
Policy-Based Redactable Signatures

Zachary A. Kissel†

†Department of Computer Science, Merrimack College, North Andover, Massachusettes
01845

kisselz@merrimack.edu

Abstract

In this work we make progress towards solving an open problem posed by Bilzhause et. al [5], to
give constructions of redactable signature schemes that allow the signer to limit the possible redactions
performed by a third party. A separate, but related notion, called controlled disclosure allows a redactor
to limit future redactions. We look at two types of data, sets and linear data (data organized as a
sequence). In the case of sets, we limit redactions using a policy modeled by a monotone circuit or
any circuit depending on the size of the universe the set is drawn from. In the case of linear data, we
give a linear construction from vector commitments that limits redactions using a policy modeled as a
monotone circuit. Our constructions have the attractive feature that they are built using only blackbox
techniques.

1 Introduction

A redactable signature scheme (RSS) [22, 31] is a signature scheme that allows a signer to sign a message in
such a way that a third party may later redact the message and update the signature without the signing key.
Applications of this primitive include redacting of sensitive of data from documents [22, 31] and anonymous
credential systems [29]. One of the problems with redactable signature schemes, as pointed out in [5], is
known schemes allow for arbitrary redaction by a third party. In this work we make progress towards solving
an open question of Bilzhausse et. al and offer constructions of redactable signature schemes that allow
the original signer to limit what can be redacted by a third party. We refer to such signature schemes as
policy-based redactable signatures. In a policy-based RSS, given only the verification key, the third party
may redact message m to m′ if and only if m′ satisfies the policy associated with the signature, specified
at signing time. Moreover, a third party may further restrict the policy during redaction to further limit
future redactions. The last property is not new, the notion of controlled disclosure of [26] is already present
in some RSS schemes. We emphasize that our policy-based constructions additionally put redaction control
in the hands of the signer, unlike controlled disclosure. Readers familiar with P-Homomorphic signatures [1]
may see similarities. However, our formulation differs in that our policy is specified at signing time and has
a role in redaction and verification.

Contributions Our work has several contributions:

• We formally define policy-based redactable signature schemes.

• We offer two small universe set policy-based redactable signature schemes for any policy. One from
approximate membership query data structures and one from cryptographic accumulators.

• We give a set policy-based redactable signature scheme for any size universe for policies expressible as
monotone circuits from cryptographic accumulators.

1

• We give a linear document policy-based redactable signature scheme for any size universe for policies
expressible as monotone circuits from vector commitments.

• We analyze the performance of our construction for sets with monotone circuit policies in comparison
to the classic set construction of Derler et. al [17] and conclude that our construction has minimal
slowdown in signing and verification time.

• We demonstrate that work must be undertaken to increase the performance of redactable signature
schemes in practice.

1.1 Background

A redactable signature scheme (RSS) is a signature scheme where the a signer may sign a message m (resulting
in signature σ) in such a way that a third party may redact the original message m to m′ updating signature σ
to σ′ without the signing key. This primitive was defined simultaneously by [22, 31]. There are three security
notions that pertain to redactable signatures: a slightly modified form of classic existential unforgeablilty
under chosen message attack; a privacy notion which guarantees a redacted signature is indistinguishable
from the original signature; and transparency which says that signing a redacted message is indistinguishable
from redacting a signed message.

Early works [22, 31, 17, 12, . . .] focused on two types of data: linear data (like text or ordered sets) and
data organized in sets. Some initial work has been undertaken on tree structured data [10], A useful survey
of the redactable signatures can be found in [5].

A trivial (and inefficient) construction for linear data involves breaking message m into n blocks, m1 ‖
m2 ‖ · · · ‖ mn. For each block i compute σi = Signsk (r ‖ i ‖ mi), where r

$← {0, 1}n. To redact, message
block mi the redactor deletes mi and signature σi. The trivial construction satisfies unforgeablilty and pri-
vacy1. By dropping the index of the message block from the signature, one can achieve a trivial construction
that supports data organized as sets. This set construction is unforgeable, private, and transparent.

The linear construction of Johnson et. al [22] is based on Merkle trees coupled with the GGM PRF tree
construction. Roughly speaking, each of the message blocks m1 through mn form the leaves of a GGM tree
such that block mi is paired with ki = fs (i− 1). Next, the hash of the ki ‖ mi is computed for every block
i and the results placed at the leaves of a Merkle tree. The signature is σ = (s, v, Signsk (v)) where v is the
root of the Merkle tree. The construction only offers unforgeability. Depending on the application this may
offer sufficient security. Because of the dependence on Merkle trees, a set construction does not easily follow,
unless one wants to restrict the notion to ordered sets. Casting the construction in the language of vector
commitments [11], the Merkle tree, a vector commitment, is committing to the ki ‖ mi pairs. Therefore, any
vector commitment scheme, could be substituted, for this construction.

We can generalize the construction of Johnson et. al by replacing the GGM tree with a constrained
pseudorandom function (CPRF)2 that supports constraining inputs to falling into a range. The Merkle tree
portion of the construction remains unchanged. When redacting instead of providing the necessary nodes of
the GGM tree (the GGM based CPRF, in actuality) we release the constrained key for the required range.
If we use a suitably constructed CPRF, we can achieve predicate privacy and a fixed sized CPRF key (on
the order of Θ (lgn)). In fact, a CPRF for bit-fixing3 may also serve this purpose.

Derler et. al [17] gave a set construction and a linear construction. The set construction is based on
cryptographic accumulators [3]. The idea is to add all elements of set X to the accumulator, sign the
accumulator value with an existentially unforgeable signature scheme, and output a signature that consists
of the accumulator value, a witness wx for all x ∈ X , and the signed accumulator value. To redact the
signature, delete the associated witnesses. The construction is unforgeable, private, and transparent. They
arrive at a linear construction by leveraging the basic idea in the set construction together with a tag to

1[22] offers slightly different trivial construction that only offers existential unforgeability under redaction.
2A form of PRF that allows a third party that posses a special constrained key to evaluate the PRF on some subset of the

domain.
3Some of the bits the of the input are fixed.

2

aid in preserving relative order of message blocks. In particular to sign the ith block, all tags for the i − 1
blocks preceding are accumulated into an accumulator, and a signature on the tag, message block, and
accumulator value is generated and added along with the ith witness to the output. Redaction consists of
deleting accumulators, tags, witnesses, and associated signatures.

More recently, Sanders gave a linear RSS from the Pointcheval-Sanders signature scheme [29]. This
scheme requires type-3 bilinear pairings e : G1×G2 → GT 4. Of particular interest is this construction allows
the key generator to limit which parties can redact messages; as in order to redact, special elements of G1

must be possessed. However, the size |S| of the set S must be known at the time of key generation as the
signing and verification keys depend on this size. The size of the signing key is Θ (|S|) and the size of the

verification key is Θ
(
|S|2

)
.

The notion of redactable signature schemes have been cast into a general framework by Ahn et. al
through the notion of P-Homomorphic signatures [1] as well as by Derler et. al [17]. While prior works tied
to a specific class of data structure (text, sets, etc.) and security notions, Derler et. al focused on generic
definitions that unify the space. Ahn et. al refer to their redactable signature schemes as quoting schemes,
and are merely a type of P-Homomorphic signatures.

Some work has been undertaken related to the notion of redaction control, called controlled disclosure [26,
21]. In controlled disclosure the redactor is allowed to declare certain regions of a document as unredactable.
This declaration is made during initial redaction. The signer has no control over what is and is not marked
as redactable. The construction of [26] is based on the content extraction signature schemes of [31]. The
work of [21] is based on the linear construction of Johnson et. al, thus transparency is not provided.

2 Preliminaries

In this section we introduce notation and review necessary primitives. The primitives we use include:
approximate membership query (AMQ) filters, constrained pseudorandom functions (CPRFs), cryptographic
accumulators, vector commitments, and threshold secret sharing. Lastly, we formally introduce redactable
signature schemes.

2.1 Notation

We denote by negl (·) an arbitrary negligible function. We write x
$← A to denote that x is sampled from

set A uniformly at random. The concatenation of bit-strings m1 and m2 is denoted m1 ‖ m2. We denote
by (DS.Gen,DS.Sign,DS.Vrfy) an existentially unforgeable under chosen message attack (EUF-CMA) secure
digital signature scheme. The signing key will be denoted by sk and the verification key will be denoted vk .
We represent a PRF family by {fk : D → R | k ∈ K} where K is the key space. Throughout this work, the
security parameter is λ. We denote by m ` m′ that m′ can be arrived at by redacting m. We denote by P
a set of policies that a signer can enforce in a redactable signature scheme. For a policy P ∈ P, we write
m `P m′ to denote m can be redacted to m′ if and only if P (m′) = 1. We say that policy P ′ ∈ P is a
subpolicy of policy P ∈ P if for all x where P ′ (x) = 1, P (x) = 1. We denote the characteristic bitstring of
set A relative to universe U by XU (A).

