
On Perfectly Secure Two-Party Computation for Symmetric
Functionalities with Correlated Randomness

Bar Alon∗

alonbar08@gmail.com
Olga Nissenbaum∗

olga@nissenbaum.ru
Eran Omri∗†

omrier@ariel.ac.il

Anat Paskin-Cherniavsky‡

anatpc@ariel.ac.il
Arpita Patra§

arpita@iisc.ac.in

Abstract
A multiparty computation protocol is perfectly secure for some function f if it perfectly

emulates an ideal computation of f . Thus, perfect security is the strongest and most desirable
notion of security, as it guarantees security in the face of any adversary and eliminates the
dependency on any security parameter. Ben-Or et al. [STOC ’88] and Chaum et al. [STOC ’88]
showed that any function can be computed with perfect security if strictly less than one-third
of the parties can be corrupted. For two-party sender-receiver functionalities (where only one
party receives an output), Ishai et al. [TCC ’13] showed that any function can be computed
with perfect security in the correlated randomness model. Unfortunately, they also showed that
perfect security cannot be achieved in general for two-party functions that give outputs to both
parties (even in the correlated randomness model).

We study the feasibility of obtaining perfect security for deterministic symmetric two-party
functionalities (i.e., where both parties obtain the same output) in the face of malicious ad-
versaries. We explore both the plain model as well as the correlated randomness model. We
provide positive results in the plain model, and negative results in the correlated randomness
model. As a corollary, we obtain the following results.

1. We provide a characterization of symmetric functionalities with (up to) four possible out-
puts that can be computed with perfect security. The characterization is further refined
when restricted to three possible outputs and to Boolean functions. All characterizations
are the same for both the plain model and the correlated randomness model.

2. We show that if a functionality contains an embedded XOR or an embedded AND, then
it cannot be computed with perfect security (even in the correlated randomness model).

Keywords: perfect security; two-party computation; correlated randomness
∗Department of Computer Science, Ariel University. Ariel Cyber Innovation Center (ACIC). Work was supported

in part by grants from the Israel Science Foundation (no.152/17), and by the Ariel Cyber Innovation Center in
conjunction with the Israel National Cyber directorate in the Prime Minister’s Office.

†Work was supported in part by the Robert L. McDevitt, K.S.G., K.C.H.S. and Catherine H. McDevitt L.C.H.S.
endowment at Georgetown University. Part of this work was done while hosted by Georgetown University.

‡Department of Computer Science, Ariel University. Ariel Cyber Innovation Center (ACIC). Work was supported
in part by the Ariel Cyber Innovation Center in conjunction with the Israel National Cyber directorate in the Prime
Minister’s Office.

§Indian Institute of Science, Bangalore, India. Arpita Patra would like to acknowledge financial support from
DST National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-2025 and SERB MATRICS
(Theoretical Sciences) Grant 2020-2023.

Contents
1 Introduction 1

1.1 Our Contribution . 2
1.2 Our Techniques . 4
1.3 Additional Related Work . 8
1.4 Organization . 8

2 Preliminaries 8
2.1 Notations . 8
2.2 Security Model . 9

3 Analyzing Symmetric Functionalities 12
3.1 Characterization of Four-Output Functionalities . 13
3.2 Characterization of Boolean and Ternary-Output Functionalities 14
3.3 Impossibility of Embedded XOR and Embedded AND 14

4 A General Impossibility Result for Perfect Security 15

5 An Impossibility Result for Perfect Security for Four-Output Functionalities 21

6 Positive Results for Perfect Security 25
6.1 Computing Spiral Functionalities . 25
6.2 Computing Transparent Transfer Functionalities . 27

References 28

1 Introduction
Secure Multiparty Computation (MPC) protocols allow a set of mutually distrusting parties to
compute a joint function of their private inputs. The two main security properties that are desirable
for protocols are correctness of the computation and privacy (i.e., the adversary should not learn
anything about the inputs or outputs of the honest parties except what is leaked from the output of
the function). There are two main types of adversaries that are considered. These are semi-honest
(passive) adversaries and malicious (active) adversaries. A semi-honest adversary always follows
the prescribed protocol, but may try to infer additional information from the joint view of the
corrupted parties in the protocol. A malicious adversary may instruct the corrupted parties to
deviate from the prescribed protocol in any manner it chooses.

A general paradigm for defining the desired security of protocols is known as the ideal vs real
paradigm. This paradigm avoids the need to specify a list of desired properties. Rather, security is
defined by describing an ideal functionality, where parties interact via a trusted party to compute
the task at hand. A real-world protocol is then deemed secure, if no adversary can do more harm
than an adversary in the ideal-world. In a bit more detail, the definition requires that the view of
the adversary in a real-world execution, can be simulated by an adversary (corrupting the same
parties) in the ideal-world. There are three types of measurements for the strength of security that
may be considered. These are called computational, statistical, and perfect security. Computational
security requires that the distribution of the view in the real-world is indistinguishable from the
distribution of the view in the ideal-world to a computationally bounded machine. Statistical
security requires these distributions to be statistically close (indistinguishable even for unbounded
machines). Finally, perfect security means that the views in both worlds are identically distributed.

In this paper we consider perfect security for two-party computation (i.e., with no honest
majority), in the face of malicious adversaries (when considering perfect security, we naturally
assume the adversary to be computationally unbounded). Apart from being a natural research
goal, perfect security provides important and useful security advantages over protocols that offer
computational security and even over those that have a negligible probability of failure (i.e., offer
statistical security). Because of the stringent requirement, perfectly secure constructions tend to
have a simple structure. More importantly, perfect security completely eliminates the need for a
security parameter, making protocols that are perfectly secure highly scalable.

Perfect security in the plain model

In the basic setting of secure computation, parties communicate with each other over some com-
munication network. It is generally assumed that the channels are secure, but no other setup
assumption is made. In this setting, Ben-Or et al. [2], Chaum et al. [5] showed the feasibility of
computing any function with perfect security in the face of malicious adversaries that can corrupt
strictly less than one-third of the parties.1

In the two party setting, Kushilevitz [10] characterized the set of functions that can be computed
with perfect security in the face of semi-honest adversaries. Cleve [7] showed that full-security
(where honest parties always receive an output) is impossible in general, even for computationally
bounded malicious adversaries. For the setting of two-party plain-model protocols with perfect
security in the face of malicious adversaries, very little was known prior to our work.

1For semi-honest adversaries, they showed that an honest majority is sufficient.

1

Perfect security with correlated randomness

It is natural to ask whether the impossibilities of obtaining prefect security can be circumvented
by making some reasonable assumption. This brings to the table the correlated-randomness model
that is both theoretically and practically motivated. In this model, parties are given strings sampled
from some fixed joint distribution at the onset of the protocol. These strings are independent of
their inputs, and are then used alongside the inputs of the parties to run a secure computation
protocol. Interestingly, Cleve’s impossibility result does not apply to this setting.

In the correlated randomness setting, Ishai et al. [9] showed that it is possible to construct
perfectly and maliciously secure protocols in the sender-receiver model, i.e., where both parties
have an input, but only one receives an output. On the negative side, [9] showed that, in general,
perfect security is impossible to achieve for two-party functionalities that deliver outputs to both
the parties. In particular, they show that it is impossible to compute the XOR function in this
setting. In fact, the negative implication carries forward even to security with abort, where the
adversary may itself get the output, but can deprive the honest parties from the output. Other
than this result, very little was known prior to our work regarding perfect security in the correlated
randomness setting where both parties receive an output.

In light of the above, the main question studied in this paper is.

Characterize the set of two-party functionalities that can be computed with malicious
perfect security in the plain model and in the correlated randomness model.

We make substantial progress in this direction and leave open several challenging followup
questions. We summarize our results below.

1.1 Our Contribution

In this work, we consider the model of two-party computation of deterministic symmetric func-
tionalities (i.e., where both parties have the same output in the computation). We are interested
in perfect security and consider computation both in the plain model and in the correlated ran-
domness model. We provide both positive results in the plain model, and negative results in the
correlated randomness model. In particular, our results form a full characterization for four-output
functionalities, showing that there are only two families of functionalities that can be computed
with perfect security.

Before giving the results in more details, let us first define the two families of functionalities
mentioned above. In the following, for any symmetric deterministic functionality f : X × Y 7→ Z,
we associate with it a matrix Mf ∈ Z |X |×|Y| defined as Mf (x, y) = f(x, y), for all x ∈ X and
y ∈ Y.

Definition 1.1 (Spiral functionality, informal). A symmetric deterministic functionality f : X ×
Y 7→ Z is called spiral, if Mf is either constant, or, up to permuting the rows and columns, and
transposing the matrix, is of the form (M||M′) where M is constant-column, M′ is spiral, and
where the set of entries in the two matrices are disjoint.

2

As an example, consider the following spiral matrix.
7 7 7 7 7
6 6 6 6 6
5 4 4 1 2
5 4 4 0 2
5 4 4 3 3


Definition 1.2 (Transparent transfer functionality, informal). A symmetric deterministic func-
tionality f : X × Y 7→ {0, 1, 2, 3} is called transparent transfer if, up to permuting and duplicating
the rows and columns, and transposing the matrix, Mf is of the form

a c
a d
b c
b d

 (1)

where {a, b, c, d} = {0, 1, 2, 3}.

We refer the reader to Remark 3.4 for the reasoning behind the name. We are now ready to
state our main result, providing a full characterization for the four-output functionalities that can
be computed with perfect security.

Theorem 1.3 (Characterization of four-output functionalities, informal). Let f : X × Y 7→
{0, 1, 2, 3} be a symmetric deterministic four-output two-party functionality. If f can be computed
with perfect security in the correlated randomness model, then f is either spiral or transparent
transfer. Conversely, any spiral and transparent transfer functionality can be computed with perfect
security in the plain model.

A few notes are in place. First, observe that, in particular, we obtain a characterization for
symmetric ternary-output and Boolean functionalities. Specifically, since transparent transfer func-
tionalities require four outputs, for the ternary-output case, it follows that the only functionalities
that can be computed with perfect security are spiral. Thus, we have the following.

