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Abstract

We propose a novel post-quantum code-based digital signature algorithm whose
security is based on the difficulty of decoding Quasi-Cyclic codes in systematic
form, and whose trapdoor relies on the knowledge of a hidden Quasi-Cyclic Low-
Density-Parity-Check (QC-LDPC) code. The utilization of Quasi-Cyclic (QC)
codes allows us to balance between security and key size, while the LDPC prop-
erty lighten the encoding complexity, thus the signing algorithm complexity, sig-
nificantly.

1 Introduction

The Syndrome Decoding Problem (SDP) and the Codeword Finding Problem (CFP)
are two important computationally-hard algebraic problems arising from Coding The-
ory, whose difficulty is underlying the security of several Post-Quantum Cryptographic
schemes. A linear binary [n, k] code C is a vector subspace of Fn

2 of dimension k, where
(F2,+, ·) is the finite field with 2 elements. The values n and k are respectively called
length and dimension of the code, and the elements of C are called codewords. In this
work we adopt the well-established notation of considering codewords as row vectors,
and thus any vector v is treated as a row vector so that its transpose v⊤ is a column
vector. We consider Fn

2 as a metric space together with the Hamming metric, i.e. two
vectors u, v are at distance d(u, v) apart if they differ on exactly d(u, v) coordinates. A
vector v has weight w = w(v) if the number of its non-zero coordinates is w. Notice that,
since C is a vector subspace of Fn

2 , the zero-vector is always a codeword and, for any pair
of codewords u and v, we have d(u, v) = w(u+ v). The minimum among the distances
between codewords is a fundamental parameter of a code, called the minimum distance
of the code and classically denoted with d. When the minimum distance d is known,
the code is said to be an [n, k, d] code. We remark that the problem of determining the
minimum distance of a code is an NP-hard problem [36]. A k × n matrix whose rows
form a basis for C is called a generator matrix, and an (n− k)× n generator matrix for
the dual of C (i.e. the vector subspace C⊥ of Fn

2 whose elements are orthogonal to C)
is called a parity-check matrix of C. Observe that a vector c is a codeword if and only
if cH⊤ = 0. In the general case, if we multiply a vector v by H⊤ we obtain a vector
s ∈ Fn−k

2 known as the syndrome of v. Notice that all vectors in the same coset v + C
possess the same syndrome.

The Syndrome Decoding Problem is the search version of the Maximum Likelihood

∗alessio.meneghetti@unitn.it Department of Mathematics, University of Trento
†christianpicozzi98@gmail.com Department of Mathematics, University of Trento
‡giovanni.tognolini@unitn.it Department of Mathematics, University of Trento

1



Decoding Problem (MLD), which is the NP-complete problem [8] corresponding to the
difficulty of decoding binary linear codes, and can be stated as follows:

Input : a positive integer w, a binary matrix H and a syndrome y.

Output : there exists a word x such that w(x) ≤ w and y⊤ = Hx⊤.

This problem has been proven to be in P/Poly by Bruck and Naor [10] and by Lobstein
[24], namely, even by knowing in advance the parity-check matrix of a code the difficulty
of decoding a received vector is still a hard problem. An interested reader can refer to
[8] for the difficulty of decoding generic codes, to [29] for the link between MLD and
the problem of solving quadratic Boolean polynomial systems, and to [11, 19, 20, 33] for
specific classes of codes. The idea behind the SDP is that if we choose ω small enough,
it is hard to find a vector with weight smaller than ω such that its syndrome is equal to
y. On the other hand, the decisional CFP is as follows.

Input : a positive integer w and a binary matrix H.

Output : there exists a word x such that w(x) = w and 0 = Hx⊤.

The idea behind the CFP is that if ω is small enough it is hard to find a codeword of
the binary code C with parity-check matrix H such that its weight is ω, i.e. it is hard
to find codeword with small weight in a given binary code.

