
Multiplicative Partially Homomorphic CRT Secret
Sharing

(Preliminary Version)

Shlomi Dolev, IEEE Fellow
Dept. of Computer Science

Ben-Gurion University of the Negev
Beersheba, Israel

dolev@cs.bgu.ac.il

Yaniv Kleinman
Dept. of Computer Science

Ben-Gurion University of the Negev
Beersheba, Israel

yanivkl@post.bgu.ac.il

Abstract—A new CRT-based positive (non-zero) secret-sharing
scheme with perfect information-theoretic (PIT) security and
multiplicative homomorphism is presented. The scheme is de-
signed to support the evaluation of multiplications of non-zero
secrets of multiplicative groups.

Our CRT-based scheme is partially homomorphic, supporting
homomorphic multiplications. Nevertheless, our scheme has the
potential to be regarded as fully homomorphic for practical
scenarios, such as bounded-sized multi-cloud databases.

Index Terms—Secret Sharing, Perfect Information Theoretic,
Homomorphism, Chinese Remainder Theorem.

I. INTRODUCTION

Secret sharing and secure multiparty computation are essen-
tial in securing data and computation. Perfect information-
theoretic (PIT) secure multiparty computation is preferred
over computational. The computational solution for a fully
homomorphic1 solution has the benefit of being performed by
a single (usually honest but curious, see, e.g., [9]) server. On
the other hand, the computation-based solution is • based on
an unproven candidate for a one-way function, • is required to
protect an encryption/decryption key, and • has no redundancy
as the server can erase the entire data. Thus, the distributed PIT
secure-multi-party computation is employed in many scenarios
and efficient versions, where the communication overhead,
which is originally quadratic in the number of participants,
is of great interest. Ultimately, the addition homomorphism
of secret sharing can be extended to be homomorphism of
both addition and multiplication, allowing communication-less
distributed secure multiparty computations.

We present (CRT-based) secret sharing that supports multi-
plicative homomorphism. In practice, there is a rising need
for cloudifying storage and computing. Users of cloud services
want to be sure that their sensitive data is not exposed to the

1Homomorphism is a map between two algebraic structures of the same
type that preserve the operation of the structures [3]. A homomorphic
operation can be addressed by the equation: f(x ⊕ y) = f(x) ⊕ f(y),
where ′⊕′ is a binary mathematical operation in this case. Homomorphism
is a property of the function f . Homomorphism can be limited to several
operations; in this case, the scheme is only partially homomorphic.

service provider. Cloud computing allows companies to focus
on their primary objective, while cloud providers handle all of
the storage and computing infrastructure.

In more specific terms, so far, secure migration of data and
computation to the cloud are based on the following:

• Fully Homomorphic Encryption(FHE), e.g., [8]. Also, a
distributed case of (partially computational secure) FHE,
e.g., [14].

• Partially (typically addition) Homomorphic Secret Shar-
ing Schemes, e.g., [1], [6], [10].

• Secure Multiparty Computation with communication be-
tween the participants, e.g., [11].

The first approach, where data is encrypted to hide its content,
suffers from some serious drawbacks:

• Encryption is done using a key that needs to be stored.

• Encryptions are mainly based on the (unproven) hardness
of (one-way) computing problems. Those problems are
assumed to imply the need for a brute-force search for
the encryption keys. Unfortunately, the most popular
functions, DH (based on Discrete Log) and RSA (based
on Integer Factorization), can be broken using Shor’s
algorithm; designed for emerging quantum computing.
Furthermore, the recently proposed (by NIST) post-
quantum functions are also not proven to be hard for
(quantum) computers to solve.

• Encryption can be very time-consuming, for example,
calculating powers on numbers done in RSA.

The other approaches, besides encryption, are distributed Se-
cret Sharing (SS) and distributed Secure Multiparty Computa-
tions (SMC or SMPC) based on PIT secure proofs. These
methods are based on mathematical proofs that ensure the
secret data is being secured as long as the adversary does
not have a sufficient number of shares defined by a threshold
to recover the secret.

The first secret-sharing schemes were presented by Shamir
[6] and Blakley [10]. Later many schemes were presented,
including schemes based on the Chinese Remainder Theorem
(CRT), e.g. Asmuth-Bloom’s scheme [1]. The above schemes
are designed to respect a threshold of t out of n shares to
reconstruct the secret, where t ≤ n shares are enough to
reconstruct the secret fully. The terminology for using such
a reconstruction threshold is called a threshold scheme.

The above schemes are partially or not homomorphic, meaning
they support bounded (addition and multiplication) opera-
tions’ performance or do not support one (either addition or
multiplication) or both operations. We present a new Secret
Sharing Scheme inspired by the Asmuth-Bloom scheme. Our
scheme is multiplicative homomorphism (namely, partially
homomorphic) and has the potential to allow fully homo-
morphic operations under some restrictions and modifications.
Shamir’s and Asmuth-Bloom’s schemes are perfect secret-
sharing schemes, and so is our proposed base multiplicative
scheme. The fully homomorphic extension of our scheme is
only statistically secure rather than PIT secure.