Corollary 1.4. Let f : X × Y 7→ {0, 1, 2} be a symmetric deterministic ternary-output two-party
functionality. If f can be computed with perfect security in the correlated randomness model, then
f is spiral. Conversely, any spiral functionality can be computed with perfect security in the plain
model.

As for the Boolean case, observe that a Boolean functionality is spiral if and only if it is
independent of one of its inputs, which we refer to as trivial functionalities. Therefore, we obtain
the following result.

Corollary 1.5. Let f : X ×Y 7→ {0, 1} be a Boolean symmetric deterministic two-party functional-
ity. If f can be computed with perfect security in the correlated randomness model, then f is trivial.
Conversely, any trivial functionality can be computed with perfect security in the plain model.

Second, although our main results consider only four-output functionalities, we stress that both
our positive and negative results can be extended to the more general case. However, it is currently
unknown if these results provide a characterization for even five-output functionalities.

3

Third, observe that Theorem 1.3 implies that for four-output functionalities, the plain model
and the correlated randomness model are equivalent.

Finally, our techniques for the negative direction provide an impossibility result for a larger
class of functionalities, including those with more than four outputs. An interesting corollary of
this general result, is that if a functionality has an embedded XOR or an embedded AND,2 then
the functionality cannot be computed with perfect security.

functionality trivial spiral transparent transfer

Boolean
(

0 1
0 1

)
- -

ternary
(

0 1 2
0 1 2

) (
0 1
0 2

)
-

four-output
(

0 1 2 3
0 1 2 3

) (
0 1 2
0 1 3

)
;
(

0 1 1
0 3 2

)
;
(

0 0 0
1 2 3

) (
0 0 1 1
2 3 2 3

)

Table 1: The table above shows the functionalities that can be computed with perfect security
with correlated randomness (for presentation, we do not include constant functions). As stated in
Theorem 1.3, up to transposing the matrix, re-encoding the output, and permuting and duplicating
the rows and columns, these are the only functionalities that can be computed with perfect security.

1.2 Our Techniques

We now turn to describe our techniques. To warm-up for our techniques, we first briefly explain
the impossibility result for the symmetric XOR functionality XOR(x, y) = x⊕ y due to Ishai et al.
[9]. We then show where it falls short even for the AND functionality AND(x, y) = x∧ y. Then, we
show how to overcome this shortcoming and prove a general impossibility result. Finally, we show
how to compute spiral and transparent transfer functionalities with perfect security.

Impossibility of XOR. Let us start with recalling the proof that XOR(x, y) = x⊕ y cannot be
computed with perfect security, even when the parties are given correlated randomness. Assume
towards contradiction that there is a protocol Π for computing f with perfect security in the
correlated randomness model.

Consider an execution of Π on inputs (x, y) ← {0, 1}2 chosen uniformly at random. Since the
protocol is perfectly correct, there exists a round where the output of party A is fixed (e.g., the last
round). That is, regardless of the correlated randomness generated for the parties, any continuation
of the protocol results in A outputting x⊕ y. Let i be the first such round. Similarly, let j be the
first round, where the output of B is fixed to x ⊕ y. Since the parties send message one after the

2A functionality f is said to have an embedded XOR if there exists x1, x2 ∈ X and y1, y2 ∈ Y such that
f(x1, y1) = f(x2, y2) ̸= f(x1, y2) = f(x2, y1). The functionality is said to have an embedded AND if f(x2, y2) ̸=
f(x1, y1) = f(x1, y2) = f(x2, y1).

4

other, it holds that i ̸= j. Assume without loss of generality that i < j. Then at round i, party A
“knows” the output, while party B does not. In more details, there exists correlated randomness
(r1, r2) for which at round i, there exists messages that A can send causing party B to output
1⊕ x⊕ y.

Consider the following adversary A corrupting A, that aims to “bias” the output of B towards
0. It instructs A to behave honestly until round i. At this point, A can locally compute the output
z = x⊕ y. If z = 0, then it instructs A to continue honestly until the termination of the protocol.
Otherwise, it sends random messages sampled independently and uniformly random.

Observe that the probability the adversary sees z = 0 is 1/2, where the probability is taken
over the sampling of the inputs and the correlated randomness. In this case, by the definition of
A, the honest party will output 0. On the other hand, if z = 1, then as the output of B is not
fixed, there is a non-zero probability that both the correlated randomness is (r1, r2), and A sends
the “correct messages” to B, causing it to output 0. Overall, it follows that the probability that B
outputs 0 is strictly greater than 1/2. On the other hand, in the ideal world, the output of B is 0
with probability exactly 1/2 regardless of the input of corrupted A to the trusted party, since B’s
input y is chosen uniformly at random.

Impossibility of AND. Before generalizing the impossibility result of [9] let us first explain
where their argument fails even for the AND functionality AND(x, y) = x ∧ y. Consider the
adversary A defined previously, that aims to bias the output of B towards 0. Note that if y = 1,
then a simulator can simulate the attack by sending x = 0 with the “correct” probability (i.e., the
probability that the correlated randomness and the messages that A sends cause B to output 0).
On the other hand, if y = 0, then regardless of what A does in the real world, B already “knows”
that the output is 0, thus A cannot introduce any bias. A similar argument shows that biasing
towards 1 might also be simulatable.

To overcome this issue, instead of just biasing the output of the honest party towards a certain
value, we let the adversary also guess uniformly at random the input of the honest party. To see
why it works, let us first analyze the probability that A biases the output of B towards 0 and
guesses its input correctly. Let Succ be the event where the adversary succeeds. First, consider
the case where x = 0. Here, A will guess y correctly with probability 1/2, and always cause B to
output 0. Therefore, Pr [Succ | x = 0] = 1/2. Next, consider the case where x = 1. In this case, A
always learns y from the output. Additionally, if y = 0 then B will always output 0. If y = 1, then
A will send random messages starting at round i, hence with non-zero probability, B will output
0. Therefore,

Pr [Succ | x = 1] = Pr [y = 0] · Pr [Succ | x = 1 ∧ y = 0] + Pr [y = 1] · Pr [Succ | x = 1 ∧ y = 1]

= 1
2 + 1

2 · Pr [Succ | x = 1 ∧ y = 1]

>
1
2 .

Overall, we conclude that the adversary succeeds with probability Pr [Succ] > 1/2.
To see why no simulator exists for A, observe that if a simulator sends x = 0 to the trusted

party, then it does not obtain any information on y, and if it sends x = 1, then B will output 0 only
if y = 0, which occurs with probability 1/2. Overall, the simulator can succeed with probability at
most 1/2, hence no simulator can perfectly simulate A.

5

Generalizing the impossibility result. We now explain how to generalize the above argument
to a more general, possibly non-Boolean, class of functionalities. Our argument applies for a class
of functionalities that are not captured by Theorem 1.3. We next describe this set of functionalities,
and claim they cannot be computed with perfect security with correlated randomness.

Lemma 1.6 (Informal). Let f : X × Y 7→ Z be symmetric deterministic two-party functionality.
Suppose there exists X ′ ⊆ X , Y ′ ⊆ Y, and Z ′ ⊂ Z such that the submatrix M′ of matrix Mf

induced by X ′ and Y ′ satisfies the following.

1. M′ contains an element from Z \ Z ′.

2. There is a natural h ≥ 1, such that every row in M′ contains exactly h distinct elements
from Z ′, and every other row in the matrix Mf associated with f contains at most h distinct
elements from Z ′, within the columns of Y ′.

3. There is a natural h′ ≥ 1, such that every column in M′ contains exactly h′ distinct elements
from Z ′, and every other column in the matrix Mf contains at most h′ distinct elements from
Z ′, within the rows of X ′.

Then f cannot be computed with perfect security in the correlated randomness model.

The negative direction of Theorem 1.3 follows from Lemma 1.6 via a combinatorial argument,
showing that if such a submatrix does not exist, then f is either spiral or transparent transfer. The
proof is somewhat technical and is therefore omitted from the introduction. We refer the reader to
Section 5 for the proof.

Let us first describe the attacker. Roughly speaking, the attack follows similar ideas to the
attacker for AND, however, instead of biasing towards a specific value, A will bias the output of
the honest party towards the set Z ′ ⊂ Z. In more details, if A sees that the output z is inside Z ′

then it will continue honestly. Otherwise, it will send random messages. Additionally, A outputs
a guess for y that is consistent with the output it saw, i.e., it outputs a uniform y∗ conditioned on
f(x, y∗) = z.

We next show that A cannot be simulated for x← X ′ and y ← Y ′. We first analyze the success
probability of the adversary in the real world. Let Succ denote the event that A both guesses y
correctly, and causes B to output a value from Z ′. We denote by zB the output of B. First, observe
that for any fixed x ∈ X ′ it holds that

Pr
[
zB ∈ Z ′ ∧ y∗ = y

]
=
∑

z∈Z′

Pr [zB = z] · Pr [y∗ = y | zB = z]

=
∑

z∈Z′

|{y′ ∈ Y ′ : f(x, y′) = z}|
|Y ′|

· 1
|{y′ ∈ Y ′ : f(x, y′) = z}|

= h

|Y ′|
,

where the last equality follows from Item 2, asserting there are exactly h distinct element from Z ′

in the xth row of M′. Therefore

Pr [Succ] = h

|Y ′|
+ Pr

[
z /∈ Z ′] · Pr

[
Succ | z /∈ Z ′]

6

for every fixed x ∈ X ′. Now, since we assume that M′ contains an element outside of Z ′, it follows
that there exists a choice of x, for which Pr [z /∈ Z ′] > 0. Furthermore, since the output of B is
not fixed, there is a non-zero chance that the random messages that A sends to it will cause it to
output a value from Z ′. Therefore Pr [Succ | z /∈ Z ′] > 0. We conclude that Pr [Succ] > h/|Y ′|.

