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Abstract. In this work, we first propose a new full domain functional bootstrapping
method with TFHE for evaluating any function of domain and codomain the real torus
T by using a small number of bootstrappings. This result improves some aspects of
previous approaches: like them, we allow for evaluating any functions, but with better
precision. In addition, we develop efficient multiplication and addition over ciphertexts
building on the digit-decomposition approach of [GBA21]. As a practical application,
our results lead to an efficient implementation of ReLU, one of the most used activation
functions in deep learning. The paper is concluded by extensive experimental results
comparing each building block as well as their practical relevance and trade-offs.
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1 Introduction
Machine learning application to the analysis of private data, such as health or genomic
data, has encouraged the use of homomorphic encryption for private inference or prediction
with classification or regression algorithms where the ML models and/or their inputs are
encrypted homomorphically [Xie+14; Cha+17; Cha+19; Bou+18; ZCS20b; ISZ19; ZS21].
Even training machine learning models with privacy guarantees on the training data has been
investigated in the centralized [JA18; CKP19; Nan+19; Lou+20] and collaborative [Séb+21;
Mad+21] settings. In practice, machine learning algorithms and especially neural networks
require the computation of non-linear activation functions such as the sign, ReLU or sigmoid
functions. Computing non-linear functions homomorphically remains challenging. For
levelled homomorphic schemes such as BFV [Bra12; FV12] or CKKS [Che+17], non-linear
functions have to be approximated by polynomials. However, the precision of this approxima-
tion differs with respect to the considered plaintext space (i.e., input range), approximation
polynomial degree and its coefficients size, and has a direct impact on the multiplicative
depth and parameters of the cryptosystem. The more precise is the approximation, the larger
are the cryptosystem parameters and the slower is the computation. On the other hand,
homomorphic encryption schemes having an efficient bootstrapping, such as TFHE [Chi+16;
Chi+19] or FHEW [DM15], can be tweaked to encode functions via look-up table evaluations
within their bootstrapping procedure. Hence, rather than being just used for refreshing
ciphertexts (i.e., reducing their noise level), the bootstrapping becomes functional [BST19]
or programmable [CJP21] by allowing the evaluation of arbitrary functions as a bonus. These
capabilities results in promising new approaches for improving the overall performances of



2 FHE calculations by means of TFHE functional bootstrapping

homomorphic calculations, making the FHE “API” better suited to the evaluation of mathe-
matical operators which are difficult to express as low complexity arithmetic circuits. It is also
important to note that FHE cryptosystems can be hybridized, for example BFV ciphertexts
can be efficiently (and homomorphically) turned into TFHE ones [Bou+20; ZCS20a]. As
such, the building blocks discussed in this paper are of relevance also in the setting where the
desired encrypted-domain calculation can be split into a preprocessing step more efficiently
done using BFV (e.g. several dot product or distance computations) followed by a nonlinear
postprocessing step (such as an activation function or an argmin) which can then be more
conveniently performed by exploiting TFHE functional bootstrapping. In this work, we thus
systematize and further investigate the capabilities of TFHE functional bootstrapping.

Contributions – In this paper, we review, unify and extend the capabilities of TFHE
functional bootstrapping. We strive to present the main existing methods as well as new
variants. We compare their relative accuracy and performance as well as discuss their main
pros and cons. Indeed, on top of the extensions that we present, we aim for this paper to be a
complete reference for anyone looking to get a view of the state of functional bootstrapping.
As such, several methods for LUTs evaluation using functional bootstrapping are presented:
the usual method using one bit of padding (described clearly in [CJP21]), two methods
coming from recent papers that work without padding [KS21; Yan+21], one novel approach
also working without padding, and a method using digit decomposition of the inputs in order
to get an arbitrary large plaintext space (presented initially by Bourse et al., [BST19] and
generalized later by Guimarães et al. [GBA21]). The first method encodes the plaintext
space in [0, 12 [, i.e., the segment of the real torus T corresponding to the positive numbers.
Meanwhile, the other methods use the full torus for encoding the plaintext space and propose
various solutions to cope with the negacyclicity of TFHE bootstrapping when used for
evaluating LUTs. A novel way we present to achieve this is to use several bootstrappings one
after the other to cancel the negacyclicity of a single bootstrapping. In addition, we show
how to reduce the noise resulting from the technique in [KS21]. Finally, the decomposition
method allows working with larger plaintext spaces. Its main idea is to decompose each
plaintext into small digits which allows keeping TFHE parameters small enough to lead
to performance improvements. We generalize the chaining method of [GBA21] in order to
compute any function with any chosen precision.

Related works – In 2016, the TFHE paper made a breakthrough by proposing an effi-
cient bootstrapping for homomorphic gate computation. Then, Bourse et al., [Bou+18]
and Izabachene et al., [ISZ19] used the same bootstrapping algorithm for extracting the
(encrypted) sign of an encrypted input. Boura et al., [Bou+19] showed later that TFHE
bootstrapping could be extended to support a wider class of functionalities. Indeed, TFHE
bootstrapping naturally allows to encode function evaluation via their representation as
look-up tables (LUTs). Recently, different approaches have been investigated for func-
tional bootstrapping improvement. In particular, Kluczniak and Schild [KS21] and Yang
et al., [Yan+21] proposed two methods that take into consideration the negacyclicity of the
cyclotomic polynomial used within the bootstrapping, for encoding look-up tables over the
full real torus T. Meanwhile, Guimarães et al., [GBA21] extended the ideas in Bourse et
al., [BST19] to support the evaluation of certain activation functions such as the sigmoid.
One last method, presented in Chillotti et al., [Chi+21] achieves a functional bootstrapping
over the full torus using a BFV type multiplication.

Paper organization –The remainder of this paper is organized as follows. Section 2 reviews
TFHE building blocks. Section 3 describes the functional bootstrapping idea coming from the
TFHE gate bootstrapping. Sections 4 and 6 detail several methods, including ours, for the
intricate Look-UpTables (LUTs) encoding via the functional bootstrapping. Indeed, section 4
describes methods for LUTs evaluation when having a unique ciphertext as input. Meanwhile,
section 6 considers the case where LUTs are evaluated over several ciphertexts encrypting
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separately the digits of a large plaintext. The Section 5 details the formulas relative to the
noise variance and the probability of error for each bootstrapping. Finally, section 7 gives
unitary results comparing these methods for LUTs evaluation over encrypted data.

2 TFHE
2.1 Notations
In the upcoming sections, we denote vectors by bold letters and so, each vector x of n
elements is described as: x= (x1,...,xn). 〈x,y〉 is the inner product of two vectors x and
y. We denote matrices by capital letters, and the set of matrices withm rows and n columns
with entries sampled in K byMm,n(K).

We refer to the real torus by T = R/Z. T is the additive group of real numbers modulo 1
(R mod[1]) and it is a Z-module. That is, multiplication by scalars from Z is well-defined
over T. TN [X] denotes the Z-module R[X]/(XN +1) mod[1] of torus polynomials, where
N is a power of 2. R is the ring Z[X]/(XN+1) and its subring of polynomials with binary
coefficients is BN [X]=B[X]/(XN+1) (B={0,1}). Finally, we denote respectively by [x]T,
[x]TN [X] and [x]R the encryption of x over T, TN [X] or R.

x
$←−K denotes sampling x uniformly from K, while x N (µ,σ2)←−−−−−K refers to sampling x from

K following a Gaussian distribution of mean µ and variance σ2. Given x N (µ,σ2)←−−−−− R, the
probability P (a ≤ x ≤ b) is equal to 1

2 (erf( b−µ√2σ )− erf(a−µ√2σ )), where erf is Gauss error
function; erf(x)= 2√

π

∫ x
0 e
−t2 . If µ=0, we will denote P (−a≤x≤a)=erf( a√

2σ ) by (a,σ2).

The same result and notation apply for x N (0,σ2)←−−−−−T as long as the distribution is concentrated
as described in [Chi+19].

Given a function f : T→T and an integer k, we define LUTk(f) to be the Look-Up Table
defined by the set of k pairs

(
i,f
(
i
k

))
for i∈J0,k−1K. We will write LUT(f) when the value

of k is tacit.

Given a function f : T→ T and an integer k ≤ N , we define a polynomial Pf,k ∈ TN [X]

of degree N as: Pf,k =
N−1∑
i=0

f
(
b k·i

2N c
k

)
·Xi. If k is a divisor of 2N , Pf,k can be written as

Pf,k=
k
2−1∑
i=0

2N
k −1∑
j=0

f( ik ) ·X 2N
k ·i+j . For simplicity sake, we will write Pf instead of Pf,k when

the value k is tacit.

2.2 TFHE Structures
The TFHE encryption scheme was proposed in 2016 [Chi+16]. It improves the FHEW
cryptosystem [DM15] and introduces the TLWE problem as an adaptation of the LWE
problem to T. It was updated later in [Chi+17] and both works were recently unified
in [Chi+19]. The TFHE scheme is implemented as the TFHE library [Chi+]. TFHE relies
on three structures to encrypt plaintexts defined over T, TN [X] or R:

• TLWE Sample: (a,b) is a valid TLWE sample if a $←−Tn and b∈T verifies b=〈a,s〉+e,
where s $←−Bn is the secret key, and e N (0,σ2)←−−−−−T. Then, (a,b) is a fresh encryption of 0.

