Casting out Primes:
Bignum Arithmetic for Zero-Knowledge Proofs

Daniel Lubarov Jordi Baylina
daniel.l1@polygon.technology jordi@polygon.technology

October 26, 2022

Abstract

We describe a nondeterministic method for bignum arithmetic. It is
inspired by the “casting out nines” technique, where some identity is checked
modulo 9, providing a probabilistic result.

More generally, we might check that some identity holds under a set
of moduli, i.e. f(#) = 0 mod m; for each m; € M. Then f(Z) = 0
mod lem(M), and if we know |f(Z)| < lem(M), it follows that f(Z) = 0.

We show how to perform such small-modulus checks efficiently, for cer-
tain f(Z) such as bignum multiplication. We focus on the cost model of zero-
knowledge proof systems, which support field arithmetic and range checks
as native operations.

Contents

T Profininanics

(1.1 Partially reduced summations|

2 Widening multiplication|
2.1 Congruence mod m;|
[2.2 Avoiding wrap-around|

[3 Modular multiplication|
[3.1 Congruence mod m,|
[3.2 Avoiding wrap-around|
[3.3 Example parameters|o

I Probabilish hod

(4.1 Example parameters|

mailto:daniel.l@polygon.technology
mailto:jordi@polygon.technology

1 Preliminaries

Let [b] denote the set {0,...,b—1}. A bignum consisting of n limbs in base b can
be represented by a tuple in [b]".

There exists a canonical isomorphism between [b]" and [b"], that is, between a
tuple of limbs and the integer they encode. Its forward map [b]™ — [b"] is simply

n—1
op(x) = Z:b’xZ
=0

Given a pair of bignums, z,y € [b]", the product o,(x)o,(y) can be written as
a function ([b]", [b]") — [b*"], namely

n—1 n—1

p(x,y) = ZZbiﬂxiyi.

=0 7=0

1.1 Partially reduced summations

When checking an identity mod m, it can be useful to partially reduce o,(x) mod m
by reducing each b* expression. Let

o™ (z) =S (b mod m)z;

Similarly, we can partially reduce m,(z,y) mod m as

-1

3
3
,_.

7rb (b mod m)z;y;.
=0

T
o

Note that o,(x) = aém) () mod m, and likewise m,(z,y) = Wém) (x,y) mod m.

From the summations above, one can trivially deduce the following bounds:
Theorem 1. Given z € [0, o\™(z) < nmb. Given z,y € [b]", m™(z,y) <
nmb?.

1.2 Notation

Given z € [b]", we sometimes use x and oy(z) interchangeably when the meaning
is clear from context. For example, x < b" is shorthand for o,(x) < b".

2 Widening multiplication

We first consider the problem of multiplying two bignums, x,y € [b]". Instead of
computing ry deterministically, we will witness their product z € [b]?", then check

that xy = 2.
Rather than verifying this identity directly, we will check that it holds under a
set of moduli, M = {my,...,mr_1}. Suppose that for each m;, xy = z mod m;,

or equivalently, m; | (zy — z). Then lem(M) | (zy — z), where lem denotes the
least common multiple function.

Since ry < b* and z < b*", |zy — 2| < b*". If we select M such that lem(M) >
b*" | then |xy—z| < lem(M), so zy—z = 0 is the only solution to lem(M) | (zy—z).
Hence, zy = 2.

Remark 1. Pairwise coprime sets are natural choices for M, since they have the
property that lem(M) = [[:_, m;.

2.1 Congruence mod m;

It remains to check xy = z mod m;, or more precisely, m,(x,y) = op(z) mod m;.
By partially reducing both sides, we can reduce the problem to

7"z, y) = o™ (2) mod m.

Rather than deterministically reducing both sides, we can witness s € Z such that

(m;)

(mi)(aj,y) — o, "V (z) = sm,. (1)

T
The following bound on |s| trivially follows from [Theorem 1}
Theorem 2. If s is a valid solution to|Equation 1}, |s| < n?b?.

2.2 Avoiding wrap-around

With a computation model based on prime field arithmetic, we cannot check
directly. We can only check that it holds mod p, or equivalently, that there
exists some ¢ such that

ngmi)(l‘, y) — a,()mi)(z) — sm; = tp.
To prevent invalid solutions involving wrap-around, we must bound the left-hand
side such that ¢ = 0 is the only possible solution. In particular, we must ensure
that

(m) (m3)

m (x,y) — o, (2) — smy| < p.