To show that A cannot be simulated, we prove that any simulator can both guess y correctly
and cause B to output a value from Z ′, with probability at most h/|Y ′|. We show that this is true
for any input x the simulator sends to the trusted party. Indeed, the probability that B outputs
a fixed value z ∈ Z ′ is exactly |{y′∈Y ′:f(x,y′)=z}|

|Y ′| . Given this output z, the simulator can guess y

with probability 1
|{y′∈Y ′:f(x,y′)=z}| . However, among all the appearances of values from Z ′, at most

h of them are distinct. Thus, the simulator successfully guesses y correctly and force B to output
a value from Z ′, with probability at most h/|Y ′|.

Impossibility of embedded XOR or embedded AND. To show the usefulness of Lemma 1.6,
we next show that if f contains an embedded XOR or an embedded AND, then f cannot be
computed with perfect security in the correlated randomness model. In fact, we show that if there
exists inputs x1, x2 ∈ X and y1, y2 ∈ Y, and there exists a ̸= b ∈ Z such that the 2× 2 submatrix
M induced by those inputs is of the form(

a b
b ∗

)
or

(
b a
∗ b

)
,

where ∗ is any element from Z, then f cannot be computed with perfect security in the correlated
randomness model. We show that the constraints from Lemma 1.6 hold for X ′ = {x1, x2}, Y ′ =
{y1, y2}, and Z ′ = {b}. Indeed, M contains the element a /∈ Z ′, and every row and column in M
contains exactly one (distinct) element from Z ′. Finally, any other row or column in the matrix
Mf associated with f , will contain at most one (distinct) element from Z ′.

The positive direction. We now turn to prove our positive results. Let us start with describing
a protocol for (non-constant) spiral functionalities. Recall that f is said to be spiral, if its associated
matrix Mf or its transpose is, up to permuting the rows and columns, of the form (M||M′) where
the entries of M and M′ are disjoint, M is constant, and M′ is spiral. Assume without loss of
generality that Mf is of the form (M||M′). The idea is to let party B (which is associated with the
columns) to send to A the output in case the input y belongs to the columns of M. Otherwise, it
sends ⊥ and the parties inductively compute M′. The security of the protocol stems from the fact
that the entries of M and M′ are disjoint. Thus, the output reveals to A whether y belongs to the
columns of M.

We next show that any transparent transfer functionality f can be computed with perfect
security. We assume without loss of generality that the associated matrix is

Mf =


0 2
0 3
1 2
1 3

 .

Consider the protocol, where B sends its input y to A, and then A sends f(x, y) back to B. Clearly
the protocol is correct and secure against any corrupt B. We argue that the protocol is secure

7

against any adversary A corrupting A as well. First, as we are concerned with perfect security if
there is no simulator for A, then there exists a fixed choice of the randomness of A for which no
simulator exists. Therefore, we may assume without loss of generality that A is deterministic.

Let Y = {y1, y2} be the domain of B. The idea is to let the simulator query A on both possible
inputs y1 and y2, rewinding it each time. This provides the simulator with two outputs z1 ∈ {0, 1}
and z2 ∈ {2, 3}. Since Mf contains all possible rows from {0, 1}× {2, 3}, the simulator can find an
input x∗ whose corresponding row is (z1, z2). Finally, the simulator sends x∗ to the trusted party,
and outputs as the view y1 if the output it received is from {0, 1}, and outputs y2 otherwise.

1.3 Additional Related Work

In the semi-honest setting, [2] showed that AND is impossible to compute with statistical security,
let alone perfect security in the dishonest-majority setting. The work of [6] characterizes the
Boolean functionalities that can be computed with dishonest majority.

One of the commonly-known correlated randomness is that of oblivious transfer (OT) which
is a pair-wise correlation. In this, the first party gets a pair of inputs (x0, x1) and the second
party gets (b, xb). Brassard et al. [3] showed that given sufficiently many invocations of the above
OT correlation, the 1-out-of-n string OT functionality can be computed with perfect security
against malicious adversaries. Wolf and Wullschleger [11] showed how to compute 1-out-of-2 bit
TO perfectly, which is the same as OT where the roles of the parties are reversed. Finally, [1]
showed that given access to sufficiently many parallel ideal computations of OT, most sender-
receiver functionalities, where the sender’s domain size is strictly larger than the receiver’s domain
size, can be computed with perfect security.

1.4 Organization

The preliminaries and definition of the model of computation appear in Section 2. The statements
of our main results are provided in Section 3. The negative direction is proved in Sections 4 and 5.
Specifically, in Section 4 we prove the more general impossibility result, and in Section 5 we deduce
the result for four-output functionalities. Finally, we prove the positive direction in Section 6.

2 Preliminaries

2.1 Notations

For n ∈ N we let [n] = {1, 2 . . . n}. For a set S we write s ← S to indicate that s is selected
uniformly at random from S. Given a random variable (or a distribution) X, we write x ← X to
indicate that x is selected according to X.

Given a matrix M whose rows and columns are indexed by X and Y, respectively, we let
M(x, ·) = (M(x, y))y∈Y be the xth row, where x ∈ X . Similarly, we let M(·, y) = (M(x, y))x∈X
be the yth column, where y ∈ Y. We call a matrix M constant-row if for all x ∈ X it holds that
M(x, ·) is a constant vector. Similarly, we call M constant-column if M(·, y) is constant for all
y ∈ Y. Given two matrices M1 and M2 with the same number of rows, we let (M1||M2) denote
the matrix obtained from concatenating M1 and M2.

The following notion captures when two matrices are the same up to permuting the rows and
columns, and transposing either of the matrices.

8

Definition 2.1. Let M1 ∈ Zn1×m1 and M2 ∈ Zn2×m2 be two matrices. We say that M1 ∼M2 if
one of the following holds.

• n1 = n2, m1 = m2, and there exists a permutation π over the rows of M1 and a permutation
σ over the columns of M1, such that

M1(π(x), σ(y)) = M2(x, y)

for all x and y.

• n1 = m2, m1 = n2, and there exists a permutation π over the rows of M1 and a permutation
σ of M1 over the columns, such that

M1(π(x), σ(y)) = MT
2 (y, x)

for all x and y.

We next define the reduced form of matrix, which removes all duplicated rows and columns.
Definition 2.2 (Reduced form of a matrix). For a matrix M, its reduced form, denoted red(M),
is the matrix obtained by repeatedly removing all duplicated rows and columns from M (note that
this is well-defined).

The next definition associates a matrix with any 2-ary function f .
Definition 2.3 (The matrix associated with a function). Let f : X × Y 7→ Z be a 2-ary function.
The matrix associated with f , denoted Mf ∈ Z |X |×|Y|, is defined as Mf (x, y) = f(x, y) for all
x ∈ X and y ∈ Y.

We next define a combinatorial rectangle.
Definition 2.4 (Combinatorial rectangles). Given two sets X and Y, a combinatorial rectangle
(in short, a rectangle) over X × Y, is a subset R = XR × YR, where XR ⊆ X and YR ⊆ Y.

Given a matrix and combinatorial rectangle over its rows and columns, we can define the
submatrix induced by the rectangle.
Definition 2.5 (The submatrix induced by a rectangle). Let X , Y, and Z be three sets, and
let M ∈ Z |X |×|Y| be a matrix, whose rows and columns are indexed with elements from X and Y,
respectively. For a combinatorial rectangle R = XR×YR over X×Y, we denote by MR ∈ Z |XR|×|YR|

the submatrix of M induced by R, i.e., MR(x, y) = M(x, y) for all x ∈ XR and y ∈ YR.

2.2 Security Model

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm, for further details see [8]. Intuitively, a protocol is considered secure if whatever an
adversary can do in the real execution of the protocol, can be done also in an ideal computation,
in which an uncorrupted trusted party assists the computation. For concreteness, we present the
model and the security definition of perfect two-party computation with an adversary corrupting
a single party, as this is the main focus of this work. We refer to [8] for the general definition.

In this paper we focus on deterministic symmetric two-party functionalities f : X × Y 7→ Z,
i.e., both parties receive the same output.3

3The typical convention in secure computation is to let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗. However, we consider only
functionalities with a constant domain, which is why we introduce this notation.

9

The Real Model

A two-party protocol Π is defined by a set of two interactive Turing machines A and B. Each
Turing machine (party) holds at the beginning of the execution a private input, and random coins.
The adversary A is an interactive Turing machine describing the behavior of a corrupted party
P ∈ {A, B}. It starts the execution with input that contains the identity of the corrupted party
and its input. We assume the protocol proceeds in round, where every odd round party A sends a
message, and every even round party B sends a message.

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted party receive its instructions from the adversary. The
adversary is considered to be malicious, meaning that it can instruct the corrupted party to deviate
from the protocol in any arbitrary way. Additionally, the adversary has full-access to the view of the
corrupted party, which consists of its input, its random coins, and the messages it sees throughout
this execution. At the conclusion of the execution, the honest parties output their prescribed output
from the protocol, the corrupted party outputs nothing, and the adversary outputs a function of
its view (containing the views of the corrupted party).

We denote by REALΠ,A (x, y) the joint output of the adversary A (that may corrupt one of the
parties) and of the honest parties in a random execution of Π, on input x ∈ X for A and input
y ∈ Y for B.

Remark 2.6 (On the absence of a security parameter). Typically, the parties are also given a
security parameter 1κ, which is also used to bound the computational complexity of the parties.
However, we are concerned with perfect security and functionalities of constant domain, thus having
a security parameter is redundant.

Additionally, the adversary is usually said to be non-uniform, and holds an auxiliary input.
However, as there is no security parameter in our setting, the auxiliary input does not provide A
any additional power.

The Correlated Randomness Hybrid Model

For some of our result, we consider an augmentation of the real world where the parties are pro-
vided with a trusted setup for generating correlated randomness. Formally, we let CR denote the
randomized functionality that receives no input, and outputs random values r1 and r2 to A and B,
respectively. Here, (r1, r2)← D where D is a fixed distribution known in advance. At the start of
the protocol (before the parties receive their inputs), the parties call the functionality CR exactly
once to obtain r1 and r2. The parties then continue in a real execution as described previously. We
call this model the CR-hybrid world.

