

– crs := (crs1,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs)

– (P, aux)← A1(1
λ, crs)

– (CP , (H̄P , r̄1))← stSNARG.TrustHash(crs, P )

– ((x, y)(c.com,Π.com.NIZK.Π))← A2(crs, P, CP , H̄P , r̄1, aux)

– ĉ← Com.Ext(Combind.Key2, c.com)

– Π̂← Com.Ext(Combind.Key3,Π.com)

– return ĉ, Π̂

We begin by pointing out that since crs contains a commitment to 0, a prover cannot produce a wit-
ness to show that crs has a commitment to 1 as it would violate the binding nature of Combind. Our
assumption that the NIZK proof verifies implies that the prover produced witness (r1, r2, r3, c,Π, HP ) which
were witnesses to the NP language L for the instance (c.com.Π.com, (crs, x, y, T ), CP ). The extraction
correctness of Combind ensures it must be that HP = H̄P . Thus, the prover indeed started the Tur-
ing Machine TM with the correct input (H̄P ) in the second tape. This, along with the definition of
C ′

index implies that stSNARGV(crs, ((x, y), T, H̄P ), (c,Π)) = 1 but, as per assumption, TM does not ac-

cept P, x, y in T steps. Furthermore, the extraction correctness Combind also tells that ĉ = c, Π̂ = Π.
Thus, stSNARGV(crs, ((x, y), T, H̄P ), (ĉ, Π̂)) = 1 which clearly contradicts the soundness assumption of
stSNARG.

Combining these lemmas gives us a clear contradiction to our initial assumption that the ZKstSNARG
scheme is not sound.

Non Interactive Zero Knowledge. For all (P, x, y, T,POut, crs) ∈ LT M, there exists a PPT simulator
Sim := (Sim1,Sim2,Sim3) such that the distributions of

(crs, x, y,POut,Π)
∣∣(crs, aux)← Sim1(1

λ, 1T ), (POut, aux′)← Sim2(crs, aux),Π← Sim3(aux
′, crs, (x, y),POut)
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Protocol 3 (NIZK Simulator Sim := (Sim1,Sim2,Sim3)).

• Sim1(1
λ, 1T ) :

1. SE.Keven ← SE.Gen(1λ, 1Mλ,T , 1Lλ)

2. SE.Kodd ← SE.Gen(1λ, 1M , 1L)

3. BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)

4. dk← HT.Gen(1λ)

5. Combind.Key1 ← Com.Gen(1λ)

6. Combind.Key2 ← Com.Gen(1λ)

7. Combind.Key3 ← Com.Gen(1λ)

8. Combind.Key4 ← Com.Gen(1λ), r4←$ N, z ← Com.C(Com.Key4, 1; r4)

9. NIZK.crs← NIZK.Gen(1λ)

10. return
crs := (SE.Keven, SE.Kodd,BARG.crs, dk,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs) and
aux := r4

• Sim2(crs, aux) :

1. r1←$ {0, 1}λ, CP ← Com.C(Combind.Key1, 0; r1) return POut := CP .

2. return (POut, aux′ := aux)

• Sim3(crs, aux
′, (x, y),POut := CP ) :

1. r2←$ {0, 1}λ, c.com← Com.C(Combind.Key2, 0; r2)

2. Generate a dummy proof Π̂

3. r3←$ {0, 1}λ,Π.com← Com.C(Combind.Key3, 0; r3)

4. NIZK.Π← NIZK.Prove (NIZK.crs, (c.com,Π.com, (crs, x, y, T ), CP ) , (⊥,⊥,⊥, aux))
5. return (c.com,Π.com,NIZK.Π).

Figure 7: Non Interactive Zero Knowledge Simulator

and

(crs, x, y,POut,Π)
∣∣crs← ZKstSNARG.Setup(1λ, 1T ),

(POut,SOut)← ZKstSNARG.TrustHash(crs, P ),

Π← ZKstSNARG.P(crs, P, x, y,POut,SOut)

are indistinguishable. For notational simplicity we denote these distributions by hyb0 and hyb1 respec-
tively

• We define a game G′ which is identical to G0 except that crs has a commitment of 1 instead of 0.
Note that an honest prover does not make use of this section of the crs in its proof. Consider hyb′ as
the output distribution of intermediate G′. All other algorithms in G′ remains identical as G0. hyb0
must be indistinguishable from hyb′, otherwise we can construct an efficient adversary that breaks the
computational hiding property of Combind.

• The hybrid game G′′ with output distribution hyb′′ works like G′ except stSNARG.P computes (c.com,NIZK.Π)
honestly and then ignores c.com and outputs (c1,NIZK.Π) where c1 is the statistical binding com-
mitment to the 0 string using Combind. The indistinguishability of hyb′ and hyb′′ follows from the
computational hiding property of Combind.

• We now define another hybrid game G′′′ where everything remains identical as G′′ but the NIZK proof
NIZK.P proves that crs has a commitment of 1 using randomness r as a witness. This is indeed a valid
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witness for the same language L∗
hyb. Observe that G′′ and G′′′ have identical CRS. However, NIZK.P

in each case uses different witnesses, namely r and ((c, rcom2),Π) respectively. Thus, the Witness
Indistinguishability of NIZK implies indistinguishability of G′′ and G′′′.

• In the next hybrid G′′′′, trusted commitment generator is replaced by Sim2 which on input crs simply
outputs a hiding commitment to the 0 string. Note that the output of Sim2 is not used anywhere else in
the proof and its output is identically distibuted to the public output of ZKstSNARG.TrustHash(crs, P )
because of the hiding property of commitment scheme.

• In the final game G1, Sim1 uses the same crs as the previous hybrid. Sim3 ignores all operations
performed by the prover and only outputs c1 which is the statistical binding commitment to the 0
string using Combind and sends a NIZK proof as G′′′′. The output distributions of G′′′′ and G1 are
indeed identical as the output of Sim3 solely depends on the output of Sim1,Sim2 and the commitment
of the 0 string c1.

Combining all the hybrids, we prove that G0 and G1 have output distributions which are computationally
indistinguishable.

Public Verifiable Non Interactive Succinct Delegation with Zero Knowledge A direct extension
of Lemma 5.19 gives us the following corollary,

Corollary 6.6. Assuming T = poly(m,n), T,m, n ≤ 2λ, the ZKstSNARG protocol in Figure 5 implies the
unconditional existence of a publicly verifiable non interactive succinct delegation scheme with zero knowledge.

The zero knowledge simulator for the delegation scheme zk− sDel.Sim := (zk− sDel.Sim1, zk− sDel.Sim2)
can simply run the stSNARG ZK-simulator. More specifically, zk− sDel.Sim1 and zk− sDel.Sim2 call Sim1

and Sim2 respectively from Figure 7. The proof follows in a straightforward manner, hence we skip the
details.
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