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Abstract. FALCON and Crystals-Dilithium are the digital signatures
algorithms selected as NIST PQC standards at the end of the third
round. FALCON has the advantage of the shortest size of the combined
public key and signature but has the disadvantage of the relatively long
signing time. Since FALCON algorithm is faithfully designed based on
theoretical security analysis, the implementation of the algorithms is
quite complex and needs considerable complexity. In order to implement
the FALCON algorithm, the isochronous discrete Gaussian sampling al-
gorithm should be used to prevent the side-channel attack, which causes
a longer signature time. Also, FFT operations with floating-point num-
bers should be performed in FALCON, and they cause difficulty in apply-
ing the masking technique, making it vulnerable to side-channel attacks.
We propose the Peregrine signature algorithm by devising two methods
to make the signing algorithm of the FALCON scheme efficient. To re-
duce the signing time, Peregrine replaces the discrete Gaussian sampling
algorithm with the sampling algorithm from the centered binomial dis-
tribution in the key generation algorithm and the signing algorithm by
adjusting the encryption parameters. Also, it replaces the fast Fourier
transform (FFT) operations of floating-point numbers with the number
theoretic transform (NTT) operations of integers represented in residue
number system (RNS), making the scheme faster and easy to be applied
with a masking technique to prevent the side channel attack.

Keywords: FALCON · GPV framework · centered binomial distribu-
tion · NTRU lattices · post-quantum cryptography.
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1 Introduction

Peregrine can be classified into the lattice-based signature scheme and uses the
hash-and-sign scheme proposed by Gentry, Peikert, and Vaikuntanathan (GPV)
[1]. It uses the NTRU lattice problem as the trapdoor and the centered binary
distribution for the key generation and signing algorithm. In addition, it is de-
signed to avoid the computation of the floating-point numbers in the signing
algorithm to increase the convenience of implementation and to prevent the side
channel attack.

Peregrine = GPV framework + NTRU lattices + Centered Binomial r.v.

1.1 Design Rationale

Hash-and-Sign Signature Scheme FALCON and Crystals-Dilithium are the
digital signature algorithms selected as NIST PQC standards for digital signa-
ture, and both schemes are lattice-based digital signature algorithms. While
Crystals-Dilithium follows the Fiat-Shamir method, FALCON uses the hash-
and-sign method with the GPV framework. The lattice-based hash-and-sign
method introduced in [1] is designed based on the hardness of the short integer
solution (SIS) problem and proved to be secure in the quantum random ora-
cle model. Like FALCON, Peregrine uses a lattice-based hash-and-sign method
based on the GPV framework. We briefly describe the GPV framework as fol-
lows:

– A full-rank matrix A ∈ Zn×m
q , (m > n), where the rows of A are basis of a

q-ary lattice Λ, is generated for the public key.
– A matrix B ∈ Zm×m

q , where its rows are orthogonal to the rows of matrix
A, is generated for the private key. The rows of matrix B are basis of a q-ary
lattice Λ⊥, which is an orthogonal lattice of Λ such as B×At = 0.

– A hash function H is defined as H : {0, 1}∗ → Zn
q . For a given message M ,

H(M) is used for generating a signature of M .
– Find any vector c satisfying c ·At = H(M).
– A valid short signature s can be computed from the private key B by finding

a vector v which exists on the lattice Λ⊥ such as v = v′ · B, v′ ∈ Zm
q ,

and close to c. Because v · At = 0, the difference s = c − v also satisfies
s ·At = (c− v) ·At = c ·At = H(M).

The hash-and-sign method in the GPV framework uses the following core idea:
it is difficult to find s with the small norm satisfying s · At = H(M), but it
is easy for those who know the matrix B, which is used for the secret key.
The size of the public and private keys and the their performances are affected
by the algebraic structures of the public and secret keys. If we use structured
lattices with useful algebraic properties, the key size can be reduced, but the
vulnerability can be introduced with the algebraic structures. Like the FALCON,



Peregrine: Toward Fastest FALCON Based on GPV Framework 3

Peregrine is a digital signature constructed from the hash-and-sign method based
on this GPV scheme. In the Peregrine, lattices are created using the elements on
the polynomial ring in generating public and secret keys, which will be explained
in Section 3.

NTRU Lattices In this subsection, we can think about how to create an or-
thogonal private key B, given a public key A. FALCON uses NTRU lattices and
has a compact structure with a short combined length of public key and signa-
ture compared to other digital signatures. Peregrine also generates public and
secret keys using the same NTRU lattice for this advantage. However, Peregrine
provides a more straightforward way to create NTRU lattices. NTRU was first
introduced by Hoffstein, Piper, and Silverman [2]. Later, Stehlé and Steinfeld[3]
demonstrated that NTRU lattices could be used in the GPV framework in a
provably secure manner.