We denote by REALCR
Π,A (x, y) the joint output of the adversary A (that may corrupt one of the

parties) and of the honest parties in a random execution of Π in the CR-hybrid world, on input
x ∈ X for A and input y ∈ Y for B.

The Ideal Model

We consider an ideal computation with guaranteed output delivery (also referred to as full security),
where a trusted party performs the computation on behalf of the parties, and the ideal-world
adversary cannot abort the computation. An ideal computation of a deterministic symmetric two-

10

party functionality f : X × Y → Z, on inputs x ∈ X and y ∈ Y, with an ideal-world adversary A
corrupting a single party P ∈ {A, B} proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input to the trusted
party. The adversary A sends a value w from the corrupted party’s domain as the input for
the corrupted party. Let (x′, y′) denote the inputs received by the trusted party.

The trusted party performs computation: The trusted party computes z = f (x′, y′) and
sends z to both A and B.

Outputs: Each honest party outputs whatever output it received from the trusted party, and the
corrupted party outputs nothing. The adversary A outputs some function of its view (i.e.,
the input and output of the corrupted party).

We denote by IDEALf,A (x, y) the joint output of the adversary A (that may corrupt one of the
parties) and the honest parties in a random execution of the ideal-world computation of f on input
x for A and input y for B.

The Security Definition

Having defined the real and ideal models, we can now define security of protocols according to the
real/ideal paradigm.

Definition 2.7 (Security). Let f : X × Y → Z be a deterministic symmetric two-party function-
ality, and let Π be a two-party protocol. We say that Π computes f with perfect security, if for
every adversary A, controlling at most one party in the real world, there exists an adversary Sim,
controlling the same party (if there is any) in the ideal world such that for every x ∈ X and every
y ∈ Y it holds that

IDEALf,Sim (x, y) ≡ REALΠ,A (x, y) .

To remove possible confusion, we will explicitly write that Π computes f with perfect security in the
plain model.

We say that Π computes f with perfect security in the CR-hybrid model if

IDEALf,Sim (x, y) ≡ REALCR
Π,A (x, y)

for all x ∈ X and y ∈ Y.

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that provides ideal
computation for specific functionalities. The parties communicate with this trusted party in exactly
the same way as in the ideal model described above.

Let f be a functionality. Then, an execution of a protocol Π computing a functionality g in the
f -hybrid model involves the parties sending normal messages to each other (as in the real model)
and, in addition, having access to a trusted party computing f . It is essential that the invocations
of f are done sequentially, meaning that before an invocation of f begins, the preceding invocation
of f must finish. In particular, there is at most a single call to f per round, and no other messages

11

are sent during any round in which f is called. Note that the CR-hybrid is a special case, where
the parties call CR once at the onset of the protocol.

Let A be an adversary controlling a single party P ∈ {A, B}. We denote by HYBRIDf
Π,A(x, y)

the random variable consisting of the output of the adversary and the output of the honest parties,
following an execution of Π with ideal calls to a trusted party computing f , on input x given to A
and input y given to B.

Similarly to Definition 2.7, we say that Π computes g with perfect security in the f -hybrid model
if for any adversary A there exists a simulator Sim such that HYBRIDf

π,A(x, y) and IDEALg,Sim(x, y)
are identically distributed.

The sequential composition theorem of Canetti [4] states the following. Let ρ be a protocol that
computes f with perfect security. Then, if a protocol Π computes g in the f -hybrid model, then
the protocol Πρ, that is obtained from Π by replacing all ideal calls to the trusted party computing
f with the protocol ρ, computes g in the real model with perfect security.

Theorem 2.8 ([4]). Let f be a two-party functionality, let ρ be a protocol that computes f with
perfect security, and let Π be a protocol that computes g with perfect security in the f -hybrid model.
Then, protocol Πρ computes g with perfect security in the real model.

3 Analyzing Symmetric Functionalities
In this section, we state our results. Our main results is a characterization of the symmetric de-
terministic two-party functionalities with four-outputs that can be computed with perfect security.
Furthermore, the impossibility result can be extended to functionalities with more than four out-
puts. Interestingly, although the impossibility result holds in the CR-hybrid world, for any choice
of CR, the positive results are stated in the plain model, where the parties do not receive correlated
randomness.

Before stating our results, we first describe three families of symmetric deterministic two-party
functionalities. We then assert that among the four-output functionalities, these are the only ones
that can be computed with perfect security in the CR-hybrid world.

We first define trivial functionalities, for which the output depends on only one of the inputs.

Definition 3.1 (Trivial functionalities). Let f : X × Y 7→ Z be a deterministic symmetric two-
party functionality. We say that f is trivial if it is independent of one of its inputs, i.e., either
f(x, y) = g(x) or f(x, y) = g(y) for some function g.

Note that for the matrix Mf of a trivial functionality f , either all rows are constant or all
columns are constant.

We next define the family of spiral functionalities, which is an extension of the family of trivial
functionalities. The definition is recursive. Roughly, a functionality f is spiral, if it’s trivial or if
by removing constant columns or constant rows (containing a single value α) from the associated
matrix Mf , results in a matrix associated with a spiral functionality, and contains no α values.

Definition 3.2 (The spiral functionality and matrix). We call a matrix M a spiral matrix if one
of the following holds.

• M is a constant matrix.

12

• There exist a constant-column matrix M1 ∈ Zn1×m1
1 , and there a spiral matrix M2 ∈ Zn2×m2

2 ,
where Z1 ∩ Z2 = ∅, such that M ∼ (M1||M2), i.e., equality holds up to permutation of the
rows and columns and transposing the matrix.

We call a deterministic symmetric two-party functionality f a spiral functionality, if its associ-
ated matrix Mf is a spiral matrix.

Definition 3.3. Let f : X ×Y 7→ {0, 1, 2, 3} be a deterministic symmetric two-party functionality.
We call it a transparent transfer if the reduced form of its associated matrix satisfies

red (Mf) ∼


a c
a d
b c
b d


where {a, b, c, d} = {0, 1, 2, 3}.

Remark 3.4 (On the naming of the function). Let us provide the reasoning behind the naming of
transparent transfer functions. Consider the symmetric functionality f ′ : {0, 1}2 × {0, 1} 7→ {0, 1}2
defined as f ′((x0, x1), i) = (xi, i). Observe that, up to the encoding of the output, it is the same
as the transparent transfer functionality defined in Definition 3.3. Indeed, mapping the output
(xi, i) 7→ xi + 2i results in a matrix of the form

0 2
0 3
1 2
1 3

 .

Since the mapping is bijective, we conclude the functions to be the equivalent.

3.1 Characterization of Four-Output Functionalities

We are now ready to state our main result, providing a characterization of the symmetric deter-
ministic four-output two-party functionalities that can be computed with perfect security in the
CR-hybrid model.

Theorem 3.5 (Characterization of four-output functionalities). Let f : X × Y 7→ {0, 1, 2, 3} be a
deterministic symmetric two-party four-output functionality. Then, f can be computed with perfect
security in the CR-hybrid model if and only if it is either a spiral function or a transparent transfer
function.

The proof of Theorem 3.5 follows from the combination of the following two lemmas. For the
negative direction, we prove the following.

Lemma 3.6 (Lower bound for four-output functionalities). Let f : X × Y 7→ {0, 1, 2, 3} be a
deterministic symmetric two-party four-output functionality. Assume that f can be computed with
perfect security in the CR-hybrid model. Then, f is either a spiral function or a transparent transfer
function.

13

Lemma 3.6 is proved in Section 5. Towards proving it, in Section 4, we prove a more general
impossibility result, Lemma 4.1, which holds for functionalities that are not necessarily four-output.
When restricting the discussion to four-output functionalities, our general impossibility result yields
the lower bound for four-output functionalities, see Section 5 for the full details.

For the positive direction of Theorem 3.5, we prove the following lemma stating that every
spiral functionality, and that the transparent transfer functionality can be computed with perfect
security. Furthermore, this can be done using deterministic protocols in the plain model, and it
holds regardless of the number of outputs.

Lemma 3.7 (Upper bound for four-output functionalities). Let f : X ×Y 7→ Z be a deterministic
symmetric two-party functionality. If f is a spiral or a transparent transfer functionality, then f
can be computed with perfect security in the plain model.

Lemma 3.7 is proved in Section 6.

3.2 Characterization of Boolean and Ternary-Output Functionalities

When restricting the discussion to functions with range of size two and of size three, Theorem 3.5
yields more refined characterizations. First, note that Definition 3.3 requires at least four distinct
output values. It hence follows that a ternary-output functionality can be computed with perfect
security if and only if the functionality is a spiral.

Corollary 3.8 (Characterization of ternary-output functionalities). Let f : X × Y 7→ {0, 1, 2} be
a deterministic symmetric two-party ternary functionality. Then f can be computed with perfect
security in the CR-hybrid model if and only if it is spiral.

Second, observe that any spiral Boolean functionality must be trivial. Thus, we obtain the
following characterization for Boolean functionalities.

Corollary 3.9 (Characterization of Boolean functionalities). Let f : X × Y 7→ {0, 1} be a deter-
ministic symmetric two-party Boolean functionality. Then, f can be computed with perfect security
in the CR-hybrid model if and only if it is trivial.

3.3 Impossibility of Embedded XOR and Embedded AND
In this section we show that any functionality that contains an embedded XOR or an embedded
AND cannot be computed with perfect security in the CR-hybrid model. Recall that a functionality
f is said to have an embedded XOR, if there exists x1, x2 ∈ X and y1, y2 ∈ Y such that f(x1, y1) =
f(x2, y2) ̸= f(x1, y2) = f(x2, y1). The functionality is said to have an embedded AND if f(x2, y2) ̸=
f(x1, y1) = f(x1, y2) = f(x2, y1). In fact, we are able to prove a stronger result. To formalize this,
we first define the notion of a forbidden submatrix.