Several post-quantum cryptosystems are build upon SDP (e.g. [1, 5, 9, 25, 27, 31]) or its
variants obtained by adopting different metrics (e.g. the rank metric as in [26, 28]). In
particular, the key-encapsulation mechanism Classic McEliece [9] is one of the three fi-
nalists in the NIST standardisation process for post-quantum primitives and its security
is demonstrated by over forty years of cryptanalysis. Notably, no code-based primitive
is present among the NIST finalists for post-quantum digital signature algorithms, even
though some interesting proposals were submitted to the round 1 of the standardisation
process [16, 17, 22]. These digital signature schemes, either due to security issues or effi-
ciency problems, were not selected for the second round of the standardisation. Among
code-based digital signature algorithms, the two most famous schemes are CFS [12, 14]
and KKS [21]. The idea behind both schemes is the same: the digest of a message to be
signed is considered as a corrupted codeword (more precisely, it is considered as a syn-
drome of a corrupted codeword) c+ e for a certain codeword c ∈ C and a small-weight
error e, and the owner of the private key is the only one capable of decoding, i.e. capable
of finding e. The main difference between CFS and KKS is that in the first the digest is
considered as a random syndrome, leading to a secure yet inefficient scheme, while the
latter manipulates the digest to output a decodable syndrome, leading to a very efficient
but insecure scheme [32]. In order to mitigate the efficiency issues of CFS, some authors
have proposed CFS-like schemes in which the hash function is substituted with a map
whose output is a syndrome with small-weight coset-leader, mixing some ideas behind
both CFS and KKS. This approach has been adopted e.g. in [34], where the authors
utilize a hash function based on the works of Augot, Finiasz and Sendrier [2] and on
the Merkle-Damgard construction [15, 30]. This promising approach has however been
proved to be insecure in [13].

In this document we propose a code-based digital signature based on different ideas,
for which we need some preliminary results. Let us consider the quotient ring R :=
F2[X]/(Xn − 1) of all polynomials over F2 of degree less than n. Given a polynomial
a ∈ R we denote with ā ∈ Fn

2 the vector whose coordinates are the coefficients of a,
namely, if a = a0 + a1X + · · · + an−1X

n−1 then ā = (a0, a1, . . . , an−1). With a slight
abuse of notation, we denote with both w(a) and w(ā) the Hamming weight of the vector
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ā. Consider two elements a and b in R. Their product c ∈ R is the polynomial a · b and
c̄ is obtained by the formula c̄⊤ = circ(a) · b̄⊤, where circ(a) is the n×n circulant matrix
obtained from a. More precisely:

c̄⊤ =


a0 an−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
an−1 an−2 · · · a0


︸ ︷︷ ︸

circ(a)

·


b0
b1
...

bn−1

 .

Due to this relationship, we can link the description of our scheme to the Syndrome
Decoding Problem and the Codeword Finding Problem.

In the following we work with 2-Quasi-Cyclic codes (2-QCC) [3] in systematic form
over F2, which are a particular family of binary codes of length 2n and dimension n. For
these codes the parity-check matrix is of the form (1 || circ(h)) for some vector h ∈ Fn

2 .
In particular, our scheme exploits the properties of 2-QCC whose parity-check matrices
are sparse. Namely, 2-Quasi-Cyclic Low-Density-Parity-Check codes [3]. Notice that
the two problems introduced above are efficiently solvable [3] if the underlying code is
LDPC, but as we see in Section 5 this seems to be unrelated to the security of our
scheme. More concretely, in this paper we propose a post-quantum digital signature
scheme based on QC-LDPC codes. In the NIST Post-Quantum standardization process
there were proposals for encryption schemes (e.g. BIKE [1], LEDAcrypt [6] and HQC
[27]) based on the same coding problems on which we base our protocol, but to date
there are still no proposals for a signature scheme which exploits these ideas. Using QC
codes allows us to have smaller keys because our parity-check matrix, which is public
of dimension n × 2n, can be described using only n bits, while the LDPC property, on
which our trapdoor relies, is also important from an implementation point of view, in-
deed the computation using sparse matrices speeds up the signing algorithm significantly.

In this work we introduce and discuss the main ideas behind our code-based digital
signature scheme. In Section 2 we describe the setup, key generation, sign and verifi-
cation phases of the scheme, dealing with its parameters and functions in Section 3. In
Section 4 we give some results about the correctness of the signature, while in Section 5
we focus on the security of the scheme by discussing the hardness of some key recovery
and forging attacks. At the end, in Section 6, we discuss the parameters choice according
to the security levels requested by the NIST.

2 The Scheme

In the following we present our post-quantum digital signature scheme.

