
A Note on Constructing SIDH-PoK-based
Signatures after Castryck-Decru Attack

Jesús-Javier Chi-Domínguez1

Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
jesus.dominguez@tii.ae

Abstract. In spite of the wave of devastating attacks on SIDH, started
by Castryck-Decru (Eurocrypt 2023), there is still interest in constructing
quantum secure SIDH Proofs of Knowledge (PoKs). For instance, SIDH
PoKs for the Fixed Degree Relation, aim to prove the knowledge of a
fixed degree d-isogeny ω between the elliptic curve E0 and the public keys
E1, E2. In such cases, the public keys consist of only the elliptic curves
(without image of auxiliary points), which suggests that the Castryck-
Decru-like attack does not apply these scenarios.
In this paper we focus on the SIDH proof of knowledge of De Feo, Dobson,
Galbraith, and Zobernig (Asiacrypt 2022); more precisely, we focus on
their first 3-special soundness construction. In this work, we explicitly
describe an optimized recoverable Σ-protocol based on their 3-special
soundness SIDH-PoK. We also analyze the impact of building a signature
scheme based on the optimized protocol and study the impact of moving
to B-SIDH and G2SIDH setups, on the signature sizes.

Keywords: Isogeny-based cryptography · Proof-of-Knowledge ·Σ-protocol
· Signature scheme · Recoverable Σ-protocol

1 Introduction

In 2014, De Feo, Jao, and Plût proposed the first post-quantum Diffie-Hellman
protocol relying on the hardness of finding an isogeny between two supersingular
curves, the SIDH protocol [36,23]. In addition, to key-exchange procedures; they
also presented a Zero-Knowledge protocol based on the SIDH construction. Yoo,
Azarderakhsh, Jalali, Jao, and Soukharev combined that Zero-Knowledge SIDH
with the Fiat-Shamir transformation to get a signature scheme [46]. This was
further improved in [34] to obtain shorter signatures.

Additionally, [21] presented an isogeny-based Proof of Knowledge (PoK)
which was immune to known adaptive attacks [33,3,28,32] based on the same
new hardness assumption. The main difference between [23,34] and [21] con-
structions is that they achieve 2-special and 3-special soundness, respectively.

Sadly, Castryck and Decru [12] recently presented a (heuristically) polyno-
mial time SIDH key-recovery attack that breaks SIDH (and SIKE) in hours. The
three vital ingredients for the applicability of the Castryck-Decru attack are

– The public and fixed isogeny degree;

https://orcid.org/0000-0002-9753-7263

2 J. Chi-Domínguez

– The image of the auxiliary torsion points under the secret isogeny; and
– The endomorphism ring of the isogeny domain curve.

The attack was subsequently improved by Maino and Martindale [41] and
Robert [44]. Although these attacks [41,44] are theoretical; a public Magma
code implementation of the attack in [12] was improved by Oudompheng and
Pope [42]. It is worth mentioning that Castryck-Decru family of attacks apply
to [36,23,46] but it does not extend to the construction from [21, §5.3] and the
quaternion-based proposal of [34].

Contributions. In this work we focus on improving the communication ef-
ficiency (reducing proof-sizes) of the SIDH PoK with 3-special soundness. In
particular, we reduce the proof-sizes of the protocol in [21, §5.3] and analyze the
impact of using B-SIDH [17] and G2SIDH [38] in such a SIDH PoK protocol. As
the main contribution, we optimize the Σ-protocol in [21, §5.3].

We provide detailed description of our optimizations, and show how to trans-
form our optimized SIDH PoK into a signature scheme based on a non-interactive
recoverable Σ-protocol. More importantly, we also discuss why the devastating
Castryck-Decru attack (and its variants) do not threaten the security of SIDH
PoK and our optimizations. We optimize the following variants of SIDH PoK:
– SIDH PoK from [21];
– B-SIDH variant of the SIDH PoK from [21]; and
– G2SIDH variant of the SIDH PoK from [21].

Related work. In 2019, De Feo and Galbraith proposed a signature scheme
named SeaSign by combining the Commutative SIDH (CSIDH) [14] and Fiat-
Shamir transformation with aborts [22]. This is followed by series of proposals
with improved performance [26,6] or shorter sizes [29]. However, current pro-
posals and implementations of these schemes use CSIDH-512, which may not
achieve the desired quantum security of NIST Level 1 [8,43,7,15]. The current
shortest isogeny-based signature scheme is SQIsign [24,25].

Outline. We present the necessary mathematical background related to SIDH
in Section 2 and Section 2.1. We then provide an overview of the SIDH PoK
protocol of [21] in Section 2.2. We discuss the (non-)impact of the recent at-
tacks in Section 2.3. In Section 3 we provide details of the proposed optimiza-
tions (Section 3.1), followed by the optimized PoK protocol (Section 3.2) and
the signature scheme (Section 3.3). We discuss the effect of replacing SIDH with
B-SIDH in Section 3.4 and that of G2SIDH in Section 3.5 1.

2 Preliminaries

In this section, we introduce all mathematical tools required in the SIDH con-
structions from [36,23]. Let p = 2a3b − 1 be a prime number satisfying p ≡
1 We highlight that we did not dig into the mathematical tools required for G2SIDH;

we took it as a black box. However, we mention the main differences between SIDH
and G2SIDH and take essential properties to describe how the recoverableΣ-protocol
will impact.

Title Suppressed Due to Excessive Length 3

3 mod 4 for some a, b ∈ Z+. Let Fp be a prime field with p elements and Fp2 a
quadratic field extension of Fp. We let E be a supersingular curve determined
by Equation (1) and assume E has exactly #E(Fp2) = (p+ 1)

2 points over Fp2 .

E : y2 = x3 +Ax2 + x, A ∈ Fp2 \ {±2}. (1)

The point at infinity ∞ of E plays the role of the neutral element. We say
P ∈ E is an order-d point if d is the smallest positive integer such that

[d]P = P + · · ·+ P︸ ︷︷ ︸
d times

=∞,

and write E[d] to denote the d-torsion subgroup {P ∈ E(Fp2) | [d]P =∞}. The

j-invariant of the curve E is 256(A2−3)
3

A2−4 .

Isogenies From Kernel. We only consider separable isogenies. An isogeny
ϕ : E → E′ over Fp2 is a non-zero rational map fixing the point at infinity,
ϕ(∞) = ∞ . If such isogeny exists, we say E and E′ are isogenous over Fp2 ,
which happens if and only if #E(Fp2) = #E′(Fp2). The kernel kerϕ of ϕ is
the subgroup {P ∈ E(Fp2) | ϕ(P) = ∞}. We refer to ϕ as d-isogeny when
#kerϕ = d holds. The dual d-isogeny ϕ̂ : E′ → E of ϕ is the isogeny satisfying

ϕ̂ ◦ ϕ : P 7→ [d]P and ϕ ◦ ϕ̂ : P 7→ [d]P.

We recall the following useful lemma from [21],

Lemma 1 (Lemma 2 [21](restated)). Let p = 2a3b − 1 be a prime number
satisfying p ≡ 3 mod 4 for some a, b ∈ Z+. Let ϕA : E → EA be an isogeny of
degree 2a. Let ϕB : E → EB and ϕAB : EA → EAB be isogenies of degree 3b such
that ker (ϕAB) = ϕA (ker(ϕB)). Then there exists an isogeny ϕBA : EB → EAB
of degree 2a.

Moreover, as shown in the proof of Lemma 1 in [21], the isogeny ϕAB can be
computed efficiently given, any generator of ker(ϕA), ϕB , and EB .

2.1 SIDH protocol

The core idea of [21, §5.3] relies on the SIDH-square construction. So, let us list
the SIDH setup as follows:

– the public isogeny degrees A = 2a and B = 3b;
– the quadratic field extension Fp2 of Fp along with p = AB− 1;
– the starting supersingular curve E0 : y

2 = x3 + 6x2 + x 2;
2 We choose the same E0 as in SIKE proposal [1], but it can be a different curve.