Definition 3.10 (Forbidden 2 × 2 submatrices and rectangles). Let M be a matrix with entries
from some set Z. We call a 2× 2 rectangle R forbidden if its induced submatrix MR satisfies

MR ∼
(

a b
b ∗

)
(2)

where a and b denote distinct elements of Z, and ∗ denotes an arbitrary element of Z. We also
say that M is forbidden if it contains a forbidden combinatorial rectangle.

14

Theorem 3.11. Let f : X×Y 7→ Z be a deterministic symmetric two-party functionality. Assume
there exists a 2 × 2 rectangle R such that its corresponding induced submatrix is forbidden. Then
f cannot be computed with perfect security in the CR-hybrid model.

The proof is given in Section 5 and is derived from the general impossibility result proven in
Section 4. We get the following corollary.

Corollary 3.12. Let f : X ×Y 7→ Z be a deterministic symmetric two-party functionality. Assume
that Mf contains an embedded XOR or an embedded AND. Then f cannot be computed with perfect
security in the CR-hybrid model.

4 A General Impossibility Result for Perfect Security
In this section, we prove a general impossibility result for perfectly secure two-party protocols for a
large class of functionalities. Roughly speaking, we identify several properties that cannot coincide
for any sub-matrix, and show that if the matrix associated with the functionality f contains a
sub-matrix that has all these properties, then f cannot be computed with perfect security in the
CR-hybrid model.

Lemma 4.1. Let f : X × Y 7→ Z be a deterministic symmetric two-party functionality. Assume
there exists a combinatorial rectangle R = XR × YR, where XR ⊆ X and where YR ⊆ Y, and
assume there exists a strict subset of the outputs ZR ⊂ Z such that the following hold.

1. At least one entry of MR
f (recall that MR

f is the sub-matrix induced by R) contains an element
from Z \ ZR.

2. There exists h ∈ N+ such that for all x ∈ XR it holds that∣∣∣{MR
f (x, y) : y ∈ YR

}
∩ ZR

∣∣∣ = h.

In other words, every row in MR
f contains exactly h distinct elements from ZR.

Additionally, for all x ∈ X \ XR it holds that

|{Mf (x, y) : y ∈ YR} ∩ ZR| ≤ h,

namely, every row x /∈ XR of Mf contains at most h elements from ZR, within the columns
of YR.

3. There exists h′ ∈ N+ such that for all y ∈ YR it holds∣∣∣{MR
f (x, y) : x ∈ XR

}
∩ ZR

∣∣∣ = h′.

Additionally, for all y ∈ Y \ YR it holds that

|{Mf (x, y) : x ∈ XR} ∩ ZR| ≤ h′.

Then f cannot be computed in CR-hybrid model with perfect security.

15

Example 4.2. To illustrate the requirements of Lemma 4.1, consider the ternary-output function-
ality f whose associated matrix is defined as

Mf =

0 1 2 2
2 1 0 2
0 1 2 1

 .

For R = {x1, x2} × {y1, y2, y3}, ZR = {0, 1} the condition is satisfied with h = 2, h′ = 1. Thus,
the precondition of Lemma 4.1 is satisfied, hence f cannot be computed with perfect security in
the CR-hybrid model. It also, for example, satisfies the precondition with R = {x1, x2} × {y1, y3},
ZR = {0}, and h = h′ = 1 (indeed, there is no uniqueness requirement on R).

Before formally proving Lemma 4.1, let us provide some intuition. First, similarly to the
impossibility of XOR due to Ishai et al. [9], we use the fact that any protocol for computing f
has a first round i in which (in any honest execution of the protocol) one of the parties, say A,
“fully knows” the output, while the other does not. That is, any continuation from round i would
result in A outputting the correct output. Conversely, there exists a continuation (and a choice of
correlated randomness) forcing B to output a different value.

Recall that the attack of [9] used the existence of such a round to present an attacker that
“biases” the output of the honest party. We extend this attack strategy to one, where the adversary,
corrupting A, tries to both bias the output of the honest B towards the subset of outputs ZR, and
at the same time, guess the input of the honest party. Additionally, we are more lenient with the
knowledge of the adversary, requiring it only to “wait” until it knows whether the output is in ZR
or not. We show that if the inputs of the parties are chosen independently and uniformly at random
from the rectangle R, then the attacker can both guess the input of the honest party correctly, and
force it to output a value from ZR, with probability higher than what any simulator can do in the
ideal world. We now provide the formal argument.

Proof of Lemma 4.1. Assume towards contradiction that there exists a protocol Π in the CR-hybrid
model computing f with perfect security. Consider an honest execution of Π, where the inputs of
A and B are x̃ ← XR and ỹ ← YR, respectively, and are sampled independently. The next claim
asserts the existence of a round, in which one of the parties always “knows” if the output is in
ZR or not, regardless of the choice of the correlated randomness, while the other party does not
necessarily “know” this.

Claim 4.3. There exists a round i > 0, and a party P ∈ {A, B}, such that the following hold.

1. For all inputs x ∈ XR and y ∈ YR, and for every possible correlated randomness (r1, r2) ∈
Supp(D), there exists a set Z ′ ∈ {ZR,Z\ZR}, such that the following holds. In any execution
of Π, where up to (and including) round i, party A acts honestly (according to x, r1) and
party B acts honestly (according to y, r2), the output of an honest P must be a value from Z ′,
regardless of the messages it receives in the following rounds (i.e., regardless of the behavior
of the other party).

2. There exist inputs x ∈ XR and y ∈ YR, with f(x, y) ∈ Z \ ZR, and there exists correlated
randomness (r1, r2) ∈ Supp(D), such that the following holds. Consider an execution of Π,
where up to (and including) round i, party A acts honestly (according to x, r1) and party
B acts honestly (according to y, r2). Then, there exists a continuation of Π, in which the

16

remaining party P′ ̸= P continues to behave honestly, such that, the output of P′ is a value
from ZR. Specifically, there exists a sequence of messages that P can send in the following
rounds to cause this effect.

The proof of the claim is given below. We first use it to conclude the proof of Lemma 4.1. We
fix the round i as given by Claim 4.3, and assume without loss of generality that P = A. The case
where P = B is handled analogously. We next construct an attacker corrupting A and show that it
cannot be simulated in the ideal world.

Define the adversary A that corrupts A as follows.

1. Given the input x̃ of party A and the randomness r1 it obtains from CR, the adversary A
emulates A honestly up to and including round i.

2. Consider the lexicographically first honest continuation of the protocol, and let z′ denote the
resulting output of A in such an execution.

3. If z′ ∈ ZR, then A continues to emulate A honestly until the termination of the protocol.

4. Otherwise, if z′ ̸∈ ZR, then in the remaining roundsA sends (on behalf of A) random messages
chosen independently and uniformly at random.

5. The adversary outputs a guess for the input of B (one that is consistent with the output).
That is, A samples

y∗ ← {y ∈ YR : f(x̃, y) = z′},

and outputs y∗.

We next prove that A cannot be simulated, and hence the protocol is not secure. It follows that
f cannot be realized with perfect security. We analyze the probability that A successfully, both
guesses the input ỹ of B, and causes B to output a value from ZR. We then compare this to an
arbitrary simulator in the ideal world, showing that no simulator can do the same with exactly
the same probability. Formally, we prove the following two claims. In the following, let SuccREAL
denote the event in the real-world that the output of the adversary is y∗ = ỹ and B outputs an
element from ZR. Similarly, let SuccIDEAL denote the event in the ideal-world that the output of
the simulator implies y∗ = ỹ and B outputs an element from ZR.

The proof (of Lemma 4.1) is concluded from the following two claims (Claims 4.4 and 4.5) that
show that Pr [SuccREAL] > Pr [SuccIDEAL], and hence, that A cannot be simulated for random
(x̃, ỹ) ← R. Thus, there exists inputs x ∈ XR and y ∈ YR for which A cannot be simulated.
Therefore, f cannot be computed with perfect security in the CR-hybrid model.

We introduce some notations that will be useful for the following two claims. For every x ∈ X
and for every z ∈ ZR let

wx(z) := |{y ∈ YR : f(x, y) = z}|

denote the number of appearances of z in the xth row of Mf and the columns corresponding to
YR. Finally, let

Wx :=
∑

z∈ZR

wx(z) = |{y ∈ YR : f(x, y) ∈ ZR}|

denote the number of entries from ZR in the xth row of Mf and the columns corresponding to YR.

17

Claim 4.4. In the real world, it holds that

Pr [SuccREAL] >
h

|YR|
.

Proof. We next analyze the probability that SuccREAL occurs in the real world. Recall that x̃
denotes the input given to A, that z′ denotes the prescribed output before the attack, and that y∗

is the adversary’s guess for the input ỹ held by B. Observe that

Pr [SuccREAL] =
∑

x∈XR

Pr [x̃ = x] · Pr [SuccREAL | x̃ = x]

=
∑

x∈XR

Pr [x̃ = x] · Pr
[
z′ ∈ ZR | x̃ = x

]
· Pr

[
SuccREAL | z′ ∈ ZR ∧ x̃ = x

]
+

∑
x∈XR:

Wx<|YR|

Pr [x̃ = x] · Pr
[
z′ ̸∈ ZR | x̃ = x

]
· Pr

[
SuccREAL | z′ ̸∈ ZR ∧ x̃ = x

]

= 1
|XR|

·
∑

x∈XR

Pr
[
z′ ∈ ZR | x̃ = x

]
· Pr

[
y∗ = y | z′ ∈ ZR ∧ x̃ = x

]
+ 1
|XR|

·
∑

x∈XR:
Wx<|YR|

Pr
[
z′ ̸∈ ZR | x̃ = x

]
· Pr

[
SuccREAL | z′ ̸∈ ZR ∧ x̃ = x

]
, (3)

where the probabilities are taken over the sampling of the inputs x̃ and ỹ, the sampling of the
correlated randomness, and the sampling of y∗. The second equality follows from fact that if
Wx < |YR|, then there exists y ∈ YR such that f(x, y) /∈ ZR. We now analyze each term in the
summation. Observe that for every x ∈ XR it holds that

Pr
[
z′ ∈ ZR | x̃ = x

]
= Pr [f(x̃, ỹ) ∈ ZR | x̃ = x] = Wx

|YR|
.

