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Abstract. Homogeneous algebraic graphs defined over arbitrary field
are classical objects of Algebraic Geometry. This class includes geome-
tries of Chevalley groups A2(F ), B2(F ) and G2(F ) defined over arbitrary
field F . Assume that codimension of homogeneous graph is the ratio of
dimension of variety of its vertices and the dimension of neighbourhood
of some vertex. We evaluate minimal codimension v(g) and u(h) of alge-
braic graph of prescribed girth g and cycle indicator. Recall that girth
is the size of minimal cycle in the graph and girth indicator stands for
the maximal value of the shortest path through some vertex. We prove
that for even h the inequality u(h) ≤ (h− 2)/2 holds. We define a class
of homogeneous algebraic graphs with even cycle indicator h and codi-
mension (h− 2)/2. It contains geometries A2(F ), B2(F ) and G2(F ) and
infinitely many other homogeneous algebraic graphs.
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1 On Turan type problems for finite simple graphs

The missing definitions of Graph Theory reader can find in [1] or [2]. We assume
that all graphs under consideration are simple graphs, i. e. undirected graphs
without loops and multiple edges.

Classical Extremal Graph Theory (see [1], [19]) developed by P. Erds’ and
his school had been started with the following problem formulated by Turan.
What is the maximal value ex(v, C2n) for the size (number of edges) of graph on
v vertexes without cycles C2n of length 2n? Other important question is about
maximal size ex(v, C3, C4, . . . , C2n, C2n+1) of a graph of order v without cycles
of length 3, 4, . . . , 2n + 1, i.e. graphs of girth ≥ 2n + 2. Recall that girth of
the graph is minimal length of its cycle. According to P. Erdős’ Even Circuit
Theorem ex(v, C2n) = O(v1+1/n).
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Studies of lower bounds for ex(v, C2n), ex(v, C3, C4, . . . , C2n, C2n+1)
or ex(v, C3, C4, . . . , C2n) form important direction of Extremal Graph The-

ory. Recall that the family Gi, i = 1, 2, . . . of k-regular simple graphs of increas-
ing order vi is a family of graphs of large girth if the girth g(i) of graph Gi are
at least clogk−1(vi) for some independent positive constant c.

We refer to family Gi, i = 1, 2, . . . of k-regular simple graphs of increasing
order vi as a family of small world graphs if the diameter d(i) of graph Gi are
at most clogk−1(vi) for some independent positive constant c. Noteworthy that
there is exactly one known construction of finite regular family of finite small
world graphs of large girth with an arbitrarily large degree q. This is the family
X(p, q) formed by Cayley graphs for PSL2(p), where p and q are primes, had
been defined by G. Margulis [3] and investigated by A. Lubotzky, Sarnak and
Phillips [4].

We say that family Gi of k-regular graphs of increasing girth is a finite forest
approximation if there is a well defined projective limit of these graphs, i. e for
each i, i > 1 there is a graph homomorphism of Gi onto Gi−1. Noteworthy that
the projective limit G of these graphs is a k-regular forest.

If each G is a tree then each graph Gi is a connected graph. In this case we
refer to the sequence Gi as tree approximation. First example of forest approxi-
mation was defined in [5], [6]. Corresponding sequence of edge transitive graphs
form a family of large girth D(n, q), n = 2, 3, . . . with projective limit D(q). So
all trees of the forest D(q) are isomorphic. Description of the tree CD(q) of this
forest in terms of equations and its tree approximation CD(n, q) are presented
in [7] for the case of odd prime powers q. Family CD(n, q), n = 2, 3, . . . is a
family of large girth, correspondent constant c is evaluated as 4/3logq(q − 1).
Noteworthy that projective limit of X(p, q) does not exist, so these Cayley-
Ramanujan graphs are not tree approximation of large girth and are not small
world approximation of an infinite tree.

2 On special Turan type problems for homogeneous
algebraic graphs

Let us start from the concept of homogeneous algebraic graph. Let F be a
field. Recall that a projective space over F is a set of elements constructed
from a vector space over F such that a distinct element of the projective space
consists of all non-zero vectors which are equal up to a multiplication by a non-
zero scalar. Its subset is called a quasiprojective variety, if it is the set of all
solutions of some system of homogeneous polynomial equations and inequalities.
An algebraic graph Φ over F consists of two things: the vertex set Q being a
quasiprojective variety over F of non-zero dimension and the edge set being a
quasiprojective variety Φ in QQ such that (x, x) is not element of Φ for each x
from Q, and xΦy implies yΦx (xΦy means (x, y) is an element of Φ).