• TRLWE Sample: a pair (a, b) ∈ TN [X]k × TN [X] is a valid TRLWE sample if
a

$←− TN [X]k, and b = 〈a,s〉+ e, where s $←− BN [X]k is a TRLWE secret key and
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e
N (0,σ2)←−−−−−TN [X] is a noise polynomial. In this case, (a,b) is a fresh encryption of 0.

The TRLWE decision problem consists of distinguishing TRLWE samples from ran-
dom samples in TN [X]k×TN [X]. Meanwhile, the TRLWE search problem consists
in finding the private polynomial s given arbitrarily many TRLWE samples. When
N =1 and k is large, the TRLWE decision and search problems become the TLWE
decision and search problems, respectively.

LetM⊂TN [X] (orM⊂T) be the discrete message space1. To encrypt a message
m∈M⊂TN [X], we add (0,m)∈TN [X]k×TN [X] to a TRLWE sample encrypting 0
(or to a TLWE sample of 0 ifM⊂T). In the following, we refer to an encryption of
m with the secret key s as a T(R)LWE ciphertext noted c∈ T(R)LWEs(m).

To decrypt a sample c∈ T(R)LWEs(m), we compute its phase φ(c)=b−〈a,s〉=m+e.
Then, we round to it to the nearest element ofM. Therefore, if the error ewas chosen to
be small enough (yet high enough to ensure security), the decryption will be accurate.

• TRGSWSample: is a vector of lTRLWEsamples encrypting 0. To encrypt amessage
m∈R, we addm·H to a TRGSWsample of 0, whereH is a gadgetmatrix2 using an inte-
gerBg as a base for its decomposition. Chilotti et al., [Chi+19] defines an external prod-
uct between aTRGSWsampleA encryptingma∈R and aTRLWE sample b encrypting
mb∈TN [X]. This external product consists in multiplying A by the approximate de-
composition of bwith respect toH (Definition 3.12 in [Chi+19]). It yields an encryption
ofma ·mb i.e., a TRLWE sample c∈ TRLWEs(ma ·mb). Otherwise, the external prod-
uct allows also to compute a controlled MUX gate (CMUX) where the selector is Cb∈
TRGSWs(b),b∈{0,1}, and the inputs are c0∈ TRLWEs(m0) and c1∈ TRLWEs(m1).

2.3 TFHE Bootstrapping
TFHE bootstrapping relies mainly on three building blocks:

• Blind Rotate: rotates a plaintext polynomial encrypted as a TRLWE ciphertext by
an encrypted position. It takes as inputs: a TRLWE ciphertext c∈ TRLWEk(m), a
vector (a1,...,an,an+1 =b) where ∀i, ai∈Z2N , and n TRGSW ciphertexts encrypting
(s1,...,sn) where ∀i, si∈B. It returns a TRLWE ciphertext c′∈TRLWEk(X〈a,s〉−b ·m).
In this paper, we will refer to this algorithm by BlindRotate. With respect to indepen-
dence heuristic3 stated in [Chi+19], the variance VBR of the resulting noise after a
BlindRotate satisfies the formula:

VBR<Vc+n((k+1)`N(Bg2 )2ϑBK+ (1+kN)
4·B2l

g

),

where Vc is the variance of the noise of the input ciphertext c, and ϑBK is the the
variance of the error of the bootstrapping key. In the following, we define:

EBS=n((k+1)`N(Bg2 )2ϑBK+ (1+kN)
4·B2l

g

)

• TLWE Sample Extract: takes as inputs both a ciphertext c∈TRLWEk(m) and a
position p∈J0,NJ, and returns a TLWE ciphertext c′∈ TLWEk(mp) where mp is the

1In practice, we discretize the Torus with respect to our plaintext modulus. For example, if we want
to encrypt m∈Z4 ={0,1,2,3}, we encode it in T as one of the following value {0,0.25,0.5,0.75}.

2Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [Chi+19] for more information about the gadget
matrix H.

3The independence heuristic ensures that all the coefficients of the errors of TLWE, TRLWE or TRGSW
samples are independent and concentrated. More precisely, they are σ-subgaussian where σ is the square-root
of their variance.
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pth coefficient of the polynomial m. In this paper, we will refer to this algorithm by
SampleExtract. This algorithm does not add any noise to the ciphertext.

• Public FunctionalKeyswitching: transforms a set of p ciphertexts ci∈TLWEk(mi)
into the resulting ciphertext c′∈ T(R)LWEs(f(m1,...,mp)), where f() is a public linear
morphism from Tp to TN [X]. This algorithm uses 2 specific parameters, namely BKS
which is used as a base to decompose some coefficients, and t which gives the precision
of the decomposition. Note that functional keyswitching serves at changing encryption
keys and parameters. In this paper, we will refer to this algorithm by KeySwitch. As
stated in [Chi+19; GBA21], the variance VKS of the resulting noise after KeySwitch
follows the formula:

VKS<R2 ·Vc+n(tNϑKS+B−2t
KS

12 )

where Vc is the variance of the noise of the input ciphertext c, R is the Lipschitz
constant of f and ϑKS the variance of the error of the keyswitching key. In this paper
and in most case, R=1. In the following, we define:

EKS=n(tNϑKS+B−2t
KS

12 )

TFHE comes with two bootstrapping algorithms. The first one is the gate bootstrapping. It
aims at reducing the noise level of a TLWE sample that encrypts the result of a boolean gate
evaluation on two ciphertexts, each of them encrypting a binary input. The binary nature
of inputs/outputs of this algorithm is not due to inherent limitations of the TFHE scheme
but rather to the fact that the authors of the paper were building a bitwise set of operators
for which this bootstrapping operation was perfectly fitted.

TFHE gate bootstrapping steps are summarized in Algorithm 1. The step 1 consists in select-
ing a value m̂∈T which will serve later for setting the coefficients of the test polynomial testv
(in step 3). The step 2 rescales the components of the input ciphertext c as elements of Z2N .
The step 3 defines the test polynomial testv. Note that for all p∈J0,2NJ, the constant term
of testv ·Xp is m̂ if p∈KN2 ,

3N
2 K and−m̂ otherwise. The step 4 returns an accumulatorACC∈

TRLWEs′(testv ·X〈ā,s〉−b̄). Indeed, the constant term ofACC is−m̂ if c encrypts 0, or m̂ if c
encrypts 1 as long as the noise of the ciphertext is small enough4. Then, step 5 creates a new ci-
phertext c by extracting the constant term ofACC and adding to it (0,m̂). That is, c either en-
crypts 0 if c encrypts 0, orm if c encrypts 1 (By choosingm= 1

2 , we get a fresh encryption of 1).
Since a bootstrapping operation can be summarized as a BlindRotate over a noiseless TRLWE
followed by a Keyswitch, the bootstrapping noise (VBS) satisfies: VBS<EBS+EKS .

Algorithm 1 TFHE gate bootstrapping [Chi+19]
Input: a constant m ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(x · 1

2 ) with x ∈ B, a
bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE
interpretation of a secret key s′

Output: a TLWE sample c∈ TLWEs(x.m)
1: Let m̂= 1

2m∈T (pick one of the two possible values)
2: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
3: Let testv :=(1+X+···+XN−1)·X N

2 ·m̂∈TN [X]
4: ACC←BlindRotate((0,testv),(ā1,...,ān,b̄),(BK1,...,BKn))
5: c=(0,m̂)+SampleExtract(ACC)
6: return KeySwitchs′→s(c)

4Further details on the proper bound of the noise are given in Section 5.
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TFHE specifies a second type of bootstrapping called circuit bootstrapping. It converts
TLWE samples into TRGSW samples, and serves mainly for TFHE use in a levelled manner.
This type of bootstrapping will not be discussed further in this paper.

3 TFHE Functional Bootstrapping
3.1 Encoding and Decoding
Our goal is to build an homomorphic LUT for any function f : Zp→Zp for any integer p.
As we are using TFHE, every message from Zp has to be encoded in T. To that end, we use
the encoding function:

ι : Zp → T
k 7→ k

p+ 1
2p

and its corresponding decoding function:

ω : T → Zp
x 7→ bx·pc

The choice of such an encoding function is further detailed in Section A.

Finally, we specify a torus-to-torus function fT to get f=Dp◦fT◦Ep.

Zp
f=ω◦fT◦ι−−−−−−→ Zp

ι↓ ↑ω
T −→

fT

T

Since the function fT = Ep ◦ f ◦Dp makes the diagram commutative, we discuss in the
following sections several ways for building any Look-Up Table (LUT) for such function fT

for p≤N .

We will use m(p) to refer to a message in Zp, and m to refer to Ep(m(p)). Then, m is the
representation of m(p) in T after discretization.