Additionally, for every x ∈ XR it holds that

Pr
[
y∗ = ỹ|z′ ∈ ZR ∧ x̃ = x

]
=

∑
z∈ZR:

wx(z)>0

Pr
[
z′ = z | z′ ∈ ZR ∧ x̃ = x

]
· Pr

[
y∗ = ỹ|z′ = z ∧ x̃ = x

]

=
∑

z∈ZR:
wx(z)>0

wx(z)
Wx

· 1
wx(z)

= h

Wx
.

Substituting this into the first summation in Equation (3) for Wx
|YR| ·

h
Wx

, we obtain

Pr [SuccREAL] = h

|YR|
+ 1
|XR|

·
∑

x∈XR:
Wx<|YR|

Pr
[
z′ ̸∈ ZR | x̃ = x

]
· Pr

[
SuccREAL | z′ ̸∈ ZR ∧ x̃ = x

]
.

(4)

18

To conclude the proof, it suffices to show that there exists x ∈ XR where Wx < |YR|, such that

Pr
[
z′ ̸∈ ZR | x̃ = x

]
· Pr

[
SuccREAL | z′ ̸∈ ZR ∧ x̃ = x

]
̸= 0.

Now, for every x ∈ XR where Wx < |YR|, let

εx := Pr
[
SuccREAL | z′ ̸∈ ZR ∧ x̃ = x

]
,

where the probability is taken over the sampling of the input ỹ, the guess y∗ of the adversary, and
the sampling of the correlated randomness. Then

Pr
[
z′ ̸∈ ZR | x̃ = x

]
· Pr

[
SuccREAL | z′ ̸∈ ZR ∧ x̃ = x

]
=
(

1− Wx

|YR|

)
· εx.

We now show that there exists x ∈ XR such that εx > 0 and that Wx < |YR|. By Claim 4.3,
there exists inputs x ∈ XR and y ∈ YR, and correlated randomness (r1, r2) ∈ Supp(D), such that
f(x, y) ∈ Z \ ZR, and for which there is a continuation of Π after round i causing B to output
a value from ZR. Observe that since f(x, y) ∈ Z \ ZR, the adversary A sends messages sampled
uniformly at random and independently starting from round i. Therefore, conditioned on x̃ = x,
the probability it causes B to output a value from ZR, is the probability that ỹ = y, the correlated
randomness is (r1, r2), and A sampled the correct messages and guessed y∗ = ỹ correctly. By
Claim 4.3, this event occurs with non-zero probability, i.e., εx > 0. 2

Claim 4.5. For any simulator SimA in the ideal world, it holds that

Pr [SuccIDEAL] ≤ h

|YR|
.

Proof. We analyze the probability that SuccIDEAL occurs in the ideal world, and show that no
simulator can both guess ỹ and force B to output z ∈ ZR with probability greater than h/|YR|.
Fix an ideal world simulator SimA. It sends to the trusted party T a random x∗ ∈ X (not necessarily
from only XR), chosen according to some fixed distribution that depends only on the input x̃. It
then receives f(x∗, ỹ), where ỹ ← YR is the input of B. We first show that for any fixed x∗ ∈ X ,
the probability that SuccIDEAL occurs is at most h/|YR|. Indeed, let y∗ denote the output of SimA,
being its guess of the input ỹ of B. Then for any x ∈ X it holds that

Pr [SuccIDEAL | x∗ = x] = Pr [f(x, ỹ) ∈ ZR ∧ y∗ = ỹ | x∗ = x]
= Pr [f(x, ỹ) ∈ ZR | x∗ = x] · Pr [y∗ = ỹ|f(x, ỹ) ∈ ZR ∧ x∗ = x]

≤ Wx

|YR|
· h

Wx

= h

|YR|
,

where the inequality is due to the “additionally” party of Item 2.
Thus, for any distribution over x∗, it holds that

Pr [SuccIDEAL] =
∑
x∈X

Pr [x∗ = x] · Pr [SuccIDEAL | x∗ = x] ≤ h

|YR|
.

2

19

It is left to prove Claim 4.3, roughly asserting that there exists a round where the output of
one party is fixed, while the output of the other is not.

Proof of Claim 4.3. For any certain inputs (x, y) ∈ R and correlated randomness (r1, r2) ∈ Supp(D),
denote as iA(x, y, r1, r2) the first round for which given an honest execution of Π up to and includ-
ing round iA(x, y, r1, r2), the following holds. There exists a set Z ′ ∈ {ZR,Z \ ZR} such that any
continuation of Π when A continues to behave honestly results in A outputting a value from Z ′

(regardless of the behavior of B). Note that such a round exists, since perfect correctness implies
that at the end of the protocol, if both parties behave honestly, then for any fixed (x, y, r1, r2) party
A outputs f(x, y).

Similarly, denote by iB(x, y, r1, r2) the first round for which given an honest execution of Π up
to and including round iB(x, y, r1, r2), any continuation of Π when B continues to behave honestly
results in it outputting a value from Z ′′ ∈ {ZR,Z \ ZR} (regardless of the behavior of A).

Next, we let iA be the first round, for which for all inputs (x, y) ∈ R and for all possible
correlated randomness (r1, r2) ∈ Supp(D), the output of A is defined to be either in ZR or in
Z \ ZR. In the same way, we define iB for B. Formally,

iA := max
(x,y)∈R

(r1,r2)∈Supp(D)

iA(x, y, r1, r2), iB := max
(x,y)∈R

(r1,r2)∈Supp(D)

iB(x, y, r1, r2).

Observe that there exists a row x ∈ XR and a column y ∈ YR, such that MR
f (x, ·) and MR

f (·, y)
contain both values from ZR and from Z \ZR. Indeed, by Item 1 (in the statement of Lemma 4.1),
there exists a cell (x, y) ∈ R where MR

f (x, y) ∈ Z \ ZR. By Item 2 and Item 3 it follows that
MR

f (x, ·) and MR
f (·, y) contain at least one element from ZR each. This implies that iA, iB > 0,

because there exist (x, y) ∈ R where the possible output for both parties before the first round
can be from ZR and from Z \ZR. Furthermore, as the parties send messages one after another, it
follows that iA ̸= iB. If iA < iB then assign P := A and i := iA, else we set P := B and i := iB.

The claim follows from the definition of iA and iB. Indeed, assume that iA < iB, then for all
inputs (x, y) ∈ R and correlated randomness (r1, r2) ∈ Supp(D), given an honest execution of Π
up to and including round iA, there exists a set Z ′ ∈ {ZR,Z \ZR} such that any continuation of iA
when A behaves honestly, results in A outputting a value from Z ′. On the other hand, as iB > iA, by
the definition of iB, there exist inputs (x, y) ∈ R and correlated randomness (r1, r2) ∈ Supp(D) such
that iB(x, y, r1, r2) > iA. Hence, for such (x, y, r1, r2) there are possible continuations of Π resulting
in honest B outputting a value from ZR, and continuations resulting in honest B outputting a value
from Z \ZR. Furthermore, there exists such (x, y) ∈ R satisfying f(x, y) ∈ Z \ZR as well. Indeed,
observe that since there exists a malicious continuation making B output a value from Z \ ZR
(regardless of the value of the real output f(x, y)), then there must exist an input x′ ∈ XR and
randomness r′

1 for A that are consistent with the transcript up to round iA, and that cause B to
output a value from Z \ZR. Notice that it must be the case that f(x′, y) ∈ Z \ZR (in addition to
iB(x′, y, r′

1, r2) > iA), thus (x′, y) ∈ R is the desired pair of inputs. The case where iA > iB follows
an analogous argument. 2

2

Remark 4.6 (On proving impossibility of security-with-abort). Similarly to [9], we can prove that
the class of functionality captured by Lemma 4.1 cannot be computed with perfect security-with-
abort. To see this, observe that the real world adversary still has a non-zero chance of increasing

20

the probability that the honest party outputs a value from ZR, while in the ideal world, giving the
simulator the ability to cause the honest party to output ⊥ will not increase its success probability.

5 An Impossibility Result for Perfect Security for Four-Output
Functionalities

In this section, we prove Lemma 3.6. Our starting point is the general impossibility result stated
in Lemma 4.1, which appears in Section 4. Let us first restate the lemma.
Lemma 5.1 (Restatement of Lemma 3.6). Let f : X×Y 7→ {0, 1, 2, 3} be a deterministic symmetric
two-party four-output functionality. Assume that f can be computed with perfect security in the CR-
hybrid model. Then, f is either a spiral function or a transparent transfer function.

Towards proving the lemma, we first derive Theorem 3.11 as a corollary from Lemma 4.1.
Corollary 5.2 (Restatement of Theorem 3.11). Let f : X × Y 7→ Z be a deterministic symmetric
two-party functionality. Assume there exists a 2 × 2 rectangle R such that its corresponding sub-
matrix MR

f is forbidden (see Definition 3.10). Then f cannot be computed with perfect security in
the CR-hybrid model.
Proof. We show that for ZR = {b} and h = h′ = 1, the constraints from Lemma 4.1 hold.
Indeed, since MR

f contains the element a ̸= b, Item 1 holds. As for Items 2 and 3, note that
|ZR| = h = h′ = 1, and each row and column in Mf cannot contain more than one distinct
elements from ZR. 2

As a corollary, any 2×2 rectangle of a functionality that can be computed with perfect security
in the CR-hybrid model, must be one of the remaining forms. That is, we have the following result.
Corollary 5.3. Let f : X ×Y 7→ Z be a deterministic symmetric two-party functionality. Suppose
that f can be computed with perfect security in the CR-hybrid model. Then any 2 × 2 rectangle
R ⊆ X × Y induces one of the following submatrices:

MR
f ∼

(
a a
a a

)
; MR

f ∼
(

a a
b b

)
; MR

f ∼
(

a a
b c

)
; MR

f ∼
(

a b
c d

)
, (5)

where a, b, c and d denote distinct elements of Z.
We are now ready to prove Lemma 3.6, which gives necessary conditions for a two-party four-

output symmetric deterministic functionality f : X×Y 7→ {a, b, c, d}, to be computable with perfect
security in the CR-hybrid model. Recall that Lemma 3.6 asserts that for such functionalities to be
computable with perfect security, they must be one of two types: either a spiral or a transparent
transfer functionality. The proof follows from the following two claims, that give the conditions for
when a four-output functionalities is a spiral, and when it is a transparent transfer.
Claim 5.4. Let f : X × Y 7→ {0, 1, 2, 3} be a deterministic symmetric four-output two-party func-
tionality. Assume that f can be computed with perfect security in the CR-hybrid model. Further,
assume that Mf contains a 2× 2 submatrix of the form(

a b
c d

)
,

where {a, b, c, d} = {0, 1, 2, 3}. Then f is a transparent transfer functionality.