4 J. Chi-Domínguez

– the order-A basis {P0, Q0} satisfying ⟨P0, Q0⟩ = E0[A]; and
– the order-B basis {P ′

0, Q
′
0} satisfying ⟨P ′

0, Q
′
0⟩ = E0[B].

The SIDH key generation is slightly different for each entity. Alice generates
public keys according to order-B points, and her private keys determine secret
A-isogenies. In contrast, Bob’s public keys are concerning order-A points and his
private keys to B-isogenies. We sketch as follows SIDH protocol.

Alice key generation.

1. Alice samples a random integer sk
$←− J0 . . A− 1K as her private key;

2. She then computes the A-isogeny ϕ : E0 → E1 with kernel generated by
Kϕ = P0 + [sk]Q0; and

3. She sets as her public key pk = (E1, ϕ(P
′
0), ϕ(Q

′
0)), and send it to Bob.

Bob key generation.

1. Bob samples a random integer sk′
$←− J0 . . B− 1K as his private key;

2. He then computes the B-isogeny ψ : E0 → E2 with kernel generated by
Kψ = P ′

0 + [sk′]Q′
0; and

3. He sets as his public key pk′ = (E2, ψ(P0), ψ(Q0)), and send it to Alice.

Alice key derivation.

1. Alice computes the A-isogeny ϕ′ : E2 → E3 with kernel generated by Kϕ′ :=
ψ(Kϕ) = ψ(P0) + [sk]ψ(Q0); and

2. She finally sets as her secret shared the j-invariant j(E3) of E3.

Bob key derivation.

1. Bob computes the B-isogeny ψ′ : E1 → E′
3 with kernel generated by Kψ′ :=

ϕ(Kψ) = ϕ(P ′
0) + [sk′]ϕ(Q′

0); and
2. He finally sets as his secret shared the j-invariant j(E′

3) of E′
3.

In the original SIDH construction from [36,23] and also in [1], the secret
shared corresponds with the j-invariant of the curves E3 and E′

3. However,
Leonardi showed that the ending curves E3 and E′

3 are equal to each other [39].
We illustrate the diagram determined by the SIDH protocol in Figure 1.

Next, we summarize the constructions from [21] in Section 2.2. In particular,
we only focus on the constructions based on Definition 1. The idea behind [21,
§5.3] is to randomly generate SIDH-squares, as illustrated in Figure 1, to prove
the knowledge of the secret isogeny.

Definition 1 (Fixed degree relation). Given a public curve pk = Ei gener-
ated by Alice or Bob without revealing any image of auxiliary points, we define
the Fixed degree relation by Equation (2).

Rdeg := {(E0, Ei, d, ω) | ω : E0 → Ei is a d-isogeny} . (2)

Title Suppressed Due to Excessive Length 5

E0 E1

E2 E3

ϕ

ψ

ϕ′

ψ′

Fig. 1: Dashed arrows are secret and all curves are public. Horizontal and vertical
arrows denote A-isogenies and B-isogenies, respectively. .

2.2 Overview of SIDH PoK

This section describes the construction from [21, §5.3]. The setup is the same as
in Section 2.1. Given a public A-isogenous curve E1 to E0. The prover (Peggy)
wants to convince the verifier (Victor) that she knows the secret A-isogeny
ϕ : E0 → E1, which is equivalent to knowing kerϕ = ⟨Kϕ⟩, for the scope of
this paper. In the following, we assume that C is statistically hiding and compu-
tationally binding commitment scheme.

Public and private keys. Here, the public key is pk = E1, while sk = ϕ
determines the private key.

Commitment. This block proceeds by constructing random SIDH-squares de-
scribed in Figure 1 as follows.

– Peggy picks a random order-B kernel generator Kψ ∈ E0[B];
– She evaluates Kψ under the secret isogeny ϕ to get Kψ′ = ϕ (Kψ);
– She constructs an SIDH-square as in Figure 1 determined by
• the B-isogeny ψ : E0 → E2 with kerψ = ⟨Kψ⟩,
• the B-isogeny ψ′ : E1 → E3 with kerψ′ = ⟨Kψ′⟩, and
• the A-isogeny ϕ′ : E2 → E3 with kerϕ′ = ⟨Kϕ′⟩ where Kϕ′ = ψ (Kϕ);

– She chooses a random basis {P2, Q2} of E2 [B];
– She evaluates P2 and Q2 under the secret isogeny ϕ′ to get P3 = ϕ′ (P2) and
Q3 = ϕ′ (Q2);

– She looks for two integers c, d ∈ J0 . . B− 1K such that
• The dual isogeny ψ̂ : E2 → E0 of ψ has kernel generator Kψ̂ = [c]P2 +

[d]Q2, and
• The dual isogeny ψ̂′ : E3 → E1 of ψ′ has kernel generator Kψ̂′ = [c]P3 +

[d]Q3;
– She selects three random numbers rR, rL, and r from {0, 1}2λ.
– Next, She commits com2 = (E2, P2, Q2) and com3 = (E3, P3, Q3) as
• comL = C (com2 || rL),
• comR = C (com3 || rR), and
• com′ = C ((c, d) || r);

6 J. Chi-Domínguez

– Finally, She sends the commitment message com ← (comL, comR, com′) to
Victor.

Challenge. Victor picks a uniformly random challenge chall $←− {−1, 0, 1}, and
send it to Peggy.

Response. Once Peggy receives the challenge chall, she performs the following:

– If chall = 1, she sets Kϕ′ ← [z]Kϕ′ where z was randomly sampled from
J0, A − 1K such that (z,A) = 1, and sends resp ← (com2, rL,Kϕ′ , com3, rR)
to Victor.

– If chall = 0, she sends resp← (com3, rR, c, d, r) to Victor.
– If chall = −1, she sends resp← (com2, rL, c, d, r) to Victor.

Verification. Depending on the challenge, Victor does the following calculations
to validate the commitment and response:

– (comL, comR, com′)← com
– If chall = 1,
• He parses

∗ (com2, rL,Kϕ′ , com3, rR)← resp,
∗ (E2, P2, Q2)← com2, and
∗ (E3, P3, Q3)← com3;

• He rejects if C (com2 || rL) ̸= comL or C (com3 || rR) ̸= comR;
• He rejects if Kϕ′ ̸∈ E2 or Kϕ′ does not have order A;
• He computes the A-isogeny ϕ′ : E2 → E′

3 with kernel generator Kϕ′ ;
• Finally, Victor accepts if and only if E3 = E′

3, P3 = ϕ′(P2) and Q3 =
ϕ′(Q2), otherwise rejects.

– If chall = 0,
• He parses

∗ (com3, rR, c, d, r)← resp, and
∗ (E3, P3, Q3)← com3;

• Victor rejects if C ((c, d) || r) ̸= com′ or C (com3 || rR) ̸= comR;
• He computes Kψ̂′ as [c]P3 + [d]Q3;
• He rejects if Kψ̂′ does not have order B;
• He computes the B-isogeny ψ̂′ : E3 → E′

1 with kernel generator Kψ̂′ ;
• Finally, Victor accepts if and only if E1 = E′

1, otherwise rejects.
– If chall = −1,
• He parses

∗ (com2, rL, c, d, r)← resp, and
∗ (E2, P2, Q2)← com2;

• Victor rejects if C (com2 || rL) ̸= comL or C ((c, d) || r) ̸= com′;
• He computes Kψ̂ as [c]P2 + [d]Q2;
• He rejects if Kψ̂ does not have order B;
• He computes the B-isogeny ψ̂ : E2 → E′

0 with kernel generator Kψ̂;
• Finally, Victor accepts if and only if E0 = E′

0, otherwise rejects.

Remark 1. The calculations in the Response and Verification when chall =
1 correspond with the horizontal arrows of Figure 1. While chall = 0 and
chall = −1 determine the right-vertical and left-vertical arrows, respectively.