The graph Φ is homogeneous (or N -homogeneous), if for each vertex w from
Q, the set {x|wΦx} is isomorphic to some quasiprojective variety M(w) over
F of a non-zero dimension N . We further assume that each M(w) contains
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at least 3 elements and field F contains more than two elements. We refer to
codim(Φ) = dim(Q)/N as codimension of an algebraic graph Φ.

Studies of algebraic graphs with some restrictions on their cycles (see [22])
are motivated by the following 3 areas in Mathematics.

Investigations in the case of finite case are motivated by Extremal Graph
Theory.

Flag transitive geometries over arbitrary fields are classical objects of Alge-
braic Geometry, they are incidence graphs i. e. simple graphs of binary relations
defined over algebraic varieties over field F such that their edge sets are also al-
gebraic varieties over F . Rank two geometries are building bricks for geometries
of higher rank. Their definitions are given in terms of girth and diameter. For
example classical projective plane is a graph of girth 6 and diameter 3. Its vertex
set is a disjoint union of one dimensional and two dimensional vector spaces of
F 3 [24]. J. Tits defined generalised m-gons as a bipartite graph of girth 2m and
diameter m. These objects are constructing bricks for the creation of geometries
over diagrams with more that two nodes (see [25], [26], [27], [28]). Noteworthy
that geometries of Chevalley groups A2(F ), B2(F ) and G2(F ) are generalised
m-gons for m = 3, 4 and 6. Studies of families Gi(F ) of homogeneous algebraic
graphs defined over the field F with well defined projective limits G(F ) when n
tends to infinity form an interesting direction of Algebraic Geometry. The cases
when G(F ) is a forest or a tree are especially important. Investigations of growth
of order of maximal or minimal cycles in Gi(F ) are naturally required in this
cases

In probability theory branching process is a special stochastic process cor-
responding to random walk on regular forest Forr, i. e. simple graph without
cycles with vertexes of the same degree of finite or infinite of cardinality > 2.
The genealogy of single vertex is a tree.

The forest Forr itself is a deterministic part of branching process.

A possibility to define Forr by system of equations over some field of special
commutative ring K i.e. as a projective limit of homogeneous algebraic graphs
Gi, i = 1, 2, . . . of increasing girth defined over K motivate special direction of
Infinite Network Theory.

Let us introduce some definitions of homogeneous algebraic graph theory

We refer to G as infinite algebraic graph over K if G is a projective limit for
the family Gi, i = 1, 2, . . . of k - homogeneous algebraic graphs.

If G is a forest we say that the family Gi of k-homogeneous graphs is an
algebraic forest approximation over commutative ring K.

Let gi stands for the girth of Gi.

In the case gi ≥ cni, where ni are dimensions of the vertex sets V (Gi)
of the graph Gi and c is some positive constant we use term algebraic forest
approximation of large girth.

Let G be a connected graph and di stands for the diameter of Gi. In the case
di ≤ cni , where ni are dimensions of the vertex sets V (Gi) of the graph Gi and
c is some positive constant we use term algebraic G- approximation via small
world graphs.
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The existence of tree approximations defined over arbitrary field is proven.

Noteworthy that the algebraic forest approximation over finite field is a family
of finite graphs of large girth in the sense of P. Erdős’.

The first example of the family of graphs of large girth over arbitrary field was
introduced in [8] where was stated that graphs D(n,K) over arbitrary infinite
integrity ring have girth ≥ 2[(n+ 5)/2]. This fact was proven in [9]. A bit more
compact prove without usage of terminology of linguistic dynamic systems theory
is given recently in [10].

Noteworthy that together with D(n,K), n = 2, 3, . . . one can consider an-
other families D(n,K[x1, x2, . . . , xm]) for each parameter m. It opened a pos-
sibility to use extremal properties of these graphs in the Theory of Symbolic
Computations. In [11] it was proven that the girth of D(n, F ) defined over the
field F of characteristic zero equals 2[(n+ 5)/2].