II. PRELIMINARIES

Secret Sharing Schemes are typically defined by two param-
eters (n, t). n is the number of participants, and t is the
reconstruction threshold. The reconstruction threshold states
the minimum number of participants needed to reconstruct
the secret. The secret is a bit string or an integer denoted by
S. (Ramp) Secret Sharing Schemes can have two thresholds,
t and s. The additional parameter s ≤ t is a secrecy bound.
The secrecy bound states the maximum number of participants
who cannot learn new information about the secret. Schemes
in which s < t are referred to as Ramp Schemes:

Definition 1. Ramp Scheme: A scheme that uses a secrecy
bound s.
In most of the threshold schemes, the secrecy bound is s =
t − 1 whereas in ramp schemes, the secrecy bound can be
1 ≤ s < t.

For a group of participants G, we have three ranges in this
kind of scheme:

1) |G| ≤ s: No information leak at all.

2) s < |G| < t: Might be a partial information leak.

3) |G| ≥ t: Fully reconstruction.

Another important notation is the access structure. An access
structure is a set of all the qualified groups of participants
who are authorized and should be capable of reconstructing
the secret data S. The access structure is marked A. In the
sequel, we restrict the possible secret’s value. Distribution of
the secret S is signed with D. In our scheme, we have no
restrictions on the distribution other than there can not be a
zero in the multiplicative group. The secret’s (possible) domain
is signed with S whereas the participant i′th shared part’s
(possible) domain is signed with Si.

Definition 2. A Perfect Secret Sharing Scheme should satisfy
the following two conditions:

• Correctness: Any qualified group of participants in A can
reconstruct the secret.

• Perfect Privacy: No unqualified group of participants in Ā
can get any information about the secret. More formally:
Given any S′ ∈ S:

– Pr[S = S′] = p.

– For every group G ∈ Ā, |G| < n and S′ ∈ S where
S′
ij
∈ Sij , j ∈ G ⊂ [n], we have:

Pr[S = S′|Sij = S′
ij∀j ∈ G] = p

Definition 3. A Ramp Secret Sharing Scheme is a ramp
scheme that should satisfy the following two conditions:

• Correctness: Any qualified group of participants in A can
reconstruct the secret.

• Perfect Ramp Privacy: For every group of participants
G, |G| ≤ s, given a secret S with distribution D, the
secret distribution stays the same, meaning the probability
of the secret being equal to a specific element S′ ∈ S
stays the same even when knowing the shared secret data
held by the participants of G. More formally: Given any
S′ ∈ S:

– Pr[S = S′] = p.

– For every S′ ∈ S and S′
ij

∈ Sij , 1 ≤ j ≤ s, with
1 ≤ i1 < i2 < · · · < is ≤ n, we have:

Pr[S = S′|Si1 = S′
i1 , . . . , Sis = S′

is] = p

The following sum up the relations between the scheme
factors:

1) 1 ≤ s < t ≤ n

2) The gap from s to t does not have to be one.

3) It is possible that a group of participants smaller than t
could reconstruct the data.

4) It is possible that a group of participants larger than s
would not learn anything about the data.

In order to move on and examine some Secret Sharing
Schemes, we need to introduce additional notations. The secret
share of the i′th participant is Si. To note that a calculation is
performed under modulo p or inside Zp, we use the notation
[·]p. When referring to the multiplicative group of integers
modulo M , we will use UM . In some more complex schemes,
as in our case, some moduli are performed by the same
participant – in particular, one modulo for one part of the
secret and another modulo for another part of it. In order to
define those moduli, we will use mi, which is the i′th number
to perform the modulus calculations on. We can also address
mi+j , which is the (i + j)(mod r) number to perform the

modulus calculations on. We added the (mod r) since we are
using r different modulus calculations in those schemes, and
we want the cyclic property. The r parameter is driven from
n and t. When n is equal to t, then r can also be equal to n,
but for example, when n > t, then r is usually greater than
n because more redundancy is needed in schemes supporting
threshold smaller than the number of participants.

III. RELATED WORK

Some of the known SMPC homomorphic methods relevant to
this research are:

Simple additive SSS – In this scheme, the sum of shared val-
ues reconstructs the secret. One such scheme has a threshold
of t = n−1, meaning it is an n out of n scheme. Let S be the
secret, n be the number of participants, and Zp be the field
on which the calculations are being made [5].

• Distribution phase:
The dealer randomly chooses the group elements
S1, S2, ..., Sn−1 ∈ Zp. The dealer then computes Sn =
S−

∑
1≤i<n Si. Finally, the dealer sends Si to participant

i for 1 ≤ i ≤ n.

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct
the secret. The participants compute the secret S by
summing all their secret shares.

RF (
⋃

pi∈G Si) :

{
if |G| = n ⇒ S =

∑
1≤i≤n Si(mod p)

if |G| < n ⇒⊥

• Additive homomorphism:
Let S1 and S2 be secrets and S1i and S2i the secrets’
shares of the i’th participant. S1 + S2 =

∑
1≤i≤n S1i +∑

1≤i≤n S2i =
∑

1≤i≤n S1i + S2i . Each participant can
perform S1i+S2i and send the sum for the reconstruction
phase. Therefore, the scheme is an additive homomorphic
scheme.