Title Suppressed Due to Excessive Length 7

2.3 Effect of Recent Attacks on SIDH-PoK

The current wave of attacks by Castryck-Decru [12], Maino-Martindale [41], and
Robert [44] do not extend to the Σ-protocol from [21, §5.3], which is described
above in Section 2.2. Given that the public keys do not include images of any
auxiliary point, those attacks do not help to find the secret isogeny ϕ:

– If chall = 1. The kernel generator Kϕ′ of ϕ′ : E2 → E3 is revealed, along
with the points P2, Q2 and their respectively image P3 = ϕ′(P2) and Q3 =
ϕ′(Q2). Therefore, any key-recovery attack from [12,41,44] recovers a kernel
generator for the A-isogeny ϕ′, which is already public.

– If chall = 0. The kernel generator Kψ̂′ of the (expected) dual B-isogeny
ψ̂′ : E3 → E1 is public, along with the image points P3 = ϕ′(P2) and Q3 =
ϕ′(Q2). Now, the curve E2 and the points P2, Q2 ∈ E2 are not revealed, and
thus the points P3 and Q3 looks like random points. Furthermore, there are
no image of auxiliary points under ϕ′ (or its dual). So, the current Castryck-
Decru family attacks do not help to find the secret A-isogeny ϕ′.

– If chall = −1. The kernel generator Kψ̂ of the (expected) dual B-isogeny
ψ̂ : E2 → E0 is public, along with two random points P2 and Q2. Now,
the curve E3 and the random points P3, Q3 ∈ E2 are not revealed. In fact,
there are no image of auxiliary points under ϕ (or its dual). So, the current
Castryck-Decru family attacks do not help to find the secret A-isogeny ϕ.

2.4 Computational Assumptions Underlying SIDH PoK

The zero-knowledge property of the SIDH PoK described in Section 2.2 essen-
tially relies on the computational hardness of distinguishing between well-formed
and altered instances (E2, E3, ϕ

′), this was introduced by [23] as a new security
assumption in the form of Decisional Supersingular Product Problem (DSPP) as
presented in Definition 2 below. We illustrate this in Figure 2. The transcript of
the protocol do not leak any information (or the protocol achieves special honest-
verifier zero-knowledge property) as long as the cases from Figure 2a, Figure 2b,
and Figure 2c do not simultaneously occur for any given fixed instance.

Definition 2 (Decisional Supersingular Product Problem (DSPP): Al-
ice’s case). Let E0 be a Montgomery curve as in the SIDH setting (see Sec-
tion 2.1). Given a A-isogeny ϕ : E0 → E1 with kernel ⟨Kϕ⟩, the Decisional Su-
persingular Product Problem (DSPP) asks to distinguish between the following
two distributions:

– (E2, E3, ϕ
′) is the bottom of a random SIDH-square as in Figure 1. That is,

for a randomly chosen order-B kernel ⟨Kψ⟩, we have E2 is the codomain
curve of the B-isogeny ψ with kernel ⟨Kψ⟩, E3 is the codomain curve of the
B-isogeny ψ′ with kernel ⟨ϕ(Kψ)⟩, and ϕ′ : E2 → E3 is the A-isogeny with
kernel ⟨ψ(Kϕ)⟩.

– (E2, E3, ϕ
′) such that E2 is a randomly chosen elliptic curve with same car-

dinality as E0, and ϕ′ : E2 → E3 is a random A-isogeny with cyclic kernel.

8 J. Chi-Domínguez

E′
0 = E0? E1

E2 E3

ϕ

ψ̂

ϕ′

ψ′

(a) Given ker ψ̂ = ⟨Kψ̂⟩. The prover
accepts if E′

0 is equal to E0; other-
wise rejects.

E0 E′
1 = E1?

E2 E3

ϕ

ψ

ϕ′

ψ̂′

(b) Given ker ψ̂′ = ⟨Kψ̂′⟩. The prover
accepts if E′

1 is equal to E1; other-
wise rejects.

E0 E1

E2 E′
3 = E3?

ϕ

ψ

ϕ′

ψ′

(c) Given kerϕ′ = ⟨K′
ϕ⟩. The verifier accepts if and only if E′

3 is
equal to E3, P3 = ϕ′(P2) and Q3 = ϕ′(Q2); otherwise rejects.

Fig. 2: Dashed arrows and curves labeled with gray ink are secret and unknown
by the adversary and distinguisher.

The Σ-protocol described in Section 2.2 is 3-special soundness under the
relation given by Definition 1. Furthermore, when repeated κ times, it becomes
a Special Honest-Verifier Zero-Knowledge (SHVZK) PoK with soundness error
(2/3)

κ, assuming the DSPP is computationally hard and the commitment scheme
C is computationally binding and statistically hiding [21, Theorem 4].

3 Optimizing SIDH PoK

This section describes a way to optimize the Sigma construction described in Sec-
tion 2.2 by applying the tricks from [2,18,34].

3.1 Reducing sizes according state-of-the-art tricks

Let λ ∈ {128, 192, 256} a security parameter, and C be a statistically hiding
and computationally binding commitment scheme with output length 2λ. The
commitment com = (comL, comR, com′) has fixed bit-length equals 6λ. Recall

– comL = C (com2 || rL) with com2 = (E2, P2, Q2);
– comR = C (com3 || rR) with com3 = (E3, P3, Q3); and

Title Suppressed Due to Excessive Length 9

– com′ = C ((c, d) || r) where Kψ = [c]P2+[d]Q2 and Kψ′ = [c]P3+[d]Q3 hold.

The response resp has a different size depending on if chall = 1 holds; let
us analyze the cases below:

Vertical Case. This case corresponds to when chall ̸= 1. The response includes
log2(p) bits that determines (c, d). Notice, we can do it better by computing
either ∆ =

(
cd−1 mod B

)
or ∆ =

(
dc−1 mod B

)
plus one bit b ∈ {0, 1} to decide

which point is multiplied by ∆: either Pj + [∆]Qj or [∆]Pj +Qj as kernel point
generator for j := 2, 3. In other words, we suggest to replace (c, d) by (b,∆), and
update the commit com′ as H ((b,∆) || r). That trick reduces (c, d) of log2(p) bits
to (b,∆) of log2(p)

2 bits. Now, let CanonicalBasisB(Ej) denotes the procedure
to find two order-B points P and Q such that ⟨P,Q⟩ = Ej [B], and set j ∈ {2, 3}.
The commitment comj = (Ej , Pj , Qj) has 10 log2(p) bits. The idea is to compute
P,Q← CanonicalBasisB(Ej) and find integers αPj ,αQj

, βPj
, βQj

∈ J0 . . B− 1K
such that Pj = [αPj

]P+[βPj
]Q and Qj = [αQj

]P+[βQj
]Q. Therefore, replace the

commitment comj = (Ej , Pj , Qj) by comj =
(
Ej , (αPj

, βPj
), (αQj

, βQj
)
)
. That

trick reduces the sizes from 10 log2(p) bits to about 4 log2(p) bits.

Horizontal Case. The response includes both com2 and com3, along with the
kernel order-A point generator Kϕ′ . Same trick as in the case chall ̸= 1 allows
to reduce the commitment size of (com2, com3) from 20 log2(p) to 6 log2(p). In
our optimized protocol we only send com2, since we can get P3 and Q3 from
P2 and Q2 using ϕ′. Let CanonicalBasisA(E2) denotes the procedure to find
two order-A points P ′ and Q′ such that ⟨P ′, Q′⟩ = E2[A]. Analogously to the B-
torsion basis case, we can reduce Kϕ′ by finding two integers α, β ∈ J0 . . A− 1K
such that Kϕ′ = [α]P ′ + [β]Q′. Moreover, we suggest to represent Kϕ′ using
log2 p

2 by computing either ∆′ =
(
αβ−1 mod A

)
or ∆′ =

(
βα−1 mod A

)
plus one

bit b′ ∈ {0, 1} to decide which point is multiplied by ∆′: either P ′ + [∆′]Q′ or
[∆′]P ′ +Q′ as kernel point generator. Therefore in this case we send only log2 p

2
bits instead of 4 log2(p) bits.

