
Resistance of Ascon Family against Conditional Cube Attacks

in Nonce-Misuse Setting

Donghoon Chang1,2,4, Deujo Hong1,3, Jinkeon Kang1, and Meltem Sönmez Turan1

1National Institute of Standards and Technology, Gaithersburg, Maryland, USA
(e-mail: {donghoon.chang, deukjo.hong, jinkeon.kang, meltem.turan}@nist.gov)

2Strativia, Largo, Maryland, USA
3Jeonbuk National University, Jeonju-si, Korea (e-mail: deukjo.hong@jbnu.ac.kr)

4Department of Computer Science, Indraprastha Institute of Information Technology
Delhi(IIIT-Delhi), Delhi, India (e-mail: donghoon@iiitd.ac.in)

Abstract. Ascon family is one of the final-
ists of the National Institute of Standards and
Technology (NIST) lightweight cryptography
standardization process. The family includes
three Authenticated Encryption with Associated
Data (AEAD) schemes: Ascon-128 (primary),
Ascon-128a, and Ascon-80pq. In this paper, we
study the resistance of the Ascon family against
conditional cube attacks in nonce-misuse setting,
and present new state– and key–recovery attacks.
Our attack recovers the full state information
and the secret key of Ascon-128a using 7-round
Ascon-permutation for the encryption phase, with
2117 data and 2116.2 time. This is the best known
attack result for Ascon-128a as far as we know.
We also show that the partial state information
of Ascon-128 can be recovered with 244.8 data.
Finally, by assuming that the full state information
of Ascon-80pq was recovered by Baudrin et al.’s
attack, we show that the 160-bit secret key of
Ascon-80pq can be recovered with 2128 time.
Although our attacks do not invalidate designers’
claim, those allow us to understand the security of
Ascon in nonce-misuse setting.

Keywords: Ascon, Conditional cube attack,
Lightweight cryptography, State recovery, Key re-
covery

1 Introduction

Ascon, designed by Dobraunig et al. [5], is one
of the finalists of the National Institute of Stan-
dards and Technology (NIST) lightweight cryptog-
raphy standardization process. Ascon is also se-
lected as the primary choice for lightweight authen-

ticated encryption in the final portfolio of the CAE-
SAR competition [3]. Ascon family includes three
Authenticated Encryption with Associated Data
(AEAD) schemes: Ascon-128 (primary submission
for the NIST process), Ascon-128a, and Ascon-
80pq. The mode of operation for these algorithms
is based on duplex modes like MonkeyDuplex [2],
and use key initialization and finalization functions.
They use 12-round Ascon permutation for their
initialization and finalization with key. For data
processing such as associated data (AD) absorp-
tion and plaintext encryption, Ascon-128 and As-
con-80pq use 6-round Ascon permutation, while
Ascon-128a use 8-round one. The state size of As-
con permutation is 320 bits, the key size of As-
con-128 and Ascon-128a is 128 bits, and the key
size of Ascon-80pq is 160 bits.

Throughout this paper, for reduced-round ver-
sions of Ascon family, we denote Ascon-X for
X ∈ {128, 128a, 80pq} with r1-round initialization,
r2-round data processing, and r3-round finaliza-
tion, by (r1, r2, r3)-round Ascon-X. (r1, r2, r3)
is (12, 6, 12) for Ascon-128 and Ascon-80pq, and
(12, 8, 12) for Ascon-128a. We also use the nota-
tion ri = ⋆ for i ∈ {1, 2, 3} when ri can be any
positive number.

Ascon designers claim that AEAD variants pro-
vide 128-bit security of privacy and authenticity
when unique nonce values are used for the encryp-
tion under the same key [5]. The maximum avail-
able data to the attacker is limited to 264 64-bit
blocks per key. In nonce-misuse scenario, the de-
signers claimed that Ascon-128a provides 128-bit
security of privacy and authenticity if nonces are
reused a few times by accident as long as the com-
bination of nonce and AD stays unique. The de-
signers said that they do not expect that any key

1

recovery attack on Ascon-128a can be found with
complexity significantly below 296 even after a se-
cret state is recovered by an implementation attack,
due to the extra key additions during initialization
and finalization.
The security of Ascon family have been widely

analyzed. In particular, most successful key recov-
ery attacks for Ascon are based on cube attacks
[4]. Li et al. [9] presented two nonce-respecting
key recovery attacks. One of them is a cube attack
on (7, ⋆, ⋆)–round Ascon, where the data complex-
ity is 277.2 and the time complexity is 2103.92. The
other one is a conditional cube attack on (6, ⋆, ⋆)–
round Ascon, where both data and time complex-
ities are 240. Rohit et al. [10] presented the nonce-
respect key recovery attack on (7, ⋆, ⋆)–round As-
con which is a cube attack with data complexity
of 264 and time complexity of 2123. The security of
Ascon in nonce-misuse setting was studied in [8].
Huang et al. [6] introduced the concept of con-

ditional cube attacks. The authors proposed some
of conditions on the key to obtain the set V of cube
variables such that the variables in V are not mul-
tiplied with each other after the first round and V
contains one cube variable that are not multiplied
with other cube variables after the second round.
With this technique, Huang et al. achieved the op-
timal cube propagation for Keccak permutation.
We observe that the security of Ascon AEAD al-
gorithms against cube attacks has been analyzed a
lot in nonce-respecting setting, but not so much in
nonce-misuse setting. Baudrin et al. [1] suggested
a conditional cube attack on full (⋆, 6, ⋆)-round As-
con-128 recovering the full state information with
the data complexity less than 240 in nonce-misuse
setting. Considering these existing work results, we
have been motivated to study how conditional cube
attack techniques can be most effectively applied to
Ascon AEAD algorithms in nonce-misuse setting.