Setup. The parameters of the scheme are:

n The dimension n of the vector space Fn
2 . It is a prime number such

that 2 is a primitive root modulo n.

w,wpq, wr The weights w,wpq, wr, where ω, ωpq, ωr are integers smaller than n,
wpq is odd and wr is even.

I, It The intervals I, It.

Hωr
The hash function Hωr

whose digests have weight ωr over Fn
2 .
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In the following sections we describe the Key-Generation algorithm KGen, the Sig-
nature algorithm Sign and the Verification algorithm Vf. We assume that the global
parameters (n, ω, ωpq, ωr, I, It,Hωr

) are known to anyone and we do not specify them
as input of the algorithms.

Key Generation. The Key Generation algorithm KGen is the following.

KGen(∅)

1. Generate randomly x, y ∈ R := F2[X]/(Xn − 1), with w(x) = w(y) = ω.

2. Generate randomly p, q ∈ R, with w(p) = w(q) = ωpq.

3. Define h := pq−1.

4. Define s := x+ hy.

5. Output the public key pk = (h, s) and the private key. sk = (y, q).

Note that actual secret key is sk = (y, q) but we want to keep (x, p) secret too,
although they are ephemeral and their knowledge is not required in the signature phase,
because if an attacker can retrieve p or x, then it can retrieve at least a part of the secret
key sk.

Signature Algorithm. The signing protocol Sign is as following.

Sign(m, pk, sk)

1. Take as input a message m to be signed and the secret key sk. Generate the
following values:

• r := Hωr (m || pk || nonce), where nonce is a randomly chosen bitstring.

• t ∈ R such that w(t) ∈ It.

• α := qt + ry and β := αh + sr. If w(α) or w(β) do not lie in I then
change the nonce and repeat the signing phase.

2. With this notation the signature is given by (α, nonce).

Verification Algorithm. The verification algorithm Vf is as following.

Vf(m, pk)

1. Compute r := Hωr
(m, pk, nonce) and β := αh + sr. Check that both w(α)

and w(β) lie in I.

2. If these conditions are satisfied the verifier accepts the signature, otherwise it
rejects.
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3 Parameters and Functions

During the setup phase we put some constrains on our parameters, namely we required
n to be a prime such that 2 is a primitive root modulo n, and wpq to be odd. These
choices are linked to the invertibility of q in the ring R. In particular, with this choice
of parameters, q will always be invertible, as a direct consequence of the following. It is
well known that if K is a field of characteristic p and n is a positive integer not divisible
by p, then

Xn − 1 =
∏
d|n

ϕd(X) ,

where ϕd(X) is the d-th cyclotomic polynomial. Furthermore, the following result [23]
holds.

Proposition 1. Let Fq be a finite field. If n is an integer such that (n, q) = 1, then
ϕn(X) factors into φ(n)/d distinct monic irreducible polynomials in Fq[X] of the same

degree d, F(n)
q is the splitting field of any such irreducible factor over Fq, and [F(n)

q :
Fq] = d, where d is the least positive integer such that qd ≡ 1 (mod n).

As we are working with R = F2[X]/(Xn + 1) = F2[X]/(Xn − 1) , since n is prime,
Xn − 1 factors as ϕ1(X)ϕn(X) where both ϕ1(X) and ϕn(X) are irreducible in F2[X].
To prove this, notice that the latter factors into ϕ(n)/d irreducible polynomials where d
is the order of 2 modulo n. Since we have chosen n such that 2 is a primitive root modulo
n, we have that d = n−1 = φ(n). As a consequence, an element in R is invertible if and
only if it is not divisible by ϕ1(X) and by ϕn(X), but in R the only element divisible
by ϕn(X) is itself, thus an element different from ϕn(X) is invertible in R if (and only
if) it is not divisible by ϕ1(X) = X + 1. Notice that if a polynomial in R is divisible by
X +1 then its weight is even, so that, if we execute the protocol honestly, q will always
be invertible in R.