Simple multiplicative homomorphic SSS – This scheme is
very similar to the additive one, but in this case, the product of
the shared values gives the secret. Moreover, there are some
restrictions; Zero or numbers that are not co-prime to p are
not allowed to be used. One such scheme has a threshold of
t = n− 1, meaning it is an n out of n scheme. Let S be the
secret, n be the number of participants, and Up be the group
on which the calculations are being made. [2]:

• Distribution phase:
The dealer picks n − 1 uniformly random nonzero ele-
ments Si, 1 ≤ i < n, from Up. The dealer then calculates
Sn = S · (

∏
1≤i<n Si)

−1. Finally, the dealer sends Si to
participant i for 1 ≤ i ≤ n.

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct
the secret. The participants compute the secret S by

multiplying all their secret shares.

RF (
⋃

pi∈G Si) :

{
if |G| = n ⇒ S =

∏
1≤i≤n Si(mod p)

if |G| < n ⇒⊥

• Multiplicative homomorphism:
Let S1 and S2 be secrets and S1i and S2i the secrets’
shares of the i’th participant. S1 · S2 =

∏
1≤i≤n S1i ·∏

1≤i≤n S2i =
∏

1≤i≤n S1i · S2i . Each participant can
perform S1i · S2i and send the product to the recon-
struction phase. Therefore, the scheme is a multiplicative
homomorphic scheme. All the multiplications are correct
and do not form a zero or a number with a common
divider with p because Up is a multiplicative group.

Ramp additive homomorphic SSS – [4]. This scheme is
based on the ideas of Asmuth-Bloom SSS [1] as mentioned
earlier in the background. The scheme is an n out of n scheme
with a security factor of s. This security factor means there
is no information leak unless there are at least s + 1 secret
sharing parts. Using such a security factor s is called a ramp
scheme. Let S be the secret, n the number of participants, and
Zprod the group on which the calculations are being made.

• Distribution phase:
The dealer chooses a set of integers
(prod,m1,m2, ...,mn) such that:

1) m1 < m2 < ... < mn and S < prod = Mn =∏n
i=1 mi

2) gcd(mi,mj) = 1(∀i ̸= j)

The dealer randomly chooses s integers (r1, ..., rs) in
Zprod, and computes Smix = [S +

∑n
i=1 ri]prod.

The dealer computes and distributes the shared set of
each participant i:

Si = (Smix(mod mi), r1(mod mi+1), . . . , rs(mod mi+s)).

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct
the secret. The participants compute the secret S by
solving the CRT equations as seen in “Fig.1”.

• Additive homomorphism:
Let S1 and S2 be secrets. S1mix , r11 , ..., r1s are the
blinded secret and all the blinding randoms of S1.
S2mix , r21 , ..., r2s are the blinded secret and all the blind-
ing randoms of S2. Each participant i has the secret shares
of each blinded secret and blinding randoms:
S1mixi

, r11i , ..., r1si , S2mixi
, r21i , ..., r2si .

Now we will show that this scheme is additive homomor-
phic:
S1 + S2 = S1mix −

∑
1≤j≤s r1j + S2mix −

∑
1≤j≤s r2j =

S1mix + S2mix −
∑

1≤j≤s r1j + r2j . Each participant can
perform S1mixi

+ S2mixi
and r1ji + r2ji for each 1 ≤

j ≤ s and send the sum of all the needed parts to the

RF

⋃
pi∈G

Si,0⋃
pi∈G

Si,1

...⋃
pi∈G

Si,s

:

if |G| = n :

Smix = CRT [S1,0, ..., Sn,0]prod

r1 = CRT [S1,1, ..., Sn,1]prod

...

rs = CRT [S1,s, ..., Sn,s]prod

⇒ S = [Smix −

∑s
i=1 ri]prod

if s+ 1 ≤ |G| < n ⇒ partial information

if |G| < s+ 1 ⇒⊥

Fig. 1. Ramp additive homomorphic SSS - Reconstruction phase

reconstruction phase, where using a CRT solver algo-
rithm. Therefore, the scheme is an additive homomorphic
scheme.

IV. MOTIVATION FOR THE NEW SCHEME

In this work, we want to introduce a novel SSS with the
feature of multiplicative homomorphism. There are already
schemes that allow homomorphic multiplication, one of them
found in the related work Section(III). However, under some
disclaimers, our scheme can be extended to support more
features, such as threshold reconstruction and additive homo-
morphism, as suggested in the following sections.

V. METHOD EXPLANATION

The scheme is an n out of n scheme with a security factor of
s, meaning that without having at least s + 1 secret sharing
parts, there is no information leak. Using such a security factor
s is called a ramp scheme. Let S ∈ Uprod be the secret, n be
the number of participants, and Uprod be the group in which
the calculations are being made.