Note that small world approximation of infinite algebraic graph over finite
field is a family of small world graphs in sense of [12].

The first small world approximation of infinite algebraic graph was presented
in [13], where projective limit of Wenger graph W (n, F ) where F is an infinite
field was investigated.

Other definitions of Homogeneous Algebraic Graph Theory are motivated by
the following statement.

THEOREM 2.1.[11]

Let G be the homogeneous algebraic graph over a field F of girth g such that
the dimension of a neighbourhood for each vertex is N , N ≥ 1. Then codim(G) =
dim(Q)/N ≥ [(g − 1)/2].

We introduce v(g) as minimal value of codim(G) for homogeneous algebraic
graph G of girth g. We refer to v(g) as algebraic rank of girth g.

COROLLARY 2.1.

v(g) ≥ [(g − 1)/2]

We refer to graph G of girth g and codim(G) = v(g) as algebraic cage.

In the case of graph G of girth g and codim(G) = [(g − 1)/2] we say that G
is algebraic Moore graph.

THEOREM 2. 2.

Let v(g) be the minimal codimension of homogeneous algebraic graph of even
girth g = 2k + 2, k ≥ 6. Then k ≤ v(g) ≤ [3k/2 + 1].

Let F be a field F 6= F2. We introduce Fv(g) as minimal codim(G) for
algebraic graph G over the field F with girth g.

If g, g ≥ 6 is even then F v(g) is at least (g − 2)/2, for each field F , FF2.
The upper bound for F v(g) can be heavy dependable from the choice of field.
For each even m we introduce t(m) as minimal codimension of homogeneous
algebraic graph without cycle Cm. Let F t(m) stands for the minimal codimension
of the homogeneous algebraic graph defined over the field F Noteworthy that
t(m) ≤ v(m+2). The following conjecture is motivated by Even Circuit Theorem.

CONJECTURE 2. 1.

The inequality t(m) ≥ m/2 holds.

We refer to the written above inequality as Even Circuit Inequality (ECI).
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THEOREM 2.3.
Let F be a field with at least 3 elements, m = 2k be an even integer Assume

that F ṽ(m) be the minimal codimension of homogeneous algebraic graph over
the field, m be an even integer ≥ 4 such that its girth is > m. Then F ṽ(m) ≤
[3k/2 + 1].

COROLLARY 2.2.
Let F be a field with at least 3 elements. Let F t(m) be the minimal codimen-

sion of homogeneous algebraic graph without cycles of length m = 2k, k ≥ 6.
Then F t(m) ≤ [3k/2 + 1]

Importance of rank 2 finite geometries over diagrams A2, B2 and G2 for
Extremal Graph Theory was noticed in [17]. The following statement follows
instantly from the definition of algebraic Moore graphs and definitions of geome-
tries of simple groups of Lie type (see [18]). Noteworthy that incidence graphs
of geometries of Chevalley groups A2(F ), B2(F ) and G2(F ) over arbitrary field
F are algebraic Moore graphs.

In the next section the family A(n, F ) of 1-homogeneous algebraic bipartite
graphs with partition sets Fn will be defined. The girth of A(n, F4) for n =
4, 5, 6, 7, 8, 9 was computed (see [16]). It turns out that A(4, F4) is algebraic
Moore graph of girth 10. Some conjectures connected with these 4 exceptional
graphs are formulated in [10].

Justification of Theorem 2.2 and 2.3 and some statements about F v(m) will
be given in Section 4.

3 Another optimization problem for finite or
homogeneous algebraic graphs

Problems on evaluation of girth and diameter of k-regular simple graph with
k ≥ 3 are well known. Additionally we consider following optimization minimax
problems for graphs.

(1) Investigate cycle indicator h(v) of the vertex v of the k-regular graph G,
i. e. the minimal length of cycle through this vertex v.

(2) Find the cycle indicator h(G) of the graph which is maximal value of
cycle indicators of vertexes of the graph.

As it instantly follows from the definitions h(G) ≥ g(G), where g(G) stands
for the girth of the graph, which is minimal size of a cycle of G.