Notice that it is possible to create hash functions which produce words of weight wr,
indeed Hωr

could work in the following way: let H be a cryptographically secure hash
function with digest of 256 bit and let n,wr be the parameters defined in the table above.
The goal of this function is to output a list of wr integer in the range [1, n], these will be
the positions of 1 of the digest message. First of all K compute m̄ = (m || nonce), then
let H1 = H(m̄). In order to have a number less or equal than n we need l = ⌈log2(n)⌉
bit, so the algorithm takes the first l bits of H1 and, if the number associated with is
in [1, N ], it is the first position, otherwise it discards the number. Consequently,it takes
the second l bits, do the same as before, and so on. If you can no longer take l bits, the
algorithm computes H2 = H(H1) and continue until it has generate wr integer.

4 Correctness

To prove the correctness of our scheme we need the following preliminary result, whose
proof can be found in [27].

Proposition 2. Let v = (v0, . . . , vn−1) be a random vector chosen uniformly among
all binary vectors of weight ωv and let u = (u0, . . . , un−1) be a random vector chosen
uniformly among all vectors of weight ωu and independently of v. Then, denoting z =
u · v, we have that for every k ∈ {0, . . . , n− 1}, the k-th coordinate zk of z is Bernoulli
distributed with parameter p̃ = P (zk = 1) equal to:

p̃ =
1(

n
wv

)(
n
wu

) ∑
1≤l≤min(wv,wu)

l odd

Cl ,
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where Cl =
(
n
l

)(
n−l
wv−l

)(
n−wv

wu−l

)
.

As a consequence, in the following corollary we derive the probability distribution of
the polynomials α and β.

Corollary 3. Using the previous notation, α and β has the same weight distribution.
In particular, α and β are distributed as a Binomial with parameter p∗ = p1(1 − p2) +
p2(1− p1), where

p1 =
1(

n
wpq

)(
n
wt

) ∑
1≤l≤min(wpq,wt)

l odd

(
n

l

)(
n− l

wpq − l

)(
n− wpq

wt − l

)
,

p2 =
1(

n
wr

)(
n
w

) ∑
1≤l≤min(wr,w)

l odd

(
n

l

)(
n− l

wr − l

)(
n− wr

w − l

)
.

Proof. Consider α = q · t+ r · y and let p1 = P((q · t)i = 1). Recall that w(q) = ωpq and
w(t) = ωt ∈ It. Using proposition 1 we have that:

p1 =
1(

n
ωpq

)(
n
ωt

) ∑
1≤l≤min(ωpq,ωt),

l odd

(
n

l

)(
n− l

ωpq − l

)(
n− ωpq

ωt − l

)
.

If we define p2 = P((r · y)i = 1) with w(r) = ωr and w(y) = ω, using proposition 1 we
have that:

p2 =
1(

n
ωr

)(
n
ω

) ∑
1≤l≤min(ωr,ω),

l odd

(
n

l

)(
n− l

ωr − l

)(
n− ωr

ω − l

)
.

Let p∗ = P(αi = 1) :

p∗ = P((q · t+ r · y)i = 1)

= P((q · t)i = 1)P((r · y)i = 0) + P((q · t)i = 0)P((r · y)i = 1)

= p1(1− p2) + (1− p1)p2.

We can conclude that the weight distribution of α is a Binomial of parameter p∗. If we
consider β we have the following:

β = h · α+ s · r
= h · q · t+ h · r · y + r · x+ r · h · y
= p · q−1 · q · t+ p · q−1 · r · y + r · x+ r · p · q−1 · y
= p · t+ r · x.

We have just to observe that the β has the same form of α, w(p) = w(q) = ωpq and
w(x) = w(y) = ω, then the thesis follows.

According to Corollary 3, the public parameters n,w,wpq, wr and It determine the
probability distribution of the weight of α and β, and thus we can find an interval I such
that, if the scheme is executed honestly, the failure probability is negligible. In order to
achieve a good balance between efficiency and security, a detailed discussion about the
parameters’ choice is discussed in Section 6.

5 Security

In this section we discuss some properties of the scheme. We start by analysing some
key recovery and forgery attacks, ending up with a discussion about the role of t.
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Key Recovery from s. Regarding the relationship between private and public keys,
observe that s = x+ hy satisfies the linear equation

s̄⊤ =
[
1 | circ(h)

](x̄⊤

ȳ⊤

)
,

where x and y are two vectors of weight w(x) = w(y) = ω. Therefore, obtaining x and
y from the public key (h, s) is a particular instance of the Syndrome Decoding Problem,
which is known to be NP-hard. Observe that if an attacker can retrieve (x, y) from s
and it has also access to a valid signature (α = qt + ry, nonce), then it can produce a
forgery. Indeed, from α it can compute qt and then it can select a message m′, compute
r′ such that α′ = qt+ r′y is a valid signature for m′. The problem of finding x, y from
s is however linked to the computational 2-QCSD Problem, where its decisional version
can be stated as follows:

Input : positive integers n,w0, w1, a random parity-check matrix H of a QC-code
and a syndrome y ∈ Fn

2 .