• Distribution phase:
The dealer chooses a set of pairwise co-primes
m1,m2, ...,mn and calculate prod =

∏
1≤i≤n mi such

that:

1) m1 < m2 < ... < mn and S < prod = Mn.

2) gcd(mi,mj) = 1,∀i ̸= j.

The dealer randomly chooses s integers r1, ..., rs in
Uprod, and computes Smix = [S ·

∏
1≤i≤s ri]prod. The

dealer computes and distributes the shared set of each
participant 1 ≤ i ≤ n:

Si = (Smix(mod mi), r1(mod mi+1), . . . , rs(mod mi+s)).

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct
the secret. The participants compute the secret S by
solving the CRT equations, following the steps of the
reconstruction function seen in “Fig.2”.

A. Auxiliary Claims

Corollary 1. Given the multiplicative group A =
Um1·m2·····mn

= UMn
there is an isomorphism to the direct

product of Mn pairwise co-primes dividers, meaning B =
Um1 × Um2 × ...× Umn .

Corollary 2. Define Mn = m1 · m2 · · · · · mn where
m1,m2, . . . ,mn are pairwise co-primes. Given element α ∈
A = UMn

of a finite group:
∀γ ∈ UMn

,∃β ∈ Umn
s.t. α·β = γ. Meaning that all elements

can be the product of α and another element in the group.

Corollary 3. Let G be a finite group. Given two elements
g1, g2 ∈ G chosen randomly, uniformly and independently,
the multiplication g1 · g2 = g′ ∈ G is a randomly uniformly
element of G.

Corollary 4. Let G be a finite group. Given two elements
g1, g2 ∈ G, where g1 is taken from a uniform distribution
and g2 is from some distribution D. g1 and g2 are chosen
independently. The multiplication g1 · g2 = g′ ∈ G is a
randomly uniform element of G.

Proofs for all the corollaries can be found in Appendix (A)

B. Correctness

In order to use a scheme, one must know that the scheme is
always correct.

Theorem 1. The multiplicative scheme can always be recon-
structed given a group of participants G ∈ A.

Proof. Given a group of participants G ∈ A. The scheme is
of threshold t = n− 1, meaning |G| = n. The correctness of
this scheme relies on the fact that all elements in UMn have
an inverse. Each ri, 1 ≤ i ≤ s can be reconstructed from the
n shares of its modulus using CRT as ri ∈ UMn

. CRT can
reconstruct numbers to the product of modulus pairwise co-
primes equations, meaning one solution in ZMn because all
the modulus are the pairwise co-primes factors of Mn. After
reconstructing ri,∀1 ≤ i ≤ s, we can calculate r−1

i . That is

RF

⋃
pi∈G

Si,0⋃
pi∈G

Si,1

...⋃
pi∈G

Si,s

:

if |G| = n :

Smix = CRT [S1,0, ..., Sn,0]prod

r1 = CRT [S1,1, ..., Sn,1]prod

...

rs = CRT [S1,s, ..., Sn,s]prod

⇒ S = [Smix ·

∏s
i=1 r

−1
i]prod

if s+ 1 ≤ |G| < n ⇒ partial information

if |G| < s+ 1 ⇒⊥

Fig. 2. Ramp multiplicative homomorphic SSS - Reconstruction phase

the reason why we must take the randoms from UMn
and not

from ZMn
. To get the secret, we calculate:

Smix ·
s∏

i=1

r−1
i = S ·

s∏
i=1

ri ·
s∏

i=1

r−1
i = S.

That can be done because multiplication is associative in UMn .

C. Multiplicative Homomorphism

Theorem 2. The multiplicative scheme is multiplicatively
homomorphic.

Proof. To show that the scheme is multiplicative homomor-
phic, we will show that when taking k secrets, distributing
them, multiplying them as shares on the participants’ side and
finally reconstructing the result, the result will be correct.

An expanded explanation of this proof can be found in
Appendix (B).

D. Security Analysis

Since we want to use the scheme to store and make operations
on secret data, we want to ensure that the scheme holds the
security properties we need.

Theorem 3. The multiplicative scheme is a Perfect ramp
secret sharing scheme and is a perfect secret sharing scheme
in case s = n− 1.

For the simplicity of notation and sizes, we will use mi,∀1 ≤
i ≤ n as primes and not the general case of pairwise co-
primes. To get some intuition, we will start by analyzing the
basic case of s = 1. The domain of Smix and r1 is UMn

and
the size of the domain is |UMn | = φ(Mn) =

∏
1≤i≤n φ(mi).

For any elements r′1, S
′
mix, S

′ ∈ UMn , we have:
Pr[r1 = r′1] =

1
φ(Mn)

as r1 is randomly uniformly chosen.
Pr[S = S′] = p as S is chosen from some distribution D.
Pr[Smix = S′

mix] = 1
φ(Mn)

as r1 is randomly uniformly
chosen, and the secret S is of some distribution, based on
Corollary 4.