2.2 Approximate Membership Query (AMQ) Filter

An Approximate Membership Query (AMQ) filter compactly stores a set X = {x1, x2, . . . , xn} such that
membership queries will always be correct when a element x ∈ X but, may be incorrect when x 6∈ X (a false
positive). AMQ filters include: Bloom Filters [6], Cuckoo Filters [18], Quotient Filters [13], and XOR Filters
[20]. Formally, we denote an AMQ filter as tuple of three algorithms Init, Add, and Contains where Init may
take an expected false positive rate and return an empty filter; Add takes an element x and a filter for set X

4There is no efficiently computable homomorphism between G1 and G2.

3

and returns a new filter which represents X ∪ {x}; and Contains takes an element x and a filter and returns
one if x is probably in the set and zero if x is not in the set.

2.3 Constrained Pseudorandom Functions

A constrained pseudorandom function (CPRF) is a tuple of algorithms
Π = (F.Gen,F.Constrain,F.Eval,F.ConstrainedEval) defined over domain X and range Y with the following
properties:

• F.Gen
(
1λ
)

takes as input a security parameter, 1λ and samples a random function from PRF family
by sampling a master key msk from the appropriate keyspace.

• F.Constrain (msk, ϕ)takes the master key and predicate ϕ as input and returns a key kϕ that represents
the constrained key.

• F.Eval (msk, x) takes the master key and an input x ∈ X and returns the appropriate value y ∈ Y.

• F.ConstrainedEval (kϕ, x) takes as input a constrained key kϕ and an x ∈ X . If ϕ (x) = 1 the correct
value y ∈ Y is returned (i.e. Eval (kϕ, x)); otherwise either a random value in Y or ⊥ is returned.

Correctness. We say a CPRF is correct if the evaluation of x using the constrained key agrees with the
evaluation of x using the master key when the predicate associated with the constrained key is satisfied.
More formally, F is correct if for all x ∈ X where ϕ (x) = 1, master keys msk, and constrained keys kϕ,
F.Eval(msk, x) = F.ConstrainedEval(kϕ, x).

Security Notion. A constrained pseudorandom function has a nuanced security guarantee. With a tradi-
tional PRF, security states that under a polynomial number of adaptive queries a probabilistic-polynomial
time (PPT) adversary can not distinguish between the output of a PRF and the output of a randomly
selected function of the same domain and range. When it comes to CPRFs security is relative to a predicate
ϕ ∈ Φ where the adversary will be able to evaluate the PRF at any point x ∈ X where ϕ (x) = 1 without
the assistance of an evaluation oracle.

Given a CPRF F : K×X → Y, we can cast the security notion as a game ExpCPRF−Secure
A (b, λ) where A

is a probabilistic polynomial-time adversary, b ∈ {0, 1}, and λ is a security parameter we define the security
game ExpCPRF−Secure

A,F (b, λ) as follows:

ExpCPRF−Secure
A,F (b, λ):

1. The game runs F.Gen
(
1λ
)

to obtain master key msk.

2. If b = 0, the game samples a random function R : X → Y.

3. The adversary is provided access to two oracles:

(a) A F.Constrain oracle which allows A to ask the game for a constrained key kϕ for predicate
ϕ ∈ Φ, adding ϕ to P , the set of queried predicates.

(b) An F.Eval oracle which behaves as follows on query x:

• If b = 0, answer the evaluation queries as follows: if ϕ (x) = 1 for some ϕ ∈ P , respond
honestly. If there is no such predicate, output the value of R (x).

• If b = 1, return the output of Eval (msk, x).

4. Eventually the A outputs a bit b′ ∈ {0, 1}.

4

We say that a CPRF is secure if for all PPT adversaries A there exists a negligible function negl such that∣∣∣Pr
[
ExpCPRF−Secure
A,F (0, λ) = 1

]
− Pr

[
ExpCPRF−Secure
A,F (1, λ) = 1

]∣∣∣ ≤ negl (λ) .

Remark 2.1. If we modify the CPRF-secure game so we force the adversary to commit to some challenge
point before they get access to the oracle we arrive at the (challenge) selective security game.

Remark 2.2. If in the game the adversary is not given access to a constrain oracle but, rather can ask for
exactly one constrained key before being given access to the evaluation oracle, we say that the security notion
is (constrained-key) selective. This notion of security was (seemingly first) considered by [9].

Predicate Privacy. Roughly speaking, predicate privacy implies that the party that posses the con-
strained key can not learn the associated predicate. We can formalize this notion as a game ExpCPRF−Priv

A,F (λ)
(first defined by [8]) between a challenger and a PPT adversary A as follows:

ExpCPRF−Priv
A,F (λ):

1. Challenger runs msk← F.Gen
(
1λ
)

and constructs an empty set of queries Q.

2. Adversary A is given access to an evaluation oracle that on query x returns y ← F.Eval(msk, x)
to A. Every query x is added to Q.

3. Eventually, A outputs two predicates ϕ0 and ϕ1 from Φ such that for all x ∈ Q, ϕ0 (x) = ϕ1 (x).

The challenger samples a bit b
$← {0, 1} and returns kϕb

← F.Constrain(msk, ϕb) to A.

4. A is given access to the evaluation oracle but, is not allowed to query on a value of x where
ϕ0 (x) 6= ϕ1 (x); otherwise, A can trivially distinguish between the two keys.

5. Eventually, A outputs a bit b′ ∈ {0, 1}. The adversary A wins the game if b = b′.

We say that a CPRF F is one-key private if for all PPT adversaries A,

Pr
[
ExpCPRF−Priv
A,F (λ) = 1

]
≤ 1

2
+ negl (λ) .

The game, as presented, is known as one-key privacy as the adversary is only allowed to make one
challenge query. The security notion can be extended to d-key privacy by allowing the adversary to issue d
pairs of predicates. In the case of d-key privacy, what is admissible for the adversary must be updated, see
[7] for details.

Remark 2.3. We call a CPRF canonical if F.Eval is the same algorithm as F.ConstrainedEval. In other words,
a constrained PRF key is indistinguishable from the original PRF master key.

2.4 Cryptographic Accumulator

A cryptographic accumulator [3] is a keyed primitive that allows for the concise representation of a set
X = {x1, x2, . . . , xn}. In order to determine if xi is in X , a witness wxi

is constructed by any party that
possess the key. It should, however, be computationally infeasible to construct a witness for any value y 6∈ X
(a false witness) regardless of whether or not the party possess the key.

More formally a cryptographic accumulator A is a tuple of algorithms A = (Gen,Eval,Wit,Vrfy) where
Gen sets up the parameters for the accumulator and returns the accumulator key pair (sk , pk); Eval takes
a keypair (sk , pk) and set of elements X to accumulate and returns an accumulated value acc as well as
some potential randomness r; Wit takes the accumulator keypair (sk , pk), the accumulator acc, and an x
and returns a witness wx that proves x ∈ X or ⊥; the Vrfy algorithm takes the accumulator public key pk ,

5

a witness wx, an element x, and the accumulator acc, and returns one if wx confirms that x is in acc and
zero otherwise. In some cases, Eval is allowed to output additional auxiliary information aux and the Wit
optionally takes an aux as input.

The correctness notion states that for all honestly generated keys, all honestly computed accumulators and
witnesses, the Vrfy algorithm always returns one. The two security notions for cryptographic accumulators
are the notion of collision freeness and indistinguishability. Roughly speaking, an accumulator is collision
free if it is computationally infeasible to find a witness for a non-accumulated value. Formally, we cast
the security as a game, Acc-Coll-Free, where the adversary has access to two oracles: an evaluation oracle
OEval (·, ·, ·) and a witness generation oracle OWit (·, ·, ·, ·).

ExpAcc−Coll−Free
A,Π (λ):

1. The game runs Gen
(
1λ
)

to obtain the keypair (sk , pk).

2. A is given pk and access to OEval and OWit and eventually outputs
(
w∗xi

, x∗i ,X ∗, r∗
)

where r∗ is
the randomness used by A when generating the accumulator.

3. The adversary wins if Vrfypk
(
w∗xi

, x∗i , acc
∗) = 1 and x∗i /∈ X ∗, where acc∗ was generated using

keypair (sk , pk) and randomness r∗.

We say that a cryptographic accumulator Π is collision free if Pr
[
ExpAcc−Coll−Free
A,Π (λ) = 1

]
≤ negl (λ).

For accumulator schemes where Eval is deterministic, we elide r∗ from the game.
A cryptographic accumulator is said to be indistinguishable if it is computationally infeasible to distin-

guish which of two sets X0 and X1 is associated with the accumulator value acc when only witnesses for
elements in x ∈ X0∩X1 are available. Formally, we cast the security as a game, Acc-Ind, where the adversary
has access to two oracles: an evaluation oracle OEval (·, ·, ·) and a witness generation oracle OWit (·, ·, ·, ·) that
will only produce witnesses for values x ∈ X0 ∩ X1.

ExpAcc−Ind
A,Π (λ):

1. The game runs Gen
(
1λ
)

to obtain the keypair (sk , pk).