When public and private keys are generated using NTRU lattices, four poly-
nomials f, g, F, G ∈ Z[x]/ϕ(x) are required. Let ϕ(x) = xn + 1, n = 2k, q be
positive integers. f and g are randomly generated, and if f satisfies the invertible
condition with the modulus of (ϕ, q), we can calculate

h = g · f−1 mod (ϕ, q)

and use it as a public key polynomial. F and G can be found by finding a solution
that satisfies the following NTRU equation using the given f and g.

f ·G− g · F = q mod ϕ. (1)

Note that in the NTRU equation in (1), after the the right hand-side is reduced
using the modulus ϕ, only q should remain as a constant term. If we find F and
G that satisfy this formula, we can use the above polynomials to create a secret
key orthogonal to the public key, and we can get the desired result at the time
of signing. Using these polynomials, create the matrices A and B as follows.

A =
(
1, h

)
, B =

(
g, − f
G, − F

)
.

Then, when B ·At is calculated, it can be confirmed that they are orthogonal
to each other as follows.

B ·At =
(
g − h · f, G− h · F

)
=

(
0, 0

)
mod (ϕ, q).

When generating arbitrary polynomials f , g, F , and G that satisfy the NTRU
equation (1) in all cases and the generated f is not always invertible. Also, it is
recommended to create F and G so that the norm of the generated row vectors
of B is not too large. There is difficulty in generating polynomials that satisfy
all these conditions. Specific conditions will be described in Section 3.
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Centered Binomial Random Variable LWE, RLWE, and MLWE are prob-
lems defined on lattices and are proven to be secure when the random error
is sampled from the discrete Gaussian distribution. However, sampling random
errors from exact discrete Gaussian distribution is not only complicated to imple-
ment but also vulnerable to side-channel attacks. Thus, other than FALCON sig-
nature scheme, the lattice-based KEM and signature algorithms finally selected
as the NIST PQC standard algorithms replaced the discrete Gaussian distri-
bution with other distributions that can be easily sampled. Crystal-Dilithium
signature scheme [20] uses the uniform distribution, and Crystal-Kyber KEM
scheme [19] uses the centered binomial distribution. In the case of FALCON, it
pursuits the provable security for rigorous security assurance, and thus it imple-
ments the isochronous discrete Gaussian distribution based on the works of Zhao,
et al., [4] and Howe et al., [5]. However, these implementations are not constant-
time implementation, are not easy to be applied with the masking technique, and
have complicated implementation processes. Thus, each implementation step can
be exposed to the side channel attack.

In FALCON, discrete Gaussian random variables are used in the key gen-
eration and signature processes. When FALCON creates polynomials f and g
in the key generation process, discrete Gaussian random variables with variance
1.17

√
q/2n are used to make the value of ||B||GS small. The value is selected

experimentally in [6] and [7]. If f and g are generated whose polynomial coef-
ficients have a discrete Gaussian distribution, it has been proven in [3] that h
used in the public key is cryptographically secure. Peregrine utilizes centered
binomial random variables close to the discrete Gaussian to perform faster with
a similar security level. We experimentally confirm the successful derivation of
F and G satisfying the NTRU equation (1) using the generated f and g.

In addition, in the signing process of FALCON, the discrete Gaussian random
variables are used to introduce randomness for hiding the information of secret
key B. Fast Fourier sampling is used for theoretical security assurance, and dis-
crete Gaussian random variables are used to add randomness to each sampling.
Peregrine adds randomness to a signature using a centered binomial distribu-
tion instead of discrete Gaussian. In addition, it provides diverse parameters for
security enhancement.

Signature Procedure without Floating-point Number Operation Pere-
grine does not use the Gram-Schmidt norm for B and the fast Fourier sampling
when the signing process introduces some randomness. Therefore, it is designed
to be able to sign using the residue number system (RNS) and the number the-
oretic transform (NTT) without using the fast Fourier transform (FFT) as in
the FALCON. However, the implementation complexity is designed to be signif-
icantly reduced. A detailed explanation of this will be given in Section 2.

1.2 Advantages and Limitations

FALCON, a representative of the lattice-based hash-and-sign method, has the
advantage of theoretical security assurance, but the signing speed is relatively
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slow. Above all, since the implementation complexity is relatively high, there
is an entry barrier to use. Peregrine is an algorithm proposed to overcome this
shortcoming of the FALCON and has the advantage of being a signature with
a structure that is safe from side-channel attacks as it is simple to implement.
It is possible to apply techniques such as making. However, the disadvantage is
that it does not provide the same security assurance as other algorithms using
uniform or centered binary distribution.

2 Preliminaries

The main idea of the lattice-based hash-and-sign signature is to find a point v on
the lattice Λ(B) close to c satisfying c ·At = H(m). Depending on the finding
method, a distinct signature can be constructed. For example, a deterministic
method to find v given c is Babai’s round-off algorithm [8]. Let v on Λ(B) be
v = v0 ·B. We can find a real value vector c0 satisfying c0 ·B = c. If we generate
signature s = c − v using v by assigning v0 to ⌊c0⌉, s is always inside of the
parallelepiped [− 1

2 ,
1
2 ]

m×B, and thus we can assure the generation of signature
with a small size of the norm, which is depicted in Fig. 2. If many signatures
are generated and accumulated, the information on s in the parallelepiped is
collected, which is a leak on the lattice B and can result in the key-recovery
attacks [9],[10].