1.1 Contributions

Our main idea is to recover the secret state infor-
mation using cubes where certain conditions make
the cube-sums zero, and then recover the secret key
for the finalization permutation. We use five cube
patterns to make new nonce-misuse state-recovery
and key recovery attacks on (⋆, 7, ⋆)-round Ascon-
128a. Those attacks require 2117 data and 2116.2

time, and are the best known attack results for As-
con-128a as far as we know. We also use a family
of patterns to make a nonce-misuse partial-state-
recovery conditional-cube attack on (⋆, 6, ⋆)-round
Ascon-128 and Ascon-80pq, where 192 bits out
of 320-bit state are recovered, with 244.8 time and
data complexity and negligible memory complex-

ity. This attack was researched independently of
those by Baudrin et al. [1]. Additionally, we show
that the 160-bit secret key of Ascon-80pq can be
recovered based on the recovered state information
with 2128 time, much faster than an exhaustive key
search.

Table 1 summarizes the existing cube attacks and
our attacks on Ascon AEAD algorithms. In the
table, an entry for ‘Target’ field can be 128, 128a
and 80pq, which mean Ascon-128, Ascon-128a
and Ascon-80pq as a target of the attack, respec-
tively. An entry for ‘Type’ field can be KR, SR
and F, which mean Key Recovery, State Recovery
and Forgery as a type of the attack, respectively.
An entry for ‘Complexity’ field is a 3-tuple of data,
time, and memory. An entry of ‘Set.’ field can be
NR and NM, which mean Nonce-Respecting and
Nonce-Misuse as a setting of the attack, respec-
tively.

Table 1: Summary of cube attacks on As-
con AEAD algorithms

Target Type Rounds
Complexity

Set. Ref.
(D,T,M)

128, 128a KR (6, ⋆, ⋆) (240, 240, -) NR [9]
128, 128a KR (7, ⋆, ⋆) (277.2, 2103.92, -) NR [9]
128, 128a KR (7, ⋆, ⋆) (264, 2123, -) NR [10]
128, 128a KR (7, 5, ⋆) (233, 297, -) NM [8]

128a KR (⋆, 7, ⋆) (2117, 2116.2, 232) NM Sect. 4.2
80pq KR (⋆, 6, ⋆) (239.6, 2128, 232) NM Sect. 5.2
All SR (⋆, 5, ⋆) (218, 266, -) NM [8]
128a SR (⋆, 7, ⋆) (2117, 2116.2, -) NM Sect. 4.1

128, 80pq SRa (⋆, 6, ⋆) (244.8, -, -) NM Sect. 5.1
128, 80pq SR (⋆, 6, ⋆) (239.6, 239.6, -) NM [1]

All F (⋆, ⋆, 5) (217, 217, -) NM [8]
All F (⋆, ⋆, 6) (233, 233, -) NM [8]

aPartial 192-bit state-recovery

Our attacks do not invalidate the security claims
of the Ascon designers. Nevertheless, they are
meaningful in analyzing how secure Ascon is in
the nonce-misuse setting.

1.2 Organization

In Section 2, we introduce notations, Ascon AEAD
algorithms, and cube attacks. In Section 3, we de-
scribe cube patterns used in our attacks. In Sec-
tion 4, we explain how the attacks on (⋆, 7, ⋆)-round
Ascon-128a recover the internal state and the se-
cret key. In Section 5, we explain the partial-state-
recovery attack on (⋆, 6, ⋆)-round Ascon-128 and
Ascon80pq and the key recovery attack on (⋆, 6, ⋆)-
round Ascon80pq.

2

2 Preliminaries

2.1 Definitions and Notations

Let x and y be bitstrings of same length. We de-
note bitwise XOR, and bitwise AND of x and y by
x ⊕ y and xy. We denote the concatenation of x
and y by x∥y or (x, y). MSBm(x) and LSBm(x)
mean the most and the least significant m bits of
x, respectively. Len(x) means the length of x in
bits. We denote a bitstring of n consecutive 0-bits
by 0n. 0∗ means an arbitrary-length bitstring of
consecutive 0-bits. Likewise, we denote a bitstring
of n consecutive 1-bits by 1n.

2.2 Ascon AEAD Algorithms

The design of Ascon AEAD algorithms is based
on monkeyDuplex construction [2] with extra key
additions during initialization and finalization. The
320-bit state State is initialized as

State = IV ∥K∥N,

where IV is a constant as an initial value, K is a k-
bit secret key, and N is a 128-bit nonce. Let pi be
the i-round Ascon permutation. The algorithm
works in the order initialization phase, data pro-
cessing phase, and finalization phase. In the initial
phase, the state State is updated as

State← pa(State)⊕ (0320−k∥K).