3.2 Optimized Σ-protocol

We now show the above mentioned optimizations can be used to reduce the com-
munication SIDH PoK. Let us assume Peggy wants to convince Victor that she
knows the secret A-isogeny ϕ : E0 → E1, which implies knowing kerϕ = ⟨Kϕ⟩.
We present the optimizedΣ-protocol for the same in Figure 3 and the verification
algorithm in Figure 4. The following lemmas, related to the knowledge-soundness
and zero-knowledge properties of our optimized protocol. The correctness of the
protocol follows from the construction of SIDH square in Figure 1.

Lemma 2 (Knowledge Soundness). The optimized protocol in Figure 3 is
knowledge sound with knowledge error 2

3 .

10 J. Chi-Domínguez

Public and private keys. Here, the public key is pk = E1, while sk = ϕ determines
the private key.

Commitment. This block proceeds by constructing random SIDH-squares described
in Figure 1 as follows.

– Peggy picks a random order-B kernel generator Kψ in E0;
– She evaluates Kψ under the secret isogeny ϕ to get Kψ′ = ϕ (Kψ);
– She constructs an SIDH-square as in Figure 1 determined by
• the B-isogeny ψ : E0 → E2 with kerψ = ⟨Kψ⟩,
• the B-isogeny ψ′ : E1 → E3 with kerψ′ = ⟨Kψ′⟩, and
• the A-isogeny ϕ′ : E2 → E3 with kerϕ′ = ⟨Kϕ′⟩ where Kϕ′ = ψ (Kϕ);

– She sets Kϕ′ ← [z]Kϕ′ where z was randomly sampled from J0, A − 1K such that
(z,A) = 1;

– She chooses a random basis {P2, Q2} of E2 [B];
– She evaluates P2 and Q2 under the secret isogeny ϕ′ to get P3 = ϕ′ (P2) and
Q3 = ϕ′ (Q2);

– She looks for two integers c, d ∈ J0 . . B− 1K such that
• The dual isogeny ψ̂ : E2 → E0 of ψ has kernel generator Kψ̂ = [c]P2 + [d]Q2,
• The dual isogeny ψ̂′ : E3 → E1 of ψ′ has kernel generator Kψ̂′ = [c]P3+[d]Q3;

– She selects three random numbers rR, rL, and r from {0, 1}2λ;
– Next, She commits com2 = (E2, P2, Q2) and com3 = (E3, P3, Q3) as
• comL = C (com2 || rL),
• comR = C (com3 || rR), and

• com′ = C ((b,∆) || r): (b,∆) are computed as in Section 3.1 vertical case;

– Finally, She sends the commitment message com← (comL, comR, com′) to Victor.

Challenge. Victor picks a uniformly random challenge chall $←− {−1, 0, 1}, and send
it to Peggy.

Response. Once Peggy receives the challenge chall, she performs the following:

– If chall = 1, she gets (b′,∆′), (αPj , βPj), and (αQj , βQj) for j := 2, 3 as in Sec-
tion 3.1 horizontal case, and sets

resp←
(
E2, (αP2 , βP2), (αQ2 , βQ2), rL, (b

′,∆′), E3, rR
)
;

– If chall = 0, she obtains (αP3 , βP3) and (αQ3 , βQ3) as in Section 3.1 vertical case,
and sets

resp←
(
E3, (αP3 , βP3), (αQ3 , βQ3), rR, (b,∆), r

)
;

– If chall = −1, she computes (αP2 , βP2) and (αQ2 , βQ2) as in Section 3.1 vertical
case, and sets

resp←
(
E2, (αP2 , βP2), (αQ2 , βQ2), rL, (b,∆), r

)
;

Fig. 3: Optimized Σ-protocol

Title Suppressed Due to Excessive Length 11

Verification. Depending on the challenge, Victor does the following calculations to
validate the commitment and response:

– Victor parses the first received message as: (comL, comR, com′)← com
– If chall = 1,

• He parses the response resp as
(
E2, (αP2 , βP2), (αQ2 , βQ2), rL, (b

′,∆′), E3, rR
)
.

• He deterministically computes (P,Q)← CanonicalBasisB(E2), and
(P ′, Q′)← CanonicalBasisA(E2).

• Victor also computes kernel generator Kϕ′ with the help of P ′, Q′ and
(b′,∆′) as in Section 3.1 horizontal case.

• He computes the A-isogeny ϕ′ : E2 → E′
3 with kernel generator Kϕ′ .

• He then computes,
com2 = (E2, P2 = [αP2]P + [βP2]Q,Q2 = [αQ2]P + [βQ2]Q) and
com3 = (E3, P3 = ϕ′(P2), Q3 = ϕ′(Q2)) .

• He rejects if C (com2 || rL) ̸= comL or
C (com3 || rR) ̸= comR;

• Finally, Victor accepts if and only if E3 = E′
3, otherwise rejects.

– If chall = 0,

• He parses the response resp as
(
E3, (αP3 , βP3), (αQ3 , βQ3), rR, (b,∆), r

)
.

• He deterministically computes (P,Q)← CanonicalBasisB(E3),
• Victor also computes kernel generator Kψ̂′ with the help of P,Q and

(b,∆) as in Section 3.1 vertical case.
• He then computes,

com3 = (E3, P3 = [αP3]P + [βP3]Q,Q3 = [αQ3]P + [βQ3]Q)
• Victor rejects if C ((b,∆) || r) ̸= com′ or

C (com3 || rR) ̸= comR;
• He computes the B-isogeny ψ̂′ : E3 → E′

1 with kernel generator Kψ̂′ ;
• Finally, Victor accepts if and only if E1 = E′

1, otherwise rejects.

– If chall = −1,

• He parses the response resp as
(
E2, (αP2 , βP2), (αQ2 , βQ2), rL, (b,∆), r

)
.

• He deterministically computes (P,Q)← CanonicalBasisB(E2),
• Victor also computes kernel generator Kψ̂ with the help of P,Q and

(b,∆) as in Section 3.1 vertical case.
• He then computes,

com2 = (E2, P2 = [αP2]P + [βP2]Q,Q2 = [αQ2]P + [βQ2]Q)
• Victor rejects if C ((b,∆) || r) ̸= com′ or

C (com2 || rL) ̸= comL;
• He computes the B-isogeny ψ̂′ : E2 → E′

0 with kernel generator Kψ̂;
• Finally, Victor accepts if and only if E0 = E′

0, otherwise rejects.

Fig. 4: Verification algorithm for Optimized Σ-protocol

12 J. Chi-Domínguez

Lemma 3 (Special Honest Verifier Zero-Knowledge). Let C be a statis-
tically hiding and computationally binding commitment scheme. Assuming the
hardness of DSPP the optimized protocol in Figure 3 is computationally SHVZK
in the random oracle model.

The proofs of Lemma 2 and Lemma 3 are identical to the proof of [21,
Theorem 2] with necessary changes required to compute the intermediate values
from the responses of our optimized protocol. For completeness, we present these
proofs in Section A of the appendix.

3.3 Signature Scheme Based On Optimized SIDH PoK

We now show the optimized Σ-protocol in Section 3.2 can be transformed into
a signature scheme by using Fiat-Shamir transform [30].

Signature scheme using the strong Fiat-Shamir transform [30,4]. The
main idea is to avoid the interaction between Peggy and Victor by allowing Peggy
to generate the challenge as the hash of the statement and the commitment. In
our case, Peggy would first generate κ commitments comi and then obtains the
challenge (chall1, . . . , challκ−1) = RO(pk,m, com0, . . . , comκ−1), where m is
the message to be signed. We denote by RO a random oracle that outputs
strings in {−1, 0, 1}κ. Each challenge challi determines the response values for
comi. This transformation is secure [45] in the Quantum Random Oracle Model.