Fig. 1. Babai’s round-off algorithm

Babai’s nearest plane algorithm can make sure that s is in the parallelepiped
[− 1

2 ,
1
2 ]

m× B̃ using the Gram-Schmidt orthogonalized basis B̃. As in Fig 2, B is
not directly exposed because the parallelepiped indicated by the dots is made of
an orthogonal basis. However, since this is also a deterministic algorithm, there
is a problem that information about the norm value of row vectors of B̃ may
leak if multiple signatures are generated.

Klein’s algorithm[11] is proposed to solve the deterministic algorithm prob-
lem. Klein’s algorithm is based on combining discrete Gaussian random variables
with Babai’s nearest plane algorithm. It is a secure algorithm that does not ex-
pose the information on B even if signatures are generated many times. In Fig. 2,
for a given c, we select the nearest lattice point v in the dotted parallelepiped
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Fig. 2. Babai’s the nearest plane algorithm

and then choose v′ of v+α, where the value of α is a discrete Gaussian random
variable. The greatest complexity in the signing of FALCON arises from the
recursive implementation of Klein’s algorithm, which combines Babai’s nearest
plane algorithm and discrete Gaussian distribution using the fast Fourier trans-
form (FFT).

Fig. 3. Klein’s algorithm

Contrary to this, Peregrine uses Babai’s round-off algorithm to find the clos-
est point v to c and add a centered binomial random variable to find v′ = v+α.
Using the numerical simulation, we can show the uniform distribution of signa-
ture enough to hide the information on the secret key B. Thus, Peregrine can be
securely used like Crystal-Kyber, an algorithm based on the centered binomial
distribution.

Fig. 4. Peregrine algorithm
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3 Specification

Peregrine comprises three phases; key generation, singing, and verification. Each
process will be explained in detail in this section, and the specific parameters
used will be explained.

3.1 Notation

Cryptographic Parameters The security level and the maximal number of
signing queries, indicating the security of signing, are expressed as λ and Qs,
respectively, and Qs is set to be 264.

Matrices, Vectors, Polynomials Matrices are written in bold uppercase, and
vectors in bold lowercase. Elements of matrices and vectors are polynomials,
which are written in italic. We use the notation Bt to express the transpose of
a matrix B.

Number Fields Polynomials of Peregrine are defined in Zq[x]/ϕ(x), Z[x]/ϕ(x),
Q[x]/ϕ(x). Since polynomials defined in various number fields have to be handled
depending on many stages of key generations, we have to care about some points
in implementation. Since the integer modulus q is the prime 12289, Zq becomes
a finite field. A polynomial modulus ϕ(x) = xn + 1, n = 2k, (k = 9 or 10 in
Peregrine), is a monic polynomial of Z[x], irreducible in Q[x], and has distinct
roots over C.

Ring Lattices In Peregrine, we define a full-rank matrix B ∈ (Z[x]/ϕ(x))2×2

and the ring lattice Λ(B) generated by B is the set {z ·B|z ∈ (Z[x]/ϕ(x))2}.

Inner product Let a =
∑n−1

i=0 ai · xi and b =
∑n−1

i=0 bi · xi, where a, b ∈
Q[x]/ϕ(x). The inner product of two polynomials over Q[x]/ϕ(x) is defined as

< a, b >=
1

deg(ϕ)
·
∑
ϕ(ζ)

a(ζ) · b(ζ), (2)

which coincides with the usual coefficient-wise inner product

< a, b >=

n−1∑
i=0

ai · bi

for our choice of ϕ(x). For polynomial vectors u = (u0, u1, · · · , um) and v =
(v0, v1, · · · , vm) in (Q[x]/ϕ(x))m, the inner product is defined by < u,v > =∑m

i=0 < ui, vi >. When polynomials are in FFT expression, (2) is useful to
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calculate the inner product with the concept of Hermitian adjoint. We define
the Hermitian adjoint of a polynomial a as

a∗ = a0 −
n−1∑
i=1

ai · xn−i,

which satisfies that a∗(ζ) = a(ζ) for any root ζ of ϕ(x). Also, note that a norm
of a polynomial is defined as ||a|| = √< a, a >.

Centered Binomial Distribution A centered binomial distribution with pa-
rameter µ has samples in the interval [−µ/2, µ/2] and probability mass function
P [X = x] = µ!

((µ/2)+x)!·((µ/2−x))! · 2
−µ, where the parameter µ should be even.

The centered binomial random variable, βµ, with parameter µ can be gener-
ated simply from B1−B2 where B1 and B2 are binomial random variables with
(µ/2, 1/2).

3.2 Specification of Peregrine Key Generation

Among the polynomials required to create public key A and private key B, we
first explain how to randomly generate f and g, and then we will explain how
to generate F and G by solving the NTRU equation in (1).

Generation of f and g The key generation of Peregrine starts from generating
polynomials f and g in Z[x]/ϕ(x). Let us consider some things in the generation
of f and g.

First, with the generated f and g, public key h = f−1 · g mod (q, ϕ) is gen-
erated. The public key should not be distinguishable from the polynomials with
coefficients generated uniformly at random. To ensure that, a random variable
with a discrete Gaussian distribution is used in FALCON as demonstrated by
[3]. The NTT coefficients of the generated polynomial f should be non-zero to
guarantee that f is invertible. Otherwise, it must be regenerated.