We say that family Gi, i = 1, 2, . . . of increasing order vi is a family with
large girth indicator if cycle indicator h(i) of graph Gi are at least clogk−1(vi)
for some independent positive constant c.

Similarly we say that family of homogeneous algebraic graphsGi, i = 1, 2, . . . , n
defined over the field F with increasing dimension di of vertex sets V (Gi) such
that the neighbourhood of each vertex of Gi. has fixed dimension N independent
from parameter i is an algebraic family of graphs with large cycle indicator if
cycle indicator h(i) of graph Gi are at least cdi for some positive constant i.

As it follows from definitions each family of graphs (or algebraic graphs) of
large girth is a family of graphs (algebraic graphs) with large circle indicator. So
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quite many examples of such families are known (see [7] and further references)
In Section 1we introduce a family of algebraic graphs over arbitrary field F with
the large circle indicator with constant c = 2. If F = Fq this is the family of
finite graphs with large circle indicator and constant c = 2logq(q − 1).

Let G be k-homogeneous algebraic graph over field F with the vertex set
V (G) and with the girth indicator h Let Fu(h), h ≥ 6 be the minimal codi-
mension for variety of such graphs defined over the field F . We consider u(h)
as minimal value of Fu(h) via all fields F with at least 3 elements. Noteworthy
that Fu(h) ≥ (h).

THEOREM 3.1.
For each even h, h ≥ 6 the inequality u(h) ≤ (h− 2)/2 holds.
Justification of this statement will be given via evaluation of cycle indicator

of graphs A(n, F ) defined below . The evaluations of Fu(h) for special fields F
are also given in the next section.

CONJECTURE 3.1.
The bound of Theorem 3.1 is sharp, i. e. u(h) = (h− 2)/2 for even h, h ≥ 6.
Let K be a commutative ring . We define A(n,K) as bipartite graph with

the point set P = Kn and line set L = Kn (two copies of a Cartesian power of
K are used). We will use brackets and parenthesis to distinguish tuples from P
and L.

So (p) = (p1, p2, . . . , pn) ∈ Pn and [l] = [l1, l2, . . . , ln] ∈ Ln.
The incidence relation I = A(n,K) (or corresponding bipartite graph I) is

given by condition pIl if and only if the equations of the following kind hold.
p2l2 = l1p1,
p3 − l3 = p1l2,
p4l4 = l1p3,
p5l5 = p1l4, (1)
. . . ,
pnln = p1ln−1 for odd n and pnln = l1pn−1 for even n.
We can consider an infinite bipartite graph A(K) with points
(p1, p2, . . . , pn, . . . ) and lines [l1, l2, . . . , ln, . . . ].
We proved the following statement.
THEOREM 3.2. (see [10] and further references).
Let K be an integrity ring. Then for each odd n ≥ 3 a cycle indicator of

graph A(n,K) is at least 2n+ 2.
In the case when K coincides with Fq graphs A(n, Fq) are q-regular, they

form a family of graphs with large cycle indicator, appropriate constant c can
be written as 2logq(q − 1).

We prove inequality h(A(n,K)) ≥ 2n + 2 via computation of h(v) for the
vertex v (point or line) given by the tuple (0, 0, . . . , 0). Computer simulation
indicates that if n > 6 then cycle indicators of 0-point and 0-line are different, one
of them is 2n+ 2 but other is 2n. It means that graphs are not vertex transitive,
their girth differs from the cycle indicator in investigated via computer simulation
cases.

CONJECTURE 3.2.
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Let F be a field with at least 3 elements. Then for each odd n ≥ 3 a cycle
indicator of graph A(n, F ) is 2n+ 2.

The inequality Fu(h) ≤ (h−2)/2 for each even parameter h instantly follows
from the Conjecture 3.2. The following statement supports Conjecture 3.2.