3.2 Functional Bootstrapping Idea
The original bootstrapping algorithm from [Chi+16] had already all the tools to implement
a LUT of any negacyclic function5. In particular, TFHE is well-suited for 1

2 -antiperiodic
function, as the plaintext space for TFHE is T, where [0, 12 [ corresponds to positive values
and [ 1

2 ,1[ to negative ones, and the bootstrapping step 2 of the Algorithm 1 encodes elements
from T into powers of X modulo (XN +1). Note that Xα+N ≡−Xαmod[XN +1] and it
allows encoding negacylic functions as explained in the upcoming sections.

Boura et al., [Bou+19] were the first to use the term functional bootstrapping for TFHE.
They describe how TFHE bootstrapping computes a sign function. In addition, they state
that bootstrapping can be used to build a Rectified Linear Unit (ReLU). However, they do
not delve into the details of how to implement the ReLU in practice6.
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Algorithm 2 Sign extraction with bootstrapping
Input: a constant µ ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T, a

bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE
interpretation of a secret key s′

Output: a TLWE sample c∈ TLWEs(µ.sign(m))
1: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
2: Let testv :=(1+X+···+XN−1)·µ∈TN [X]
3: ACC←BlindRotate((0,testv),(ā1,...,ān,b̄),(BK1,...,BKn))
4: c=SampleExtract(ACC)
5: return KeySwitchs′→s(c)

Algorithm 2 describes a sign computation with the TFHE bootstrapping. It returns µ if m
is positive (i.e., m∈ [0, 12 [), and −µ if m is negative.

Whenwe look at the building blocks ofAlgorithm2, we notice that there is some leeway to build
more complex functions just by changing the coefficients of the test polynomial testv.

Indeed, if we consider t=
∑N−1
i=0 ti ·Xi where ti∈T and t∗(x) is the function:

t∗ :
J−N,N−1K → T

i 7→
{

ti

− ti+N

if i∈J0,NJ
if i∈J−N,0J

then, the output of the bootstrapping of a TLWE ciphertext [x]T = (a,b) with the test
polynomial testv= t is [t∗(φ(ā,b̄))]T, where (ā,b̄) is the rescaled version of (a,b) in Z2N (line 1
of Algorithm 2).

To prove this result, we first remind that for any positive integer i s.t. 0 ≤ i < N , we
have:

testv.X−i= ti+···−t0XN−i−···−ti−1X
N−1 mod[XN+1] (1)

Then, we notice thatBlindRotate (line 3 of Algorithm 2) computes testv ·X−φ(ā,b̄). Therefore,
we obtain the following results using equation (1):

• if φ(ā,b̄)∈J0,NJ, the constant term of testv ·X−φ(ā,b̄) is tφ(ā,b̄).

• if φ(ā,b̄)∈J−N,0J, we have:

testv ·X−φ(ā,b̄) =−testv ·X−φ(ā,b̄)−Nmod[XN+1]

with (φ(ā,b̄)+N)∈J0,NJ. So, the constant term of testv ·X−φ(ā,b̄) is −tφ(ā,b̄)+N .

All that remains for the bootstrapping algorithm is extracting the previous constant term
(in line 4) and keyswitching (in line 5) to get the TLWE sample [t∗(φ(ā,b̄))]T.

We can use this to build a discretized function evaluation as follows. Let f :Zp→Zp be any
negacyclic function over Zp and fT =Ep◦f ◦Dp. We call f̃ the well-defined function fT◦E2N
that satisfies:

f̃ :
J−N,N−1K→ T

x 7→
{

fT( x
2N )

− fT(x+N
2N )

if x∈J0,NJ
if x∈J−N,0J

(2)

5Negacyclic functions are antiperiodic functions over T with period 1
2 , i.e., verifying f(x)=−f(x+ 1

2 ).
6The article does only mention that the function 2×ReLU can be built from an absolute value function

but does not explain how to divide by two to get the ReLU result.
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Let Pf be the polynomial Pf =
N−1∑
i=0

f̃(i)·Xi. Now, if we apply the bootstrapping Algorithm 2

to a TLWE ciphertext [m]T =(a,b) with m(p)∈Zp and testv=Pf , it outputs [f̃(φ(ā,b̄))]T.
That is, Algorithm 2 allows the encoding of the function f as long as φ(ā,b̄)

2N =m+e′, for some
e′ small enough. Further details on the variance of e′ and the probability of the bootstrapping
error are given in Section 5.

4 Look-Up-Tables over a Single Ciphertext
In Section 3.2, we demonstrated that functional bootstrapping allows for the computation of
LUT(f) for any negacyclic function f . In this section, we describe 4 different ways to build
homomorphic LUTs for any function (i.e., not necessarily negacyclic ones). We present 3
solutions from the state of the art [CJP21; KS21; Yan+21] in Sections 4.1, 4.2 and 4.3, and
one that is novel to our work in Section 4.4. In addition, we describe a method for reducing
the noise of the functional bootstrapping presented in [KS21].

As in Section 3.1, we call fT : T→T the function used to build our homomorphic LUT, and
f : Zp→Zp its corresponding function over the input and output space Zp. Considering that
the LUTs are actually polynomials, p≤2N .

4.1 Partial Domain Functional Bootstrapping – Half-Torus
This method avoids the negacyclic restriction of functional bootstrapping by encoding values
only on [0, 12 [ (i.e., half of the torus). Let’s consider the test polynomial to be Ph for a given ne-
gacyclic function h. The output of the bootstrapping operation is given by Equation 2:

h̃ :
J−N,N−1K→ T

x 7→
{

h( x
2N )

− h(x+N
2N )

if x∈J0,NJ
if x∈J−N,0J

If we restrict h̃ domain to J0,NJ, we ensure that h̃ is just a LUT based on h, where h has not
to be negacyclic. That is, we obtain a method to evaluate a LUT in a single bootstrapping.
However, we have to encode the plaintext space over a smaller portion of the torus T, therefore
increasing the relative noise introduced by the TFHE encryption process. Hence, the overall
result will be less accurate.

4.2 Full Domain Functional Bootstrapping – FDFB
Kluczniak and Schild [KS21] proposed this method to evaluate encrypted LUTs of domain
the whole torus T. Let’s consider a TLWE ciphertext [m]T given a message m(p)∈Zp. We
denote by g the function:

g : T→ T
x 7→ −fT(x+ 1

2 )

We denote by q ∈ N∗ the smallest integer such that q · (Pf − Pg) is a polynomial with
coefficients in Z. Then, we define P1 = q ·Pf and P2 = q ·Pg. Note that the coefficients of
Pf−Pg are multiples of 1

p in T, where T corresponds to [− 1
2 ,

1
2 [. Thus q is a divisor of p, and

P2−P1 has coefficients of norm lower or equal to q
2 .

We define the Heaviside function H as:

H :x 7→
{

1 if x≥0
0 if x<0



Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey and Cédric
Gouy-Pailler[] pierre-emmanuel.clet@cea.fr 9

H can be expressed using the sign function as follows: H(x)= sign(x)+1
2 .

First, we compute [Eq(H(m))]T with only one bootstrapping (using Algorithm 2) and deduce
[Eq((1−H)(m))]T = (0, 1

q )− [Eq(H(m))]T. Then, we make a keyswitch to transform the
TLWE sample [Eq((1−H)(m))]T into a TRLWE sample [Eq((1−H)(m))]TN [X]. Finally, we
define:

cLUT =(P2−P1)·[Eq((1−H)(m))]TN [X]+(0,Pf )

such that:

cLUT =
{

[Pf ]TN [X] if m≥0
[Pg]TN [X] if m<0

Note that depending on the sign of m, cLUT is a TRLWE encryption of Pf or Pg, the test
polynomials of f or g, respectively. Indeed, after a private functional bootstrapping of
[Ep(m)]T using cLUT as a test polynomial, we obtain [fT(m)]T. This functional bootstrapping
requires 2 BlindRotate during the bootstrapping: one to compute the Heaviside function and
the other to apply the encrypted LUT.

The factorization idea presented in Carpov et al., [CIM19] (and described in Section B.2),
allows us to reduce the noise of cLUT. To that end, we replace the polynomials Pf and
Pg by vf = (1−X) · Pf and vg = (1−X) · Pg, respectively. We denote by q′ ∈ N∗ the
smallest integer such that q′ ·(vf−vg) is a polynomial with coefficients in Z. Note that since
q ·(1−X)·(Pf−Pg)=(1−X)·(q ·(Pf−Pg)) has coefficients in Z, we ensure that q′≤q. Then,
we define v1 =q′ ·vf and v2 =q′ ·vg. We get that v2−v1 has coefficients in Z of norm lower

or equal to q′. Finally, we compute a TRLWE encryption of
N−1∑
i=0

Xi ·E2·q′((1−H)(m)) from

the TLWE sample [E2·q′((1−H)(m))]T, by applying a KeySwitch. Thus, we get:

cLUT =(v2−v1)·[
N−1∑
i=0

Xi ·E2·q′((1−H)(m))]TN [X]+(0,Pf )

such that:

cLUT =
{

[Pf ]TN [X] if m≥0
[Pg]TN [X] if m<0

4.3 Full Domain Functional Bootstrapping – TOTA
Yan et al., [Yan+21] proposed this method to evaluate arbitrary functions over the torus
using a functional bootstrapping. Let’s consider a ciphertext [m1]T =(a,b=<a,s>+m1+e).
Then, by dividing each coefficient of this ciphertext by 2, we get a ciphertext [m2]T =( a

2 ,<
a
2 ,s>+m2+ e

2 ) where m2 = m1
2 + k

2 with k∈{0,1} and m1
2 ∈ [0, 12 [. Using the original boot-

strapping algorithm, we compute [ sign(m2)
4 ]T an encryption of sign(m2)

4 =
{ 1

4 if k=0
− 1

4 if k=1 .