2. The game samples bit b
$← {0, 1}.

3. A is run and outputs two sets X0 and X1 such that X0 ∩ X1 6= ∅.
4. The game computes acc ← Eval (pk,Xb).
5. A is given acc and access toOEval andOWit as described above and eventually outputs b∗ ∈ {0, 1}.
6. The adversary wins if b = b∗.

We say that a cryptographic accumulator Π is indistinguishable if Pr
[
ExpAcc−Ind
A,Π (λ) = 1

]
≤ 1

2 +negl (λ).

There are several constructions of cryptographic accumulators in the literature, for a survey see [16,
27, 28]. There are three commonly deployed accumulator techniques: Merkle trees, use of the the strong
RSA assumption, and bilinear pairings. The drawback of the Merkle tree based accumulator is that the
witnesses have size logarithmic in the number of elements in X . The drawback to the strong RSA based
accumulator is that it requires the elements of the set to be represented as prime numbers. This of course
can be enforced using a random oracle that maps any element in the universe to a prime number, which is
computationally expensive. The drawback for most pairing based constructions is key size. One can also
construct a cryptographic accumulator from any vector commitment scheme through a generic transformation
[11].

Observe that to verify the membership of n elements in an accumulator, requires n witnesses. This linear
growth can be problematic. This can be overcome by batching witness creation and verification. In batched

6

accumulator there are two additional algorithms WitBatch and VrfyBatch. The WitBatch algorithm takes the
accumulator keypair (sk , pk), the accumulator acc, and a subset A of X and returns a witness wA for A ⊆ X .
The VrfyBatch algorithm takes the witness wA, the subset A, and the accumulator acc, one is returned if
wA confirms that A ⊆ X and zero otherwise. A non-trivial batch accumulator has Θ (1)-sized witnesses.

2.5 Vector Commitments

A vector commitment, proposed by Catalano and Fiore in [11], is a commitment scheme that allows a party
to commit to sequence of values (a vector) m1,m2, . . . ,mq such that the committer can prove that mi is
the ith committed message. While Catalano and Fiore defined a vector commitment as a dynamic object,
we will restrict ourselves to the static case (i.e., we don’t allow updates to the commitment). A (static)
vector commitment scheme is a tuple of polynomial type algorithms (VC.KeyGen,VC.Com,VC.Open,VC.Ver)
where,

• VC.KeyGen
(
1λ, q

)
: Given the security parameter λ and the vector size q, the key generation outputs

some public parameters pp.

• VC.Compp (m1,m2, . . . ,mq): Output a commitment C and auxiliary information aux.

• VC.Openpp (m, i, aux) : This algorithm is run by the committer to produce a proof Πi that proves
message m is at position i in the committed vector.

• VC.Verpp (C,m, i,Πi) : The verification accepts (outputs 1) only if Πi is a valid proof that C was
created for a sequence m1, . . . ,mq such that m = mi.

A vector commitment scheme should also be concise. By concise it is meant that the size of the commitment
and the proofs are both independent of q.

Correctness for vector commitments states that for all λ ∈ N, q polynomial in λ, and all honestly generated
public parameters pp, if C is a commitment on a vector (m1,m2, . . . ,mq) obtained by running VC.Com, Πi is
a proof for position i generated by VC.Open then, VC.Verpp (C,m, i,Πi) = 1 with overwhelming probability.

The main security notions for vector commitments is position biding. Position binding informally means
that no probabilistic polynomial time adversary can generate a commitment that can be opened to two
different values at the same position. Formally, we can cast position binding as a game Pos-Bind defined as
follows:

ExpPos−Bind
A,VC (λ, q):

1. The game runs VC.KeyGen
(
1λ, q

)
to obtain the public parameters pp.

2. A is run on pp and outputs a commitment C, two messages m and m′, and index i, and two
proofs Πi and Π′i for message m and m′ respectively.

3. The adversary wins (outputs 1) if VC.Verpp (C,m, i,Πi) = 1 and VC.Verpp (C,m′, i,Π′i) = 1.

We say that a vector commitment scheme VC has position binding if for all probabilistic polynomial time

adversaries A and all honestly generated parameters Pr
[
ExpPos−Bind
A,VC (λ) = 1

]
≤ negl (λ).

Readers familiar with traditional commitment schemes might wonder why vector commitment security
doesn’t discuss hiding, as mentioned in [11], hiding is not a useful property for a majority of use cases
for vector commitments. We, however, will require this property in order to obtain a private RSS, so we
introduce it here. Informally, a vector commitment scheme is hiding if an adversary can not distinguish
whether a commitment was constructed from a sequence m1,m2, . . . ,mq or m′1,m

′
2, . . . ,m

′
q. We formalize

our property as a game vc-hiding a follows:

7

Expvc−hiding
A,VC (λ, q):

1. The game runs VC.KeyGen
(
1λ, q

)
to obtain the public parameters pp.

2. A is run on pp and outputs a pair of message sequences M0 and M1.

3. The game samples b
$← {0, 1} and computes (Cb, aux b)← VC.Compp (mb,1,mb,2, . . . ,mb,q)

4. A is given Cb and outputs b′ ∈ {0, 1}.
5. The adversary wins (outputs 1) if b = b′.

We say that a vector commitment scheme has the hiding property if for all probabilistic polynomial time
adversaries A and all honestly generated parameters pp,

Pr
[
Expvc−hiding
A,VC (λ) = 1

]
≤ 1

2
+ negl (λ) .

Vector commitments have been built from the CDH assumption in bilinear groups and the RSA assump-
tion [11]. One can also think of a Merkle tree as an instantiation of a vector commitment scheme.

2.6 Threshold Secret Sharing

Threshold secret sharing is a primitive developed by Shamir [30] that allows n parties to share a secret in
such a way that no party possess the secret. However, t ≤ n parties can combine their shares to recover the
secret. We will refer to such a scheme as a (t, n)-threshold secret sharing scheme. Formally a secret sharing
scheme consists of two algorithms share and reconstruct. The share algorithm takes a message m and outputs
a sequence of n shares s1, s2, . . . , sn. The reconstruct algorithm takes t or more shares and reconstructs the
message m.

The security notion for threshold secret sharing is simple: any number of shares k < t, will perfectly hide
the secret. We formalize our notion as an indistinguishability game.

Expshare−secure
A,Π (λ):

1. Select n and t ≤ n.

2. Sample b
$← {0, 1}.

3. Give A, (t, n) and access to a share oracle O that takes two messages m0 and m1, a number of
shares k < t, and returns k shares of mb.

4. Eventually A outputs bit b′ ∈ {0, 1} we say that A wins the game if b = b′.

We say that a secret sharing scheme Π is secure if for all probabilistic polynomial time adversaries there
exists a negligible function such that

Pr
[
Expshare−secure
A,Π (λ) = 1

]
≤ 1

2
+ negl (λ) .

2.7 Redactable Signatures

Formally, a redactable signature is a four tuple (Gen,Sign,Redact,Vrfy) of polynomial time algorithms.

• Gen
(
1λ
)
: a probabilistic algorithm that takes the security parameter λ as input and returns a signing

key sk and a verification key vk .

• Signsk (m) a possibly probabilistic algorithm takes a signing key sk and a message m as input and
returns a signature σ on message m.

8

• Redactvk (m,σ,m′) a possible probabilistic algorithm that takes the verification key vk , a message m,
its signature σ, and and an m′ such that m ` m′ as input. The algorithm returns σ′.

• Vrfyvk (m,σ) a deterministic algorithm that takes the verification key vk , the message m, and purported
signature on m, σ and returns 1 if σ is a valid signature for m and 0 otherwise.

There are three main security notions for redactable signatures:

Unforgeability. It should be hard for an adversary to forge a valid signature on a message that is not
a redaction of a message they have already seen. It should be noted that this notion is based on a small
modification to traditional existential unforgeability under a chosen message attack (EUF-CMA). Formally
we capture our security notion as a game.

ExpEUF−CMA−RSS
A,Π (λ):

1. Gen (1n) is run to obtain keys (sk , vk).

2. Adversary A is given vk and access to an oracle OSignsk (·).

• Store the queries to the oracle in a set called Q.

3. Eventually the adversary outputs (m∗, σ∗).

4. A succeeds iff (1) Vrfyvk (m∗, σ∗) = 1 and (2) m∗ 6∈ {m ` m∗ | m ∈ Q}.

• In the case of success, the game outputs 1. Otherwise, the game outputs 0.

We say that an RSS Π is EUF-CMA-RSS secure if for all PPT adversaries A there exists a negligible

function negl (·) such that Pr
[
ExpEUF−CMA−RSS
A,Π (λ) = 1

]
≤ negl (λ).

Privacy. It should be hard for an adversary to determine the original signature from a redacted signature.
Formally we capture the notion as a security game.

ExpRSS−Privacy
A,Π (λ):

1. Gen (1n) is run to obtain keys (sk , vk).

2. b
$← {0, 1}.