Second, the secret basis matrix B has row vectors of (g, −f) and (G, −F ) as
its basis, and the norm values of these bases are small. The smaller the number,
the shorter the signature will be. At this point, the value of ||(g, − f)|| can be
calculated, but the value of ||(G, − F )|| cannot be accurately known. Instead,
we can make a guess: Let v = (g, − f) and u = (G,−F ). If u is orthogonalized
to v, u′ ← u− ⌊<u,v>

<v,v>⌉ · v can be obtained. If we omit the round operation, we

can calculate u′ as follows
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u′ = u− < u,v >

< v,v >
· v

= (G, − F )− G · g∗ + F · f∗

g · g∗ + f · f∗ · (g, − f)

= (
(f ·G− g · F ) · f∗

g · g∗ + f · f∗ ,
(f ·G− g · F ) · g∗

g · g∗ + f · f∗ )

= (
q · f∗

g · g∗ + f · f∗ ,
q · g∗

g · g∗ + f · f∗ ).

Therefore, we can make the secret key good enough by checking in advance
whether the value of ||u′|| is small enough. By checking the following conditions,
we can determine whether to solve the NTRU equation or generate a new random
polynomial with f and g.

γ = max{||(g, − f)||, ||( q · f∗

g · g∗ + f · f∗ ,
q · g∗

g · g∗ + f · f∗ )||} ≤ 1.17
√
q.

When generating f and g accordingly, if the centered binomial distribution
with µ = 26 is used, we can obtain a distribution very close to the discrete
Gaussian distribution using σ = 1.17

√
q/2n originally used in FALCON, and

successfully generate random polynomials, f and g, that pass all the conditions
described above.

Generation of F and G Efficiently finding F and G satisfying the NTRU
equation (1) based on the polynomials f and g is a complicated problem. In
Peregrine, it is implemented as [12] using a tower field following the method used
in FALCON. Here, the theoretical background will be omitted, and the specific
implementation method will be summarized. For more information, please find
the FALCON specification [18].

To solve the given NTRU equation, f and g on Z[x]/(xn + 1) are denoted
as fn and gn. Let f

n
2 and g

n
2 be polynomials corresponding to elements on

Z[x]/(xn
2 + 1) of fn and gn. These polynomials can be calculated as follows

f
n
2 (x) = fn(x) · fn(−x) mod x

n
2 + 1.

In this procedure, the degree of two factored polynomials becomes halved, but
their coefficients are continuously increased. Thus, we have to use a prime larger
than the maximum polynomial coefficient to preserve the polynomial coefficients.
We can reduce the complexity by performing this multiplication in the NTT
domain when we obtain f

n
2 . We can obtain f

n
4 and g

n
4 in Z[x]/(xn

4 + 1) in the
same way. At the end of these sequential computations, we can obtain constants
f1 and g1 in Z[x]/(x + 1). The extended Euclidean algorithm can solve the
NTRU problem with these constants when f1 and g1 are coprime. If f1 and
g1 are not coprime, we cannot obtain a solution to the corresponding NTRU
problem, and thus we have to regenerate f and g. If we denote the solutions
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of the NTRU problem with constants as F 1, G1 ∈ Z[x]/(x+ 1), we can obtain
F 2, G2 ∈ Z[x]/(x2+1). After successive computations, we can obtain Fn, Gn ∈
Z[x]/(xn+1). Specifically, we can obtain Fn, Gn ∈ Z[x]/(xn+1) from F

n
2 , G

n
2 ∈

Z[x]/(xn
2 + 1).

Fn = F
n
2 (x2) · g n

2 (x2)/g(x) = F
n
2 (x2) · g n

2 (−x) mod xn + 1

Gn = G
n
2 (x2) · f n

2 (x2)/f(x) = G
n
2 (x2) · f n

2 (−x) mod xn + 1.

We additionally need Babai’s reduction to (gi, − f i), (Gi, − F i), i = 2k, 0 ≤
k ≤ n for each step in the above procedure, since we should minimize the norm
of vectors (Gi, −F i). In this Babai’s reduction, the polynomials ki with integer
coefficients are obtained and the vector ki · (gi, −f i) is subtracted from (Gi, −
F i). This procedure is specified in Algorithm 1.

Algorithm 1 BabaiReduction(f, g, F, G, ϕ)

Require: Polynomials f, g, F, G ∈ Z[x]/ϕ
Ensure: (F, G) is reduced with respect to (f, g)
1: while k ̸= 0 do
2: k ← ⌊F ·f∗+G·g∗

f ·f∗+g·g∗ ⌉ ∈ Z[x]/ϕ
3: F ← F − k · f
4: G← G− k · g
5: end while

Algorithm 2 shows the recursive algorithm to obtain the solutions of NTRU
problem F and G using Algorithm 1 as a subroutine algorithm, which is equiv-
alent to the above procedure. Algorithm 3 shows the generation algorithm for
polynomial f, g, F, G including these whole procedure. We can generate the
public and secret keys from these polynomials as Algorithm 4.