21

Claim 5.5. Let f : X × Y 7→ {0, 1, 2, 3} be a deterministic symmetric four-output two-party func-
tionality. Assume that in Mf there is no forbidden 2× 2 submatrix and no 2× 2 submatrix of the
form (

a b
c d

)
,

where {a, b, c, d} = {0, 1, 2, 3}. Then f is a spiral functionality.

The claims are proven below. We first use them to prove Lemma 3.6.

Proof of Lemma 3.6. Fix a symmetric deterministic functionality f : X × Y 7→ {0, 1, 2, 3}, and
assume it can be computed with perfect security in the CR-hybrid model. By Corollary 5.3, every
2 × 2 submatrix of Mf is of one of the following forms (up to permuting the rows and columns,
and transposing the matrix).(

a a
a a

)
;
(

a a
b b

)
;
(

a a
b c

)
; or

(
a b
c d

)
.

If Mf contains the last submatrix, then by Claim 5.4 the functionality f is the transparent transfer
functionality. Otherwise, by Claim 5.5 it is spiral.

2

It is left to prove Claims 5.4 and 5.5.

Proof of Claim 5.4. Suppose there exists a 2× 2 rectangle R = {x1, x2} × {y1, y2} such that

MR
f =

(
a b
c d

)
.

Using the notation of Lemma 4.1, consider taking ZR = {a, d}. As each row and each column in
MR

f contains exactly 1 element from ZR, and the submatrix contains an element from Z \ ZR,
Item 1 from Lemma 4.1 holds. As we assume that f can be computed with perfect security in the
CR-hybrid model, by Lemma 4.1, at least one of the following must hold.

• There exists a row x3 ∈ X \ {x1, x2} such that

{Mf (x3, y1), Mf (x3, y2)} = {a, d} .

Observe that if Mf (x3, y1) = d and Mf (x3, y2) = a, then the submatrix induced by {x1, x3}×
{y1, y2} is (

a b
d a

)
As this is a forbidden submatrix, by Corollary 5.2 this contradicts the assumption that f can
be computed with perfect security in the CR-hybrid model. Thus,

(Mf (x3, y1), Mf (x3, y2)) = (a, d) .

22

• There exists a column y3 ∈ Y \ {y1, y2} such that

{Mf (x1, y3), Mf (x2, y3)} = {a, d} .

Similarly to the previous case, it must be the case where

(Mf (x1, y3), Mf (x2, y3)) = (a, d) .

Taking ZR = {b, c} and using an analogous argument, it follows that at least one of the following
holds.

• There exists a row x4 ∈ X \ {x1, x2} such that

(Mf (x4, y1), Mf (x4, y2)) = (c, b) .

• There exists a column y3 ∈ Y \ {y1, y2} such that

(Mf (x1, y4), Mf (x2, y4)) = (b, c) .

We conclude that one of the following must be a submatrix of Mf .
a b
c d

a d
c b

 ;
(

a b a b
c d d c

)
;

 a b b
c d c

a d ∗

 ;

 a b a
c d d

c b ∗

 , (6)

where ∗ is an arbitrary element of {a, b, c, d}. Next, observe that the latter two cases are impossible.
This is true since for any assignment for value of ∗ (out of the four possible values), yields a
2 × 2 forbidden submatrix (in particular, an embedded AND). Hence, by Corollary 5.2 these two
submatrices are forbidden. We assume without loss of generality that the first submatrix from
Equation (6) appears in Mf . It is left to show that any other row and column in Mf is a duplication.

Consider x5 ∈ X \ {x1, x2, x3, x4} (assuming such exists). Observe that Mf (x5, y1) ̸= b as
otherwise, the submatrix induced by {x1, x5} × {y1, y2} is the forbidden submatrix(

a b
b ∗

)
,

where ∗ is an arbitrary value. By Corollary 5.2, this contradicts the assumption that f can be
computed with perfect security in the CR-hybrid model. Similarly, it holds that Mf (x5, y1) ̸= d
and Mf (x5, y2) /∈ {a, c}, as otherwise this induces a forbidden submatrix. Therefore, Mf (x5, y1) ∈
{a, c} and Mf (x5, y2) ∈ {b, d}. All possible rows satisfying those conditions are Mf (x1, ·), Mf (x2, ·),
Mf (x3, ·), and Mf (x4, ·). Therefore, any possible row Mf (x5, ·) must be a duplication.

Next, consider a column y3 ∈ X \ {y1, y2}. Observe that Mf (x1, y3) ̸= c, as otherwise the
submatrix induced by the rectangle {x1, x2} × {y1, y3} is the forbidden submatrix(

a c
c ∗

)
.

23

Similarly, it holds that Mf (x1, y3) ̸= d. We next consider two cases.
We assume that Mf (x1, y3) = a, as the case where Mf (x1, y3) = b can be handled using an

analogous argument. Then Mf (x3, y3) = a, as otherwise the submatrix induced by a rectangle
{x1, x3}×{y1, y3} is forbidden. Similarly, note that if Mf (x2, y3) ̸= c then Mf contains an induced
forbidden submatrix. Finally, Mf (x4, y3) = c, as otherwise the submatrix induced by a rectangle
{x2, x4} × {y1, y3} is forbidden. Thus,

(Mf (x1, y3), Mf (x2, y3), Mf (x3, y3), Mf (x4, y3)) = (a, c, a, c),

which is a duplication of the first column.
2

Proof of Claim 5.5. We prove this by induction on | Im(f)| ≤ 4, i.e., the number of possible outputs.
We first show that it suffices to prove that Mf contains a constant row or a constant column. Indeed,
assume without loss of generality that Mf contains the constant row of the value a. Let

X ′ = {x ∈ X : ∀y ∈ Y such that Mf (x, y) = a}

be the set of all rows such that Mf (x, ·) is the constant a-row. Observe that Mf (x, y) ̸= a for
all x ∈ X \ X ′ and all y ∈ Y. Indeed, otherwise for some x ∈ X \ X ′ and y ∈ Y it holds that
Mf (x, y) = a. Since the row x is not constant, there exists y′ ∈ Y such that Mf (x, y) ̸= a.
This, however, is a contradiction as this results in a forbidden submatrix. Thus, we may apply the
induction hypothesis to the matrix induced by the rectangle (X \ X ′)× Y, concluding the proof.

It is left to show that either Mf contains a constant row, or it contains a constant column.
Assume towards contradiction there is no constant row nor a constant column. Fix some row
x1 ∈ X . As it is non-constant there exists y1, y2 ∈ Y such that Mf (x1, y1) ̸= Mf (x1, y2). Now,
since y1 is non-constant as well, there exists x2 ∈ X satisfying Mf (x2, y1) ̸= Mf (x1, y1). Observe
that Mf (x2, y1) ̸= Mf (x1, y2), as otherwise this results in a forbidden matrix. Similarly, either
Mf (x2, y2) = Mf (x2, y1) or Mf (x2, y2) = Mf (x1, y2), as otherwise there is a forbidden matrix. It
follows the submatrix induced by the rectangle R = {x1, x2} × {y1, y2} is of the form(

a b
c c

)
or

(
a b
c b

)

where a, b, and c are distinct values from {0, 1, 2, 3}. Assume without loss of generality that MR
f

equals the first matrix. Since we assume no row is constant, there exists y ∈ Y \ {y1, y2} such that
Mf (x2, y) ̸= c. Furthermore, Mf (x2, y) /∈ {a, b} as otherwise this results in a forbidden submatrix.
Therefore, it must be the case where Mf (x2, y) = d.

We now show that Mf (x, y) = d for all x ∈ X , contradicting the assumption there is no constant
column. First, observe that if Mf (x, y) = c for some x ∈ X \ {x2}, then Mf contains a forbidden
submatrix. Next, consider x = x1. In this case, if Mf (x1, y) = a, then the submatrix induced by
{x1, x2} × {y2, y} equals to (

b a
c d

)
,

contradicting the assumption that no such submatrix exists. Thus, Mf (x1, y) ̸= a. Similarly, it
holds that Mf (x1, y) ̸= b. Therefore, it must be the case where Mf (x1, y) = d. Finally, if for
some x ∈ X \ {x1, x2} it holds that Mf (x, y) ̸= d, then Mf contains a forbidden submatrix. Thus,
Mf (x, y) = d for all x ∈ X . 2

24

6 Positive Results for Perfect Security
In this section, we prove Lemma 3.7, serving as the positive direction of Theorem 3.5. Specifically,
we prove that every spiral functionality and the transparent transfer functionality can be computed
with perfect security. In fact, we show that these functionalities can be computed by deterministic
protocols in the plain model, i.e., where the parties do not receive correlated randomness. We first
restate the lemma.

Lemma 6.1 (Restatement of Lemma 3.7). Let f : X × Y 7→ Z be a deterministic symmetric two-
party functionality. If f is a spiral or a transparent transfer functionality, then f can be computed
with perfect security in the plain model.

We prove that spiral functionalities can be computed with perfect security in Section 6.1. We
handle transparent transfer functionalities in Section 6.2.