3. Adversary A is given vk and access to an oracle OSignsk (·) and OLoRRedactsk ,b (·, ·, ·, ·).
4. Eventually the adversary outputs b′ ∈ {0, 1}.
5. A succeeds if b = b′ and the game outputs 1; otherwise, the game outputs 0.

The oracle OLoRRedactsk ,b (·, ·, ·, ·) takes as input four messages m0, m′0, m1, and m′1 and proceeds as
follows:

OLoRRedactsk ,b (m0,m
′
0,m1,m

′
1):

1. Compute σi = Signsk (mi) for i = 0, 1.

2. Compute σ′i = Redact (mi, σ,m
′
i) for i = 0, 1.

3. If m′0 6= m′1, return ⊥; else return σ′b.

We say an RSS Π is RSS-private if for all PPT adversaries A there exists a negligible function negl (·)
such that Pr

[
ExpRSS−Privacy
A,Π (λ) = 1

]
≤ negl (λ).

9

Transparency. It should be hard for an adversary to distinguish the redacted signature of a message from
the signature of a redacted message. Formally we capture the notion as a security game.

ExpRSS−Transparency
A,Π (λ):

1. Gen (1n) is run to obtain keys (sk , vk).

2. b
$← {0, 1}.

3. Adversary A is given vk and access to an oracle OSignsk (·) and OSignRedactsk ,b (·, ·).
4. Eventually the adversary outputs b′ ∈ {0, 1}.
5. A succeeds if b = b′ and the game outputs 1; otherwise, the game outputs 0.

The oracle OSignRedactsk ,b (·, ·) takes as input two messages m and m′ where m ` m′ and proceeds as
follows:

OSignRedactsk ,b (m,m′):

1. Compute σ0 = Redact (m,Signsk (m) ,m′).

2. Compute σ1 = Signsk (m′)

3. Return σb

We say an RSS Π is RSS-transparent if for all PPT adversaries A there exists a negligible function negl (·)
such that Pr

[
ExpRSS−Transparency
A,Π (λ) = 1

]
≤ negl (λ).

It is known that transparency implies privacy[17, 10]. One can envision having a scheme that is unforge-
able and private (privacy does not imply transparency), though to our knowledge, there is no such (efficient)
RSS.

3 Policy-Based Redactable Signature Schemes

A policy-based redactable signature scheme is a primitive where a signer can sign a message such that a third
party may redact the message (and update the signature) provided the redacted message matches the policy
P specified by the signer at the time of signing. We formalize this primitive by adapting the formalism of
redactable signatures to include a policy argument to Sign and Redact. Specifically, a policy-based redactable
signature is a four tuple (Gen,Sign,Redact,Vrfy) of polynomial time algorithms.

• Gen
(
1λ
)
: a probabilistic algorithm that takes the security parameter λ as input and returns a signing

key sk and a verification key vk .

• Signsk (m,P) a possibly probabilistic algorithm takes a signing key sk , a message m, and a policy p ∈ P
as input and returns a signature σ on message m with redaction policy P .

• Redactvk (m,σ,m′, P ′) a possible probabilistic algorithm that takes the verification key vk , a message
m, its signature σ, and a message m′ as input. We require that m `P m′ and P ′ (m′) = 1, where P
is the policy extracted from signature σ. The algorithm returns σ′. Some schemes may require that
policy P ′ be a subpolicy of P .

• Vrfyvk (m,σ) a deterministic algorithm that takes the verification key vk , the message m, and purported
signature on m, σ. The algorithm returns 1 if σ is a valid signature for m and p (m) = 1, where P is
the policy extracted from σ. Otherwise, 0 is returned.

10

We note that the notion that a user can not redact a message to one not covered by the policy, is captured
by the RSS notion of unforgeability with minor changes to the oracle and the ` operator being replaced with
`P . The Signing oracle will now take a policy P ∈ P. The changes to the other oracles are summarized
in figure 1 Similar to the traditional RSS scheme, policy-based redactable signature schemes also have the

OLoRRedactsk ,b (m0,m
′
0, P0, P

′
0,m1,m

′
1, P1, P

′
1):

1. Compute σi = Signsk (mi, Pi) for
i = 0, 1.

2. Compute σ′i = Redact (mi, σ,m
′
i, P
′
i) for

i = 0, 1.

3. If m′0 6= m′1 or P ′0 6= P ′1, return ⊥; else
return σ′b.

(a) The Left or Right Redaction oracle for policy-based
redactable signatures.

OSignRedactsk ,b (m,m′, P, P ′):

1. Compute
σ0 = Redact (m,Signsk (m,P) ,m′, P ′).

2. Compute σ1 = Signsk (m′, P ′)

3. Return σb

(b) The Sign or Redact oracle for policy-based
redactable signatures.

Figure 1: The changes to the oracles to support policy-based redactable signatures.

property that transparency implies privacy (the proof mirrors the proof of proposition one in [10] with minor
changes).

4 Policy-Based Redactable Set Signatures

We begin by looking at signatures for data organized as sets. Specifically, the data elements have no implied
order. In what follows, the set universe will be denoted as U . We will call a universe small if its size is
polylogarithmic in the security parameter.

4.1 Small Universe

Restricting ourselves to a universe U of size polylogarithmic in the security parameter we can construct a
policy-based redactable signature scheme for sets either by utilizing a cryptographic accumulator or using
an AMQ Filter. These constructions have the benefit of supporting any policy family P.

Cryptographic Accumulator. We can reuse the basic set construction due to [17] to construct a small
universe policy-based set RSS. Assume that there exists an cryptographic accumulatorA = (Gen,Eval,Wit,Vrfy)
To restrict the redactions to some restricted subsets of a set S, we add characteristic strings for the
set and all possible subsets (those that could arise from valid redaction) S to an accumulator acc (i.e.,
acc ← Evalsk ({XU (A) | A ⊆ S ∧ P (A) = 1})). The redactable signature becomes(
acc, {Witsk (XU (A) , acc)}A⊆S∧P (A)=1 ,Signsk (acc)

)
. The scheme is formalized in figure 2. The scheme is

both unforgeable and transparent (implying privacy). Since the construction mirrors the work of [17], the
proof is basically the same; we point the interested reader to [17, §C.1] for the proof.

The main drawback of this construction, and the reason to search for better constructions, is the reliance
on small universes. Observe that the size of U must be small as the number of subsets are exponential in the
the size of U , causing the number of witnesses to be exponential (in the worst case). The situation would
be slightly improved if the associated number of possible redactions was polynomial in the size of U , or the
size of U is polylogarithmic in the security parameter.

11

Gen
(
1λ
)
: Run DS.Gen

(
1λ
)

to obtain key pair (s, v) and run the accumulators genera-
tor function to obtain (ska, pka). Output the verification key vk = (v, pka)
and the signing key sk = (s, ska).

Signsk (S, P): Parse the signing key sk as (s, ska). If P 6∈ P, return ⊥. Otherwise,
compute acc ← Evalska

({XU (A) | A ⊆ S ∧ P (A) = 1}) and return the sig-

nature σS =
(
acc, {Witska

(XU (A) , acc)}A⊆S∧P (A)=1 , P, Signsk (acc)
)

. We

will assume that the witnesses are sorted in lexicographical order by char-
acteristic sequence.

Redactvk (S, σ,S ′, P ′): Parse σ as
(
acc,

{
wXU (A)

}
A⊆S∧P (A)=1

, P, σ∗
)

. If S `P S ′ and P ′ is a

subpolicy of P where P ′ (S ′) = 1, return

σS′ =
(
acc,

{
wXU (A)

}
A⊆S′∧P (A)=1

, σ∗
)

. Otherwise, return ⊥.

Vrfyvk (S, σ): Parse vk as (v, pka) and σ as
(
acc,

{
wXU (A)

}
A⊆S∧P (A)=1

, σ∗
)

. Return one

if there is a valid witness wXU (S), Acc.Vrfypka
(
wXU (S),XU (S) , acc

)
= 1,

and DS.Vrfyv (acc, σ∗) = 1; otherwise, return zero.

Figure 2: The full accumulator-based small universe scheme.

AMQ Filter. Similar to our cryptographic accumulator construction we can utilize a characteristic se-
quence to limit any possible redactions. In this case, however, we dispense with the need of witnesses
present in an accumulator (trading for potential false positives). We store the output of a CPRF F with
key k evaluated on the characteristic sequence in an AMQ filter F . The signature on a set S becomes
σS = (F , k, Signsk (F)). To produce a redaction, constrain the key k to k̃ so that only the necessary sets can
have membership checked. The need for constraining keys comes from the privacy requirement, without it,
an adversary would be able to distinguish a redacted signed message from a redacted then signed message
(violating transparency). This requires the CPRF to hide the policy, be canonical, and have a constant sized
key (e.g., [14] or [23]). Unfortunately this construction remains theoretical; there are no existing CPRF
constructions that simultaneously offer these properties for arbitrary predicates. The scheme is formalized
in figure 3. Our scheme is both unforgeable and transparent. Proofs of our claim are found in appendix A

Unlike the cryptographic accumulator approach the AMQ filter approach does not suffer from exponential
sized signatures. This is because the CPRF key is of fixed size and the size of the AMQ filter is governed by
the desired false positive rate. We note, the signing time will still be exponential in U in the worst case, so
approaches to limit the size of U are still required.