THEOREM 3. 3.
Let k , k > 3 be an odd number. There are infinitely many fields F such that

girth indicator of A(k, F ) is 2k + 2.
Justification of this statement is given in the next section.
Theorem 3.1 instantly follows from Theorem 3.3.
Let F ũ(m) be a minimal dimension of homogeneous algebraic graph over F

with the girth indicator > m.
THEOREM 3. 4.
For each odd m of kind 2k+1, k ≥ 1 and each field F the following inequality

holds. F ũ(m) ≤ (m+ 1)/2
This statement instantly follows from Theorem 3.2
We refer to homogeneous algebraic graphs over field F with even cycle indi-

cator h of codimension (h− 2)/2 as cyclonic graphs.
Class of cyclonic graphs contains geometries of Chevalley groups A2(F ),

B2(F ), G2(F ) (known flag transitive generalised m-gons for m = 3, 4 and 6
in the case of arbitrary field F ). Other examples give some representatives of
known family of graphs A(n, F ) defined above. Noteworthy that in the cases of
generalised polygons their girth coincides with the cyclic indicator, but in well
investigated via computer simulation cases of graphs A(n, Fq), q = 3, q = 4
and q = 5 and odd parameters n from the intervals [7, 27], [7, 15] and [7, 13]
these parameters are distinct. Computer simulation was conducted by Prof. G.
Erskine.

We define Cyclic gap of graph G as the difference between cycle indicator
Cind(G) and Girth(G). Investigation of cyclic gaps of A(n, F ) is an interesting
open problem of Algebraic Geometry.

4 On relations of A(n,K) with other known families of
graphs

Graphs A(m,K) were obtained in [9] as quotients of graphs D(n,K)). This
incidence structure was defined in the following way.

Let K be an arbitrary commutative ring. We consider the totality P ′ of points
of kind

x = (x) = (x1,0, x1,1, x1,2, x2,2, . . . , xi,i, xi,i+1, . . . ) with coordinates from K
and the totality L′ of lines of kind
y = [y] = [y0,1, y1,1, y1,2, y2,2, . . . , yi,i, yi,i+1, . . . ]. We assume that tuples (x)

and [y] has finite support and a point (x) is incident with a line [y] , i. e. xIy or
(x)I[y], if the following conditions are satisfied:

xi,i − yii = yi−1,ix1,0,
xi,i+1 − yi,i+1 = y0,1xi,i (2)
where i = 1, 2, . . . .
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We denote the graph of this incidence structure as A(K). We consider the
set Root of indexes of points and lines of A(K) as a subset of the totality of all
elements (i+1, i+1), (i, i+1), (i+1, i), i ≥ 0 of root system Ã1 of affine type. We
see that Root = {(1, 0), (0, 1), (11), (12), (22), (23), . . . }. So we introduce R1,0 =
Root − {0, 1} and R0,1 = Root − {(1, 0)}. It allows us to identify sets P ′ and
L′ with affine subspaces {f : R1,0 → K} and {f : R0,1 → K} of functions with
finite supports.

For each positive integer k ≥ 2, we obtain an incidence structure (Pk, Lk, Ik)
as follows. Firstly, Pk and Lk are obtained from P ′ and L′, respectively, by
simply projecting each vector onto its k initial coordinates. The incidence Ik
is then defined by imposing the first k − 1 incidence relations and ignoring all
the other ones. The incidence graph corresponding to the structure (Pk, Lk, Ik)
is denoted by A′(k,K). The comparison of equations of A′(k,K) and A(k,K)
allows to justify the isomorphism of these graphs. It is convenient for us to
identify graphs A(k,K) with incidence structures Ik defined via relations (2).

The procedure to delete last coordinates of points and lines of graph A(n,K)
defines the homomorphism n∆ of A(n,K) onto A(n − 1,K), n > 2. The fam-
ily of these homomorphisms defines natural projective limit of A(n,K) which
coincides with A(K). We introduce the colour function ρ on vertexes of graph
A(K) or A(n,K) as x10 for the point (x10, x11, x12, . . . ) and y01 for the line
[y01, y11, x12, . . . ]. We refer to ρ(v) for the vertex v as colour of vertex v.

As it follows directly from definitions for each vertex v and each colour a ∈ K
there is exactly one neighbour of v with the colour a. We refer to this fact as
linguistic property of graphs A(n,K) and A(K). In fact such property were used
for the definition of the class of linguistic graphs (see [9] and further references).
The family of graphs D(n,K), n = 2, 3, . . . where K is arbitrary commutative
ring defines the projective limit D(K) with points (p) = (p10,p11, p12, p21, p22,
p′22, . . . , p′ii, pii+1, pi+1,i, pi+1,i+1, . . . ), and lines [l] = [l01, l11, l12, l21, l22,
l′22,. . . ,l’ii, lii+1, li+1,i, li+1,i+1, . . . ].

which can be thought as infinite sequences of elements in K such that only
finitely many components are nonzero.