Output : there exists x = (x0, x1) ∈ Fn
2 such that w(xi) ≤ wi and y⊤ = Hx⊤.

In our case the parity-check matrix is given by H = (1 || circ(h)) and we have to take
into consideration the sparsity of the matrix if we aim to fully understand the security of
the scheme. Indeed, if H is a sparse matrix, then the dual of the code generated by H is
a LDPC code and in that case it is well known that the SD Problem, and so the 2-QCSD
Problem, can be solved in polynomial time [18]. However, under the assumption that
h is indistinguishable from a randomly chosen vector (of odd weight) over Fn, the SD
Problem does not seem to be efficiently solvable. Notice that the indistinguishability of
h from a random vector is assumed to be true also in well known works (e.g. BIKE [1]
and LEDAcrypt [6]). The fact that with very high probability H = (1||circ(h)) is not a
sparse matrix allows us to conclude that if we could solve the problem of finding (x, y)
from s = x+hy then we could solve an instance of the computational 2-QCSD which is
believed to be difficult to solve.

Key Recovery from h. Here we consider the possibility to exploit the knowledge
of h, together with the information h = pq−1 to retrieve p and q. A way to try to
retrieve p and q is the following: construct the matrix M :=

(
In || circ(h)

)
and notice

that q ·M = (q, p), so that (q, p) is a codeword of low weight of the code with generator
matrix M . As a consequence, (q, p) is a solution of an instance of the Codeword Finding
Problem, which is NP-hard.

Key Recovery from a Valid Signature. Here we consider the case in which an
attacker has access to a valid signature (α, nonce) of a given message m. The attacker
can compute r and try find the vector (qt, y) simply by solving (1 || circ(r))(qt, y)⊤ = α⊤.
Observe that the matrix H = (1 || circ(r)) is a sparse matrix and so the dual of the code
generated by H is a LDPC code. This tells us that the syndrome decoding related to this
code is efficiently solvable. In particular, we know an efficient algorithm that takes as
input a parity-check matrixH, a syndrome s, a weight w and it outputs a solution x such
that Hx⊤ = s⊤ and w(x) ≤ w. It is easy to observe that if someone succeeds in carrying
this attack with non-negligible probability, then, in addition to be able to steal a part
of the private key, it would be able to perform a forgery with non-negligible probability.
In the following we prove that this attack can succeeds only with negligible probability.
Notice that we know the weights of each polynomial involved in the expression (qt, y),
and so we can compute a weight wmax such that with very high probability the weight of
(qt, y) is less than wmax. In other words, we have a weight which is reasonable for the SD
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Problem with matrix H = (1 || circ(r)) and syndrome α⊤. We show that, given H, α
and w, the number of vector x which are solution of the associated SD Problem are just
too many to hope to find (qt, y) among these. Let α ∈ Fn

2 \{0} be a syndrome and define
Cα := {v ∈ Fn

2 | Hv⊤ = α⊤}. Assume that the weight distribution of the elements in
Cα can be approximated with a binomial distribution with length 2n and probability
p = 1/2 (this can be statistically shown through a goodness of fit test exploiting the
fact that wr is even). If we randomly extract a vector v ∈ F2n

2 , then

P(w(v) = i) =

(
2n
i

)
22n

.

It is easy to show that |Cα| = 2n, therefore:

∣∣ {v | v ∈ Cα and w(v) ≤ wmax}
∣∣ = 2n ·

wmax∑
i=0

P
(
w(v) = i

)
=

1

2n
·
wmax∑
i=0

(
2n

i

)
.

In conclusion, with the parameters used to instantiate the scheme, the probability of
finding the correct vector (qt, y) among these is negligible.