3.3 Specification of Peregrine Signature

Message Hashing When we sign with the message M , we use the hash value
of M , H(M). However, if we sign multiple times using the same H(M) in the
GPV framework, the security proof in [1] cannot cover this situation. Therefore,
the message is concatenated with a random salt r ∈ {0, 1}k, and the hash value
H(M ||r) is used in the signature to prevent this issue. As in FALCON, we use
k = 320 to preserve the 256-bit security level. We use SHAKE-256 as our hash
function, which is included in FIPS 202 as the approved extendable-output hash
function (XOF) [13].

Signature Generation Following the GPV framework, when we haveH(M ||r) =
c, we need to find a short vector s = (s1, s2), satisfying s ·At = c mod (ϕ, q),
where a public key A = (1, h) and s1, s2, c, and h are in Zq[x]/ϕ. Let us define
the vector c := (c, 0). A simple method for obtaining a short signature s is as
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Algorithm 2 NTRUSolve(f, g, n, q)

Require: Polynomials f, g ∈ Z[x]/(xn + 1), n = 2k

Ensure: Polynomials F i, Gi satisfying (1)
1: if n = 1 then
2: Compute u, v ∈ Z such that u · f − v · g = gcd(f, g)
3: if gcd(f, g) ̸= 1 then
4: abort and return ⊥
5: end if
6: (F, G)← (vq, uq)
7: else
8: f ′ ← f(x) · f(−x) mod (x

n
2 + 1)

9: g′ ← g(x) · g(−x) mod (x
n
2 + 1)

10: (F ′, G′)←NTRUSolve(f ′, g′, n
2
, q)

11: F ← F ′(x2) · g(−x)
12: G← G′(x2) · f(−x)
13: BabaiReduction(f, g, F,G, xn + 1)
14: end if

Algorithm 3 PolyGen(ϕ, q)

Require: A monic polynomial ϕ(x) = xn + 1 ∈ Z[x] and a modulus q
Ensure: Polynomials f, g, F, G
1: µ← 26
2: for i = 0, i ≤ n− 1, i← i+ 1 do
3: fi ← βµ

4: gi ← βµ

5: end for
6: f ←

∑n−1
i=0 fi · xi

7: g ←
∑n−1

i=0 gi · xi

8: if NTT of f has 0 then
9: restart
10: end if
11: γ ← max{||(g, − f)||, ||( q·f∗

g·g∗+f ·f∗ ,
q·g∗

g·g∗+f ·f∗ )||}
12: if γ > 1.17

√
q then

13: restart
14: end if
15: (F,G)←NTRUSolve(f, g, n, q)
16: if (F,G) =⊥ then
17: restart
18: end if
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Algorithm 4 KeyGeneration(ϕ, q)

Require: A monic polynomial ϕ ∈ Z[x], a modulus q
Ensure: A secret key sk, a public key pk
1: f, g, F, G← PolyGen(ϕ, q)

2: B←
(
g, − f
G, − F

)
3: sk←B
4: h← g · f−1 mod (q, ϕ)
5: pk← h
6: return sk, pk

follows. After obtaining a polynomial vector in t ∈ (Q[x]/ϕ)2 satisfying t ·B = c,
we obtain s = (t− z) ·B. Then, we have

(t− z) ·B ·At = t ·B ·At − z ·B ·At = (c, 0) · (1, h)t + 0 = c = s ·At.

The vector t = (t1, t2) satisfies the following formula.

t ·B = (t1 · g + t2 ·G,−t1 · f − t2 · F ) = (c, 0). (3)

We can obtain t1 = −t2 · F/f from (3), and we have

c = t1 · g + t2 ·G

= (−F

f
· g +G) · t2

=
f ·G− g · F

f
· t2 =

q

f
· t2.

In other words, we have t2 = c · f/q ∈ Q[x]/ϕ and t1 = −c · F/q ∈ Q[x]/ϕ.
c · f mod ϕ and c · F mod ϕ are in Z[x]/ϕ. All coefficients divided by q are
rational numbers. Thus, we can separate each tl for l = 1, 2 as the sum of
the integer part Il and the fraction part Rl, where all coefficients of Rl are in
[−0.5, 0.5). We have, Rl =

∑n−1
j=0 rlj · xj , l = 1, 2, − 0.5 < rlj ≤ 0.5 and

Il =
∑n−1

j=0 ilj · xj , l = 1, 2, ilj ∈ Z. Then, we can represent the vector t as

t = (t1, t2) = (−c · F
q

,
c · f
q

) = (R1 + I1, R2 + I2).

The first trial for minimizing the signature s is to obtain s = (t − z) ·B where
z = (I1, I2). However, this deterministic method has problems with security.
Thus, Peregrine generates s = (t − z′) · B where z′ = (I1 + J1, I2 + J2). The
vector (I1, I2) can be easily derived from t. The vector (J1, J2) ∈ (Z[x]/ϕ)2 is
the polynomial vector with small coefficients where each coefficient is sampled
from the centered binomial distribution.
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With the above z′, the following equations on s hold.

s = (t− z′) ·B
= t ·B− z′ ·B
= (c, 0)− ((I1 + J1) · g + (I2 + J2) ·G, − (I1 + J1) · f − (I2 + J2) · F )

= (c− (I1 + J1) · g − (I2 + J2) ·G, (I1 + J1) · f + (I2 + J2) · F ) mod (ϕ, q).