The data processing phase consists of AD absorp-
tion phase and plaintext encryption phase, but we
assume AD is empty because it is not necessary for
our attacks. The plaintext P is padded to P∥1∥0∗
such that the length of the padded string is the least
multiple of r, where r is the block size of plaintext
and the rate of sponge-like construction. c = 320−r
is the capacity. Then, the padded plaintext string
is divided into t blocks P1, ..., Pt. We consider
State as State = Stater∥Statec, where Stater is r
bits and Statec is c bits. When the AD is empty, in
the encryption phase, the update of State and the
encryption of the plaintext P proceed as follows:

State← State⊕ (0319∥1)
for i = 1, ..., t do :

Stater ← Stater ⊕ Pi

Ci ← Stater

State← pb(State)

Stater ← Stater ⊕ Pt

Ct ←MSBℓ(Stater)

, where Ci’s are ciphertext blocks and ℓ =
Len(P) mod r. Finally, in the finalization phase,

State is updated and the tag T is produced as fol-
lows:

State← pa(State⊕ (0r∥K∥0320−r−k)) and

T ← LSB128(State)⊕ LSB128(K).

Therefore, an Ascon AEAD algorithm outputs the
ciphertext C1∥ · · · ∥Ct and the tag T .

The nonces and tags are 128 bits for every As-
con AEAD algorithm. Table 2 summarizes the pa-
rameters a, b, r, c, and k. See [5] for a more detailed
description of Ascon.

Table 2: Parameters of Ascon AEAD Algorithm
Algorithm a b r c k
Ascon-128 12 6 64 256 128
Ascon-128a 12 8 128 192 128
Ascon-80pq 12 6 64 256 160

The j-th round function, Roundj of Ascon per-
mutation is defined as pL ◦ pS ◦ pC , where pC adds
the 64-bit constant cj to the internal state, pS is
the substitution layer, and pL is the linear diffu-
sion layer. Note that the round number j starts
from zero (i.e., j = 0, 1, ...). We denote the input
state of Roundj by Sj = Sj [0]∥ · · · ∥Sj [4], where
each Sj [i] is 64 bits. We also regard Sj as a 5× 64
array and Sj [i] as the i-th row of Sj . The m-th bit
of Sj [i] is denoted by Sj [i][m] for 0 ≤ m ≤ 63.
Sj [i][0] and Sj [i][63] are the least and the most
significant bits of Sj [i], respectively. The i-th col-
umn of Sj is defined by (Sj [0][i], ..., Sj [4][i])

T and
is called the column #i of Sj . We denote the in-
ternal state after the pS ◦ pC operation at Roundj
by Sj+0.5 = Sj+0.5[0]|| · · · ||Sj+0.5[4]. Then, the in-
ternal state after the pL layer is denoted by Sj+1,
which is the output of Roundj.

2.2.1 Substitution Layer pS

The nonlinearity of Ascon permutation is provided
by the pS layer. Let xi for 0 ≤ i ≤ 4 be the i-th
row in a 5×64 array of 320-bit state. pS(x0, ..., x4)
is computed as follows:

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0

⊕ x1 ⊕ x0,
y1 = x4 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ x2x1

⊕ x2 ⊕ x1 ⊕ x0,
y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1,
y3 = x4x0 ⊕ x4 ⊕ x3x0 ⊕ x3 ⊕ x2 ⊕ x1

⊕ x0,
y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1.

(1)

We can also regard (1) as a system of equations
for a 5-bit input x = (x4, ..., x0) ∈ {0, 1}5, and pS

3

A1

0c−k||K

pbp12

IV ||K||N

A2

r

c = 320− r

320

c

As||10∗

c

pb

P1

0c−1||1

r

c

r r

C1 P2

r

C2

c

Pt||10∗

r

Ct

pb p12

K||0c−k LSB128(K)

· · ·

· · ·

· · ·

· · ·

T

128

Len(Pt) bits

c 128

S0[0]
S0[1]
S0[2]
S0[3]
S0[4]

Figure 1: Ascon AEAD mode. (b, r, k) is (6, 64, 128) for Ascon-128, (6, 64, 160) for Ascon-80pq, and
(8, 128, 128) for Ascon-128a.

as the application of 64 5-bit nonlinear S-boxes to
the columns of 5× 64 array. We have the following
properties derived from (1): for x ∈ {0, 1}5,

y1 =

{
x4 ⊕ x3x2 ⊕ x1 ⊕ x0 if x2 = x3

x4 ⊕ x3x2 ⊕ x0 ⊕ 1 otherwise,
(2)

y3 =

{
x2 ⊕ x1 ⊕ x0 if x3 = x4

x2 ⊕ x1 ⊕ 1 otherwise.
(3)

2.2.2 Linear Diffusion Layer pL with 64-bit
Diffusion Functions Σi(xi)

The pL layer consists of 64-bit linear functions
Σi(xi) for i = 0, 1, ..., 4, where each xi is the i-th
row in a 5× 64 array of 320-bit state.

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28),
Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39),
Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6),
Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17),
Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41).

(4)

2.3 Time complexity of exhaustive
key search

We should compare the time complexity of our at-
tack to that of an exhaustive key search. If we
assume that AD A is empty and the length of the
plaintext P is less than r, the number of permuta-
tion calls per one encryption are minimized to two
calls of p12, which approximates p24. So, we can
compare the time complexity of our attack to 2128

operations of p24 for Ascon-128 and Ascon-128a,
and 2160 operations of p24 for Ascon-80pq.