A point (p) of this incidence structure I is incident with a line [l], i.e. (p)I[l],
if their coordinates obey the following relations:

pi,i − li,i = p1,0li−1,i,

p′i,i − l′i,i = pi,i−1l0,1,

pi,i+1 − li,i+1 = pi,il0,1, (3)

pi+1,i − li+1,i = p1,0l
′
i,i.

(These four relations are well defined for i > 1, p1,1 = p′1,1, l1,1 = l′1,1.)

Let D be the list of indexes of the point of the graph D(K) written in their
natural order, i. e. sequence (1, 0), (1, 1), (1, 2), (2, 1) , (2, 2),(2, 2)’,. . . .LetkD be
the list of k first elements of D. The procedure of deleting coordinates of points
and lines of D(k,K) indexed by elements of D−kD defines the homomorphism
of D(K) onto graph D(k,K) with the partition sets isomorphic to the variety
Kn and defined by the first k−1 equations from the list (3). We can see that the
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procedure of deleting of coordinates indexed by elements D − (Root− {(0, 1)})
defines the homomorphism of graph D(K) onto A(K).

Let us consider the set kA =k D −k D ∩ Root. The procedure of deleting
coordinates of vertexes of D(k,K) indexed by elements of kA defines the homo-
morphism ηk of D(k,K) onto A(m, k) where m is the cardinality of kD ∩Root.

Let k ≥ 6, t = [(k + 2)/4], and let u = (ui, u11, . . . , utt, u
′
tt, ut,t+1, ut+1,t, ...)

be a vertex of D(k,K). We assume that u1 = u1,0(u0,1) if u be a point (a line,
respectively). It does not matter whether u is a point or a line. For every r,
2 ≤ r ≤ t , let ar = ar(u) = Σi=0,r(uiiu

′
r−i,r−iui,i+1ur−i,r−i−1) and a = a(u) =

(a2, a3, . . . , at).

The following statement was proved in [7] for the case K = Fq. Its general-
ization on arbitrary commutative rings is straightforward, see [9].

PROPOSITION 4.1.

Let K be a commutative ring with unity and u and v be vertices from the
same connected component of D(k,K). Then a(u) = a(v). Moreover, for any t1
ring elements xi ∈ K, 2 ≤ i ≤ [(k+ 2)/4] = t, there exists a vertex v of D(k,K)
for which a(v) = (x2, x3, . . . , xt) = (x).

So the classes of equivalence for the relationτ = {(u, v)|a(u) = a(v)} on the
vertexes of the graph. D(n,K) are unions of connected components.

THEOREM 4.1 [9]. For each commutative ring with unity, the graph D(k,K)
is edge transitive.

Equivalences classes of τ form an imprimitivity systems of automorphism
group of D(k,K). Graph C(n,K) was introduced in [8] as the restriction of inci-
dence relation of D(k,K) on a solution set of system of homogeneous equations
a2(x) = 0, a3(x) = 0, . . . , at(x) = 0. The dimension of this algebraic variety is
n − t = d. Thus d = [4/3n] + 1 for n = 0, 2, 3 mod 4, d = [4/3n] + 2 for n = 1
mod 4. For convenience we assume that C(n,K) = Cd(K) Symbol CD(k,K)
stands for the connected component of graph D(k,K). The following statement
was proven in [9].

THEOREM 4.2 [14].

The diameter of the graph Cm(K), m ≥ 2, K is a commutative ring with
unity of odd characteristic is bounded by parameter f(m) which does not depend
on K defined by the following equations.

COROLLARY 4. 1.

If K is a commutative ring with unity then CD(n,K) = C(n,K).

COROLLARY 4. 2.

For each natural n family C(n, Fq) where q run through all odd prime powers
is a family of small world graphs of unbounded degree, i.e. diameter of member
of the family is bounded by some independent constant.

COROLLARY 4.3.