Then, [m2]T−[ sign(m2)
4 ]T+(0, 14 ) is an encryption of m1

2 .

For any function fT, let’s define f(2) such that f(2)(x) = fT(2x). Since m1
2 ∈ [0, 12 [, we can

compute f(2)(m1
2 ) with a single bootstrapping using the partial domain solution from 4.1,

and f(2)(m1
2 )=fT(m1).

Thus, this method allows computing any function with only 2 bootstrappings. Keep in mind
that the torus is actually discretized, so some noise and some loss of precision are introduced
after dividing by 2 due to the rounding of the coefficients.
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4.4 Full Domain Functional Bootstrapping with Composition
In this section, we present a novel method to compute any function using the full (discretized)
torus as plaintext space. We will consider here that p is even and fixed. Otherwise we can
simply add one unused element to get back to this case.

Pseudo odd functions: We call pseudo odd function a function f that verifies ∀x ∈
T,f(−x− 1

p )=−f(x).

We note fT a pseudo odd function over the discretized torus, and bxeM the rounding function
: x 7→ bp·xc

p
that rounds down values over the torus to a multiple of 1

p . Since p is even,
we have: ∀x∈T,x+ 1

2 =x+ 1
2mod[1].

Let h1 be the following function:

h1 : [0, 12 [ → T
x 7→ x+ 1

2p

Then, we define a functional bootstrapping with an output function h̃1 as:

h̃1 : x 7→
{ b x2N eM+ 1

2p
−b x2N eM−

1
2−

1
2p

if x∈J0,NJ
if x∈J−N,0J

From this function we define Godd : x 7→ 2N(h̃1(x)− 1
2·p ) so that:

Godd : x 7→
{

2N ·b x2N eM
−2N ·b x2N eM−N−

2N
p

if x∈J0,NJ
if x∈J−N,0J

Note that Godd(0) = 0 and Godd(N − 1) = N − 2N
p . So, if x ∈ J0,NJ,Godd(x) ∈ J0,NJ.

We notice similarly that Godd(−N) = − 2N
p and Godd(−1) = 2N

p −N −
2N
p = −N . So, if

x∈J−N,0J,Godd(x)∈J−N,0J.

Finally, we define f̃T as:

f̃T : x 7→
{
fT

(
x

2N
)

−fT

(
x+N
2N
) if x∈J0,NJ

if x∈J−N,0J

We can then compose f̃T with Godd.

f̃T◦Gh : x 7→
{
fT

(
b x2N eM

)
−fT

(
−b x2N eM−

1
p

) if x∈J0,NJ
if x∈J−N,0J

Considering that fT is pseudo odd, we get:

∀x∈J0,2N−1K, f̃T◦Godd(x)=fT(b x2N eM)

Therefore f̃T◦Godd evaluates a LUT based on fT for the whole discretized torus.

Pseudo even functions: We call pseudo even function a function f that verifies ∀x ∈
T,f(−x− 1

p )=f(x).

Let fT be a pseudo even function over the discretized torus.

We set h2 as:

h2 : [0, 12 [ → T
x 7→ bxeM+ 1

4 + 1
2p
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Then, we define a functional bootstrapping with an output function h̃2 as:

h̃2 : x 7→
{ b x2N eM+ 1

4 + 1
2p

−b x2N eM+ 1
4−

1
2p

if x∈J0,NJ
if x∈J−N,0J

Finally, we compose f̃T with Geven :x 7→2N(h̃2(x)− 1
4−

1
2·p ) which sends every values in the

positive half of the torus.

f̃T◦Geven : x 7→
{
fT

(
b x2N eM

)
fT

(
−b x2N eM−

1
p

) if x∈J0,NJ
if x∈J−N,0J

Considering that fT is pseudo even, we get:

∀x∈T,f̃T◦Geven(x)=fT(b x2N eM)

Therefore, f̃T◦Geven is a LUT based on fT over the whole discretized torus.

Any function: Any function fT can be written as a sum of a pseudo even function and a
pseudo odd function: fT(x)= fT(x)+fT(−x− 1

p )
2 + fT(x)−fT(−x− 1

p )
2 . We already demonstrated

that we can build a LUT for any pseudo odd or pseudo even function with at most 2 func-
tional bootstrapping. Thus, we can build a LUT for any function with at most 4 functional
bootstrapping. In addition, odd and even functions can be computed in a similar way to
their pseudo equivalent with only 2 bootstrapping.

There are also a host of useful functions (sigmoid, monomial functions, trigonometric func-
tions, identity,...) which can be computed using only 2 bootstrapping operations because
they are one sum away from an odd or even function.

In practice, since both the pseudo odd and the pseudo even functions are evaluated on the
same input, a multi-value functional bootstrapping (see Section B.2) can be used to reduce
the maximum amount of bootstrapping operations to 3 at the cost of some noise overhead
leading to greater probability of error. Furthermore, since the pseudo odd and pseudo even
functions can be computed independently, it is possible to use multi-thread computation
to get the time down to only 2 bootstrapping operations.

Note that the Composition method is only suitable for precise arithmetic. Indeed, because of
the negacyclic nature of the bootstrapping operation, we are actually composing discontinuous
functions. This can lead to unexpected behaviors if the noise of the ciphertext is too big.

In the tables of Section 5 and Section 7 we will denote by Comp the Composition method
with neither the use of multi-value bootstrapping nor multi-thread computation. We call
CMV the method when used with the multi-value bootstrapping, and CMT with multi-
threading.

Examples: We describe how to build the functions Id, and ReLU with the Composition
method.

For Id, the decomposition in pseudo even and pseudo odd function gives Id(x) = (− 1
2p )+

(x+ 1
2p ). In this case the pseudo even function − 1

2p is a constant and does not need any
functional bootstrapping to be computed. We then only need to apply the technique for
pseudo odd functions to x+ 1

2p . In this case, there will be no use for multi-threading or using
the multi-value technique as we will end up with 2 consecutive BlindRotate anyway.

Considering ReLU, the decomposition gives ReLU(x)=f(x)+g(x) where:

f :x 7→
{ x

2 if x≥0
−x2−

1
2p otherwise
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and
g :x 7→

{ x
2 if x≥0

x
2 + 1

2p otherwise

Applying directly the Composition method would result in 4 BlindRotate. But the function
f can actually be computed with only 1 bootstrapping similarly to the function h̃ for pseudo
even functions. This specific improvement is useful for Comp, as it reduces the number of
consecutive BlindRotate to 3, but it does not change anything for CMT which only need 2
BlindRotate. In the case of CMV, it is relevant to check whether lowering the number of
consecutive BlindRotate from 3 to 2 outweighs any potential growth of the error rate, since
CMV changes the test polynomials.

In Table 5 and Table 6, we call ReLU1 the implementation of ReLU using 4 BlindRotate, while
we refer by ReLU2 to the optimized implementation of ReLU where f is computed with only
one bootstrapping.

5 Error rate and noise variance
In this section, we analyse the noise variance and error rate for the aforementioned functional
bootstrapping methods.

5.1 Noise variance
The noise variance of a bootstrapped ciphertext depends on the operations applied to the
input ciphertext during bootstrapping. Table 1 summarizes the theoretical variance of
each operation used in functional bootstrapping techniques. These formulas are taken from
[Chi+19].

Table 1: Variance for operations applied to given independent inputs. Ci are TLWE
ciphertexts of variance Vi, and TV is a TRLWE ciphertext of variance V .

Operation Variance
Keyswitch(ci) Vi+EKS

BlindRotate(ci,TV ) V +EBS
P ·Ci ||P ||22 ·Vi
Ci+Cj Vi+Vj

Each of the bootstrapping methods of Section 4 relies on a composition of the operations
presented in Table 1. Thus, we can find their resulting variance by simply composing the
formulas from Table 1. Table 2 presents the noise variance for each of the discussed functional
bootstrapping method.

Table 2: Variance for each bootstrapping operation
Bootstrapping Variance

Half-Torus EBS+EKS
FDFB ||v2−v1||22 ·(EBS+2·EKS)+EBS+EKS
TOTA EBS+EKS
Comp 2·(EBS+EKS)
CMV (||v1||22+||v2||22)·EBS+2·EKS

We identify from Table 2 two kinds of functional bootstrapping algorithms. On the one hand,
we have functional bootstrapping algorithms that do not use any intermediary polynomial
multiplication, and end-up with a similar noise growth to a classical gate bootstrapping.
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On the other hand, we have functional bootstrapping algorithms that present a quadratic
growth, of the resulting noise variance, with respect to the norm of the used test polynomial.
For the second category, it can be useful to reduce the resulting noise by using techniques
such as the factorization given in Carpov et al., [CIM19] (described in Section B.2).