2.4 Cube Attacks

2.4.1 Cube and Cube-Sum

Let v = (vl−1, ..., v1, v0) be a l-bit string. We con-
sider a l-bit variable v = (vl−1, ..., v1, v0). The set
Cv = {0, 1}l of all possible l-bit vectors for v is
called the cube for l cube variables v0, v1, ..., vl−1.
Let f(v, x) be a nonlinear Boolean function from
{0, 1}l+m to {0, 1} where x is a m-bit variable. We
consider the division expression where f is the div-
idend, the monomial v0v1 · · · vl−1 is the divisor, Q
is the quotient and R is the remainder. When Q
only depends on x, the expression is as follows:

f(v, x) = v0v1 · · · vl−1 ·Q(x)⊕R(v, x). (5)

For (5), Xuejia Lai [7] proved the following rela-
tion between the cube Cv and the quotient Q(x).⊕

v∈Cv

f = Q(x). (6)

The left side of (6) is called the cube-sum of f
for the cube CV . The relation shows that the cube-
sum is equal to the quotient Q(x). When x is fixed,
Q(x) is constant, so the cube-sum is constant.

Let g(v, x) be another nonlinear Boolean func-
tion from {0, 1}l+m to {0, 1}. Suppose that we ob-
tain the division expression of g with the divisor
v0v1 · · · vl−2:

g(v, x) = v0 · · · vl−2 ·Q′(x)⊕R′(v, x), (7)

where Q′(x) is the quotient and R′(v, x) is

the remainder. Let C
(0)
v = {(vl−1, ..., v0) ∈

{0, 1}l | vl−1 = 0} and C
(1)
v = {(vl−1, ..., v0) ∈

{0, 1}l | vl−1 = 1}. When x is fixed, the cube-sum

4

of g for Cv is zero because⊕
(vl−1,...,v0)∈Cv

g =
⊕

(vl−1,...,v0)∈C(0)
v

g ⊕
⊕

(vl−1,...,v0)∈C(1)
v

g

= Q(x)⊕Q(x)

= 0.

Let F = (fn−1, ..., f1, f0) be a vectorial Boolean
function from {0, 1}l+m to {0, 1}m where each
fi(v, x) is a Boolean function from {0, 1}l+m to
{0, 1}. When we say that the cube-sum of F for
Cv is zero, we mean that for every i = 0, ..., n − 1,
the cube-sum of fi for Cv is zero. In other words,
we can say that the cube-sum on y = F (v, x) is
zero.

2.4.2 Conditional Cube Attacks

We briefly introduce the concept of conditional
cube attacks which was proposed by Huang et al.
[6]. Let F be a nonlinear permutation which it-
erates a round function with algebraic degree of
2. Note that the degree of the round function of
Ascon permutation is also 2. For the set V =
{v0, v1, ..., vl−1} of cube variables, they considered
a partition {V0,V1} of V such that V0∩V1 = ∅ and
V = V0 ∪ V1. We assume that that the following
requirements hold if and only if certain conditions
are true.

• Requirement 1: After the first round, there is
no multiplication of two different cube vari-
ables from V. For the case of Ascon permu-
tation, the output state S1 of Round0 has no
vivj such that i ̸= j and vi, vj ∈ V.

• Requirement 2: After the second round, there
is no multiplication of two different cube vari-
ables from V0. For the case of Ascon permu-
tation, the output state S2 of Round1 has no
vivj such that i ̸= j and vi, vj ∈ V0.

• Requirement 3: After the second round, there
is no multiplication between a cube variable
from V0 and a cube variable from V1. For the
case of Ascon permutation, the output state
S2 of Round1 has no vivj such that vi ∈ V0
and vj ∈ V1.

Theorem 1. [6] Let F be a nonlinear permutation
which iterates a round function with algebraic de-
gree of 2. Let V = {v0, v1, ..., vλ+µ−1} be the set
of cube variables on the input state of F , and let
{V0,V1} be a partition of V where |V0| = λ and
|V1| = µ. Assume that Requirements 1, 2 and 3
hold, and that for a positive number n,

λ, µ ≥ 1 and µ = 2n+1 − 2λ+ 1, or (8)

µ = 0 and λ = 2n + 1. (9)

Then, the term v0v1 · · · vλ+µ−1 does not appear on
the output state of (n+ 2)-th round function.

Section 2.4.1 and Theorem 1 implies, if the non-
linear permutation F satisfies Requirements 1, 2,
and 3 and satisfies (8) or (9), then F does not
have the term v0v1 · · · vλ+µ−1 on its output state of
(n+2)-th round function, and so the cube-sum for
(n+2) rounds of F is zero. In the next section, for
Ascon permutation, we make a set of cube vari-
ables satisfying (8), and construct the conditions
under which Requirements 1, 2, and 3 hold.

3 Variables and Conditions of
Cube Patterns

Let S0 be the input state to the Ascon permuta-
tion of the first block in the encryption phase, as
depicted in Figure 1. We describe five cube patterns
used in our conditional cube attack on Ascon-128a
in Sections 3.1 to 3.5. We use the set V of 64 cube
variables and consider the partition {V0,V1} of V
such that λ = |V0| = 1 and µ = |V1| = 63. Fol-
lowing the notations in Theorem 1, we have n = 5.
We can choose the first block P1 of plaintext to
control the first two rows of S0 for Ascon-128a.
In each pattern, cube variables are assigned to the
first two rows of S0 so that each column of S0

has at most one cube variable. We consider that
(S0[2], S0[3], S0[4]) is secret inAscon-128a, and use
a guessed value to construct cube patterns in Sec-
tions 3.2 to 3.5.

We also show a family of cube patterns used in
our conditional cube attacks on Ascon-128 and
Ascon-80pq in Section 3.6. We can choose the first
block P1 of plaintext to control the first row of S0

for Ascon-128 and Ascon-80pq. We use 40 cube
variables. In each pattern, 32 among them are as-
signed to the first row of S0 such that λ = |V0| = 1
and µ = |V1| = 31. Following the notations in The-
orem 1, we have n = 4.