Remark 4.1. It is important to note that both of these constructions can be adapted slightly so that the
universe can be of arbitrary size by computing the characteristic sequence relative to the original set. In so
doing we loose transparency as we will be able to distinguish between redacted and non-redacted messages.
This will also increase the size of the signature as we will have to store the index in the characteristic sequence
for all elements of the set associated with the signature.

4.2 Arbitrary Universe

To construct a policy-based set RSS for an arbitrary sized universe we could take two main approaches: (1)
we could develop a domain extension algorithm for a small universe construction; or (2) design a construction
independent of the small universe construction. Neither of our small universe constructions appear amenable
to domain extension techniques thus, we offer a new arbitrary universe construction. Unlike our constructions

12

Gen
(
1λ
)
: Run DS.Gen

(
1λ
)

and return the resulting key pair (sk , vk).

Signsk (S, P): If P 6∈ P, return ⊥. Otherwise, run k ← CPRF.Gen
(
1λ
)
; run

F ← Init (fpr) to obtain a new filter with false positive rate fpr . Next, for
every A ⊆ S where P (A) = 1, run F ← Add (CPRF.Eval (k,XU (A)) ,F).
Return the signature σS = (F , k, P,Signsk (F)).

Redactvk (S, σ,S ′, P ′): Parse σ as (F , k, P, σ∗). If S `P S ′ and P ′ is a subpolicy of P where

P ′ (S ′) = 1, output σS′ =
(
F , k̃, P ′, σ∗

)
, where k̃ ← CPRF.Constrain (k, P).

Otherwise, return ⊥.

Vrfyvk (S, σ): Parse σ as (F , k, P, σ∗). Return one if P (S) = 1,
Contains (CPRF.Eval (k,XU (S)) ,F) = 1, and DS.Vrfyvk (F , σ∗) = 1;
otherwise, return zero.

Figure 3: The full AMQ-based small universe scheme.

for a small universe, our arbitrary universe construction restricts the policy family to policies that can be
expressed as monotone circuits5.

Overview. Our starting point is the set construction of [17], which relies on a cryptographic accumulator
in proving set membership. We will add a mechanism to enforce a policy cast as a monotone circuit which
outputs true if the associated Boolean formula over the elements of the subset evaluate to true. Following
the construction in [4], we will encode our circuit using a Shamir threshold secret sharing scheme over each
gate of the circuit such that if the circuit outputs true, the shared secret is recovered. We note that our
construction exposes the policy to both the redactor and verifier.

Constructing the Circuit. Any (monotone) circuit can be represented as an n-ary tree where the literals
appear at the leaves of the tree, all internal nodes (gates) represent either the disjunction or conjunction of
their children, and the root node captures the output of the circuit. Let parent (x) denote the parent of node
x and index (x) denote the left-to-right index associated with node x in its level. We label each node x with
a value tx that is one if the node is a disjunction or a leaf; otherwise, the number of children of x.

To enforce the correct evaluation of a circuit we will use Shamir secret sharing in such a way that a secret
value s ∈ Fp is reconstructed if and only if the set elements present in the signature satisfy the circuit. Our
algorithm begins at the root of the tree R associating a tR− 1 degree polynomial qR (·) such that qR (0) = s.
Proceeding in a level-order traversal, we associate with internal node x a tx−1 degree polynomial qx (·) such
that qx (0) = qparent(x) (index (x)). See figure 4 for an example.

Observe that when we perform the reconstruction algorithm recursively using a bottom up level order
traversal of the tree, we arrive at the value s. Moreover, we must only store the values associated with the
leaves of the tree. If one wishes to hide the labels on the variables a one-way function may be utilized.

Redactable Signature Scheme. The redactable signature scheme on set S is described in figure 5. As
previously noted we rely on the threshold secret sharing scheme to represent our circuit. The secret serves as
the value for true associated with the circuit. We also rely on a cryptographic accumulator for committing
to the elements of the set and their shares. We rely on a EUF-CMA secure digital signature scheme to sign
the accumulator and secret value associated with the root of the tree that represents the circuit. The scheme
as presented is unforgeable and transparent (thus implying privacy). The proof is in appendix B.

5A circuit without a logical negation gate.

13

∨

∧

x1 x2

x3

qR (0) = s

qx3
(0) = qR (2) = sq∧ (0) = qR (1) = s

qx1 (0) = q∧ (1) qx2
(0) = q∧ (2)

Figure 4: The circuit for the expression (x1 ∧ x2) ∨ x3.

Gen
(
1λ
)
: Run DS.Gen

(
1λ
)

to obtain key pair (sks, vks) and run the accumulators
generator function to obtain (ska, pka). Output the verification key vk =
(vks, pka) and the signing key sk = (sks, ska).

Signsk (S, P): If P 6∈ P, return ⊥. Otherwise, parse sk as (sks, ska); sample an s ∈ Z∗,
construct the tree T associated with the policy P , compute
acc ← Evalska

(
{x ‖ share (qx (0))}x∈S

)
, and return the signature on S,

σS =
(
acc, T , {share (qx (0))}x∈S , {Witska

(x ‖ share (qx (0)) , acc)}x∈S ,
Signsks (acc ‖ s)

)
.

Notationally, we assume that all elements in S appear in T that is, however,
not always the case. Elements x ∈ S that do not appear in T should have
their share set to a uniformly random sampled element of Z∗.

Redactvk (S, σ,S ′, P ′): Parse σ as
(
acc, T , {sx}x∈S ,

{
wx‖sx

}
x∈S , σ

∗
)

and extract policy P from T .

If S `P S ′ and P ′ (S ′) = 1, output the signature

σS′ =
(
acc, T ′, {sx}x∈S′ ,

{
wx‖sx

}
x∈S′ , σ

∗
)

, where T ′ encodes policy P ′.

Otherwise, return ⊥.

Vrfyvk (S, σ): Parse vk as (vks, vka) and σ as
(
acc, T , {sx}x∈S ,

{
wx‖sx

}
x∈S , σ

∗
)

. Re-

turn one if for all x ∈ S, Acc.Vrfypka

(
wx‖sx , x ‖ sx, acc

)
= 1 and

DS.Vrfyvks (acc ‖ s∗, σ∗) = 1, where s∗ results from reconstructing the se-
cret using the shares together with policy tree T ; otherwise, return zero.

Figure 5: The monotone circuit RSS scheme.

It should be noted that while we solved the large universe problem, in order for our construction to
remain practical |S| should remain small since our signature has size Θ (|S|). This does, however, bring us
into line with existing non-policy based constructions which have asymptotically equivalent signature sizes
or very large keys.

Remark 4.2. Because of how our policies are enforced, any redactor can impose further limitations on future
redactions by modifying the tree representing the policy, thus providing controlled disclosure.

Remark 4.3. If the signer wishes the policy to remain immutable, the policy can be signed. This will,
however, affect transparency since the policy may leak the original set.

14

5 Policy-Based Redactable Signatures for Linear Data

We turn our attention to data that has some implied order and demonstrate a policy-based redactable
signature scheme for this data. We offer one construction from vector commitments. This construction
mirrors the construction for arbitrary sized universes from cryptographic accumulators. Observe that by
substituting a vector commitment scheme for the cryptographic accumulator, we get a construction that
enforces position. However, this comes at the cost of transparency and potentially privacy. Our construction
from vector commitments only provides unforgeability in all cases, and privacy if the vector commitment
scheme has the hiding property (see appendix C). The construction is described in figure 6.

Gen
(
1λ, q

)
: Run DS.Gen

(
1λ
)

to obtain key pair (sks, vks) and run the vector commit-
ment schemes key generator function to obtain pp for a linear document of
size q message blocks. Output the verification key vk = (vks,pp) and the
signing key sk = (sks,pp).

Signsk (M, P): If P 6∈ P, return ⊥. Otherwise, parse sk as (sks,pp); sample an s ∈ Z∗,
parse M as (m1,m2, . . . ,mq), construct the tree T associated with the
policy P , compute (C, aux)← VC.Compp (m1,m2, . . . ,mq), and return the
signature,

σS =
(
C, T , {share (qmi

(0))}i∈[q] ,{
VC.Openpp (mi ‖ share (qmi

(0)) , i, aux)
}
i∈[q]

,

Signsks (C ‖ s)
)
.

Notationally, we assume that all message blocks in the sequence appear in T
that is, however, not always the case. Message blocks m that do not appear
in T should have their share set to a uniformly random sampled element of
Z∗.