Let K be a commutative ring with unity of odd characteristic, then ηk(D(k,K) =
ηk(CD(k,K) = A(m,K), where m is cardinality of kD∩Root. So graphs A(m,K)
are connected.

The girth of graph D(k,K) is computed only for special integrity ring with
unity. The following two propositions are well known.
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THEOREM 4. 3. ([15])

Let k be odd, and q be any prime power in the arithmetic progression {1 +
n(k + 5)/2}, n = 1, 2, . . . . Then the girth of D(k, Fq) is k + 5.

THEOREM 4. 4 ([11]).

Let k be odd, and P be the arithmetic progression P = {1 + n(k + 5)/2},
n = 1, 2, . . . . Then

(i) for each integrity ring F of prime characteristic p ∈ P or 0 the girth of
the graph D(k, F ) is k + 5;

(ii) there is an integer function n(k) such that for each commutative integrity
ring K with unity such that char(K) ≥ n(k) the girth of the graph D(n,K) is
k + 5.

Noteworthy that D(m,Fq) is induced subgraph of D(m,Fqs) and the follow-
ing statement instantly follows from Theorem 4.3.

COROLLARY 4.4.

Let parameters m and q satisfy condition of Theorem 4. 3 and s ≥ 1. Then
the girth of D(m,Fqs) is m+ 5.

The usage of this corollary allows us to formulate the following statement on
existence of infinitely many finite cyclonic graphs

THEOREM 4.5.

Let k be odd, and q be any prime power in the arithmetic progression {1 +
n(k+5)/2}, n = 1, 2, . . . and s is integer ≥ 1. Then cycle indicator of A(r, Fqs),
r = (k + 3)/2 is 2s+ 2.

Proof.

Let v be some vertex of A(r, Fqs). Assume that u be a reimage of v for the
homomorphism ηm of the graph D(k, Fqs) onto A(r, Fqs). Edge transitivity of
D(k, Fq) and Corollary 4.4 insure that there is a cycle C through the vertex u
of length m + 5. The closed walk η(C) contains vertex v. So cycle indicator of
v has length ≤ 2r + 2 = k + 5. Theorem 3.2 insures that cycle indicator equals
2r + 2.

The following statement on the existence of other examples of cyclonic graphs
can be deduced from the Theorem 4.2.

THEOREM 4. 6.

Let k be odd, and P be the arithmetic progression P = {1 + n(k + 5)/2},
n = 1, 2, . . . . Then

(i) for each integrity ring Fof prime characteristic p ∈ P or 0 the cycle
indicator of A(s, F ) is 2s+ 2 where s = (k + 3)/2.

(ii) there is an integer function n(k) such that for each commutative integrity
ring K with unity such that char(K) ≥ n(k) the girth indicator of the graph
A(s, F ) is 2s+ 2.

The proof of this statement is similar to justification of Theorem 4.3. Theorem
3.3 follows instantly from Theorem 4.3. or Theorem 4.4.

Proof of Theorems 2.2 and 2.3.

Assume that n is integer ≥ 2. We know that girth of graph D(n,K) defined
over arbitrary integrity ring K is ≥ 2[(n + 5)/2]. As it follows from the edge
transitivity of D(n,K) vertex sets of graphs isomorphic to C(n,K) forms par-
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tition of Kn ∪Kn into classes of equivalence relation τ . Each of these classes
is a unions of several connected components of D(n,K). Let C be a shortest
cycle in D(n,K). The connected component containing C belongs to some class.
Thus without loss of generality we can assume that C belongs to C(n,K). So
we prove that the girth of D(n,K) and C(n,K) is the same even integer. Let
K be a field. The set of vertices for C(n,K) is a subvariety Kn ∪ Kn defined
and t− 1 equations of kind a2(x) = 0, a3(x) = 0, . . . , at(x) = 0. It means that
dimension of the vertex set of C(n,K) is n− t+ 1.

For simplicity we assume that parameter n is odd and K is the field different
from F2. So graph C(n,K) does not contains cycles of length n− 3, n = 2k+ 1,
graph does not contain cycles of length 2k− 2. Its dimension coincides with the
codimension and we obtain the upper bound for F t(2k−2). It gives us the proof
of theorem 2.3. Now we take one of the fields for which the girth of D(2k+ 1, F )
is 2k + 6. We evaluate F v(2k + 6) and use inequality v(2k + 6)F v(2k + 6).