Reducing sizes via recoverable Σ-protocol. Following the hints from [5, c.f.
Remark 3], we transform the Σ-protocol into a recoverable Σ-protocol. That is,
the signer can output (chall, resp) as signature instead of (com, resp). Given
a signature (chall, resp), Victor then first recomputes com, and checks that
chall = H(pk || m || com) before verifying the transcript.

Let E0 be a public parameter curve and (pk, sk) be generated by running the
key generation algorithm described below. Also, let m be a message to be signed.
In the following we assume that the commitment algorithm C is instantiated
with the help of random oracle H. As required, the commitments generated this
way are statistically hiding and computationally binding. In practice, we use
cryptographic (collision-resistant) hash functions to generate the commitments,
which are modelled as random oracle for security analysis. While converting the
optimized Σ-protocol to signature scheme via Fiat-Shamir transform, we also
use domain separation to ensure the random oracles used in different phases of
the signing and verification are independent of each other.

Key Generation. Given the public curve E0, Peggy randomly samples an order-
A kernel generator Kϕ ∈ E0[A], and computes the A-isogeny ϕ : E0 → E1 with
kernel kerϕ = ⟨Kϕ⟩. The public key is pk = E1, while sk = ϕ is the private key.

Signing. Peggy proceeds as follows:

– She computes com = (comL, comR, com′) as given in the commitment phase
of the optimized Σ-protocol in Figure 3.

Title Suppressed Due to Excessive Length 13

– She calculates comH ← H(pk || m || com) with com = (comL, comR, com′);
– She picks as random challenge as chall← PRNG (comH) ∈ {−1, 0, 1};
– She then creates the appropriate response resp′ corresponding to chall as

shown in the response phase of the optimized Σ-protocol in Figure 3.
– Based on the value of chall, she sets the response as follows:
• If chall = 1: resp← (com′, resp′)
• If chall = 0: resp← (comL, resp′)
• If chall = −1: resp← (comR, resp′)

– Finally, Peggy sends σ ← (chall, resp) to Victor.

Verifying. During the verification of the signature, Victor first computes com =
(comL, comR, com′) from the received response resp. He then proceeds as in the
verification algorithm in Figure 4. Finally before accepting he additionally checks
if, PRNG (H(pk || m || com)) = chall. If all the checks pass, then Victor accepts.

The signature scheme described above is existentially unforgeable against
the chosen message attacks. The proof of security follows the standard proof for
constructing signatures via Fist-Shamir transform for identification protocols.

Signature Sizes. Notice, if chall = 1 then the response resp in the above
recoverable Σ-protocol has 12λ+13 log2(p)

2 bits; otherwise, it has 12λ+9 log2(p)
2 bits.

Therefore, on average, the response resp has 36λ+31 log2(p)
6 ≈ (6λ+ 6 log2(p))

bits. As the last optimization, we suggest taking

(chall0, . . . , challκ−1)← RO (H′(comH,0, . . . , comH,κ−1))

as κ challenges for κ repetitions of the above recoverable Σ-protocol, where
H′ is another hash function returning 2λ-bits and RO is a random oracle that
uniformly samples from {−1, 0, 1}κ. After that, we get a signature

σ =
(
H′(comH′,0, . . . , comH,κ−1), resp0, . . . , respκ−1

)
of (2λ+ 6κ (λ+ log2(p)))-bits. In Table 1 we follow [1,40] to estimate the sizes.

3.4 Over the quadratic twist

Following B-SIDH construction [17,19], we analyze the signature sizes using the
quadratic twist curve. For instance, according to the parameter sets from [19],
we can use primes of 256-bits (NIST Level 1), 384-bits (NIST Level 3), and 512-
bits (NIST Level 5). The idea is to choose a prime number p with A | (p+1) and
B | (p− 1) being smooth integer numbers close to p. Thereafter, [21, Theorem 4]
also holds if we repeat κ times the Σ-protocol described in [21, §5.3] and replace
A = 2a and B = 3b with A | (p + 1) and B | (p − 1), respectively. It becomes
an SHVZK PoK with soundness (2/3)κ, assuming the DSPP is computationally
hard.

This time, each integer coefficient given in the response resp has log2(p) bits
instead of log2(p)

2 . Therefore, if chall = 1, we have a resp of (6λ + 13 log2(p))
bits; otherwise, we have resp of (6λ+9 log2(p)) bits. Moreover, on average, the
response resp has (6λ+ 31

3 log2(p)) ≈ (6λ+ 11 log2(p)) bits. Table 2 illustrates
the signature sizes based on Section 3.3 under the B-SIDH setup [19].

14 J. Chi-Domínguez

log2(p) λ κ Security Level Private key Public Key Signature

377 128 219 NIST Level 1 24 B 96 B 84.19 kB
546 192 329 NIST Level 3 35 B 138 B 183.72 kB
697 256 438 NIST Level 5 44 B 176 B 315.53 kB

434 128 219 NIST Level 1 28 B 110 B 93.40 kB
503 160 274 NIST Level 2 32 B 126 B 136.58 kB
610 192 329 NIST Level 3 39 B 154 B 199.53 kB
751 256 438 NIST Level 5 47 B 188 B 331.32 kB

Table 1: Signature sizes correspond with the average case. Private keys cor-
respond to integer coefficients sk in ZA, while public keys are elliptic curves
E : y2 = x3 + Ax2 + x described by the element A in Fp2 . Since the isogeny
degrees satisfy A,B ≈ √p, public keys are 4x larger than private keys.

log2(p) λ κ Security Level Private key Public Key Signature

256 128 219 NIST Level 1 32 B 64 B 98.18 kB
384 192 329 NIST Level 3 48 B 96 B 221.18 kB
512 256 438 NIST Level 5 64 B 128 B 392.58 kB

Table 2: Signature sizes correspond with the average case. Private keys cor-
respond to integer coefficients sk in ZA, while public keys are elliptic curves
E : y2 = x3 + Ax2 + x described by the element A in Fp2 . Since the isogeny
degrees satisfy A,B ≈ p, public keys are 2x larger than private keys.

3.5 Over the Jacobian of genus-two curves

Following G2SIDH construction [31,38], we have another way to suggest sizes by
working with Jacobian of genus two hyperelliptic curves 3. This time the idea is
to replace A-isogenies and B-isogenies with (A,A)-isogenies and (B,B)-isogenies.
One crucial difference between SIDH and G2SIDH is that we do not have only
two generators for the torsion subgroups; we have four generators instead, and
two elements generate the isogeny kernels. For instance, given a public (A,A)-
isogenous Jacobian J1 to J0. This time Peggy wants to convince Victor that
she knows the secret (A,A)-isogeny ϕ : J0 → J1, which implies knowing kerϕ =
⟨Kϕ,0,Kϕ,1⟩. Here, J0 is a public and fixed Jacobian of a genus two curve H0, and
J1 (the public key) comes from a genus two hyperelliptic curve H1. This time,
the fixed degree relation over genus-two curves is defined as in Equation (3).

Rdeg := {(J0, J1, d, ω) | ω : J0 → J1 is a (d, d)-isogeny} . (3)

3 For a deeper understanding of isogenies in the context of G2SIDH, we strongly
suggest reading [31,13,38,37]

Title Suppressed Due to Excessive Length 15

Similarly to Section 3.4, [21, Theorem 4] also extends if we repeat κ times
the Σ-protocol described in [21, §5.3] and replace A-isogenies and B-isogenies
with (A,A)-isogenies and (B,B)-isogenies, respectively. It becomes an SHVZK
PoK with soundness (2/3)κ, assuming the G2DSPP (described by Definition 3)
is computationally hard.