Redactvk (M, σ,M′, P ′): Parse σ as
(
C, T , {sm}m∈M ,

{
wm‖sm

}
m∈M , σ∗

)
. Extract the policy P

from T ifM `P M′ and P ′ is a subpolicy of P where P ′ (M′) = 1, output

the signature σM′ =
(
C, T ′, {sm}m∈M′ ,

{
Πm‖sm

}
m∈M′ , σ

∗
)

, where T ′ is

associated with P ′. Otherwise, output ⊥.

Vrfyvk (M, σ): Parse vk as (vks,pp) and σ as
(
C, T , {sm}m∈M ,

{
wm‖sm

}
m∈M , σ∗

)
. Re-

turn one if for all mi ∈ M, VC.Verpp

(
ΠC,mi‖smi

, i,mi ‖ smi

)
= 1 and

DS.Vrfyvks (C ‖ s∗, σ∗) = 1, where s∗ results from reconstructing the secret
using the shares together with policy tree T ; otherwise, return zero.

Figure 6: The monotone circuit linear RSS scheme.

6 Implementation

We’ve implemented our arbitrary universe construction as well as our small universe accumulator based
construction in Java using a pairing based accumulator scheme from [32] using the Java Pairing Based

15

Cryptography library [15]. It turns out that standard RSA accumulators like [2] are too inefficient for our
purposes (e.g., signing a set of 300 elements under the large construction took close to one minute). This
is generally attributed to the cost of hashing to a prime number. The practical performance of various
accumulators has been discussed in [24]. We utilized EC-DSA with curve P-256 as our underlying signature
scheme. When needed, the threshold secret sharing scheme is Shamir’s scheme [30]. Our performance
analysis was done using the Apache Netbeans Performance Analyzer. We made our source code available at
https://github.com/kisselz/redactable-sigs.

Existing constructions in the literature lack implementation, thus comparison between them is purely
theoretical. In practice, our implementation indicates that a majority of the time in our set-based con-
structions, and other accumulator-based constructions, is spent performing accumulator operations. For all
constructions when generating the RSS signing and verification keys a majority of the time was (unsurpris-
ingly) spent in the accumulator code, specifically in loading the group information for our pairing friendly
group.

Arbitrary Universe Construction The time in signing is dominated by the generation of accumulator
witnesses. This is in turn dominated by the cost of exponentiation in the underlying pairing friendly group.
The time for redaction is not dominated by any one factor. Verification is dominated by the verification of
accumulator witnesses, which is due to the cost of two pairing operations.

Accumulator-Based Small Universe The time in signing is dominated by the generation of accumulator
witnesses. This is in turn dominated by the cost of exponentiating in the underlying pairing friendly group.
The time for redaction is not dominated by any one factor. Verification is dominated by the verification of
accumulator witnesses, which is due to the cost of the two pairing operations.

Set Construction of Derler et. al We implemented the set based construction of Derler et. al [17],
which lacks a policy but, otherwise uses similar cryptographic primitives. This scheme is essentially the
accumulator-based small universe construction except we accumulate the elements instead of the character-
istic sequences. Since the same underlying instantiation of the primitives are used, the dominating factors
in key generation, signing, verification, and redaction mirror the accumulator based construction above.

Comparative Analysis We ran our large universe construction and the construction of Derler et. al with
various sized sets on a Linux machine with an Intel i7-10750H CPU and 32G of RAM running Fedora 36
(Kernel version 5.19.15-201). Our elements were drawn from the standard Linux word list found on the
machine. The sign and verify operations were run 10 times on each set size (5 – 3000 elements in 5 element
increments). See figure 7 for our performance graphs, the shaded regions indicate one standard deviation
above and below the average (solid line). It should be noted that we did not perform an analysis with our
small universe construction. This is because the number of accumulator witnesses grows exponentially in
the number of elements in the set being signed. Thus, the construction becomes inefficient quickly. From
figures 7a and 7c we observe that the addition of the policy only negligibly degrades the performance of
the standard redactable set signature scheme of Derler et. al. The sporadic spikes in the graphs can be
attributed to system noise over the duration of the test interval. In figures 7b and 7d we observe that the
addition of a policy minimally impacts the verification time. The performance of the secret reconstruction in
the large construction is aided by the fact that the formulas are encoded in disjunctive normal form, which
means the entire tree does not need to be evaluated in order to recover the associated secret. Since any
formula not in disjunctive normal form can be rewritten in disjunctive normal form, this does not constrain
our analysis. Again, the random spikes in the graphs can be attributed to system noise. We note that in
general verification time is approximately twice as long as signing time, this is due to the cost of pairing
operations present in the accumulator verification process. We did not collect test data from the redact
operations since in both constructions, no cryptographic operations are involved during redaction.

16

https://github.com/kisselz/redactable-sigs

0.5K 1K 1.5K 2K 2.5K 3K

0.5

1

1.5

2

·1010

Set Cardinality

A
ve

ra
ge

T
im

e
(n

s)

(a) The average time to sign in nanoseconds for the
construction of Derler et. al.

0.5K 1K 1.5K 2K 2.5K 3K

1

2

3

4

·1010

Set Cardinality

A
ve

ra
ge

T
im

e
(n

s)

(b) The average time to verify in nanoseconds for the
construction of Derler et. al.

0.5K 1K 1.5K 2K 2.5K 3K

0.5

1

1.5

2

·1010

Set Cardinality

A
ve

ra
ge

T
im

e
(n

s)

(c) The average time to sign in nanoseconds for our
arbitrary universe construction. The policy size was
held constant.

0.5K 1K 1.5K 2K 2.5K 3K

1

2

3

4

·1010

Set Cardinality

A
ve

ra
ge

T
im

e
(n

s)

(d) The average time to verify in nanoseconds for our
arbitrary universe construction. The policies are in
disjunctive normal form.

Figure 7: Performance graphs for sign and verify. The shaded regions indicate the area falling within one
standard deviation.

7 Conclusion

In this work we demonstrated constructions of policy-based redactable signature schemes. We further pro-
vided implementations to aid in justifying their practicality for smaller set sizes. Since in both our construc-
tions the time grows linear with the accumulator operations, either another technique or faster accumulators
must be used. Similarly, our construction for linear documents from vector commitments suffers from the
fact that time grows linear with the number of committed values.

Open Questions Our work leaves several open questions around both policy-based redactable set signa-
tures as well as for other data structures like linear and tree based. In terms of set based constructions we
would like to support much larger sets, which will require faster accumulators or vastly different techniques.
A natural idea is to use batch accumulators; however, it is not clear how to support policy and batching
simultaneously other than in a trivial manner (e.g., creating batch witnesses for all allowable redactions).

17

As for our linear constructions we would similarly need to seek out different techniques from vector com-
mitment or potentially leverage subvector commitments [25], or possibly point proofs [19], similar to the
trivial batching of accumulator witnesses for set constructions discussed above. In the case of Pointproofs,
the production of an aggregate proof can be performed by a third party thus potentially allowing the third
party to shrink signature verification time by first aggregating proofs before verifying.

References

[1] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and Brent Waters.
Computing on authenticated data. Journal of Cryptology, 28(2):351–395, 2015.

[2] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In International conference on the theory and applications of cryptographic techniques, pages
480–494. Springer, 1997.

[3] Josh Benaloh and Michael De Mare. One-way accumulators: A decentralized alternative to digital
signatures. In Workshop on the Theory and Application of of Cryptographic Techniques, pages 274–285.
Springer, 1993.

[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
2007 IEEE symposium on security and privacy (SP’07), pages 321–334. IEEE, 2007.

[5] Arne Bilzhause, Henrich C Pöhls, and Kai Samelin. Position paper: the past, present, and future of san-
itizable and redactable signatures. In Proceedings of the 12th International Conference on Availability,
Reliability and Security, pages 1–9, 2017.

[6] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, jul 1970.

[7] Dan Boneh, Kevin Lewi, and David J Wu. Constraining pseudorandom functions privately. In IACR
International Workshop on Public Key Cryptography, pages 494–524. Springer, 2017.

[8] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained prfs
(and more) from lwe. In Theory of Cryptography Conference, pages 264–302. Springer, 2017.

[9] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from standard lattice
assumptions. In Theory of Cryptography Conference, pages 1–30. Springer, 2015.

[10] Christina Brzuska, Heike Busch, Oezguer Dagdelen, Marc Fischlin, Martin Franz, Stefan Katzenbeisser,
Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, et al. Redactable signatures for tree-
structured data: Definitions and constructions. In International Conference on Applied Cryptography
and Network Security, pages 87–104. Springer, 2010.

[11] Dario Catalano and Dario Fiore. Vector commitments and their applications. In International Workshop
on Public Key Cryptography, pages 55–72. Springer, 2013.

[12] Ee-Chien Chang, Chee Liang Lim, and Jia Xu. Short redactable signatures using random trees. In
Cryptographers’ Track at the RSA Conference, pages 133–147. Springer, 2009.

[13] JG Clerry. Compact hash tables using bidirectional linear probing. IEEE Transactions on Computers,
100(9):828–834, 1984.