6.1 Computing Spiral Functionalities

In this section, we prove that any spiral functionality can be computed with perfect security. This
result follows from the following two propositions, asserting the status of a functionality that is
obtained from another by adding certain new rows or columns to the associated matrix.

The first proposition states an intuitive observation that for a symmetric functionality f , du-
plicating rows and columns in Mf does not affect the existence of a perfectly secure protocol.

Proposition 6.2. Let f : X ×Y 7→ Z be a deterministic symmetric two-party functionality, and let
f ′ : X ′×Y 7→ Z be such that red(Mf) ∼ red(Mf ′). Then f ′ can be computed with perfect security in
the f -hybrid model (and vice versa). Similarly, for f ′′ : X×Y ′′ 7→ Z such that red(Mf) ∼ red(Mf ′′),
it holds that f ′′ can be computed with perfect security in the f -hybrid model (and vice versa).

Proposition 6.2 is proven below. We next state the second proposition, which asserts that given
a functionality f that can be computed with perfect security, adding a constant row or column to
Mf with new values, results in a functionality that can still be computed with perfect security.

Proposition 6.3. Let f : X × Y 7→ Z be a deterministic symmetric two-party functionality, and
let x+ /∈ X and z+ /∈ Z. Consider the functionality f+ : (X ∪ {x+})× Y 7→ Z ∪ {z+} defined as

f+(x, y) =
{

f(x, y) if x ∈ X
z+ otherwise

Then f+ can be computed with perfect security in the f -hybrid model.

The proof of Proposition 6.3 is given below as well. We first observe that, combined with the
composition theorem and the fact that any constant functionality can be computed with perfect
security in the plain model, it follows that any spiral functionality can also be computed with
perfect security in the plain model.

Corollary 6.4. Let f : X ×Y 7→ Z be a deterministic symmetric two-party functionality. Assume
that f is spiral. Then f can be computed with perfect security in the plain model.

It is left to prove Propositions 6.2 and 6.3.

25

Proof of Proposition 6.2. We prove the claim only for f ′, as the proof for f ′′ is analogous. The
protocol Π′ for computing f ′ proceeds as follows.
. .
Protocol 6.5.
Inputs: Party A holds input x′ ∈ X ′ and party B holds input y ∈ Y.

1. The parties call f , where the input of A is the lexicographically first x ∈ X satisfying
Mf (x, ·) = Mf ′(x′, ·), and where the input of B is y.

2. The parties output whatever they receive from f .
. .

Observe that by the assumption that red(Mf) ∼ red(Mf ′), for every x′ ∈ X ′ there exists x ∈ X
such that Mf (x, ·) = Mf ′(x′, ·). Therefore, the protocol is both well-defined and admits perfect
correctness.

We next prove that Π′ is secure. We start with proving security against an adversary A cor-
rupting A. We define the simulator SimA as follows.

1. Query A for its input x to f .

2. Send to the trusted party T an input x′ ∈ X ′ satisfying Mf (x, ·) = Mf ′(x′, ·), and receive an
output z.

3. Send z to A, output whatever A outputs, and halt.

Since such an x′ always exists, the output that A and B receive in both worlds is exactly the same,
regardless of the input of B.

We next consider an adversary B corrupting B. Its simulator SimB simply queries B for its
input to f , send it to T, send the output received from T to B, output whatever it outputs and
halt. Clearly, the real and ideal world are exactly the same. Finally, when no party is corrupted,
we indeed get an output of f(x′, y) for both, due to the choice of x. 2

Proof of Proposition 6.3. We next describe a protocol Π+ in the f -hybrid world for computing f+
with perfect security.
. .
Protocol 6.6.
Inputs: Party A holds input x ∈ X ∪ {x+} and party B holds input y ∈ Y.

1. If x = x+, then A sends to B the value z+, both parties then output z+ and terminate.

2. Otherwise, if x ̸= x+ then A sends to B the message ⊥, and the parties call f with their
inputs, output whatever they obtain from f , and terminate.

. .

The protocol is clearly correct. We next prove that Π+ computes f+ with perfect security. We
start with showing that any adversary A corrupting A can be simulated. We construct SimA as
follows.

1. Query A for the message z it sends to B.

26

2. If z = z+, then send x+ to the trusted party T.

3. Otherwise, query A for its input x∗ used in the call to f , and send it to the trusted party T.

4. Send to A the output obtained from T, output whatever A outputs, and halt.

Since A does not receive any messages in the protocol, its suffices to consider only the output
of B. If A sends z = z+, then the output of B is z+ in both worlds. Otherwise, it outputs f(x∗, y),
where x∗ is the input used by A in the call to f .

Next, we fix an adversary B corrupting B. We define its simulator SimB as follows.

1. Send ⊥ to B

2. Query B for its input y∗ it uses in the call to f , and send y∗ to the trusted party T.

3. Obtain an output z. If z ̸= z+, then output whatever A outputs and halt.

4. Otherwise, rewind B and send z+ to B as the message in the first round of Π+, output
whatever B outputs, and halt.

If x ∈ X , then in both worlds the joint view of the adversary together with the output of A is
(⊥, y∗, f(x, y∗)). For any y ∈ Y, and for x = x+, the output of A and the view of the adversary
always equals to z+ both in real and ideal worlds. Thus, the joint view of the adversary together
with the output of A in the ideal world is the same as in the real world. 2

6.2 Computing Transparent Transfer Functionalities

In this section we show that the transparent transfer functionality defined in Definition 3.3 can be
computed with perfect security (in the plain model). In fact, we show a family of functionalities,
extending the transparent transfer functionality and show that they can be computed with perfect
security. Let us first define this family.

Definition 6.7 (Generalized transparent transfer functionality). Let k, n ∈ N and let Σ = {0, . . . , k−
1}. We define the symmetric (k, n)-transparent transfer functionality TTk,n : Σn × [n] 7→ Σ × [n]
as

TTk,n ((x1, . . . , xn) , i) = (xi, i) .

Note that TT2,2 is equivalent to the transparent transfer functionality from Definition 3.3 (i.e., by
applying the mapping (xi, i) 7→ (xi + (i− 1) · k) to the output).

We next show that any (k, n)-transparent transfer functionality can be computed with perfect
security in the plain model.

Claim 6.8. For every k, n ∈ N the (k, n)-transparent transfer functionality TTk,n can be computed
with perfect security in the plain model.

Proof. We define a protocol Π for TTk,n as follows:
. .
Protocol 6.9.
Inputs: Party A holds input (x1, . . . , xn) ∈ Σn and party B holds input i ∈ [n].

27

1. B sends its input i to A.

2. A sends xi to B, and outputs (xi, i).

3. If B received a value xi /∈ Σ, then it outputs (0, i).
. .

Clearly, the protocol admits perfect correctness. We next show that it is secure. Consider an
adversary A corrupting A. We may assume without loss of generality that A is deterministic (by
an averaging argument). We define its simulator SimA as follows.

1. Query A on every possible j ∈ [n] (rewinding each time). Let (x∗
1, . . . , x∗

n) be the correspond-
ing messages sent by A to B for every such j. For any j ∈ [n], if x∗

j /∈ Σ then change it to 0.
Let (x′

1, . . . , x′
n) be the resulting vector.

2. Send (x′
1, . . . , x′

n) to the trusted party T, and let (x′
i, i) denote the output it sends.

3. Rewind A to the beginning, send it i, output whatever it outputs, and halt.

We now analyze the simulator. Since A is deterministic, the input x∗
i it sends upon receiving i,

is the same after rewinding. Thus, the simulator will send the same input to the trusted party
(changing to 0 in case x∗

i /∈ Σ).
We now consider the case where B is corrupted by an adversary B. Its simulator SimB proceeds

as follows.

1. Query B to obtain the message i it sends to A in the first round.

2. Send i to the trusted party T, and obtain a value x.

3. Send x to B, output whatever B outputs, and halt.

Clearly, the output of A is i in both worlds, and the view of B is xi. Therefore, the real and ideal
worlds are identical. 2

References
[1] B. Alon and A. Paskin-Cherniavsky. On perfectly secure 2PC in the OT-hybrid model. In

Theory of Cryptography Conference, pages 561–595. Springer, 2019. doi: 10.1016/j.tcs.2021.
08.035.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computing. In Proc. of the 20th STOC, pages 1–10, 1988. doi:
10.1145/3335741.3335756.

[3] G. Brassard, C. Crépeau, and M. Santha. Oblivious transfers and intersecting codes. IACR
Cryptology ePrint Archive, 1996:10, 1996. URL http://eprint.iacr.org/1996/010.

[4] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tol., 13(1):143–202, 2000. doi: 10.1007/s001459910006. URL https://doi.org/10.1007/
s001459910006.

28

http://eprint.iacr.org/1996/010
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006

[5] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11–19,
1988. doi: 10.1145/62212.62214.

[6] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM Journal on Discrete
Mathematics, 4(1):36–47, 1991.

[7] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the eighteenth annual ACM symposium on Theory of computing, pages 364–369, 1986.

[8] O. Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applications. Cambridge
University Press, 2004.

[9] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky. On the power
of correlated randomness in secure computation. In Theory of Cryptography Conference, pages
600–620. Springer, 2013. doi: 10.1007/978-3-642-36594-2_34.

[10] E. Kushilevitz. Privacy and communication complexity. SIAM Journal on Discrete Mathe-
matics, 5(2):273–284, 1992.

[11] S. Wolf and J. Wullschleger. Oblivious transfer is symmetric. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 222–232. Springer,
2006.

29

	Introduction
	Our Contribution
	Our Techniques
	Additional Related Work
	Organization

	Preliminaries
	Notations
	Security Model

	Analyzing Symmetric Functionalities
	Characterization of Four-Output Functionalities
	Characterization of Boolean and Ternary-Output Functionalities
	Impossibility of Embedded XOR and Embedded AND

	A General Impossibility Result for Perfect Security
	An Impossibility Result for Perfect Security for Four-Output Functionalities
	Positive Results for Perfect Security
	Computing Spiral Functionalities
	Computing Transparent Transfer Functionalities

	References