In Peregrine, after we compute (I1, I2), we can use NTT in the signing procedure
without FFT used in FALCON. For obtaining (I1, I2), we can use the RNS and
NTT as in the method in the ModDown algorithm in RNS-CKKS homomorphic
encryption [22]. Suppose we set a modulus Q larger than the maximum values
of coefficients of input polynomials and the result polynomials. In that case,
we can use the RNS system for fast multiplication and division without the
modular reduction by a large modulus Q in these operations. Here, we can guess
the maximum values with c · F and c · f . If the coefficients of c, f, F are
less than q, modulus Q is taken as the product of primes greater than q2 · n
Q = q1 · q2 · q > q2 · n, where q1, q2, and q are coprime. Then, expressing c,
f , and F in RNS can speed up their multiplication. Refer to the appendix for
a detailed description of the ModDown algorithm. Algorithm 5 summarizes in
Algorithm 5 about finding a value obtained by rounding the quotient of each
coefficient divided by q for a polynomial having integer coefficients expressed in
RNS form using modulus Q.

Algorithm 5 ModDown(f,Q, q)

Require: A polynomial f =
∑n−1

i=0 fi · xi ∈ ZQ[x]/ϕ, Q = q1 · · · ql · q, a modulus q, fi
is in RNS form with mod (q1, q2, · · · , ql, ql+1 = q)

Ensure: A polynomial f =
∑n−1

i=0 fi · xi = ⌊f/q⌉ ∈ ZQ/q[x]/ϕ in RNS form with
mod (q1, q2, · · · , ql)

1: for i = 0, i ≤ n− 1, i← i+ 1 do
2: b← fi
3: b′ = (b′1, b

′
2, · · · , b′l, b′l+1)← b+ ([⌊ q

2
⌋]q1 , [⌊ q2⌋]q2 , · · · , [⌊

q
2
⌋]ql , [⌊

q
2
⌋]q)

4: b′′ = (b′′1 , b
′′
2 , · · · , b′′l , b′′l+1)← ([b′l+1]q1 , [b

′
l+1]q2 , · · · , [b′l+1]ql , [b

′
l+1]q)

5: fi ← ((b′1 − b′′1 ) · [q−1]q1 , · · · , (b′l − b′′l ) · [q−1]ql)
6: end for

Algorithm 6 shows the process of finding (I1, I2) using Algorithm 5 and gen-
erating (J1, J2) using the centered binomial distribution to generate signature s.
If the size of the norm of the generated signature s is greater than the acceptance
bound, ⌊β2⌋, it is regenerated. In actual signing, s is not transmitted, but only
s1 is transmitted, which is s1 + s2 · h = c mod (ϕ, q). This is because we can
calculate the rest even if we know only one of s1 and s2.

Signature Verification The verification process is simple. When we know the
message M and the public key, we must check that the received signature has a
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Algorithm 6 Signature(M, sk, ⌊β2⌋)
Require: A message M , a secret key sk, a bound ⌊β2⌋
Ensure: A signature sig of M
1: r ← {0, 1}320 uniformly
2: c← H(M ||r)
3: µ← 26
4: I1 ←ModDown(−c · F , Q, q)
5: I2 ←ModDown(c · f , Q, q)
6: while ||s|| > ⌊β2⌋ do
7: for i = 0, i ≤ n− 1, i← i+ 1 do
8: J1i ← βµ

9: J2i ← βµ

10: end for
11: J1 ←

∑n−1
i=0 J1i · xi

12: J2 ←
∑n−1

i=0 J2i · xi

13: s1 ← c− (I1 + J1) · g − (I2 + J2) ·G mod (ϕ, q)
14: s2 ← (I1 + J1) · f + (I2 + J2) · F mod (ϕ, q)
15: s← (s1, s2)
16: end while
17: return sig = (r, s2)

sufficiently small norm value. Since the verifier uses the same hash function as
the signer, if we know the message M and the received random salt r, we can
restore the polynomial c to be signed. Moreover, since the public key, h is known,
using the value of s2 included in the signature, s1 + s2 · h = c mod (ϕ, q) value
can be found. In this process, the polynomial product can be easily calculated
using NTT. Finally, finding the norm value of s = (s1, s2) found in this way and
checking that it is within the acceptance bound is arranged in Algorithm 7.