Forging a Signature of a Chosen Message. To produce a forgery of a given mes-
sage, an adversary is required to determine two values α and β such that their weight lie
in the interval I. According to the previous section, a valid user is capable of producing
with non-negligible probability a signature due to the knowledge of the private key. On
the other hand, an adversary capable of producing a forgery is also capable of solving
the problem {

w(αh+ sr) ∈ I

w(α) ∈ I
,

which can also be described in the following way:
(sr)

⊤
=
[
1 | circ(h)

](β̄⊤

ᾱ⊤

)
w(α) ∈ I

w(β) ∈ I

.

This problem is however strictly related to the SDP, which is NP-complete.

The usage of t. Notice that it is mandatory to use the ephemeral value t just
once. As usual for such signatures, it would be a dab idea to send different mes-
sages using the same ephemeral key. In our case we would end up with two signatures
(α1, nonce1), (α2, nonce2) such that{

α1 = qt1 + r1y

β1 = hα1 + sr1
and

{
α2 = qt1 + r2y

β2 = hα2 + sr2
,

from which it immediately follows that α1 + α2 = (r1 + r2)y. If (r1 + r2) was invertible
than we could compute (α1 + α2)(r1 + r2)

−1 and find y. However, this attack is not
possible because r1 + r2 is always non-invertible in our framework. Indeed, a simple
argument on the weights of r1, r2 and their sum shows that r1+r2 is invertible in R if an
only if only one of the two addends is invertible. According to this, an attacker can still
try to find y by solving the linear system of equation generated by circ(r1+r2)y = α1+α2.
Hence, we have to care about the number of possible solutions of that system. According
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to this, we limit ourselves to consider the linear system described by circ(r)y+α. where
α and r are known, r has even weight, and we ask for how many y this system admits
a solution. Notice that the element that are solution of the previous system are exactly
the elements that belong to the fiber of Lr,α in zero, where

Lr,α : Fn
2 Fn

2

y circ(r)y + α
.

Since we are interested in computing (Lr,α)
−1(0) and the function x 7→ x + α is a

translation map, we can study the fiber of Lr,0 in zero. It is easy to show that Lr,0

is an homomorphism of vector spaces, so that the First Isomorphism Theorem guaran-
tees that there is a bijection between the image space Lr,0(Fn

2 ) and the quotient space
Fn
2/ ker(Lr,0), from which it follows that

| ker(Lr,0)| =
|Fn

2 |
|Lr,0(Fn

2 )|
.

This computation is achievable, indeed the rank of a circulant matrix circ(r) is equal
to n − d, where d is the degree of the polynomial (r,Xn−1). In our case Xn−1 =
(X + 1)(1 + x + . . . + Xn−1), so the greatest common divisor between Xn−1 and r
is X + 1. It follows immediately that d = 1 and the rank of circ(h) is n − 1. As
a consequence, | ker(Lr,0)| = 2n/2n−1 = 2, that is, it contains only y and the zero
element. In conclusion, since there are only two possible solutions of that system, we
must take care of the usage of t, changing its value every time we sign a document.

6 Experimental Results

In the following, we describe the choice of the parameters for security levels 1, 3 and 5,
as required by the NIST. The choice is justified by some related experimental results.
According to the description of the setup phase, described in Section 2, we choose wpq

and w in order to have approximately half the number of bits of n. The weight of r is
taken in such a way that wr ≈ 3 log n, and It is the interval of length

√
n and centered

in
√
n. This choice allows us to compute I in such a way that it will be possible for a

genuine signer to sign efficiently and it will be unfeasible for an attacker to break the
protocol. The choice for the size of these parameters is summarized in Table 1.

Parameter Size
ωpq ≈

√
n

It [⌈
√
n
2 ⌉, . . . , ⌈ 2

√
n

3 ⌉]
ωr ≈ 3 log(n)
ω ≈

√
n

Table 1: Size of the parameters.

In Table 2 we define the different values for n for the standard security levels and
then we describe the best attacks to our scheme.