5.2 Probability of Error
The original TFHE gate bootstrapping technique comes with a probability of error that de-
pends on the noise of the input ciphertext. Since every functional bootstrapping technique is
inspired from the original gate bootstrapping algorithm, we need to evaluate their respective
probability of error.

We first consider a single BlindRotate operation given a message m(p)∈Zp, a TLWE cipher-
text c=(a,b) where b=(〈a,s〉+m+e), and a TRLWE ciphertext (0,t), where t is the test
polynomial. Following the notation from Section 3.1, we havem=Ep(m(p)). As mentioned in
Section 3.2, the BlindRotate outputs [t∗(φ(ā,b̄))]. Note that φ(ā,b̄)=2N ·(m+e+r)mod[2N ]
where r is an error introduced when scaling and rounding the coefficients of (a,b) from T
to Z2N . To be more specific, r follows a translated Irwin-Hall distribution with variance
n+1

48·N2 . Since this distribution is an approximation for a centered Gaussian distribution, we
will consider that r follows a centered Gaussian distribution with variance n+1

48·N2 . We need
the equality [t∗(φ(ā,b̄))] = [f (m)] to hold true for any message m(p) in order to compute
LUTp(f) for a given negacyclic function f . To that end, we consider t=Pf,p. Then, we have:
[t∗(φ(ā,b̄))]=[f

(
bp·(m+e+r)c

p

)
]. With no assumptions regarding f , it follows that we need

to have |e+r|< 1
2p . With the assumption that e and r are independent random variables,

the probability of this event is P (|e+r|< 1
2p )=( 1

2p ,Vc+Vr) where Vc and Vr are respectively
the variances of the ciphertext and r. The probability of error is then 1−( 1

2p ,Vc+Vr).

In case of multiple BlindRotate computations during a functional bootstrapping, each of
them must succeed to get the expected output. We can use the formulas of probabilities
for multiple independent or correlated events to find the the overall probability of error of
a functional bootstrapping.

The probability of success, of the functional bootstrapping methods from Section 4, are
summarized in Table 3. We denote by:

V =EBS+EKS
the variance of a simple gate bootstrapping, and by:

Vi= ||vi||22 ·EBS+EKS
the variance of a bootstrapping using an intermediary polynomial multiplication.

Table 3: Probability of success for each bootstrapping operation with plaintext size p
Bootstrapping Probability of success

Half-Torus ( 1
4·p ,Vc+Vr)

FDFB ( 1
2·p ,Vc+Vr)

TOTA ( 1
4 ,Vc+Vr)·(

1
4·p ,

Vc

4 +Vr+V )
Comp ( 1

2·p ,Vc+Vr)·(
1

2·p ,V +Vr)2

CMV ( 1
2·p ,Vc+Vr)·

1∏
i=0

( 1
2·p ,Vi+Vr)

Some numerical considerations need to be taken into account to compute these values in
practice. When working with floats, a probability of success > 1−2−52 will be rounded
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to 1. Thus we need to work directly with the error rates using implementations of the
erfc=1−erf function instead of the erf . To that end, we notice that for 2 terms 1 and 2
close to 1, we have 1−1 ·2 =(1−1)+(1−2)−(1−1)·(1−2) where the right size of the equality
can be computed without rounding problems. This also shows that the multiplication of
probabilities that appear in Table 3 do not necessarily have a big impact on the result.
Indeed, for an error rate E= 1−1 ·2, if each i is close to 1 we get that E≈ (1−1)+(1−2).
In addition, if (1−1) and (1−2) are not close to each other, we even get E≈max(1−1,1−2).
For example, we expect that for TOTA the probability of error follows the approximation
1−( 1

4 ,Vc+Vr) ·( 1
4·p ,

Vc

4 +Vr+V )≈ 1−( 1
4·p ,

Vc

4 +Vr+V ) for any set of parameters where a
simple bootstrapping has a high chance of success.

The variances given as inputs of the formulas and the value of p will have a high impact on the
error rate. Indeed 1−(a,V ) gets exponentially closer to 0 as a increases or V decreases. For
this reason, for a given p and V , the error rate of the Half-Torus method (1−( 1

4p ,V )) should
be much higher than the probability of error of FDFB (1−( 1

2p ,V )), for example.

6 Look-Up-Tables over Multiple Ciphertexts
In section 4, we discussed several functional bootstrapping methods that take as input one
ciphertext. These methods have a limited plaintext space and precision, and allow evaluating
look-up tables with a size bounded by the degree of the used cyclotomic polynomial (N).
In addition, these methods are not suited for computing a LUT for a multivariate function f
that takes as inputs two or more ciphertexts. In order to overcome these issues, we describe
in this section a method for computing functions using multiple ciphertexts as inputs.

Our proposed solution improves the results of Guimarães et al., [GBA21]. They, themselves,
generalize the ideas of Boura et al. [BST19] and discuss two methods for homomorphic
computation with digits: a tree-based approach and a chaining approach. We expand on
the chaining method in order to obtain any function through its use as opposed to the subset
of function previously allowed.

Subsequently, we use this method to apply a LUT to a single message decomposed over
multiple ciphertexts. That is, we decompose each plaintext into several digits in a certain base
B and encrypt these digits separately. Decomposition allows working with a larger plaintext
space I while using an acceptable parameters set for an efficient computation.

In this section, we first review the tree-based method and then improve the chaining method
to make it fit any function. We show how those methods can be used as building blocks
in order to compute additions and multiplications of messages decomposed over multiple
ciphertexts. We then show how to compute the ReLU function over a single, decomposed,
plaintext. The choice of ReLU as a worthy application of our novel method was made because
it is the most used activation function in modern convolutional neural networks.

6.1 Tree-based Method
We consider d TLWE ciphertexts (c0,...,cd−1) encrypting the messages (m0,...,md−1) over
half of the torus and B∈N, such that each ciphertext ci corresponds to an encryption of
mi ∈ J0,B−1K. We denote by f : J0,B−1Kd→ J0,B−1K our target function and by g the
bijection:

g : J0,B−1Kd → J0,Bd−1K
(a0,...,ad−1) 7→

∑d−1
i=0 ai ·Bi
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We encode the LUT for f in Bd−1 TRLWE ciphertexts. Each ciphertext encrypts a poly-
nomial Pi where:

Pi(X)=
B−1∑
j=0

N
B−1∑
k=0

f ◦g−1(j ·Bd−1+i)·Xj·NB +k

Then, we apply the BlindRotate algorithm to cd−1 and each TRLWE(Pi), and use the
SampleExtract algorithm to extract the first coefficient of the result. We end up with Bd−1

TLWE ciphertexts each encrypting a message f ◦g−1(md−1 ·Bd−1+i) for i∈ J0,Bd−1−1K.
Thanks to TLWE to TRLWE keyswitching, we batch them into Bd−2 TRLWE ciphertexts
corresponding to the LUT of h where:

h : J0,B−1Kd−1 → J0,B−1K
(a0,...,ad−2) 7→ f(a0,...,ad−2,md−1)

We iterate this operation until getting only one TLWE ciphertext encrypting f(m0,...,md−1).
Since a function from J0,B− 1Kd to J0,B− 1Kk can be decomposed in k functions from
J0,B−1Kd to J0,B−1K, we can actually build any function between any inputs, once they
are decomposed in base B then encrypted.

Note that the BlindRotate algorithm is costly and we have to call it
∑d−1
i=0B

i= Bd−1
B−1 times.

Fortunately, we can make it faster by encoding the first LUTs in plaintext polynomials rather
than TRLWE ciphertexts. Then, we use the multi-value bootstrapping given in [CIM19]
to compute only one bootstrapping instead of Bd−1 in the first step of the algorithm. Thus
we end-up by running 1+

∑d−2
i=0B

i=1+Bd−1−1
B−1 BlindRotate.

Proposition 1. Let c be the output of the tree-based functional bootstrapping algorithm for
a given input on d digits. Then, if we don’t use the multi-value bootstrapping for the first
level of the tree, the variance of the noise of c will verify:

Var(Err(c))≤d·(EBS+EKS)

If we use the multi-value bootstrapping with polynomials Pi we get:

Var(Err(c))≤(d−1+max(||Pi||22))·EBS+d·EKS

Proof. The result comes from the composition of the formulas for multi-value functional
bootstrapping, keyswitching, and private functional bootstrapping.

Proposition 2. Let (ci)i∈J1,dK be d TLWE ciphertexts corresponding to d digits of a plaintext
message. Suppose that we differentiate |M| possible input values, the probability of error of
the tree-based bootstrapping algorithm with inputs (ci)i∈J1,dK verifies:

P (Err((ci)i∈J1,dK))=1−
d∏
i=1

erf( 1
4·|M|·

√
Vci +Vr ·

√
2

)

where Vr = n+1
48N2 is the variance of the error induced by the rounding operation in the

bootstrapping algorithm.