Definition 3 (Genus two Decisional Supersingular Product Problem
(G2DSPP): Alice’s case). Let J0 be a Jacobian of genus two curve H0 as
in the G2SIDH setting. Given a (A,A)-isogeny ϕ : J0 → J1 with kernel (A,A)-
subgroup ⟨Kϕ,0,Kϕ,1⟩, the Genus two Decisional Supersingular Product Problem,
labeled as G2DSPP, asks to distinguish between the following two distributions:

– (J2, J3, ϕ
′) is the bottom of a random G2SIDH-square. That is, for a ran-

domly chosen kernel (B,B)-subgroup ⟨Kψ,0,Kψ,1⟩, we have J2 is the codomain
of the (B,B)-isogeny ψ with kernel ⟨Kψ,0,Kψ,1⟩, J3 is the codomain of the
(B,B)-isogeny ψ′ with kernel ⟨ϕ(Kψ,0), ϕ(Kψ,1)⟩, and ϕ′ : J2 → J3 is the
(A,A)-isogeny with kernel ⟨ψ(Kϕ,0), ψ(Kϕ,1)⟩.

– (J2, J3, ϕ
′) such that J2 is a randomly chosen Jacobian with same cardinality

as J0, and ϕ′ : J2 → J3 is a random (A,A)-isogeny with kernel ⟨R0, R1⟩ for
some (A,A)-subgroup ⟨R0, R1⟩ ∈ J2[A].

Essentially, the genus-two recoverable Σ-protocol remains the same flow
as in Section 3.3, but we need to consider that it requires double generators
and isogeny evaluations, and genus two hyperelliptic curves H : y2 = f(x) are
described by the degree-6 polynomial f(x) over Fp2 (but one can work with
curve equations described by only three quadratic field coefficients r, s, and
t [9,11]). Additionally, we have that the kernel generators of the (A,A)-isogenies
and (B,B)-isogenies can be expressed by linear combinations determined with
three integer coefficients c, d, and e of log2(p)

2 -bits. In summary, we need four
times more of log2(p)

2 -bits integer coefficients to represent com2 and com3, and
three coefficients to represent the kernel generators of ϕ′, ψ̂ and ψ̂′. To be
more precise, if chall = 1, then resp has 12λ+43 log2(p)

2 -bits. Otherwise, we
have resp of 12λ+31 log2(p)

2 -bits. Consequently, on average we get a response
resp with 36λ+105 log2(p)

6 ≈ (6λ+ 18 log2(p))-bits. Since the best algorithm to
find an isogeny is Õ(p) (classically) and Õ(

√
p) (quantumly) [20], we can work

with primes of 128 (NIST Level 1), 192 (NIST Level 3), and 256 (NIST Level
5). Table 3 lists the expected sizes of the signature over genus two curves.

Acknowledgements. We thank Víctor Mateu and Lucas Pandolfo Perin for
encouraging us to make this work public. We thank Luca De Feo, Steven D.
Galbraith, Jana Sotakova, Kaizhan Lin, and anonymous reviewers for their com-
ments and discussions on [16] that we consider when writing this paper. We thank
Andrea Basso for his comments about optimizing sizes when challenge chall is
one. Finally, we thank Mukul Kulkarni for his thorough discussion and comments
on an early version of this work.

16 J. Chi-Domínguez

log2(p) λ κ Security Level Private key Public Key Signature

128 128 219 NIST Level 1 24 B 96 B 84.13 kB
192 192 329 NIST Level 3 36 B 144 B 189.55 kB
256 256 438 NIST Level 5 48 B 192 B 336.45 kB

Table 3: Theoretical signature sizes. Private keys correspond to 3-tuples of inte-
ger coefficients (skc, skd, ske) in Z3

A, while public keys are genus two hyperelliptic
curves H : y2 = f(x) with a degree-6 polynomial f(x) over Fp2 determined by
three Fp2-elements [9,11]. Since the isogeny degrees satisfy A,B ≈ √p, public
keys are 4x larger than private keys.

References

1. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Pereira, G., Renes,
J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key Encapsulation. Third
Round Candidate of the NIST’s post-quantum cryptography standardization pro-
cess (2020), available at: https://sike.org/

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key
compression for isogeny-based cryptosystems. In: Proceedings of the 3rd
ACM International Workshop on ASIA Public-Key Cryptography. p. 1–10.
AsiaPKC ’16, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2898420.2898421, https://doi.org/10.1145/
2898420.2898421

3. Basso, A., Kutas, P., Merz, S.P., Petit, C., Weitkämper, C.: On adaptive attacks
against jao-urbanik’s isogeny-based protocol. In: Nitaj, A., Youssef, A.M. (eds.)
AFRICACRYPT 20. LNCS, vol. 12174, pp. 195–213. Springer, Heidelberg (Jul
2020). https://doi.org/10.1007/978-3-030-51938-4_10

4. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (Dec 2012).
https://doi.org/10.1007/978-3-642-34961-4_38

5. Beullens, W.: Week 4: Signatures based on SIDH and CSIDH. Isogeny-based
cryptography school pp. 1–23 (2021), https://homes.esat.kuleuven.be/~wbeullen/
week4_1.pdf, last online access on June 1st, 2022: https://homes.esat.kuleuven.
be/~wbeullen/week4_1.pdf

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34578-5_9

7. Biasse, J., Bonnetain, X., Pring, B., Schrottenloher, A., Youmans, W.: A trade-off
between classical and quantum circuit size for an attack against CSIDH. Journal of
Mathematical Cryptology 15(1), 4–17 (2021). https://doi.org/10.1515/jmc-2020-
0070

8. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut and Ishai [10], pp. 493–522. https://doi.org/10.1007/978-3-030-45724-2_17

9. Bruin, N., Flynn, E.V., Testa, D.: Descent via (3,3)-isogeny on jacobians of genus
2 curves. arXiv preprint arXiv:1401.0580 (2014), https://arxiv.org/abs/1401.0580

https://doi.org/10.1145/2898420.2898421
https://doi.org/10.1145/2898420.2898421
https://doi.org/10.1145/2898420.2898421
https://doi.org/10.1007/978-3-030-51938-4_10
https://doi.org/10.1007/978-3-642-34961-4_38
https://homes.esat.kuleuven.be/~wbeullen/week4_1.pdf
https://homes.esat.kuleuven.be/~wbeullen/week4_1.pdf
https://homes.esat.kuleuven.be/~wbeullen/week4_1.pdf
https://homes.esat.kuleuven.be/~wbeullen/week4_1.pdf
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1515/jmc-2020-0070
https://doi.org/10.1515/jmc-2020-0070
https://doi.org/10.1007/978-3-030-45724-2_17
https://arxiv.org/abs/1401.0580

Title Suppressed Due to Excessive Length 17

10. Canteaut, A., Ishai, Y. (eds.): EUROCRYPT 2020, Part II, LNCS, vol. 12106.
Springer, Heidelberg (May 2020)

11. Castryck, W., Decru, T.: Multiradical isogenies. Cryptology ePrint Archive, Report
2021/1133 (2021), https://eprint.iacr.org/2021/1133

12. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay and
Stam [35], pp. 423–447. https://doi.org/10.1007/978-3-031-30589-4_15

13. Castryck, W., Decru, T., Smith, B.: Hash functions from superspecial genus-
2 curves using richelot isogenies. J. Math. Cryptol. 14(1), 268–292 (2020).
https://doi.org/10.1515/jmc-2019-0021

14. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(Dec 2018). https://doi.org/10.1007/978-3-030-03332-3_15

15. Chávez-Saab, J., Chi-Domínguez, J.J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low
exponents. Journal of Cryptographic Engineering 12(3), 349–368 (Sep 2022).
https://doi.org/10.1007/s13389-021-00271-w

16. Chi-Domínguez, J., Mateu, V., Perin, L.P.: SIDH-sign: an efficient SIDH PoK-based
signature (2022), https://eprint.iacr.org/2022/475

17. Costello, C.: B-SIDH: Supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492,
pp. 440–463. Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-
64834-3_15

18. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Effi-
cient compression of SIDH public keys. In: Coron, J.S., Nielsen, J.B. (eds.) EU-
ROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 679–706. Springer, Heidelberg
(Apr / May 2017). https://doi.org/10.1007/978-3-319-56620-7_24