As shown in the previous section the security of h = pq−1 is strictly related to
hardness of the Codeword Finding Problem. This problem in NP-hard in the general
case and in the case of Quasi-Cyclic codes the attack is just slightly improved (DOOM
attack [35]). In order to estimate the complexity of an attack, we used a Python script
which can be found in [7]. We used the same test to analyze the security level of
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Security level n
128 14627
192 18143
256 21067

Table 2: Values for the security levels.

s = x + hy, which rely on the difficulty of the Syndrome Decoding Problem. Clearly,
the CFP is a particular instance of the SDP and it is reasonable to think that there are
algorithms which work faster in the case of the CFP, however this is not true, as the
best algorithms that solves SDP are also the best algorithms for solving CFP. This is
the reason for which we use the same set of algorithms. The explanation of these attacks
and the relative adaptation to CFP can be found in [4]. The results are summarized in
Table 3.

n Security bits (attack to h) Security bits (attack to s)
14627 250 250
18143 277 277
21067 297 297

Table 3: Security bits for attacks to h and s.

The size of n may seem overestimated with respect to the security parameters, but
this is not the only point on which the security lies. We also have to take into account
the distance that the weight distribution of α has with respect to a binomial distribution
with parameters (n, 1

2 ). We know that the weight distribution of α is a binomial random
variable with parameter (n, p∗), where p∗ is computed as described in Corollary 3. Since
the weight of t is not fixed, but can vary within the range It, also p

∗ can vary accordingly.
In Table 4 we summarize the range of p∗ and the interval I for the different security
levels. The interval I is computed in such a way that, if the signer is honest, the
probability that the weight of α and β result outside the range I is ≈ 10−10.

Security level Range of p∗ I
128 [0.38918, 0.42088] [5339, 6515]
192 [0.38549, 0.41790] [6601, 7981]
256 [0.38174, 0.41564] [7620, 9186]

Table 4: Ranges for α and β.

So, an attacker may try to guess an α in the range I and check if β = αh+ rs also
belongs to the range I. Notice that if an attacker can find such α, then it can create
a forgery. In this case, since we do not have any constrains about the weight of h, β
appears as a totally random vector, i.e. its weight distribution is a binomial random
variable with parameters (n, 1

2 ). In Table 5 we summarize the security bits for this type
of attack.

Security level Security bits for random attack to α
128 133
192 196
256 256

Table 5: Attack by guessing α.
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Notice that an attacker could try to solve the SDP related to α, i.e. it can try to
find (qt, y) by knowing that (1 || circ(r))(q̄t, ȳ)⊤ = ᾱ⊤. Observe that this instance of
the SDP is easily solvable since the associated code is an LDPC code [18]. In Table 6
we can observe that the total number of solutions is too large to hope that the vector v
given from the decoder is exactly the sensible information (qt, y).

Security level pqt ωmax Number of solutions
128 0.37153 5652 ≈ 101905

192 0.37118 6977 ≈ 102333

256 0.37169 8092 ≈ 102670

Table 6: Attack to α. w(qt) is distributed as a binomial r.v. with parameters (n, pqt),
and ωmax is such that the probability that the weight of (qt, y) is greater than ωmax is
negligible.

At the end, we can study the hardness of forging a signature by solving the SDP
instance defined in Section 5. In order to do this we use the best algorithm to attack the
SDP and the complexity of these attacks can be computed using [7]. Since, in this case,
the parameters are very big, we could not compute the complexity of all the attacks.
Table 7 provides an idea about the complexity of computing a forgery in this way.

Security level Security bits for forgery exploiting SDP
128 ≈ 7000
192 ≈ 8000
256 ≈ 9000

Table 7: Forgery complexity by attacking SDP.

7 Conclusions and Future Works

We have described an efficient general approach for constructing a post-quantum code-
based digital signature scheme. The main advantages arise from the structure of Quasi-
Cyclic codes, which allow to achieve small key sizes, together with the structure of
LDPC codes, which provide good performance overall. We have provided hints on
the security of the scheme, nevertheless this topic requires a more deep analysis and
possibly a formal proof reducing the security of the scheme to the complexity of the
related complexity problems. Notice that, according to Corollary 3, the distribution of
the Hamming weight of α and β can be modeled as a binomial with parameter p∗ ̸= n

2 ,
and thus distinguishable from the distribution of random vectors. This feature, even
though fundamental to the success of the signing process, may be linked to a possible
information leakage. This security issue has to be carefully analyzed to understand
the behavior of the proposed signature algorithm with respect to an attacker knowing
multiple valid signatures. The result of this study will be fundamental to determine the
keys’ lifecycle.
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