With this configuration, each pattern satisfies
Requirements 1 and 2 in Section 2.4.2. Require-
ment 1 holds because in the beginning of Round0,
each column uses at most one cube variable and the
nonlinear S-box operation is applied column-wise in
parallel. Requirement 2 holds because |V0| = 1. In
the following subsections, we describe the structure
of each pattern, and show what conditions satisfy
Requirement 3. For simplicity, the cube variables
in V0 is called V0-variables and the cube variables
in V1 is called V1-variables.

5

3.1 Pattern-A

Pattern-A has 64 cube variables vi for 0 ≤ i ≤
63. v63 is the only V0-variable and assigned as
S0[0][63] = S0[1][63] = v63. V1-variables are as-
signed to S0 as listed in Table 3. The other bits
of S0 are constants. Table 4 lists 38 conditions of
Pattern-A for satisfying Requirement 3. The ‘Con-
ditions’ field of Table 4 shows condition expressions
and the ‘Count’ field provides the number of con-
ditions for each expression. We get Lemma 1.

Table 3: Assignment of the V1-variables for
Pattern-A
Setting Setting

S0[0][62] = S0[1][62] = v62 S0[0][30] = v30
S0[0][61] = S0[1][61] = v61 S0[0][29] = v29
S0[0][60] = S0[1][60] = v60 S0[0][28] = v28
S0[0][59] = S0[1][59] = v59 S0[0][27] = v27
S0[0][58] = v58 S0[0][26] = v26
S0[0][57] = S0[1][57] = v57 S0[0][25] = v25
S0[0][56] = v56 S0[0][24] = v24
S0[0][55] = v55 S0[0][23] = v23
S0[0][54] = S0[1][54] = v54 S0[0][22] = v22
S0[0][53] = v53 S0[0][21] = S0[1][21] = v21
S0[0][52] = S0[1][52] = v52 S0[0][20] = v20
S0[0][51] = S0[1][51] = v51 S0[0][19] = S0[1][19] = v19
S0[0][50] = v50 S0[0][18] = v18
S0[0][49] = v49 S0[0][17] = v17
S0[0][48] = v48 S0[0][16] = S0[1][16] = v16
S0[0][47] = v47 S0[0][15] = S0[1][15] = v15
S0[0][46] = v46 S0[0][14] = v14
S0[0][45] = S0[1][45] = v45 S0[0][13] = v13
S0[0][44] = S0[1][44] = v44 S0[0][12] = S0[1][12] = v12
S0[0][43] = v43 S0[0][11] = v11
S0[0][42] = S0[1][42] = v42 S0[0][10] = S0[1][10] = v10
S0[0][41] = S0[1][41] = v41 S0[0][9] = S0[1][9] = v9
S0[0][40] = S0[1][40] = v40 S0[0][8] = S0[1][8] = v8
S0[0][39] = v39 S0[0][7] = v7
S0[0][38] = S0[1][38] = v38 S0[0][6] = S0[1][6] = v6
S0[0][37] = S0[1][37] = v37 S0[0][5] = v5
S0[0][36] = v36 S0[0][4] = v4
S0[0][35] = S0[1][35] = v35 S0[0][3] = S0[1][3] = v3
S0[0][34] = v34 S0[0][2] = v2
S0[0][33] = v33 S0[0][1] = v1
S0[0][32] = S0[1][32] = v32 S0[0][0] = v0
S0[0][31] = v31

Lemma 1. Under the setting of Pattern-A, the
state S2 does not have any v63vi for vi ∈ V1 if and
only if all conditions in Table 4 are true.

Proof. We assume that all conditions in Table 4 are
true. Then, by the setting of S0[0][63] = S0[1][63] =
v63 and (1), S0.5[0][63] and S0.5[2][63] contain v63
only as a linear term and the other bits in the col-
umn #63 of S0.5 are constants. After the pL layer,
the only state bits S1[0][63], S1[0][44], S1[0][35],

Table 4: 38 conditions of Pattern-A to satisfy Re-
quirement 3

Conditions Count

S0[2][63] = S0[3][63] = S0[4][63] = 0 3
S0[2][62] = S0[3][62] = S0[4][62] 2
S0[3][61] = S0[4][61] 1
S0[2][60] = S0[3][60] 1
S0[2][59] = S0[3][59] 1
S0[2][57] = S0[3][57] = S0[4][57] 2
S0[2][54] = S0[3][54] = S0[4][54] 2
S0[3][52] = S0[4][52] 1
S0[4][51] = 0 1
S0[3][45] = S0[4][45] 1
S0[2][44] = S0[3][44] = S0[4][44] = 0 3
S0[4][42] = 0 1
S0[2][41] = S0[3][41] 1
S0[4][40] = 0 1
S0[2][38] = S0[3][38] 1
S0[2][37] = S0[3][37] 1
S0[2][35] = S0[3][35] = S0[4][35] = 0 3
S0[2][32] = S0[3][32] 1
S0[4][21] = 0 1
S0[2][19] = S0[3][19] 1
S0[3][16] = S0[4][16] 1
S0[3][15] = S0[4][15] 1
S0[4][12] = 0 1
S0[2][10] = S0[3][10] = S0[4][10] 2
S0[3][9] = S0[4][9] 1
S0[3][8] = S0[4][8] 1
S0[4][6] = 0 1
S0[3][3] = S0[4][3] 1

6

S0[0]

S0[1]

S0[2]

S0[3]

S0[4]

S0.5[0]

S0.5[1]

S0.5[2]

S0.5[3]

S0.5[4]

S1[0]

S1[1]

S1[2]

S1[3]

S1[4]

0

63 0

63 0

63

Figure 2: Propagation of the V0-variable v63 an V1-variables in Pattern-A. The bits influenced by v63 are
marked in red; the bits influenced by V1-variables and not by v63 are marked in gray; The bits marked
in white are constants.