The probabilities of r1 and Smix to be equal to r′1 and S′
mix,

respectively, do change knowing some i’th participant data

since s = 1:

• Pr[r1 = r′1|r1(mod mi+1) = r′1(mod mi+1)] =
1

φ(Mn)
φ(mi+1)

= φ(mi+1)
φ(Mn)

2,

• Pr[Smix = S′
mix|Smix(mod mi) = S′

mix(mod mi)] =
1

φ(Mn)
φ(mi)

= φ(mi)
φ(Mn)

.

Yet, we claim that the conditional probability of the secret S
to be equal to S′ does not change:

Pr[S = S′| r1(mod mi+1) = r′1(mod mi+1),
Smix(mod mi) = S′

mix(mod mi)] = p

We can write the conditional probability as shown in “Fig.3”.

Now
Pr[Smix(mod mi) = S′

mix(mod mi)] =

Pr[r1 · r′1
−1

(mod mi) = S′ · S−1(mod mi)] =
1

φ(mi)

(1)

and
Pr[r1(mod mi+1) = r′1(mod mi+1)] =

Pr[r1 · r′1
−1

(mod mi+1) = 1(mod mi+1)] =
1

φ(mi+1)
. (2)

Since the events in “(1)” and “(2)” are clearly independent,
we obtain:
Pr[r1(mod mi+1) = r′1(mod mi+1) ∧

Smix(mod mi) = S′
mix(mod mi)] = 1

φ(mi+1)
· 1
φ(mi)

.

Since S, S′ and r1, r
′
1 are independent:

Pr[S = S′ ∧ r1(mod mi+1) = r′1(mod mi+1)∧
Smix(mod mi) = S′

mix(mod mi)] =

Pr[S = S′ ∧ r1 · r′1
−1(mod mi+1) = 1(mod mi+1)∧

r1 · r′1
−1(mod mi) = S′ · S−1(mod mi)] = p · 1

φ(mi+1)
· 1
φ(mi)

.

and,

Finally:
Pr[S=S′∧r1(mod mi+1)=r′1(mod mi+1)∧Smix(mod mi)=S′

mix(mod mi)]

Pr[r1(mod mi+1)=r′1(mod mi+1)∧Smix(mod mi)=S′
mix(mod mi)]

= p,

2same as a secret shared in Mignotte’s scheme, which is the equivalence
class of r1(mod mi+1)

Pr[S = S′|r1(mod mi+1) = r′1(mod mi+1), Smix(mod mi) = S′
mix(mod mi)]

=
Pr[S = S′ ∧ r1(mod mi+1) = r′1(mod mi+1) ∧ Smix(mod mi) = S′

mix(mod mi)]

Pr[r1(mod mi+1) = r′1(mod mi+1) ∧ Smix(mod mi) = S′
mix(mod mi)]

.

Fig. 3. Conditional probability of S = S′ with the knowledge of i’th participant knowledge

as required.

The security analysis proof for the general case can be found
in Appendix (C)

VI. CONCLUSION REMARKS

The addition expansion of our multiplicative method.
Returning to our main goal - performing fully homomorphic
operations on secret data. This goal is equivalent to being
able to calculate any polynomial function on secret data. All
polynomials can be represented as the addition of products
called monomials, with no parentheses.
In the proposed scheme, the dealer must know the function
we would like to calculate in advance. Given a function
represented as the addition of monomials, the dealer chooses
the randoms so that the product of all monomials’ randoms is
equal. For example, for a function represented as the addition
of monomials:

f(x1, x2, x3, x4) = x1 · x2 + x2 · x3 + x1 · x3 · x4.

An example of randoms for the given equation:

r1 = 6, r2 = 11, r3 = r1 = 6, r4 = 11 · [6−1]Mn .

As this example shows, there are many dependencies between
the randoms. In order to break some of these dependencies,
we offer two methods:

1) Each occurrence of a variable can be hidden with a
different random number. Using this method, the number
of variables to be stored equals all occurrences of the
variables in the equation.

2) We can add one variable to each monomial with the value
1. Then we can give each variable an actual random
number to hide the variable value and, in the end, fix
the product of the randoms with this independent random
number multiplied by the 1 variable.

Based on the methods described above, one can create a
random selection for the function that needs to be calculated
- depending on the trade-offs between flexibility and perfor-
mance. Moreover, a deeper analysis needs to be done about
the security of each method.

Addition under the limitation of calculations with a thresh-
old. As defined in our proposed scheme, m1 < m2 < · · · <
mn are the co-primes that the modulus operations are per-
formed on the participants’ side. So, when the calculations are
done under the limit of m1, all results and intermediate results

are elements of UMn . This means that all the calculations are
perfectly secured by the security analysis performed in Section
V-D.

Unbounded calculations. In this case, the security analysis
needs to deal with the different scenarios. If, for example,
a calculation or an intermediate calculation Sres is not from
UMn

, then there is a modulo mi such that mi|Sresmix , meaning
that the participant with the mi modulo used for Smix can know
the equivalence class of the real secret3: S = S + k ·mi,∃k.

Arithmetic circuit extension. We can calculate all the ran-
doms needed for any given function in advance by parsing the
equation. We can ensure that each addend’s randoms are equal
for each addition operation in the function. To achieve what
we described here and avoid leakage, we suggest the following
guidelines:

1) Before each addition, we are fixing the second multiplier
with 1 (similar to the fix suggested for additions).