19. Costello, C., Meyer, M., Naehrig, M.: Sieving for twin smooth integers with solu-
tions to the prouhet-tarry-escott problem. In: Canteaut, A., Standaert, F.X. (eds.)
EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 272–301. Springer, Heidelberg
(Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_10

20. Costello, C., Smith, B.: The supersingular isogeny problem in genus 2 and be-
yond. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography - 11th Inter-
national Conference, PQCrypto 2020. pp. 151–168. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-44223-1_9

21. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792,
pp. 310–339. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-
22966-4_11

22. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from
class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part III. LNCS, vol. 11478, pp. 759–789. Springer, Heidelberg (May 2019).
https://doi.org/10.1007/978-3-030-17659-4_26

23. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3), 209–247
(2014). https://doi.org/10.1515/jmc-2012-0015

24. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64837-4_3

https://eprint.iacr.org/2021/1133
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1515/jmc-2019-0021
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s13389-021-00271-w
https://eprint.iacr.org/2022/475
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/978-3-030-44223-1_9
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3

18 J. Chi-Domínguez

25. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the deuring
correspondence - towards practical and secure SQISign signatures. In: Hazay and
Stam [35], pp. 659–690. https://doi.org/10.1007/978-3-031-30589-4_23

26. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through
improved rejection sampling. In: Ding and Steinwandt [27], pp. 271–285.
https://doi.org/10.1007/978-3-030-25510-7_15

27. Ding, J., Steinwandt, R. (eds.): Post-Quantum Cryptography - 10th International
Conference, PQCrypto 2019. Springer, Heidelberg (2019)

28. Dobson, S., Galbraith, S.D., LeGrow, J.T., Ti, Y.B., Zobernig,
L.: An adaptive attack on 2-SIDH. International Journal of Com-
puter Mathematics: Computer Systems Theory 5(4), 282–299 (2020).
https://doi.org/10.1080/23799927.2020.1822446

29. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: Efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 157–186.
Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388-6_6

30. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–
194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-7_12

31. Flynn, E.V., Ti, Y.B.: Genus two isogeny cryptography. In: Ding and Steinwandt
[27], pp. 286–306. https://doi.org/10.1007/978-3-030-25510-7_16

32. Fouotsa, T.B., Petit, C.: A new adaptive attack on SIDH. In: Galbraith, S.D. (ed.)
CT-RSA 2022. LNCS, vol. 13161, pp. 322–344. Springer, Heidelberg (Mar 2022).
https://doi.org/10.1007/978-3-030-95312-6_14

33. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of su-
persingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53887-6_3

34. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. Journal of Cryptology 33(1), 130–175
(Jan 2020). https://doi.org/10.1007/s00145-019-09316-0

35. Hazay, C., Stam, M. (eds.): EUROCRYPT 2023, Part V, LNCS, vol. 14008.
Springer, Heidelberg (Apr 2023)

36. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011. pp. 19–34. Springer, Heidelberg (Nov / Dec
2011). https://doi.org/10.1007/978-3-642-25405-5_2

37. Kunzweiler, S.: Efficient computation of (2n, 2n)-isogenies. Cryptology ePrint
Archive, Report 2022/990 (2022), https://eprint.iacr.org/2022/990

38. Kunzweiler, S., Ti, Y.B., Weitkämper, C.: Secret keys in genus-2 SIDH. In: Al-
Tawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 483–507. Springer,
Heidelberg (Sep / Oct 2022). https://doi.org/10.1007/978-3-030-99277-4_23

39. Leonardi, C.: A note on the ending elliptic curve in SIDH. Cryptology ePrint
Archive, Report 2020/262 (2020), https://eprint.iacr.org/2020/262

40. Longa, P.: Efficient algorithms for large prime characteristic fields and their appli-
cation to bilinear pairings and supersingular isogeny-based protocols. Cryptology
ePrint Archive, Report 2022/367 (2022), https://eprint.iacr.org/2022/367

41. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Report 2022/1026 (2022), https://eprint.iacr.org/2022/1026

https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1080/23799927.2020.1822446
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-25510-7_16
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/s00145-019-09316-0
https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2022/990
https://doi.org/10.1007/978-3-030-99277-4_23
https://eprint.iacr.org/2020/262
https://eprint.iacr.org/2022/367
https://eprint.iacr.org/2022/1026

Title Suppressed Due to Excessive Length 19

42. Oudompheng, R., Pope, G.: A note on reimplementing the castryck-decru attack
and lessons learned for SageMath. Cryptology ePrint Archive, Report 2022/1283
(2022), https://eprint.iacr.org/2022/1283

43. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut and Ishai [10], pp.
463–492. https://doi.org/10.1007/978-3-030-45724-2_16

44. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Report
2022/1038 (2022), https://eprint.iacr.org/2022/1038

45. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 65–95. Springer, Heidelberg (Dec
2017). https://doi.org/10.1007/978-3-319-70694-8_3

46. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC
2017. LNCS, vol. 10322, pp. 163–181. Springer, Heidelberg (Apr 2017)

https://eprint.iacr.org/2022/1283
https://doi.org/10.1007/978-3-030-45724-2_16
https://eprint.iacr.org/2022/1038
https://doi.org/10.1007/978-3-319-70694-8_3

20 J. Chi-Domínguez

Appendix

Title Suppressed Due to Excessive Length 21

A Security Proofs

A.1 Proof of Lemma 2

We restate the Lemma 2 below and follow it by its proof.

Lemma 2 (Knowledge Soundness). The optimized protocol in Figure 3 is
knowledge sound with knowledge error 2

3 .

Proof (Proof of Lemma 2). We will first prove the following useful lemma in
order to prove the knowledge soundness of our protocol,

Lemma 4 (3-special soundness). The protocol shown in Figure 3 is 3-
special sound.

Proof (Proof of Lemma 4). 3-special soundness.

Let
(
(comH,−1, resp−1)

)
, ((comH, 0, resp0)), and ((comH, 1, resp1)) be the three

accepting transcripts. It is worth highlighting that the extractor cannot compute
the bottom A-isogeny ϕ′ : E2 → E3 without using resp1.

The extractor deterministically calculates (P,Q) ← CanonicalBasisB(E2).
From resp1, the extractor knows the values of (E2, αP2

, βP2
), (E3, αQ2

, βQ2
).

Moreover, the extractor can therefore obtain

P2 = [αP2
]P + [βP2

]Q,

Q2 = [αQ2
]P + [βQ2

]Q,

P3 = ϕ′(P2), and
Q3 = ϕ′(Q2).

Next, the extractor can get (b,∆) from any of the responses resp−1 or resp0.
From these values of (P2, Q2), (P3, Q3) and (b,∆) the extractor can now com-
pute the kernel generator Kψ̂ and Kψ̂′ with the help of (P2, Q2, (b,∆)) and
(P3, Q3, (b,∆)) as in Section 3.1 vertical case, respectively. Additionally, the ex-
tractor can compute the isogenies ψ and ψ̂′. All the above calculations can be
done in polynomial time in the variable n = log2(p) = O(λ). Since the extrac-
tor has computed the isogenies ψ, ϕ′, and ψ̂′ we can now apply Lemma 1 and
obtain the secret isogeny ϕ. Note that all the values obtained by the extractor
from various responses are verified by checking the various commit values in
com. Since, the transcripts are accepting, we know that these checks are passed
successfully. Therefore, based on the computational binding property of the com-
mitment scheme C, it is guaranteed that extractor obtains the same values as
committed in the first message. ⊓⊔

It is important to note that if the extractor defined above receives the
transcript, ((comH, 1, resp1)) then it can extract a valid witness as explained
above even if it get only one more transcript as ((comH, c, respc)) where c ∈

22 J. Chi-Domínguez

{0,−1}. However, this is not sufficient to achieve the 2-special soundness prop-
erty (which would be desirable) since the transcripts ((comH, 0, resp0)) and(
(comH,−1, resp−1)

)
do not yield a valid witness.

Since the optimized protocol is 3-special sound and the total number of pos-
sible challenges in the challenge space is equal to 3. This gives a knowledge
soundness error of 2

3 . ⊓⊔

A.2 Proof of Lemma 3

We restate the Lemma 3 below and follow it by its proof.