S1[2][63], S1[2][62], and S1[2][57] contain v63 as a
linear term, too. The state bits S1[0][62], S1[0][57],
S1[2][44], S1[2][35], S1[4][62], S1[4][57], S1[4][44],
and S1[4][35] are not influenced by v63. The other
bits in columns #63, #62, #57, #44, and #35 of
S1 are constants. Therefore, by (1), no multiplica-
tion between v63 and vi for any vi ∈ V1 appears on
S1.5 and S2. See Figure 2.

Next, we consider the case that not all conditions
in Table 4 are true. It can be split into two subcases
as follows:

• Subcase 1: If any of the conditions on column
#63 of S0 is false, then v63vi for some vi ∈
V1 appears on S2. The proof is provided in
Appendix A.1.

• Subcase 2: If all conditions on column #63
of S0 are true, but any of the other conditions
is false, then v63vi for some vi ∈ V1 appears on
S2. The proof is provided in Appendix A.2.

Therefore, the proof is completed.

3.2 Pattern-B

We assume that α = (α6, ..., α0) ∈ {0, 1}7 is a
guessed value for (S0[2][58] ⊕ S0[3][58], S0[2][53] ⊕
S0[3][53], S0[2][36] ⊕ S0[3][36], S0[2][31] ⊕ S0[3][31],
S0[3][14] ⊕ S0[4][14], S0[3][7] ⊕ S0[4][7], S0[3][2] ⊕
S0[4][2]). Pattern-B has 64 cube variables vi for
0 ≤ i ≤ 63. v62 is the only V0-variable and is as-
signed as S0[0][62] = v62 and S0[1][62] = v62 ⊕ 1.
V1-variables are assigned to S0 as listed in Table 5.

Additionally, we assign more V1-variables depend-
ing on α as follows.

S0[0][58] = v58 if α6 = 0;
S0[0][53] = v53 if α5 = 0;
S0[0][36] = v36 if α4 = 0;
S0[0][31] = v31 if α3 = 0;
S0[1][14] = v14 if α2 = 0;
S0[1][7] = v7 if α1 = 0;
S0[1][2] = v2 if α0 = 0.

(10)

The other bits of S0 are constants. 10 implies
that Pattern-B contains 128 different assignments
of cube variables depending on α ∈ {0, 1}7. Table 6
lists 12 conditions of Pattern-B with α for satisfying
Requirement 3. Then, we get Lemma 2.

Lemma 2. Under the setting of Pattern-B with a
guessed value α ∈ {0, 1}7, the state S2 does not
have any quadratic term v62vi for vi ∈ V1 if and
only if α is correct and all conditions in Table 6 are
true.

Proof. We concentrate on showing that a quadratic
term v62vi for vi ∈ V1 appears on S1.5 if all the
conditions on column #62 of S0 are true and α is
wrong. When all the conditions on column #62 of
S0 are true, by (1), S0.5[2][62] contains v62 only as
a linear term and the other bits of the column #62
of S0.5 are constant. After the pL layer, S1[2][62],
S1[2][61] and S1[2][56] contain v62 as a linear term.

Firstly, we consider the case of α0 ̸= S0[3][2] ⊕
S0[4][2]. If α0 = 0 and S0[3][2] ̸= S0[4][2], then
the equation for S0.5[3][2] is y3 = x2 ⊕ x1 ⊕ 1 by

7

Table 5: Assignment of V1-variables for Pattern-B
Setting Setting

S0[1][63] = v63 S0[0][30] = v30
S0[0][61] = S0[1][61] = v61 S0[1][29] = v29
S0[0][60] = v60 S0[0][28] = v28
S0[0][59] = S0[1][59] = v59 S0[0][27] = v27
S0[1][58] = v58 S0[0][26] = v26
S0[0][57] = v57 S0[0][25] = v25
S0[0][56] = S0[1][56] = v56 S0[1][24] = v24
S0[0][55] = v55 S0[1][23] = v23
S0[0][54] = v54 S0[0][22] = v22
S0[1][53] = v53 S0[0][21] = v21
S0[1][52] = v52 S0[0][20] = v20
S0[1][51] = v51 S0[0][19] = v19
S0[0][50] = v50 S0[0][18] = v18
S0[0][49] = v49 S0[0][17] = v17
S0[0][48] = v48 S0[0][16] = v16
S0[0][47] = v47 S0[0][15] = S0[1][15] = v15
S0[1][46] = v46 S0[0][14] = v14
S0[1][45] = v45 S0[0][13] = v13
S0[0][44] = v44 S0[0][12] = v12
S0[0][43] = v43 S0[0][11] = v11
S0[0][42] = v42 S0[0][10] = v10
S0[0][41] = v41 S0[0][9] = S0[1][9] = v9
S0[0][40] = v40 S0[0][8] = S0[1][8] = v8
S0[0][39] = v39 S0[0][7] = v7
S0[0][38] = v38 S0[0][6] = v6
S0[0][37] = S0[1][37] = v37 S0[0][5] = v5
S0[1][36] = v36 S0[1][4] = v4
S0[0][35] = v35 S0[0][3] = v3
S0[0][34] = v34 S0[0][2] = v2
S0[0][33] = v33 S0[1][1] = v1
S0[0][32] = v32 S0[0][0] = v0
S0[1][31] = v31