Algorithm 7 verify(M, sig, pk, ⌊β2⌋)
Require: A message M , a signature sig = (r, s1), a public key pk = h ∈ Zq[x]/ϕ, a

bound ⌊β2⌋
Ensure: Accept or reject
1: c← H(M ||r)
2: s1 ← c− s2 · h mod (ϕ, q)
3: if ||(s1, s2)|| ≤ ⌊β2⌋ then
4: accept
5: else
6: reject
7: end if
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3.4 Parameter Sets

Peregrine is a signature algorithm made with the rationale to reduce the imple-
mentation complexity and thus increase the usability for general applications.
Therefore, many parameters used in FALCON can be reused as they are, except
for those related to random variable generation. The parameters used in Pere-
grine are summarized in Table 1. When the maximal number of signing queries
Qs is 264, target security level λ satisfying NIST level I according to [13] is set
to 128 and target security level λ that satisfies NIST level V is set to 256. For
each security level, the degree of the polynomial ring is 512 and 1024. The mod-
ulus q = 12289 = 12 · 1024 + 1 is chosen by the smallest prime number that
satisfies 2n|(q − 1) so that multiplication of polynomials can be performed by
NTT[14] operation. FALCON showed that there is no security problem because
the q value of this size is large enough to respond to hybrid attacks and trivial
attacks on SIS and small enough to prevent overstretched NTRU attacks. Under
the assumption that discrete Gaussian and fast Fourier sampling algorithms are
used in FALCON, signature acceptance bound, ⌊β2⌋, are set according to each
security level. Peregrine uses the same parameters, except for some parameters
for a discrete Gaussian distribution, which are replaced with new parameters
generated from a centered binomial distribution. The length of the public key
and signature shown in Table 1 can be obtained when the compression and de-
compression algorithms used in FALCON (Algorithms 17 and 18) are used, and
Peregrine uses the same method.

Table 1. Peregrine recommended parameters

Peregrine-512 Peregrine-1024

Target NIST level I V
Ring degree n 512 1, 024
Modulus q 12, 289 12, 289
CBD µ 26 26

Signature acceptance bound ⌊β2⌋ 34034726 70, 265, 242

Public key bytelength 897 1, 793
Signature bytelength 666 1, 280

4 Performance Analysis

This section presents the performance measurement results using the reference
implementation of Peregrine. The runtime for key generation, sign, and verifi-
cation of Peregrine are measured for the proposed parameters 512 and 1024.
Since the performance presented in this section is measured based on a reference
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code, optimized measurement results in various computing environments will be
added.

4.1 Description of Platform

Runtime measurements are carried out on Apple M1 chip with eight cores and
16GB memory. Peregrine’s reference code is implemented in a standard ANSI
C-based environment and compiled without any optimization options using the
gnu c compiler (gcc).

4.2 Performance of Reference Implementation

When implementing Peregrine, we use RNG and SHAKE 256 codes developed
by the third party as it is. Peregrine uses the same NTRU structure of FALCON
for key generation and utilizes a centered binomial distribution instead of a
discrete Gaussian distribution in FALCON. Unlike FALCON, NTT is mainly
used rather than FFT so that floating point operations can be minimized, and
overall performance can be improved by replacing them with integer operations.
Since integer operations are used in sign and verification, there is no need to
include an additional library for floating point operation when implementing
SW.

In many applications where only sign and verify are frequently used with
a key created once, it can be processed only by integer operations, which can
be implemented to operate faster with a more compact code size. In addition,
since floating point operation is minimized, it is possible to design smaller and
lower power even when implemented with HW. HW implementation issues will
be further studied in the future.

5 Security

Peregrine utilizes randomness generated using a centered binomial distribution
in addition to Babai’s nearest plane algorithm for the method of generating ran-
domness added from the signature, instead of using the Klein[11] method, which
has already proven security in FALCON. Therefore, Peregrine currently does
not provide the same security proof level as FALCON. However, the centered
binomial distribution is widely used in many lattice-based cryptosystems instead
of the discrete Gaussian distribution.

For example, among the algorithms submitted in the NIST PQC standardiza-
tion, Crystals-Dilithium, which was finally selected as a PQC signature standard,
and NewHope [21], which is one of prominent candidates for the second round
and embedded in Google Chrome Browser, are the most representative exam-
ples. In the case of using a centered binomial distribution, it is more difficult to
derive an accurate security proof of the scheme, but practically no problem has
been found due to having characteristics similar to discrete Gaussian. Peregrine’s
security justification will be studied through further research.
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Thus, it is assumed that Peregrine’s method will not significantly damage
FALCON’s security level. We will introduce the security level related to key
recovery and forgery proven by FALCON.

Key Recovery Attacks The most straightforward way to find out the private
key from a given public key is to find all lattice points within a certain radius
from the origin by applying lattice reduction to the lattice generated based on
the public key. Due to the similarity of parameters between Peregrine and FAL-
CON, the security level of Peregrine can be similarly derived as in FALCON.
The key recovery attack complexity can be presented in Table 2, which shows
the BKZ blocksize attack complexity calculated by the best-known lattice re-
duction algorithm, DBKZ[17], and the Core-SVP hardness calculated using the
corresponding classical and quantum algorithms.

Table 2. Key-recovery parameters in Peregrine

Peregrine-512 Peregrine-1024

BKZ blocksize 458 936
Core-SVP hardness in classical algorithm 133 273
Core-SVP hardness in quantum algorithm 121 248

Forgery Attacks Generating a signature for a given message without knowing
the private key will have the same difficulty as solving the SIS problem. For
any given point, finding all points with a distance less than β and generating
a forged signature solve the same problem, which can also be solved by lattice
reduction. The key recovery parameters are listed in Table 3 that include BKZ
blocksize calculated by DBKZ[17], the Core-SVP hardness calculated using the
corresponding classical and quantum algorithms.