Proof. The result comes from the fact that for each i, ci must have a noise low enough to
allow for a successful BlindRotate.
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6.2 Chaining Method
The chaining method has a much lower complexity and a lower error growth than the
tree-based method but, as presented in [GBA21], works only for a more restricted set of
functions.

We consider n TLWE ciphertexts (c0, ... ,cn−1) encrypting the messages (m0, ... ,mn−1)
respectively and denote by LC(a,b) any linear combination of a and b. Given some functions
(fi)i∈J0,n−1K so that fi :J0,B−1K→J0,B−1K, we can build a function f :J0,B−1Kn→J0,B−1K
following Algorithm 3. Each fi can be implemented in the homomorphic domain using any
functional bootstrapping method described in Section 4. The result of this algorithm has
the same noise as a simple functional bootstrapping, thus much less than the noise output
of the tree method.

Algorithm 3 Chaining method
Input: A vector (c0, ... ,cn−1) of TLWE ciphertexts encrypting the vector of messages

(m0,...,mn−1).
Output: A ciphertext encrypting f(m0, ... , mn−1). f is defined here by the linear
combinations chosen at every step and the different single-input functions fi.
c0←f0(c0)
for i∈J0,n−2K do
ci+1←fi+1(LC(ci,ci+1))

return cn−1

Most functions cannot be computed in such a simplistic way, which greatly restricts its use
even though it can be effective for functions with carry-like logic as stated in [GBA21].

Generalization. It is possible to build any function f using a similar method. We introduce
the function g such that:

g : J0,B−1K2 → J0,B2−1K
(a0,a1) 7→ a0+a1 ·B

That function is a bijection, which means that if a ciphertext can hold any message in
J0,B2−1K, then we can compute any function of two ciphertexts c1 and c2 by applying one
functional bootstrapping over g(c1,c2).

Note that when using base 2, we can easily build any logic gate with this method. We can
then build a circuit with these gates for any functions. The same idea works for any base B.
However, this generalization comes at the cost of multiple bits of padding and the conception
of the proper circuit.

Proposition 3. Let c be the output of the chaining functional bootstrapping algorithm for
given encrypted d digits. Then, the variance of the error of c follows the same formula as
the last functional bootstrapping method used in the chain.

Proof. We get the result by applying the noise formula associated to the last functional boot-
strapping in the chain and by noticing that it does not depend on the noise of the input.

The probability of error is highly dependent on the choice of: the encoded LUT in the
functional bootstrapping applied to each digit, the linear combinations between the inputs
and outputs of the chained bootstrappings, and the structure of the circuit corresponding
to the target function. Thus, a general formula cannot be given.
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6.3 Addition
We expect additions of two messages to be computed in linear time with respect to the
number of digits of each message. Thus the tree-based method is ill-suited for this operation,
since the tree-based method computing time grows exponentially with the number of digits
used as inputs. Meanwhile, the chaining method is not exactly adapted to this operation
if applied directly. Nonetheless, we show that we can still use any of the two methods to
compute the addition effectively.

Let m1 =
∑n
i=0m1,i ·Bi and m2 =

∑n
i=0m2,i ·Bi be two messages expressed in base B.

For each pair (i, j), let ci,j be the ciphertext encrypting the message mi,j . We define
ci=(ci,0,...,ci,n) as the vector of ciphertexts encrypting mi in base B. Finally, we denote
by h the half adder function, and by f the full adder one:

h : J0,B−1K2 → J0,B−1K2

(a,b) 7→ ((a+b)[B],b(a+b)/Bc)

f : J0,B−1K2×{0,1} → J0,B−1K2

(a,b,c) 7→ ((a+b+c)[B],b(a+b+c)/Bc)

These two functions are the only requirements to build the addition operation. But, in order
to be able to create those two adders, we need to create the following sub-functions:

mod : J0,2B−1K → J0,B−1K
x 7→ x[B]

carry : J0,2B−1K → {0,1}
x 7→ bx/Bc

Algorithm 4 Addition
Input: Two vectors of ciphertexts c1 =(c1,i)i∈J0,n−1K and c2 =(c2,i)i∈J0,m−1K encrypting
two messages m1 and m2 written in base B. We suppose here that n≥m.

Output: An encryption of m1+m2 in base B.
(c1,0,c2,0)←h(c1,0,c2,0)
for i∈J0,m−2K do

(c1,i+1,c2,i+1)←f(c1,i+1,c2,i+1,c2,i)
for i∈Jm−1,n−2K do

(c1,i+1,c2,i+1)←h(c1,i+1,c2,i)
return (c1,0,...,c1,n−1,c2,n−1)

We can use either the tree-based method or the chaining method to compute mod or carry
functions. The chaining method needs one bit of padding to work, while the tree-based
method is slower, especially for the full adder which is a three inputs function. Finally, we
present Algorithm 4 for computing addition between two vectors of ciphertexts.

The time complexity of Algorithm 4 is linear with respect to the number of digits of the
entries. The noise of each output ciphertext is the same as the noise of a simple bootstrapping
if we use the chaining method for computing the sub-functions mod and carry. Meanwhile,
with the tree-based method, we end-up with the noise of a simple bootstrapping followed
by two BlindRotate.

6.4 Multiplication
As we expected linear computation time to be achievable for the homomorphic addition,
we expect to achieve quadratic time complexity for homomorphic multiplication. Let m1
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andm2 be two messages and c1 =(c1,i)i∈J0,n−1K and c2 =(c2,i)i∈J0,m−1K be their encryption
in base B. In order to evaluate m1 ·m2 in the encrypted domain, we first multiply each digit
of m1 by each digit of m2. Then, we have just to add the obtained elements properly using
half and full adders to get the final result.

Since we have already introduced homomorphic adders, we only need to describe how to
multiply two digits. Given two messages a and b in J0,B−1K, we need to compute a·b[B]
and a·b/B in the encrypted domain. If we use the tree-base method, we can compute both
functions with three LUTs since both functions will use the same selector in the first step.
Otherwise, we can also use the generalized chainingmethod to compute both needed functions
using two LUTs, but this method comes at the cost of using multiple bits of padding.

We denote by MultDigits(ca,cb) a method for computing a·b[B]. In the same way, we denote
by CarryMult(ca,cb) a method for computing a·b/B. Then the multiplication of m1 and m2
can be done with Algorithm 5.

Algorithm 5 Multiplication
Input: Two vectors of ciphertexts c1 =(c1,i)i∈J0,n−1K and c2 =(c2,i)i∈J0,m−1K encrypting
two messages m1 and m2 written in base B.

Output: An encryption c=(ci)i∈J0,n+m−1K of m1 ·m2 in base B.
for i∈J0,n+m−1K do

SubMuli←empty vector
for i∈J[0,n−1K do

for j∈J0,m−1K do
Put MultDigits(c1,i,c2,j) in vector SubMuli+j
Put CarryMult(c1,i,c2,j) in vector SubMuli+j+1

c0←SubMul0[0]
for i∈J1,n+m−1K do
ci←(

∑size(SubMuli)−1
j=0 SubMuli[j])[B] using adders

Put the carries in SubMuli+1
return (c0,...,cn+m−1)

The time complexity of Algorithm 5 is quadratic with respect to the number of digits of the
entries. The noise of the outputs is similar to the noise of the adder sub-functions.

6.5 ReLU
In this section, we describe how to avoid using the tree-basedmethod, as it is, for the implemen-
tation of the ReLU activation function. Let’s considerm=

∑n
i=0mi ·Bi a message written us-

ing radix complement representation in baseB, and (ci)i∈J0,nK =(TLWEs(mi))i∈J0,nK.

In order to use the tree-based method to evaluate intermediate functions on each encrypted
digit, we use a functional bootstrapping to create a selector S from cn that encrypts the
torus element 0 if 0≤mn<

B
2 and 1

4 if B2 ≤mn<B. Note that (0≤mn<
B
2 )⇐⇒ (m≥0),

so the value of S depends on the sign of m. Then, for each ci, we create using keyswitching
a TRLWE ciphertext LUT(ci) so that for j ∈ J0,N2 −1K, SampleExtract(LUT(ci),j) is an
encryption of mi, and for j ∈ JN2 ,N−1K, SampleExtract(LUT(ci),j) is an encryption of 0.
Then, SampleExtract(BlindRotate(S,LUT(ci),0) outputs:

ci=
{

TLWE(0,s) if m<0
TLWE(mi,s) if m≥0

Thus, (ci)i∈J0,nK encrypts ReLU(m) using radix complement representation in base B.
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Otherwise, we can compute the ReLU function using the chaining method. Then, each cipher-
text has to encrypt a value in J0,2BJ. First, let’s compute a selectorS from cn such that:

S=
{

TLWE(0,s) if m≥0
TLWE(B,s) if m<0

Then, let’s define:

f :
J0,2B−1K → J0,2B−1K

x 7→
{
x if x<B
0 if x≥B

This function can be computed with one functional bootstrapping. For each ci, we compute
ci=f(ci+S). We obtain (ci)i∈J0,nK an encryption using radix complement representation
in base B of ReLU(m).