Lemma 3 (Special Honest Verifier Zero-Knowledge). Let C be a statis-
tically hiding and computationally binding commitment scheme. Assuming the
hardness of DSPP the optimized protocol in Figure 3 is computationally SHVZK
in the random oracle model.

Proof (Proof of Lemma 3). We define an efficient simulator which produces
transcripts which are indistinguishable from the real transcripts produced by an
honest execution of the protocol in Figure 3. On input (E0, pk = E1) the simu-
lator begins by sampling the challenge chall← {−1, 0, 1} uniformly at random.
The simulator proceeds based on the sampled challenge chall as follows:

• If chall = −1: Simulator begins with sampling a random order-B kernel
generator Kψ in E0 and then it chooses a random basis {P2, Q2} of E2 [B].
It then computes (com2, rL) and ((c, d), r) honestly (as in the commitment
procedure from Section 2.2). Simulator also computes (αP2 , βP2) and (b,∆)
honestly (as described in Section 3.1). It then computes the commitments
comL = C (com2 || rL) and com′ = C ((b,∆) || r) and sets comR to uniform
random value (chosen from the appropriate domain). Simulator sets the
commitment com = (comL, comR, com′) and sets the response as resp−1 =
(comR, E2, (αP2 , βP2), (αQ2 , βQ2), rL, (b,∆), r). It then outputs the transcript
as

(
com,−1, resp−1

)
. The transcript is valid (accepting) since all the values

which are verified when chall = −1 are computed honestly. The only value
that is not computed honestly, and hence is not identically distributed to the
corresponding values in the real honest execution of the protocol, is comR.
However, this is indistinguishable since we assume that the commitment
scheme C is statistically hiding.

• If chall = 0: In this case, the Simulator’s strategy is analogous to the
case when chall = −1. Simulator samples a random order-B kernel genera-
tor Kψ′ in E1. It also chooses a random basis {P3, Q3} of E3 [B]. Simulator
computes (com3, rR) and ((c, d), r) honestly (as in the commitment proce-
dure from Section 2.2). It then computes (αP3 , βP3) and (b,∆) honestly (as
described in Section 3.1). Next, Simulator computes comR = C (com3 || rR)
and com′ = C ((b,∆) || r) and sets comL to uniform random value (chosen
from the appropriate domain). Simulator sets com = (comL, comR, com′) and
sets resp0 = (comL, E3, (αP3

, βP3
), (αQ3

, βQ3
), rR, (b,∆), r). It then outputs

the transcript as (com, 0, resp0). The transcript is valid (accepting) since

Title Suppressed Due to Excessive Length 23

all the values which are verified when chall = 0 are computed honestly.
The only value that is not computed honestly, and hence is not identically
distributed to the corresponding values in the real honest execution of the
protocol, is comL. However, this is indistinguishable since we assume that
the commitment scheme C is statistically hiding.

• If chall = 1: In this case, the simulator selects a random supersingular
elliptic curve E2. It then samples a uniform random kernel generator Kϕ′

of order-A in E2. The simulator also computes the isogeny ϕ′ : E2 → E3.
That is, the simulator computes a kernel generator Kϕ′ with the help of
CanonicalBasisA(E2) (which outputs P ′, Q′) and (b′, ∆′) as in Section 3.1
horizontal case.
It then generates a random basis {P2, Q2} of E2 [B] and computes P3 =
ϕ′(P2) and Q3 = ϕ′(Q2). Simulator then set com2 = (E2, P2, Q2) and cre-
ates the commitment, comL = C (com2 || rL) for some rL samples uniform
randomly. It also computes, comR = C (com3 || rR) where rR is sampled
uniformly at random and com3 = (E3, P3, Q3). The simulator sets com′ to
uniform random value (chosen from the appropriate domain). Next, it sets
the commitment as com = (comL, comR, com′) and the response as resp1 =
(com′, E2, (αP2 , βP2), (αQ2 , βQ2), rL, (b

′, ∆′), E3, rR). It then outputs the tran-
script as (com, 1, resp1). As in the previous cases, the transcript is valid
(accepting) since all the values which are verified when chall = 1 are com-
puted honestly. However, note that the curves E2, E3, and the isogeny ϕ′

are not distributed as in the real (honest) execution of the protocol. In fact,
in the real protocol they are distributed as the first distribution in Defini-
tion 2, whereas the simulated values above are distributed as per the second
distribution in Definition 2. Therefore, distinguishing between the real and
simulated transcripts based on this information contradicts the assumption
that DSPP is computationally hard problem. Additionally, another value
that is not computed honestly, and hence is not identically distributed to
the corresponding values in the real honest execution of the protocol, is
com′. However, this is indistinguishable since we assume that the commit-
ment scheme C is statistically hiding.

The above simulator runs in polynomial-time since it follows all the efficient
computations of prover and samples uniform random values from well-defined
finite domains. It also generates the transcripts which are indistinguishable from
the real ones without knowing the secret isogeny ϕ : E0 → E1, this completes
the proof. ⊓⊔

B Size comparisons against isogeny-based signatures

As mentioned in Section 1, the short keys are the most attractive feature of
isogeny-based signature construction. In contrast, such constructions have a high
latency in practice, which seems to be much easier to improve. This section
compares state-of-the-art isogeny-based signatures that remain secure against

24 J. Chi-Domínguez

Castryck-Decru family attacks in terms of byte lengths. Currently, there are
different families of isogeny-based Σ-protocols, such as:

– CSIDH-based: Sea-sign [22,26], CSI-FiSh [6] and the Lossy CSI-FiSh [29];
– SIDH-based: [21, §5.3]; and
– Quaternion-based: SQI-sign [24,25] and [34].

Since all CSIDH-based proposals are initially based over a 512-bits prime
field, we compare them by moving into a 2048-bits prime field (as suggested
in [8,43,15])). Using a 2048-bits CSIDH-prime impacts public-key sizes and tim-
ing efficiency; signature sizes stay fixed as in CSIDH-512. Now, due to the ex-
tended variety of CSIDH-based configurations determined by

– the number n of different isogeny degrees,
– the number B of isogenies per isogeny degree, and
– the number S of multiple public-key curves as CSIDH-base public-keys.

We try to englobe a fair comparison assuming n = 74, B = 5, and S = 26,
which gives a good trade-off between small signature sizes and timings. We used
the script from [26] to compute sizes of improved Sea-sign over a 2048-bits prime
field. Table 4 lists all analyzed isogeny-based signature sizes in bytes.

Scheme Private key Public Key Signature

[34, §4] with Fiat-Shamir transform 32 B 96 B 11.26 kB
Original SQI-sign [24,25] 16 B 64 B 204 B

Sea-sign [22] 16 B 16.384 kB 720 B
Sea-sign improvement from [26] 16 B 16.128 kB 7.22 kB
Simple variant of CSI-FiSh [6] 16 B 16.384 kB 560 B
Lossy CSI-FiSh [29] 16 B 16.896 kB 560 B

Optimized [21, §5.3] from Section 3.3 (p434) 28 B 110 B 93.40 kB
Optimized [21, §5.3] from Section 3.3 (p377) 24 B 96 B 84.19 kB
B-SIDH variant of [21, §5.3] from Section 3.4 32 B 64 B 98.18 kB
G2SIDH variant of [21, §5.3] from Section 3.5 24 B 96 B 84.13 kB

Table 4: Byte sizes concerning state-of-the-art isogeny-based signatures with
close to NIST security Level 1. For a fair comparison, we set all CSIDH-
based construction in [22,26,6,29] over a 2048-bits prime field (as suggested
in [8,43,15]). Large CSIDH primes only impact public-key sizes and timing effi-
ciency; signature sizes stay fixed as in CSIDH-512. All the sizes concerning this
work are theoretically estimated.

	 A Note on Constructing SIDH-PoK-based Signatures after Castryck-Decru Attack