Table 3. Forgery parameters in Peregrine

Peregrine-512 Peregrine-1024

BKZ blocksize 411 952
Core-SVP hardness in classical algorithm 120 277
Core-SVP hardness in quantum algorithm 108 252
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6 Conclusion

The proposed Peregrine algorithm is a lattice-based hash-and-sign digital sig-
nature. It is an algorithm created to improve the convenience of implementa-
tion and speed of signature. Since the goal of FALCON selected in the existing
NIST 4 rounds was to implement the proven security perfectly, it has the dis-
advantages of additional actual calculations, very complex implementation, and
a long signature time. Peregrine has the disadvantage that security cannot be
proved theoretically yet. However, Peregrine generates a signature through a
more straightforward implementation process than FALCON. Since the distri-
bution of the signature generated as a result of the Peregrine signature is difficult
to distinguish from the FALCON result, it will be a practical and secure option
for post-quantum signatures.
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3. D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case problems over
ideal lattices,” in Proc. EUROCRYPT 2011, vol. 6632 of LNCS, pp. 27–47, Tallinn,
Estonia, May, 2011.

4. R. K. Zhao, R. Steinfeld, and A. Sakzad, “FACCT: fast, compact, and constant-
time discrete gaussian sampler over integers,” IEEE Trans. Computers, 69(1), pp.
126–137, 2020.

5. J. Howe, T. Prest, T, Ricosset, and M. Rossi, “Isochronous gaussian sampling:
From inception to implementation,” in Proc. PQCrypto 2020, pp. 53–71, Paris,
France, April, 2020.

6. L. Ducas, V. Lyubashevsky, and T. Prest, “Efficient identity-based encryption over
NTRU lattices,” in Proc. ASIACRYPT 2014, Part II, vol. 8874 of LNCS, pp. 22–41,
Kaoshiung, Taiwan, December, 2014.

7. T. Prest, “Gaussian Sampling in Lattice-Based cryptography.” Theses, École Nor-
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A ModDown Algorithm

We will explain the ModDown algorithm in detail. Suppose there is an arbitrary
coefficient b. If Q =

∏l
i=0 qi and qi are expressed as prime numbers that are
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prime numbers, they can be expressed as follows.

b mod Q = (b mod q0, b mod q1, · · · , b mod ql−1, b mod ql)

= ([b]q0 , [b]q1 , · · · , [b]ql−1
, [b]ql)

= (b0, b1, · · · , bl−1, bl).

We want to find the value of ⌊b/ql⌉ through the ModDown algorithm. As-
suming that the original b is less than Q, we can expect that the value of ⌊b/ql⌉
will be smaller than the value of Q/ql, so from q0 to ql−Upto1 can be expressed
in RNS using l primes. This is the ModDown algorithm. What we want to find
here is ⌊b/ql⌉, which can be obtained as follows

⌊b/ql⌉ = (b− [b]ql)/ql + ⌊([b]ql)/ql⌉

= (b− [b]ql)/ql + ⌊([b]ql +
ql
2
)/ql⌋

= (b− [b]ql)/ql + ([b]ql + ⌊
ql
2
⌋ − [[b]ql + ⌊

ql
2
⌋]ql)/ql

= (b− [b]ql + [b]ql + ⌊
ql
2
⌋ − [[b]ql + ⌊

ql
2
⌋]ql)/ql

= (b+ ⌊ql
2
⌋ − [[b]ql + ⌊

ql
2
⌋]ql)/ql

= (b+ ⌊ql
2
⌋ − [b+ ⌊ql

2
⌋]ql)/ql.

Looking at the last of the above equations, we have to calculate b + ⌊ ql2 ⌋,
calculate the modulo ql, find the difference, and then finally calculate the re-
sult value as ql. Therefore, we can obtain the round-off of b/ql, which can be
represented in RNS as follows.

b′ = b+ ⌊ql
2
⌋

= ([b]q0 , · · · , [b]ql−1
, [b]ql) + ([⌊ql

2
⌋]q0 , · · · , [⌊ql

2
⌋]ql−1

, [⌊ql
2
⌋]ql)

= ([b]q0 + [⌊ql
2
⌋]q0 , · · · , [b]ql−1

+ [⌊ql
2
⌋]ql−1

, [b]ql + [⌊ql
2
⌋]ql)

= ([b+ ⌊ql
2
⌋]q0 , · · · , [b+ ⌊ql

2
⌋]ql−1

, [b+ ⌊ql
2
⌋]ql)

= (b′0, · · · , b′l−1, b′l)

and

b′′ = [b+ ⌊ql
2
⌋]ql = b′l

= ([b′l]q0 , · · · , [b′l]ql−1
, [b′l]ql)

= (b′′0 , · · · , b′′l−1, b′l)

In the above expression, [b′l]ql does not change even after taking the modulus
because b′l has already reduced with the modulo ql. Therefore, b

′ − b′′ can be
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found as follows

⌊b/ql⌉ = (b′ − b′′)/ql

= ((b′0 − b′′0) · [q−1
l ]q0 , · · · , (b′l−1 − b′′l−1) · [q−1

l ]ql−1
, 0).