7 Experimental Results
In this section, we compare time and accuracy performances for each of the aforementioned
functional bootstrapping methods over single ciphertexts. All experiments7 were made on an
Intel Core i5-8250U CPU @ 1.60GHz by extending TFHE official open source library8.

7.1 Parameters
We present in Table 4 the parameters sets used for our tests. We generated these parameters
by following these guidelines:

• We need the security level λ to be as low as possible to get fast operations, while
ensuring that encryption parameters are secure. So, we fix it to λ= 80 or 120 bits,
which are the lowest security levels usually considered as secure.

• For efficiency, we want N to be a small power of 2. We notice that for N =512, the
noise level required for ensuring security is too high to compute properly a functional
bootstrapping. Thus, we choose N=1024, which is the default value for the degree
of the cyclotomic polynomial within TFHE.

• We have more leeway for selecting n as it does not need to be a power of 2. However,
as the security of the bootstrapping algorithm relies on min(n,N), having n greater
than N will not improve security. So, for efficiency reasons, we stick with values of
n smaller or equal to N .

• For every set of λ, N , and n, we used the LWE-estimator to find the lowest value for
the noise standard deviation σmin while ensuring an acceptable security level.

The remaining parameters, present in Table 4, are unrelated to the security level of the
cryptosystem. We choose them using the following guidelines:

• Usually, the parameters for the keyswitching algorithm are t=3 and BKS=128=27

(so BKS_bits = 7). Since these parameters have a low impact on the resulting noise
and time of each algorithm, we keep them as is.

• For faster bootstrapping operations, we need to have l as low as possible. However, we
need to have Blg high enough to ensure a better precision when using the gadget matrix
decomposition. We find that if (l×Bg_bits) is higher than 18, we get a satisfying

7Code available at https://github.com/CEA-LIST/Cingulata/experiments/tfhe-funcbootstrap-
experiments.zip

8https://github.com/tfhe/tfhe
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precision. Since l has a smaller impact on the noise than Bg_bits, having smaller l and
bigger Bg_bits results in more noise. For our tests, we find that l=3 and Bg_bits=7
is usually a good choice. We increase l only if the probability of success of functional
bootstrapping gets too low for a given set of parameters.

Table 4: Parameters sets
Set n N l Bg_bits t BKS_bits σmin λ
1 1024 1024 3 7 3 7 7.8e−09 120
2 900 1024 4 5 3 7 8.4e−08 120
3 800 1024 9 2 3 7 5.9e−07 120
4 1024 1024 3 7 3 7 1.05e−11 80
5 900 1024 3 7 3 7 5e−11 80
6 800 1024 3 7 3 7 3.5e−10 80
7 700 1024 3 7 3 7 5.5e−09 80
8 600 1024 3 6 3 7 9.4e−08 80

7.2 Error Rate
In Table 5, we compute the probability of error for the functional bootstrapping methods (of
Section 4) with respect to every set of parameters described in Table 4. We will assume that
the input ciphertext has the noise of a ciphertext freshly bootstrapped using the considered
method. This allows to have a fair evaluation of the ability of using the same method
consecutively.

Note that the error rate of each method does not depend on the function computed during
the bootstrapping except for FDFB and CMV. For FDFB, we evaluate the error rate for the
functions Id and ReLU as well as the worst case scenario. The latter refers to a function that
maximizes the noise level. Since we use the factorization technique introduced by Carpov et
al., [CIM19] (Section B.2) the test polynomial v2−v1 of the worst case function has p2 non-zero
values each equal to p. If we apply now the FDFB error variance formula from Table 2, we
obtain the noise bound of the output ciphertext: p

3

2 ·(EBS+2·EKS)+EBS+EKS .

For CMV, we consider ReLU1 and ReLU2 (introduced as examples in Section 4.4). Indeed,
computing Id is irrelevant with CMV, as it does not use the multi-value bootstrapping. Fur-
thermore, 2worst case scenarios can be identified. The first one happenswhen following the de-
composition fT◦Godd+fT◦Geven given in Section 4.4, and using a multi-value bootstrapping
to computeGodd andGeven at the same time. In this case, the result will be exactly the same as
explained for ReLU1. The second scenario corresponds to computing any other function (not
usingGodd andGeven in the composition method) via multi-value bootstrapping while trying
to reduce the total number of bootstrapping (as discussed for ReLU2). Then, no bound can
be put on the norm of the polynomials and the worst error rate would be 100%. For the CMV,
we only consider the worst case when following the decomposition given in Section 4.4.

The results show that for any given set of parameters, the probability of error is identical
between TOTA and the Half-Torus (HT)method, or slightly in favor of the latter. Meanwhile,
Comp and CMT get much better results than any other method in every case.

We notice that FDFB and CMV do not behave in the same fashion as the other methods
with respect to parameters changing. The cases where they favorably compare to the others
(as in set 6 where FDFB and CMV reach respectively an error rate of 2−174 and 2−171 while
HT reaches an error rate of 2−47) occur when EKS+EBS is small compared to Vr. In these
cases, the overhead of the noise created by the intermediary polynomial multiplication is
absorbed by Vr. In the opposite case, when Vr is small compared to EKS+EBS , the impact
of the multiplication is not absorbed and FDFB and CMV unfavorably compare to the other
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Table 5: −log2 of error rate for p=8
Set 1 2 3 4 5 6 7 8
HT 35 25 20 37 42 47 51 17

TOTA 34 23 18 37 42 47 51 15
Worst 10 2 1 91 103 114 25 1

FDFB Id 62 13 8 135 154 172 123 6
ReLU 71 17 10 137 155 174 135 7

Comp 123 66 48 140 159 179 191 37
CMT 123 66 48 140 159 179 191 37

CMV ReLU1 58 12 8 135 153 171 117 5
ReLU2 22 4 2 117 132 147 52 2

methods (as in set 8 where FDFB and CMV reach respectively an error rate of 2−7 and 2−5

while HT reaches an error rate of 2−17). The specific values of the polynomial also has to
be taken into account when trying to gauge whether the parameters are favorable or not
towards these methods. Indeed, in simple cases such as the ReLU and Id functions, we can see
a huge improvement (from 2−10 to 2−71 for set 1) compared to the worst case approximation
for FDFB. Note that with our assumptions regarding the worst case of CMV and FDFB,
some functions would have a better error rate with CMV than with FDFB.

7.3 Time Performance
Our implementation results in Table 6 show that the speed of each method can be closely
approximated by the speed of one simple BlindRotate multiplied by the number of consecutive
BlindRotate needed. The Half-Torus method is the fastest as it only requires one BlindRotate.
Then, TOTA is slightly faster than FDFB as it requires less key switching operations. It is
also slightly faster than CMT as it does not induce parallelism overhead, but the difference is
negligible. As far as the Comp method is concerned, the number of BlindRotate depends on
the evaluated function. For a simple function such as the absolute value, its speed is identical
to the Half-Torus method. Meanwhile, more complex functions need up to 4 bootstrapping,
and so Comp becomes twice slower than TOTA, FDFB and CMT.

To conclude, our composition method is on par with other methods through the use of
multi-threading, but gets less interesting if this possibility is denied.

7.4 Time-Error trade offs
The trade-offs between speed and error rate for each method are summarized in Figure 1a
and Figure 1b.

We separated the sets defined in Table 4 with sets 1 to 3 in Figure 1a and sets 4 to 7
in Figure 1b in order to have better readability of the figures. The set 8 is ignored here
for aesthetic reasons, but observations are similar to the other sets regarding the relative
effectiveness of each method.

For FDFB, we represent both the worst case and the ReLU which is the best case among
the functions we considered. For the Comp, CMV and CMT methods, the best case is
represented with the absolute value function and noted Comp abs. The Comp ReLU1, CMV
and CMT points are all relative to the ReLU1 function. It is chosen as an instance of the
worst case for all methods when applying the pseudo even and odd decomposition.

Fast operations will result in having points closer to the left. Meanwhile, a low error rate is
represented with points close to the upper parts of the graphs. With those two considerations
in mind, we can notice that the only methods on the left of the red line are the Half-Torus
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Table 6: Time in ms
Set 1 2 3 4
HT 115.7 118.8 173.9 116.1

TOTA 232.5 234.7 345.4 230.6
FDFB 255.1 256.7 366.6 255.0

Comp
abs 116.1 119.4 171.2 114.3

ReLU1 462.0 471.0 689.9 470.5
ReLU2 347.9 357.1 518.3 343.9

CMT 236.5 245.2 359.0 236.1

CMV ReLU1 360.6 364.7 537.0 362.5
ReLU2 244.5 247.9 363.6 244.1

Set 5 6 7 8
HT 104.1 91.1 66.8 47.9

TOTA 207.3 179.5 130.5 95.3
FDFB 224.6 195.6 144.5 104.8

Comp
abs 103.4 89.5 65.3 47.3

ReLU1 404.9 356.2 263.9 191.4
ReLU2 308.9 264.5 197.2 142.4

CMT 210.6 183.1 145.3 109.0

CMV ReLU1 317.4 277.2 206.9 149.1
ReLU2 216.5 188.6 139.9 101.0
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Figure 1: Time-Error trade off

and Comp in the best case scenario. In this specific scenario, the Comp method is the best in
all regards. Otherwise, a compromise between speed and error rate must be made. In the red
circle lies the points relative to the CMTmethod. We can clearly see that it is both more accu-
rate and faster than all the other methods except for the Half-Torus one. Thus, it is the best
alternative to the Half-Torus method among the suggested functional bootstrapping.