Table 6: 12 Conditions of Pattern-B to satisfy Re-
quirement 3

Conditions Count

S0[2][62] = S0[3][62] = S0[4][62] = 1 3
S0[2][61] = S0[3][61] = S0[4][61] 2
S0[2][59] = S0[3][59] 1
S0[2][56] = S0[3][56] = S0[4][56] 2
S0[2][37] = S0[3][37] 1
S0[3][15] = S0[4][15] 1
S0[3][9] = S0[4][9] 1
S0[3][8] = S0[4][8] 1

(3) but v2 is assigned to S0[1][2]. If α0 = 1 and
S0[3][2] = S0[4][2], then the equation for S0.5[3][2]
is y3 = x2 ⊕ x1 ⊕ x0 by (3) but v2 is not assigned
to S0[1][2]. It implies that S0.5[3][2] contains v2
as a linear term. After pL layer, S1[3][56] con-
tains v2 as a linear term. Thus, the quadratic term
v62v2 appears on the column #56 of S1.5. We can
similarly show that v62v7 appears on the column
#61 of S1.5 when α1 ̸= S0[3][7]⊕ S0[4][7], and that
v62v14 appears on the column #61 of S1.5 when
α2 ̸= S0[3][14]⊕ S0[4][14].

Secondly, we consider the case of α3 ̸= S0[2][31]⊕
S0[3][31]. If α3 = 0 and S0[2][31] ̸= S0[3][31], then
the equation for S0.5[1][31] is x4 ⊕ x3x2 ⊕ x0 ⊕ 1
by (2) but v31 is assigned to S0[0][31]. If α3 = 1
and S0[2][31] = S0[3][31], then the equation for
S0.5[1][31] is x4⊕x3x2⊕x1⊕x0 by (2) but v31 is not
assigned to S0[0][31]. It implies that S0.5[1][31] con-
tains v31 as a linear term. After pL layer, S1[1][56]
contains v31 as a linear term. Thus, the quadratic
term v62v31 appears on the column #56 of S1.5. We
can similarly show that v62v36 appears on the col-
umn #61 of S1.5 when α4 ̸= S0[2][36] ⊕ S0[3][36],
that v62v53 appears on the column #56 of S1.5

when α5 ̸= S0[2][53] ⊕ S0[3][53], and that v62v58
appears on the column #61 of S1.5 when α6 ̸=
S0[2][58]⊕ S0[3][58].

The remaining of the proof is similar to that of
Lemma 1.

3.3 Pattern-C

We assume that β = (β5, ..., β0) ∈ {0, 1}6 is a
guessed value for (S0[2][53] ⊕ S0[3][53], S0[2][48] ⊕
S0[3][48], S0[2][36] ⊕ S0[3][36], S0[2][31] ⊕ S0[3][31],
S0[2][26] ⊕ S0[3][26], S0[3][4] ⊕ S0[4][4], S0[3][2] ⊕
S0[4][2]). Pattern-C has 64 cube variables vi for
0 ≤ i ≤ 63. v57 is the only V0-variable and assigned
as S0[0][57] = v57 and S0[1][57] = v57 ⊕ 1. vi’s for
i ̸= 57 are assigned to S0 as listed Table 7. Addi-
tionally, we assign more V1-variables depending on
β as follows.

S0[0][53] = v53 if β5 = 0;
S0[0][48] = v48 if β4 = 0;
S0[0][31] = v31 if β3 = 0;
S0[0][26] = v26 if β2 = 0;
S0[1][4] = v4 if β1 = 0;
S0[1][2] = v2 if β0 = 0.

(11)

The other bits of S0 are constants. (11) implies
that Pattern-C contains 64 different assignments of
cube variables depending on β ∈ {0, 1}6. Table 8
lists 13 conditions of Pattern-C with β for satisfying
Requirement 3. Then, we get Lemma 3.

8

Table 7: Assignment of V1-variables for Pattern-C
Setting Setting

S0[1][63] = v63 S0[0][30] = v30
S0[0][62] = v62 S0[0][29] = v29
S0[0][61] = S0[1][61] = v61 S0[0][28] = v28
S0[1][60] = v60 S0[0][27] = v27
S0[0][59] = v59 S0[1][26] = v26
S0[1][58] = v58 S0[0][25] = v25
S0[0][56] = S0[1][56] = v56 S0[1][24] = v24
S0[0][55] = v55 S0[0][23] = v23
S0[0][54] = S0[1][54] = v54 S0[0][22] = v22
S0[1][53] = v53 S0[0][21] = v21
S0[0][52] = v52 S0[0][20] = v20
S0[0][51] = S0[1][51] = v51 S0[1][19] = v19
S0[0][50] = v50 S0[1][18] = v18
S0[0][49] = v49 S0[0][17] = v17
S0[1][48] = v48 S0[0][16] = v16
S0[1][47] = v47 S0[0][15] = v15
S0[1][46] = v46 S0[0][14] = v14
S0[0][45] = v45 S0[0][13] = v13
S0[0][44] = v44 S0[0][12] = v12
S0[0][43] = v43 S0[0][11] = v11
S0[0][42] = v42 S0[0][10] = S0[1][10] = v10
S0[1][41] = v41 S0[0][9] = S0[1][9] = v9
S0[1][40] = v40 S0[0][8] = v8
S0[0][39] = v39 S0[0][7] = v7
S0[0][38] = v38 S0[0][6] = v6
S0[0][37] = v37 S0[0][5] = v5
S0[0][36] = v36 S0[0][4] = v4
S0[0][35] = v35 S0[0][3] = S0[1][3] = v3
S0[0][34] = v34 S0[0][2] = v2
S0[0][33] = v33 S0[0][1] = v1
S0[0][32] = S0[1][32] = v32 S0[0][0] = v0
S0[1][31] = v31