THEOREM 4.7.

6 ≤ v(14) ≤ F4v(14) ≤ 7

It follows from the fact that the girth of algebraic graph A(7, F4) equals to
14 (see [16]).

CONJECTURE 4.1.

v(14) = 7 and A(7, F4) is an algebraic cage.

5 On Extremal Algebraic Graphs and Cryptography
based on multivariate maps over commutative rings

Extremal algebraic graphs were traditionally used for the construction of stream
ciphers of multivariate nature (see [32] and further references, [33] and [16] where
multivariate maps of unbounded degree were used). Described above graphs
D(n,K) and A(n,K) were intensively used. Later first graph based multivariate
public keys with injective encryption maps were suggested in [34], [35]. These
constructions use graphs A(n,K) and D(n,K) together with Eulerian transfor-
mation of Kn to produce public rule as multivariate transformation of linear
degree and polynomial density. So they differs from classical constructions of
multivariate public rules of degree 2 or 3 which were investigated during NIST
standartisation project started in 2017.

This project starts the standardisation process of possible Post-Quantum
Public keys aimed for purposes to be (i) encryption tools, (ii) tools for digital
signatures (see [29]).

In July 2020 the Third Round of the competition started. In the category of
Multivariate Cryptography (MC) remaining candidates are easy to observe. For
the task (i) multivariate algorithm was not selected, single multivariate candidate
is ”The Rainbow Like Unbalanced Oil and Vinegar” (RUOV) digital signature
method. As you see RUOV algorithm was investigated as appropriate instrument
for the task (ii). Due to this investigation RUOV was not selected for the next
4th round of NIST competition. In 2022 first 4 winners of the NIST competition
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were selected. So NIST certification do not select any of algorithm of Multivariare
Cryptography.

Noteworthy that all multivariate NIST candidates were presented by multi-
variate rule of degree bounded by constant (2 or 3) of kind x1 → f1(x1, x2, . . . , xn),
x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn). In fact RUOV is given by
quadratic system of polynomial equations.

We think that NIST outcomes motivate investigations of alternative options
in Multivariate Cryptography oriented on encryption tools for

(a) the work with the space of plaintexts Fq
n and its transformation G of

linear degree cn, c > 0 on the level of stream ciphers or public keys
(b) the usage of protocols of Noncommutative Cryptography with platforms

of multivariate transformations for the secure elaboration of multivariate map G
from End(Fq[x1, x2, . . . , xn]) of linear or superlinear degree and density bounded
below by function of kind cnr, where c > 0 and r > 1.

We hope that these alternative options together with classical multivariate
public key approach are able to bring reliable encryption algorithms.

Recall that the density is the number of all monomial terms in a standard
form xi → gi(x1, x2, . . . , xn), i = 1, 2, . . . , n of multivariate map G, where poly-
nomials gi are given via the lists of monomial terms in the lexicographical order.

We use presented above family of small world graphs A(n.q), connected
graphs CD(n, q) and their analogs A(n,K) and CD(n,K) defined over finite
commutative ringK with unity for the construction of multivariate groupGA(n,K)
of transformations of Kn.

It can be used as platform for postquantum protocols of Noncommutative
Cryptography (see [30]) and creation of multivariate protocol based cryptosys-
tems. This approach allows to convert graph based symmetric ciphers to protocol
based asymmetric algorithms of El Gamal type (see [31]).

Presented above results on the girth of linguistic graphs A(n,K) and D(n,K)
over commutative integrity ring can be used for investigation of groups GA(n,K)
and GD(n,K) and other subgroups and subsemigroups of transformations of
Kn defined via walks in graphs A(n,K), D(n,K) and A(n,K[x1, x2, . . . , xn]),
D(n,K[x1, x2, . . . , xn]). Some statements about degrees of elements of these
semigroups are already obtained. So studies of girth and girth indicators of
graph A(n,K) and D(n,K) make essential impact on studies of correspond-
ing graph based ciphers of Multivariate nature and properties of Asymmetric
Cryptosystems which use these graphs.
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