8 Conclusion
Through the use of several bootstrapping operations and - in some cases - additional opera-
tions, every full domain method (Sections 4.2, 4.3 and 4.4) adds some output noise when com-
pared to the simpler and quicker partial domain method (Section 4.1). The question is: does a
larger initial plaintext space make up for the added noise and computation time? Table 5 and
Table 6 show us that the Yan et al., [Yan+21] (TOTA) method is both less accurate and twice
as time-consuming than the partial domain method. Kluczniak and Schild’s [KS21] (FDFB)
method, gets a better accuracy for well chosen parameters but is still twice as time-consuming
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as the partial domain method. Our novel composition method (Section 4.4) has a smaller
error rate than any other method presented here. In addition, it comes without additional loss
of speed compared to the other full domain methods as long as we use multi-threading.

Given these experimental measures, the Half-Torus bootstrapping stays the go to method
to use unless one of the following points apply:

• The parameters of the cryptosystem are limited due to application constraint and the
error rate of the Half-Torus is too high.

• Intermediary operations such as additions and multiplications would push messages
out of the Half-Torus space.

• Modular arithmetic needs to be computed.

In these cases, our CMT method is a good alternative as it has the smallest error rate among
the discussed methods and is as fast or faster than the other methods.

Besides, if a large plaintext space needs to be used, relying on a base decomposition technique
is the best choice. Indeed they are the only options allowing for computations on large
plaintext space using TFHE.

Furthermore, the operators presented in this paper provide key building blocks for enabling
advanced deep learning functions over encrypted data.
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A Encoding
We give here an example to highlight the use of the term 1

2p in the encoding function.

The test vector that one would give to the bootstrapping algorithm in order to implement
a partial domain identity LUT over Z4 is:

N
4 −1∑
k=0

0
8X

k+X N
4 ·

N
4 −1∑
k=0

1
8X

k+X 2N
4 ·

N
4 −1∑
k=0

2
8X

k+X 3N
4 ·

N
4 −1∑
k=0

3
8X

k

Figure 2 represents the possible outputs of the bootstrapping algorithm using this test vector.
It illustrates clearly the natural negacyclicity of the operation. However, the figure shows
that an encrypted input

[ 1
8
]
has a non-negligible chance of producing the output 0

8 due to
the presence of noise. This would happen should the error introduced during the encryption
be negative and larger than 1

4N .

Figure 2: A representation of the possible output values of a partial domain functional
bootstrapping implementation of the identity function over a message space of size 4.

Thus, we introduce an offset of + 1
16 , which places the input message at the center of the arc

corresponding to the right output. This greatly diminishes the risk of an incorrect output
value.

Figure 3 shows the encrypted polynomial at the output of the bootstrapping operation in
both cases: with inputs

[ 1
8
]
and

[ 1
8 + 1

16
]
. In every case the first coefficient is extracted in

order to obtain the TLWE encryption of the output value. The colors match those from
Figure 2. To make things clearer, the polynomials were chosen to be the ones at the output
in the case where the error in the input ciphertexts is 0. But the error actually introduces
another offset which leads to a slightly different rotation of the polynomial, and the extraction
of a close yet different coefficient. We can see that this effect is more likely to lead to the
wrong output for [ 18 ] than for [ 18 + 1

16 ].

We can also take the offset into account directly inside of the LUT of the bootstrapping algo-
rithm rather than at encryption time. This way, we can work with a more natural encryption
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Figure 3: A representation of the output polynomial (before extraction) of the bootstrapping
operation represented in Figure 2.

relatively to the homomorphic addition and multiplication of ciphertexts. However, putting
the offset in the encryption allows formulas in Section 4.4 to be less confusing.

B More Functional Bootstrapping
We describe in this section two more variants of the original functional bootstrapping from
the literature.

B.1 Private Functional Bootstrapping
The functional bootstrapping algorithm can be adapted to compute an encrypted negacyclic
function. Indeed, given a negacyclic function f : T→ T, we create [Pf ]TN [X], a TRLWE
ciphertext whose ith slot is a TLWE ciphertext encrypting f̃(i). Such a ciphertext can
be created using the TFHE public functional key-switching operation (see Algorithm 2 of
[Chi+19]) from N TLWE ciphertexts

[
f̃(i)

]
T
.

Let c=(a,b)∈TLWE(m). Then, the Algorithm 6 outputs an encryption of f̃(φ(ā,b̄)).

Algorithm 6 Encrypted LUT
Input: a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T, a bootstrapping key

BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE interpretation of a
secret key s′, an encryption [Pf ]TN [X] of the polynomial Pf

Output: a TLWE sample c∈ TLWEs(f(φ(ā,b̄)
2N ))

1: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
2: Let testv :=[Pf ]TN [X]
3: ACC←BlindRotate(testv,(ā1,...,ān,b̄),(BK1,...,BKn))
4: c=SampleExtract(ACC)
5: return KeySwitchs′→s(c)
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B.2 Multi-Value Functional Bootstrapping
Carpov et al., [CIM19] introduced a nice method for evaluating multiple different negacyclic
LUTs using one bootstrapping. Indeed, they factor the test polynomial Pfi

associated to
the function fi into a product of two polynomials v0 and vi, where v0 is a common factor
to all Pfi . In fact, they notice that:

(1+X+···+XN−1)·(1−X)=2 mod[XN+1] (3)

Let Pfi
=
∑N−1
j=0 αi,jX

j with αi,j ∈ T, and q ∈ N∗ the smallest integer so that: ∀i,
q ·(1−X)·Pfi

∈Z[X]. Note that q is a divisor of p. We obtain using equation (3):

Pfi = 1
2q ·(1+···+XN−1)·(q ·(1−X)·Pfi) mod[XN+1]

=v0 ·vi mod[XN+1]

where:

v0 = 1
2q ·(1+···+XN−1)

vi=q ·(αi,0+αi,N−1+
N−1∑
j=1

(αi,j−αi,j−1)·Xj)

Thanks to this factorization, we are able to compute many LUTs with one bootstrapping.
Indeed, we just have to set the initial test polynomial to testv=v0 during the bootstrapping.
Then, after the BlindRotate, we multiply the obtained ACC by each vi corresponding to
LUT(fi) to obtain ACCi.

Algorithm 7 Multi-value bootstrapping
Input: a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T, a bootstrapping key

BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE interpretation of a
secret key s′, k LUTs s.t. LUT(fi)=v0.vi,∀i∈J1,kK

Output: a list of k TLWE samples ci∈ TLWEs(fi(φ(ā,b̄)
2N ))

1: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
2: Let testv :=v0
3: ACC←BlindRotate((0,testv),(ā1,...,ān,b̄),(BK1,...,BKn))
4: for i←1 to k do
5: ACCi :=ACC·vi
6: ci =SampleExtract(ACCi)
7: return KeySwitchs′→s(ci)

It would have been more intuitive to use polynomials v0 = 1
q′ and v′i=q′ ·Pfi

for q′∈N∗ the
smallest integer so that all v′i have coefficients in Z. But it would lead to an error growth
of ||v′i||22.EBS higher than ||vi||22.EBS in most cases.
Indeed, if we consider a plaintext space with p<N values, the coefficients of Pfi

will have
some redundancy. As a consequence, vi will have only p

2 non-zero coefficients. For example,
consider a plaintext space with only 2 possible values. Given a negacyclic LUT(fi), every
coefficient of the polynomial Pfi

will then have the same value. Thus, each vi would have
at most 1 non zero coefficient.
In addition, since q′ ·Pfi

∈Z[X], it follows that q′ ·(1−X) ·Pfi
is also in Z[X]. Hence q is

a divisor of q′. Since the integer polynomials vi are multiplied by the torus polynomial v0
with coefficients each equal to 1

2q , we can consider each coefficient of the vi polynomials
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with modulo 2q and use values in J−q,q−1K. The same reasoning applies to the polynomials
v′i with modulo q′ and values in J−b q

′

2 c,d
q′

2 e− 1K. Thus, we get that ||vi||22 ≤ p
2 · q

2 and
||v′i||22≤N ·( q

′

2 )2. In practice, p is small compared to N and q is often smaller than q′

2 . Then,
the bound is much better for vi than v′i and the decomposition used here is a powerful way
to mitigate the error growth of the method.
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