2) Add random and subtract the same random from the two
(or more, to have no influence on the actual result, as
we ensure that the total sum of these new values is zero)
addends of each addition operation.

The first guideline is just an expansion of the first method
described in the addition expansion of our original scheme.
The second guideline is a way of dealing with leakage that may
appear - Since both addends are hidden with the same random,
it is possible to know if they are from the same equivalence
class or not (if we limit the calculation to be Sres < m1 then it
is even possible to know if they are equal or not). The addition
and subtraction of the same random do not change the value
of the function, but they avoid revealing information on pos-
sible equality. Since each operation (addition and subtraction)
requires a later multiplication by 1 (to allow the addition), and
the computation is done once (over the same servers) leakage
of (equality) information is avoided.

Byzantine fault tolerance. It is possible to make our scheme
a threshold scheme with threshold t < n, as explained in [5],
in Section 2.4. Therefore, it is possible to create a byzantine
fault tolerance algorithm for our scheme by taking ideas from
[12] and [13]. The most trivial way is to transform our scheme
to a threshold scheme with t < n using redundancy [5]. Then
during the reconstruction phase, check all results reconstructed
from groups of a sufficient amount of participants (|G| ≥ t).

3All the randoms are from UMn ; therefore, they do not change the effect
of zero divisors.

After reconstructing the results, take the result from the
majority of the groups (if there is no majority, then there were
more adversaries than we can handle), see e.g., [12] and the
references therein for more efficient schemes.

VII. REFERENCES

[1] C. Asmuth, J. Bloom, A modular approach to key safe-
guarding, IEEE Transactions on Information Theory (Vol-
ume: 29, Issue: 2, Mar 1983) 208 - 210.

[2] Dor Bitan, Shlomi Dolev, Optimal-round preprocessing-
MPC of polynomials over non-zero inputs via distributed
random matrix. Wireless Netw (2022).

[3] Stanley Burris, H.P. Sankappanavar, A Course in Universal
Algebra (2012).

[4] Oğuzhan Ersoy, Thomas Brochmann Pedersen, Emin
Anarim, Homomorphic extensions of CRT-based secret
sharing, Discrete Applied Mathematics (Volume 285, 15
October 2020) 317-329.

[5] Yildirim, İsmail Fatih, SecurePL: A compiler and toolbox
for practical and easy secure multiparty computation,
Master Thesis Sabanci University (2008).

[6] Adi Shamir, How to share a secret, Communications of
the ACM (Volume 22, Issue 11, 01 November 1979),
612–613.

[7] Leslie G. Valiant, Why is Boolean complexity theory
difficult?, Proceedings of the London Mathematical So-
ciety Symposium on Boolean function complexity (1992),
84–94.

[8] Craig Gentry, Fully homomorphic encryption using ideal
lattices, Proceedings of the forty-first annual ACM sym-
posium on Theory of computing (May 2009), 169-178.

[9] Shlomi Dolev and Arseni Kalma, Verifiable Computing
Using Computation Fingerprints Within FHE. NCA 2021:
1-9.

[10] George Robert Blakey, Safeguarding cryptographic keys,
Federal Information Processing Standard Conference Pro-
ceedings, 48 (1979), 313–317.

[11] Michael Ben-Or, Shafi Goldwasser, Avi Wigderson,
Completeness theorems for non-cryptographic fault-
tolerant distributed computation, Proceedings of the twen-
tieth annual ACM symposium on Theory of computing
(January 1988), 1-10.

[12] Oded Goldreich, Dana Ron, Madhu Sudan, Chinese Re-
maindering with Errors, IEEE Transactions on Information
Theory (Volume: 46, Issue: 4, July 2000), 1330 - 1338.

[13] Asaf Cohen, Shlomi Dolev, Nir Tzachar, Efficient and
Universal Corruption Resilient Fountain Codes, IEEE
Transactions on Communications (Volume: 61, Issue: 10,
October 2013), 4058 - 4066.

[14] Shlomi Dolev, Stav Doolman, Blindly Follow: SITS CRT
and FHE for DCLSMPC of DUFSM (Extended Abstract),
CSCML 2021, 487-496

APPENDIX A
AUXILIARY CLAIMS PROOFS

Corollary 1. Given the multiplicative group A =
Um1·m2·····mn = UMn there is an isomorphism to the direct
product of Mn pairwise co-primes dividers, meaning B =
Um1

× Um2
× ...× Umn

.

Proof. Let us define f : A → B in the following way:

f(α) = ⟨α(mod m1), α(mod m2), ..., α(mod mn)⟩. (3)

We need to show that f(α1 · α2) = f(α1) · f(α2).

f(α1·α2) = ⟨(α1·α2)(mod m1), (α1·α2)(mod m2), ..., (α1·α2)(mod mn)⟩.
(4)

f(α1) · f(α2) = ⟨α1(mod m1), α1(mod m2), ..., α1(mod mn)⟩·
⟨α2(mod m1), α2(mod m2), ..., α2(mod mn)⟩ =

⟨(α1 · α2)(mod m1), (α1 · α2)(mod m2), ..., (α1 · α2)(mod mn)⟩.
(5)

The last equality in “(5)” is achieved by the definition of
multiplication in a direct product.