[14] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, and Shota Yamada. Constrained prfs for bit-fixing
from owfs with constant collusion resistance. Technical report, IACR Cryptology ePrint Archive, 2018.

18

[15] Angelo De Caro and Vincenzo Iovino. jpbc: Java pairing based cryptography. In Proceedings of the
16th IEEE Symposium on Computers and Communications, ISCC 2011, pages 850–855, Kerkyra, Corfu,
Greece, June 28 - July 1, 2011. IEEE.

[16] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic accumulators, additional
properties and relations to other primitives. In Cryptographers’ track at the rsa conference, pages 127–
144. Springer, 2015.

[17] David Derler, Henrich C Pöhls, Kai Samelin, and Daniel Slamanig. A general framework for redactable
signatures and new constructions. In ICISC 2015, pages 3–19. Springer, 2015.

[18] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo filter: Practically
better than bloom. In Proceedings of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 75–88, 2014.

[19] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating proofs
for multiple vector commitments. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 2007–2023, 2020.

[20] Thomas Mueller Graf and Daniel Lemire. Xor filters: Faster and smaller than bloom and cuckoo filters.
Journal of Experimental Algorithmics (JEA), 25:1–16, 2020.

[21] Stuart Haber, Yasuo Hatano, Yoshinori Honda, William Horne, Kunihiko Miyazaki, Tomas Sander,
Satoru Tezoku, and Danfeng Yao. Efficient signature schemes supporting redaction, pseudonymization,
and data deidentification. In Proceedings of the 2008 ACM symposium on Information, computer and
communications security, pages 353–362, 2008.

[22] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic signature schemes. In
Cryptographers’ track at the RSA conference, pages 244–262. Springer, 2002.

[23] Zachary A Kissel. Constrained pseudorandom functions from pseudorandom synthesizers. Cryptology
ePrint Archive, Paper 2022/897, 2022. https://eprint.iacr.org/2022/897.

[24] Amrit Kumar, Pascal Lafourcade, and Cédric Lauradoux. Performances of cryptographic accumulators.
In 39th Annual IEEE Conference on Local Computer Networks, pages 366–369. IEEE, 2014.

[25] Russell WF Lai and Giulio Malavolta. Subvector commitments with application to succinct arguments.
In Annual International Cryptology Conference, pages 530–560. Springer, 2019.

[26] Kunihiko Miyazaki, Mitsuru Iwamura, Tsutomu Matsumoto, Ryôichi Sasaki, Hiroshi Yoshiura, Satoru
Tezuka, and Hideki Imai. Digitally signed document sanitizing scheme with disclosure condition con-
trol. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
88(1):239–246, 2005.

[27] Ilker Ozcelik, Sai Medury, Justin Broaddus, and Anthony Skjellum. An overview of cryptographic
accumulators. arXiv preprint arXiv:2103.04330, 2021.

[28] Yongjun Ren, Xinyu Liu, Qiang Wu, Ling Wang, and Weijian Zhang. Cryptographic accumulator and
its application: A survey. Security and Communication Networks, 2022, 2022.

[29] Olivier Sanders. Efficient redactable signature and application to anonymous credentials. In IACR
International Conference on Public-Key Cryptography, pages 628–656. Springer, 2020.

[30] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[31] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In International
Conference on Information Security and Cryptology, pages 285–304. Springer, 2001.

[32] Giuseppe Vitto and Alex Biryukov. Dynamic universal accumulator with batch update over bilinear
groups. In Cryptographers’ Track at the RSA Conference, pages 395–426. Springer, 2022.

19

https://eprint.iacr.org/2022/897

A Security Proofs for the AMQ Small Universe Construction

We begin by showing that the AMQ-based construction is unforgeable. This roughly relies on the underlying
unforgeablility of the signature scheme. Our proof is via a standard reduction of an adversary breaking the
EUF-CMA security game to an adversary that wins the EUF-CMA-RSS game. In what follows, we assume
that Πsig is an EUF-CMA secure signature scheme and Π is our RSS.

Proof. Let Arss be an PPT adversary that wins the EUF-CMA-RSS game. We construct an adversary Asig

that uses Arss to win the EUF-CMA game. The code for Asig is:

AOsig(·)
sig (vk):

1. Initialize Q = ∅.
2. Run Arss (vk) answering signature queries as follows:

(a) P 6∈ P output, ⊥.

(b) F ← Init (fpr)

(c) k ← CPRF.Gen
(
1λ
)
.

(d) For every A ⊆ S where P (A) = 1, run F ← Add (CPRF.Eval (k,XU (A)) ,F).

(e) Return σS = (F , k,Osig (F)), adding (P,S, σS) to Q.

3. Eventually Arss outputs (S∗, (F∗, k∗, σ∗)) if there does not exist a S ∈ Q such that S `P S∗,
output (F∗, σ∗) as the forgery.

Observe that Asig faithfully simulates the view of adversary Arss in the EUF-CMA-RSS game. Thus we
can conclude that

Pr
[
ExpEUF−CMA−RSS
Arss,Π

(λ) = 1
]

= Pr
[
ExpEUF−CMA
Asig,Πsig

(λ) = 1
]
.

By assumption we have that Pr
[
ExpEUF−CMA
Asig,Πsig

(λ) = 1
]

= negl (λ). Thus we conclude that

Pr
[
ExpEUF−CMA−RSS
Arss,Π′

(λ) = 1
]

= negl (λ) and our scheme is unforgeable.

In order to argue privacy we will prove our construction has the transparency property and thus inherit
the fact that the construction is private as well. Our proof will proceed via a sequence of games.

Proof. Let Wi denote the event that the adversary wins game i.

Game 0. This is the original game.

Game 1. This is similar to game 0 but, every call to the SignRedact oracle has b fixed to 0.

We claim that |Pr [W0]− Pr [W1]| ≤ negl (λ). Observe, the only way to distinguish between the two games
is if you can distinguish between CPRF keys, which are indistinguishable due to the fact that the CPRF is
canonical. Since, there are at most q (λ) queries we have that |Pr [W0]− Pr [W1]| ≤ q (λ) negl (λ) ≤ negl′ (λ).
Since the behavior of the oracle is independent of b in game 1, we have the Pr [W1] = 1

2 . Therefore,
|Pr [W0]− Pr [W1]| ≤ negl (λ) =⇒

∣∣Pr [W0]− 1
2

∣∣ ≤ negl (λ) =⇒ Pr [W0] ≤ 1
2 + negl (λ) .

20

B Security Proofs for the Arbitrary Universe Construction

Our arbitrary universe construction is both unforgeable and transparent. The unforgeability of the scheme,
stems from the unforgeability of the underlying signature scheme as well as the collision resistance of the
cryptographic accumulator. In what follows we will let Π denote our RSS, Πsig denote our underlying
signature scheme, and Πacc our underlying cryptographic accumulator scheme.

Proof. Assume by way of contradiction there exists an adversary Arss that can win the RSS unforgeability
game with greater than negligible probability. Given such an adversary we show how to construct an
adversary ASig that utilizes Arss to contradict the EUF-CMA security of the underlying signature scheme
and an adversary Aacc that utilizes Arss to contradict the unforgeablility of the underlying cryptographic
accumulator.

We begin by constructing the adversary Asig as follows:

AOsig(·)
sig (vk):

1. Initialize Q = ∅.
2. Run (ska, pka)← Acc.Gen

(
1λ
)
.

3. Run Arss ((vk , pka)) answering signature queries as follows:

(a) Operate as Sign except when the signature needs to be computed, query Osig.

(b) Compute acc ← Eval ((ska, pka) ,S)

(c) Return

σS =
(
acc, T , {share (qx (0))}x∈S , {Witska

(x ‖ share (qx (0)) , acc)}x∈S ,OSig (acc ‖ s)
)
.

adding (P,S, σS) to Q.

4. Eventually Arss outputs
(
S∗,

(
acc∗, T ∗, {s∗x}x∈S∗ ,

{
w∗x,sx

}
x∈S∗ , σ

∗
))

if there does not exist a

S ∈ Q such that S `P S∗, output (acc∗ ‖ s∗, σ∗), where s∗ was reconstructed according to T ∗,
as the forgery.

Observe that Asig faithfully simulates the view of adversary Arss in the EUF-CMA-RSS game.
We now construct the adversary Aacc as follows:

21

AOWit(·),OEval(·)
acc (pk):

1. Initialize Q = ∅.
2. Run (sk, vk)← DS.Gen

(
1λ
)
.

3. Run Arss ((vk , pk)) answering signature queries as follows:

(a) Operate as Sign except when the accumulator work needs to be done, hand the computation
off to OEval and OWit.

(b) Return

σS =
(
OEval

(
{x ‖ share (qx (0))}x∈S

)
, T , {share (qx (0))}x∈S ,

{OWit (x ‖ share (qx (0)))}x∈S ,Signsk (acc ‖ s)
)
.

adding (P,S, σS) to Q.