(m;)

Applying the triangle inequality, and leveraging the fact that 7, ' (x, y) and —aémi) (2)
have opposite signs, it suffices to ensure that

max { 7™ (@,9), 0" (2) } + [smil < p,

or, applying [T'heorem 1] and [Theorem 2| that

on?m;b? < .
We will pick a set of parameters for which this holds.

Remark 2. It is natural to include p itself in M, since we can check an identity
mod p “natively.” Clearly p itself need not satisfy the bound above, since wrap-
around s not an issue when we are checking an identity mod p.

3 Modular multiplication

Suppose we wish to compute modular multiplication with a fixed modulus, ¢ < b™.
As before, we are given z,y € [b]" as inputs, and we will witness z € [b]". But
instead of checking xy = z, our goal now is to check xy = z mod q.|I|

To do so, we could witness r such that m,(z,y) — 0p(2) = rq. However, we can

reduce the problem size by instead witnessing r such that % (z, y) — 0\? (2) = rq.

then implies |r| < n?b?, which we would enforce with a range check.
As before, we test this under a set of moduli M. From and the
triangle inequality, we know

’Wﬁq) (2,9) — 0, (2) = rq| < 20°qV”,

so we select M such that lem(M) > 2n%qb?. Note that we would have needed a
larger lem(M) had we not performed the partial reduction mod g.

3.1 Congruence mod m;

Our small-moduli checks now have the form

Wzgq)(x>y) — Uéq)(Z) =rq mod m,.

Applying partial reductions mod m; to all constants, we have

(9)(mi)

)(mi)(x’ y) — oy (z) = r(¢ mod m;) mod my,

(q
U

!To ensure that the result is in the canonical range [g], we would need to additionally enforce
z < q. In practice, however, a partial reduction to [b"] suffices for most applications.

4

where (gq)(m;) denotes a sequence of partial reductions, i.e.,

[y

n—

Jéq)(mz’) _ ((b’ mod ¢) mod m;)x;,

s
I
o

and similarly for ﬂéq)(mi)(x, Y).
Now, we witness s such that

)(mi)(x, y) — Jéqui)(z) — r(g mod m;) = sm,.

implies |s| < 2n?b?, which we enforce with a range check.

(q
T,

3.2 Avoiding wrap-around

Finally, as in[Section 2.2 we must choose our parameters such that wrap-around is
not possible when the constraint above is checked mod p. Using a similar analysis,
it suffices that

An*m;b?* < p.

3.3 Example parameters

Suppose our “native” field is F, where p = 204 — 232 4 1. Suppose we would like
to perform multiplication over the secp256k1 base field, F,, where ¢ = 226 — 232 —
29 928 97 26 _ 924 _ 1 Letn =16 and b = 2'6.

To avoid wrap-around, we require each m; (except for p itself, as noted in

Remark 3) to satisfy

b
<P
i = An2h2’

which (after rounding down) is 4194303, or roughly 2%2.
Additionally, M must satisfy lem(M) > 2n2gb*, which is roughly 2?7. One
such M is
M = (p, 4194272, 4194273, 4194275, 4194277, 4194281, 4194283,
4194287, 4194289, 4194293, 4194299, 4194301),

a pairwise coprime set which satisfies both of these constraints.

4 Probabilistic method

Instead of fixing M, we can sample it as a random subset of some larger pairwise
coprime set M. Given our bound |zy — z| < b*", we can argue that only a small
fraction of Ml can divide xy — z, so if zy # z, the identity is unlikely to hold under
all m € M. Depending on our security parameter, this may enable us to use a
smaller M relative to the previous method.

5

4.1 Example parameters

Concretely, let M be a pairwise coprime subset of [2'5,.. 216]. We found such a
set containing 3082 integers.

If zy and 2z both fit within 512 bits, zy — z can be divisible by at most 34
m; € M; any subset of size 35 or more would have a product exceeding 2°'2. Thus
if xy # z, the probability that xy = 2z mod m; given a random m; € M is at most
34/30609.

If we sample each m; € M independently, in which case duplicates are possible,
then 20 samples provides 128-bit security: (34/3069)%° < 2712 If our sampling
process prevents duplicates, then 19 samples suffices, since

18

34—
2—128‘
11 (3069 - z) =

=0

	Preliminaries
	Partially reduced summations
	Notation

	Widening multiplication
	Congruence mod mi
	Avoiding wrap-around

	Modular multiplication
	Congruence mod mi
	Avoiding wrap-around
	Example parameters

	Probabilistic method
	Example parameters