Corollary 2 Define Mn = m1 · m2 · · · · · mn where
m1,m2, . . . ,mn are pairwise co-primes. Given element α ∈
A = UMn

of a finite group:
∀γ ∈ UMn

,∃β ∈ Umn
s.t. α·β = γ. Meaning that all elements

can be the product of α and another element in the group.

Proof. Given α ∈ UMn , let’s assume in contradiction that
there is an element γ1 ∈ UMn

such that: α · β ̸= γ1,∀β ∈
Umn

. We know that UMn
is a multiplicative group, so every

multiplication of elements in the group forms an element in the
group. Since the source and the domain of the multiplication
are of the same finite size, there is at least one element γ2 ∈
UMn

such that:

α · β1 = α · β2 = γ2, β1 ̸= β2. (6)

The element α has an inverse α−1 because UMn is a group.
Applying α−1 on “(6)” we get:

α−1 ·α·β1 = α−1 ·α·β2 = α−1 ·γ ⇒ β1 = β2 = α−1 ·γ. (7)

in contrast to β1 ̸= β2 which means that our assumption was
incorrect:

∄γ1 ∈ UMn ,∀β ∈ Umn

s.t. α · β ̸= γ1 ⇒ ∀γ ∈ UMn ,∃β ∈ Umn

s.t. α · β = γ.

Corollary 3 Let G be a finite group. Given two elements,
g1, g2 ∈ G chosen randomly, uniformly and independently.
The multiplication, g1 · g2 = g′ ∈ G is a randomly, uniformly
element of G.

Proof. We need to show that each g′ can be chosen with the
same probability, which means 1

|G| .

Pr[g1 · g2 = g′] = Pr[
⋃

g0∈G

{g1 = g0, g2 = g−1
0 · g′}] =1

∑
g0∈G

Pr[g1 = g0, g2 = g−1
0 · g′] =2

∑
g0∈G

Pr[g1 = g0]Pr[g2 = g−1
0 g′] =3

∑
g0∈G

1

|G| ·
1

|G| = |G| · 1

|G|2 =
1

|G| .

The 1 equality is achieved by the fact that each event of g0 ∈ G
is different.
The 2 equality is achieved because of the independence of g1
and g2.
The 3 equality is achieved because g1 and g2 are chosen
randomly uniformly.

Corollary 4 Let G be a finite group. Given two elements
g1, g2 ∈ G, where g1 is taken from a uniform distribution
and g2 is from some distribution D. g1 and g2 are chosen
independently. The multiplication g1 · g2 = g′ ∈ G is a
randomly uniform element of G.

Proof. Same proof as Corollary(3), until equality 3.

Pr[g1 ·g2 = g′] = · · · =
∑
g0∈G

Pr[g1 = g0]Pr[g2 = g−1
0 g′] =3 1

|G| .

The 3 equality is achieved as g0 goes over all elements in
G. The same holds with g−1

0 as each element has a different
inverse. So finally, when going over all elements in G, we
receive that each element g′ has the same probability.

APPENDIX B
MULTIPLICATIVE HOMOMORPHISM EXPANDED PROOF

Let n be the number of participants, k the number of secrets
and s the secrecy bound.

• Let S1, S2, . . . , Sk ∈ UMn be secrets that the user wants
to know later about their product.

• Apply the distribution phase of the scheme on each secret.
Note that Sij , 1 ≤ i ≤ k, 1 ≤ j ≤ n is the part of
the Si, 1 ≤ i ≤ k secret held by the j’th participant.
Calculating:

S11 = (S1mix(mod m1), r11(mod m2), . . . , r1s(mod ms+1))

. . .

Sk1 = (Skmix(mod m1), rk1(mod m2), . . . , rks(mod ms+1))

S12 = (S1mix(mod m2), r11(mod m3), . . . , r1s(mod ms+2))

. . .

Sk2 = (Skmix(mod m2), rk1(mod m3), . . . , rks(mod ms+2))

. . .

S1n = (S1mix(mod mn), r11(mod m1), . . . , r1s(mod ms))

. . .

Skn = (Skmix(mod mn), rk1(mod m1), . . . , rks(mod ms))

• Multiply all shares of each participant - this operation
can be done by the participants themselves as needed:

Sres1 = (
∏

1≤i≤k

Simix(mod m1), . . . ,
∏

1≤i≤k

ris(mod ms+1))

Sres2 = (
∏

1≤i≤k

Simix(mod m2), . . . ,
∏

1≤i≤k

ris(mod ms+2))

. . .