4. Eventually Arss outputs
(
S∗,

(
acc∗, T ∗, {s∗x}x∈S∗ ,

{
w∗x,sx

}
x∈S∗ , σ

∗
))

such that there does not

exist a S ∈ Q such that S `P S∗. If there does not exist a signature on acc∗ ‖ s∗, where s∗ was
reconstructed according to T ∗ in Q, abort. Otherwise there is at least one witness w∗x,sx such

that Acc.Vrfypk
(
acc∗, w∗x,sx , x

)
= 1 but x 6∈ acc∗, output the collision

(
w∗x,sx , x, acc

∗).
Observe that Aacc faithfully simulates the view of adversary Arss in the EUF-CMA-RSS game if it does

not abort. The only way we abort is if the adversary tries to also forge the signature.
Note that there is no way for an adversary to construct new shares for any entries that allow the party

to recover s unless the adversary could forge witnesses for the cryptographic accumulator. Moreover, the
value of s can’t be changed without being able to break the EUF-CMA security of the underlying signature
scheme. Since neither adversary outlined above can succeed, we have by the union bound

Pr
[
ExpEUF−CMA−RSS
Arss,Π

(λ) = 1
]
≤ Pr

[
ExpEUF−CMA
Asig,Πsig

(λ) = 1
]

+ Pr
[
ExpAcc−Coll−Free
Aacc,Πacc

(λ) = 1
]

≤ negl (λ)

thus we conclude that our scheme is unforgeable.

Our scheme is transparent and thus private. The transparency of our scheme relies on the indistinguisha-
bility of the accumulator as well as security of the underlying threshold signature scheme. We proceed to
prove our claim through a sequence of games approach.Let Wi denote the event that the adversary wins
game i.

Game 0. This is the original game.

Game 1. This is similar to game 0 but, every call to the SignRedact oracle with b fixed to 0.

Claim B.1. The adversary will detect the changes from game 0 to game 1 with at most negligible probability.

Proof. There are two key changes between the games when b = 1 in Game 0. The accumulator value has
more values accumulated in the accumulator in Game 1 than Game 0. The policies will remain identical and
the shares will remain indistinguishable since the secrets are uniformly random. Since the accumulator has
the indistinguishability property after k queries there is knegl (λ) probability of distinguishing based on the
accumulator. Since, k is polynomial in the security parameter, we have that the probability of distinguishing
between the two games is negligible.

Claim B.2. The probability the adversary wins Game 0 is at most negligibly more than one half.

22

Proof. Observe that in Game 1 the value of the accumulator is independent of the choice of bit b (as the
oracle always behaves as if b = 0). The remaining components of the signature are identically distributed.
This means that Pr [W1] = 1

2 thus,

|Pr [W0]− Pr [W1]| ≤ knegl (λ)

=⇒
∣∣∣∣Pr [W0]− 1

2

∣∣∣∣ ≤ knegl (λ)

=⇒ Pr [W0] ≤ 1

2
+ knegl (λ)

C Security Proofs for the Linear Construction

Our arbitrary universe linear construction is both unforgeable and private. The unforgeability of the scheme,
stems from the unforgeability of the underlying signature scheme as well as the position binding property of
the vector commitment scheme. In what follows we will let Π denote our RSS, Πsig denote our underlying
signature scheme, and Πvc our underlying vector commitment scheme.

Proof. Assume by way of contradiction there exists an adversary Arss that can win the RSS unforgeability
game with greater than negligible probability. Given such an adversary we show how to construct an
adversary ASig that utilizes Arss to contradict the EUF-CMA security of the underlying signature scheme
and an adversary Avc that utilizes Arss to contradict the position binding property of the underlying vector
commitment.

We begin by constructing the adversary Asig as follows:

AOsig(·)
sig (vk):

1. Initialize Q = ∅.
2. Run pp← VC.KeyGen

(
1λ, q

)
.

3. Run Arss ((vk ,pp)) answering signature queries as follows:

(a) Operate as Sign except when the signature needs to be computed, query Osig.

(b) Compute (C, aux)← VC.Compp (m1,m2, . . . ,mq).

(c) Return

σM =
(
C, T , {share (qm (0))}m∈M ,

{
VC.Openpp (mi ‖ share (qmi (0)) , i, aux)

}
i∈[q]

,

OSig (C ‖ s))

adding (P,M, σM) to Q.

4. EventuallyArss outputs
(
M∗,

(
C∗, T ∗, {s∗m}m∈M∗ ,

{
Π∗m,sm

}
m∈M∗ , σ

∗
))

if there does not exist

a S ∈ Q such that S `P S∗, output (acc∗ ‖ s∗, σ∗), where s∗ was reconstructed according to
T ∗, as the forgery.

Observe that Asig faithfully simulates the view of adversary Arss in the EUF-CMA-RSS game.
We now construct the adversary Avc as follows:

23

Avc (pk):

1. Initialize Q = ∅.
2. Run (sk, vk)← DS.Gen

(
1λ
)
.

3. Run pp← VC.KeyGen1λ, q.

4. Run Arss ((vk ,pp)) answering signature queries as follows:

(a) Operate as Sign including handling all commitments.

(b) Compute (C, aux)← VC.Compp (m1,m2, . . . ,mq).

(c) Return

σM =
(
C, T , {share (qm (0))}m∈M ,

{
VC.Openpp (mi ‖ share (qmi

(0)) , i, aux)
}
i∈[q]

,

OSig (C ‖ s))

adding (P,M, σM) to Q.

5. Eventually Arss outputs
(
M∗,

(
C∗, T ∗, {s∗m}m∈M∗ ,

{
Π∗m,sm

}
m∈M∗ , σ

∗
))

such that there does

not exist a M ∈ Q such that M `P M∗. If there does not exist a signature on
acc∗ ‖ s∗, where s∗ was reconstructed according to T ∗ in Q, abort. Let the message
block sequence associated with the overlapping signature be M′. There is at least one proof

Π∗mi,smi
such that VC.Verpp

(
C∗,mi ‖ smi , i,Π

∗
mi,smi

)
= 1 but mi 6∈ C∗, output the violation(

C∗,mi,m
′
i, i,Π

∗
mi,smi

,Πm′i,sm′i

)
.

Observe that Avc faithfully simulates the view of adversary Arss in the EUF-CMA-RSS game if it does
not abort. The only way we abort is if the adversary tries to also forge the signature.

Note that there is no way for an adversary to construct new shares for any entries that allow the party
to recover s unless the adversary could forge proofs for the vector commitment. Moreover, the value of s
can’t be changed without being able to break the EUF-CMA security of the underlying signature scheme.
Since neither adversary outlined above can succeed, we have by the union bound

Pr
[
ExpEUF−CMA−RSS
Arss,Π

(λ) = 1
]
≤ Pr

[
ExpEUF−CMA
Asig,Πsig

(λ) = 1
]

+ Pr
[
ExpPos−Bind
Avc,Πvc

(λ) = 1
]

≤ negl (λ)

thus we conclude that our scheme is unforgeable.

Our scheme is private provided the underlying vector commitment scheme has the hiding property. The
privacy of our scheme relies on the fact that if the messages M0 and M1 are position-wise equivalent for
non-redacted components, then the two redacted signatures will be indistinguishable. We proceed to prove
our claim through a sequence of games approach.Let Wi denote the event that the adversary wins game i.

Game 0. This is the original game.

Game 1. This is similar to game 0 but, every call to the LoRRedact oracle with b fixed to 0.

Claim C.1. The adversary will detect the changes from game 0 to game 1 with at most negligible probability.

Proof. Observe that since the two redacted messages are equivalent and the commitment scheme is hiding,
no information is revealed about the message sequence M that was redacted. Therefore the adversaries
power in distinguishing between the two games is negligible. Since we have at most k queries the probability
of distinguishing is at most knegl (λ).

24

Claim C.2. The probability the adversary wins Game 0 is at most negligibly more than one half.

Proof. Observe that in Game 1 the value of the commitment is independent of the choice of bit b (as the
oracle always behaves as if b = 0). The remaining components of the signature are identically distributed.
This means that Pr [W1] = 1

2 thus,

|Pr [W0]− Pr [W1]| ≤ knegl (λ)

=⇒
∣∣∣∣Pr [W0]− 1

2

∣∣∣∣ ≤ knegl (λ)

=⇒ Pr [W0] ≤ 1

2
+ knegl (λ)

25

	Introduction
	Background

	Preliminaries
	Notation
	Approximate Membership Query (AMQ) Filter
	Constrained Pseudorandom Functions
	Cryptographic Accumulator
	Vector Commitments
	Threshold Secret Sharing
	Redactable Signatures

	Policy-Based Redactable Signature Schemes
	Policy-Based Redactable Set Signatures
	Small Universe
	Arbitrary Universe

	Policy-Based Redactable Signatures for Linear Data
	Implementation
	Conclusion
	Security Proofs for the AMQ Small Universe Construction
	Security Proofs for the Arbitrary Universe Construction
	Security Proofs for the Linear Construction