Sresn = (
∏

1≤i≤k

Simix(mod mn), . . . ,
∏

1≤i≤k

ris(mod ms))

• Reconstructing all the results of products shares in order
to find the result of the product of all secrets Sres =∏

1≤i≤k Si:

Sresmix = CRT [Sres10
(mod m1), . . . , Sresn0

(mod mn)]Mn

rres1 = CRT [rres11
(mod m2), . . . , rresn1

(mod m1)]Mn

. . .

rress = CRT [rres1s (mod ms+1), . . . , rresns
(mod ms)]Mn

Each CRT equation has all the pairwise co-prime modulus
mi, 1 ≤ i ≤ n results, meaning that the numbers
are reconstructed perfectly in modulo ZMn . Also, the
calculations are correct from Corollary 1.

APPENDIX C
SECURITY ANALYSIS PROOF

Theorem 3 The multiplicative scheme is a Perfect ramp secret
sharing scheme and is a perfect secret sharing scheme in case
s = n− 1.

Proof. Let G be a group of curious participants gathered to
reconstruct the secret or leak some information about it, |G| ≤
s.

Given Smix, r1, . . . , rs ∈ UMn
, the domain of Smix, r1, . . . , rs

is UMn and the size of the domain is |UMn | = φ(Mn) =∏
1≤i≤n(mi−1) (The Euler function in case Mn is the product

of primes from degree 1).
For each element r′1, . . . , r

′
s, S

′
mix, S

′ ∈ UMn
the probabilities

of r1, . . . , rs, Smix and S to be equal accordingly are:
Pr[r1 = r′1] =

1
φ(Mn)

as r1 is randomly uniformly chosen.
. . .
P r[rs = r′s] =

1
φ(Mn)

as rs is randomly uniformly chosen.
Pr[S = S′] = p as S is chosen from some distribution D.
Pr[Smix = S′

mix] = 1
φ(Mn)

as r1, . . . , rs are randomly
uniformly chosen, and the secret S is of some distribution,
based on Corollary 3 with induction that can be applied on it
and Corollary 4.

The probabilities of r1, . . . , rs and Smix to be equal to
r′1, . . . , r

′
s and S′

mix respectively, do change knowing the
information held by the group G = {i1, . . . , is}, 1 ≤ i1 <
· · · < is ≤ n, as can be seen in “Fig.4”.

However, we claim that the conditional probability of the
secret S to be equal to S′ does not change:

Pr[S = S′|r1(mod mi1+1) = r′1(mod mi1+1),

. . . ,

r1(mod mis+1) = r′1(mod mis+1),

. . . ,

rs(mod mi1+s) = r′s(mod mi1+s),

. . . ,

rs(mod mis+s) = r′s(mod mis+s),

Smix(mod mi1) = S′
mix(mod mi1),

. . . ,

Smix(mod mis) = S′
mix(mod mis)] = p

In fact, we know that s < n and therefore, we know that each
modulo of φ(mij),∀1 ≤ j ≤ s does not appear n times in
different equations. Hence, the total amount of valid options
for S to be calculated by the group G is:∏

1≤j≤s

φ(Mn)∏
i∈G φ(mi+j)

· φ(Mn)∏
i∈G φ(mi)

=

φ(Mn)
s+1

(
∏

1≤j≤s

∏
i∈G φ(mi+j)) · (

∏
i∈G φ(mi))

≤ 4 φ(Mn)
s+1

φ(Mn)s

As in the intuition part V-D, based on Corollary 1, it is possible
to show that the distribution of S does not change, even when
knowing the information of the group G, and each element in
S′ ∈ UMn

stays with the same probability that S is equal to
it. Thus, the scheme is a perfect ramp security for any s < n.

The choice of s = n−1 yields a perfect secret sharing scheme
according to Definition 2 as ∀G /∈ A, there is no information
leak.

4Since s < n, than φ(mi), ∀1 ≤ i ≤ n appear at most s times.

Pr[r1 = r′1|r1(mod mi1+1) = r′1(mod mi1+1), . . . , r1(mod mis+1) = r′1(mod mis+1)] =

1
φ(Mn)∏

i∈G φ(mi+1)

=

∏
i∈G φ(mi+1)

φ(Mn)

. . .

P r[rs = r′s|rs(mod mi1+s) = r′s(mod mi1+s), . . . , rs(mod mis+s) = r′s(mod mis+s)] =

1
φ(Mn)∏

i∈G φ(mi+s)

=

∏
i∈G φ(mi+s)

φ(Mn)

Pr[Smix = S′
mix|Smix(mod mi1) = S′

mix(mod mi1), . . . , Smix(mod mis) = S′
mix(mod mis)] =

1
φ(Mn)∏
i∈G φ(mi)

=

∏
i∈G φ(mi)

φ(Mn)

Fig. 4. Conditional probabilities of secret’s shared parts with knowledge of an unauthorized group of participants

	Introduction
	Preliminaries
	Related Work
	Motivation for the New Scheme
	Method Explanation
	Auxiliary Claims
	Correctness
	Multiplicative Homomorphism
	Security Analysis

	Conclusion Remarks
	References
	Appendix A: Auxiliary Claims Proofs
	Appendix B: Multiplicative Homomorphism Expanded Proof
	Appendix C: Security Analysis Proof