Table 8: 13 Conditions of Pattern-C to satisfy Re-
quirement 3

Conditions Count

S0[3][61] = S0[4][61] 1
S0[2][57] = S0[3][57] = S0[4][57] = 1 3
S0[2][56] = S0[3][56] = S0[4][56] 2
S0[2][54] = S0[3][54] 1
S0[2][51] = S0[3][51] = S0[4][51] 2
S0[2][32] = S0[3][32] 1
S0[3][10] = S0[4][10] 1
S0[3][9] = S0[4][9] 1
S0[3][3] = S0[4][3] 1

Lemma 3. Under the setting of Pattern-C with
a guessed value β ∈ {0, 1}6, the state S2 does not
have any quadratic term v57vi for vi ∈ V1 if and
only if β is correct and all conditions in Table 8 are
true.

Proof. We concentrate on showing that a quadratic
term v57vi for vi ∈ V1 appears on S1.5 if all the
conditions on column #57 of S0 are true and β is
wrong. When all the conditions on column #57 of
S0 are true, by (1), S0.5[2][57] contains v57 only as
a linear term and the other bits of the column #57
of S0.5 are constant. After the pL layer, S1[2][57],
S1[2][56] and S1[2][51] contain v57 as a linear term.

Similarly to the proof of Lemma 2, we can show
that v57v2 appears on the column #56 of S1.5 when
β0 ̸= S0[3][2] ⊕ S0[4][2], that v57v4 appears on the
column #51 of S1.5 when β1 ̸= S0[3][4] ⊕ S0[4][4],
that v57v26 appears on the column #51 of S1.5 when
β2 ̸= S0[2][26] ⊕ S0[3][26], that v57v31 appears on
the column #56 of S1.5 when β3 ̸= S0[2][31] ⊕
S0[3][31], that v57v48 appears on the column #51
of S1.5 when β4 ̸= S0[2][48] ⊕ S0[3][48], and that
v57v53 appears on the column #56 of S1.5 when
β5 ̸= S0[2][53]⊕ S0[3][53].

The remaining of the proof is similar to that of
Lemma 1.

3.4 Pattern-D

We assume that γ = (γ4, ..., γ0) ∈ {0, 1}5 is a
guessed value for (S0[2][47] ⊕ S0[3][47], S0[2][46] ⊕
S0[3][46], S0[2][25] ⊕ S0[3][25], S0[2][24] ⊕ S0[3][24],
S0[3][2]⊕S0[4][2]). Pattern-D has 64 cube variables
vi for 0 ≤ i ≤ 63. v50 is the only V0-variable and
assigned as S0[0][50] = v50 and S0[1][50] = v50 ⊕ 1.
V1-variables are assigned to S0 as listed in Table 9.
Additionally, we assign more V1-variables depend-
ing on γ as follows.

S0[0][47] = v47 if γ4 = 0;
S0[0][46] = v46 if γ3 = 0;
S0[0][25] = v25 if γ2 = 0;
S0[0][24] = v24 if γ1 = 0;
S0[1][2] = v2 if γ0 = 0.

(12)

The other bits of S0 are constants. (12) implies
that Pattern-D contains 32 different assignments of
cube variables depending on γ ∈ {0, 1}5. Table 10
lists 14 conditions of Pattern-D with γ for satisfying
Requirement 3. Then, we get Lemma 4.

Lemma 4. Under the setting of Pattern-D with a
guessed value γ ∈ {0, 1}5, the state of S2 does not
have any v50vi for vi ∈ V1 if and only if γ is correct
and all conditions in Table 10 are true.

9

Table 9: Assignment of V1-variables for Pattern-D
Setting Setting

S0[1][63] = v63 S0[0][30] = v30
S0[0][62] = v62 S0[0][29] = v29
S0[0][61] = S0[1][61] = v61 S0[0][28] = v28
S0[0][60] = S0[1][60] = v60 S0[0][27] = v27
S0[0][59] = S0[1][59] = v59 S0[0][26] = v26
S0[0][58] = v58 S0[1][25] = v25
S0[0][57] = v57 S0[1][24] = v24
S0[1][56] = v56 S0[0][23] = v23
S0[0][55] = v55 S0[0][22] = v22
S0[0][54] = S0[1][54] = v54 S0[0][21] = v21
S0[1][53] = v53 S0[0][20] = v20
S0[0][52] = v52 S0[0][19] = S0[1][19] = v19
S0[1][51] = v51 S0[0][18] = v18
S0[0][49] = S0[1][49] = v49 S0[1][17] = v17
S0[0][48] = v48 S0[0][16] = v16
S0[1][47] = v47 S0[0][15] = v15
S0[1][46] = v46 S0[0][14] = v14
S0[0][45] = v45 S0[0][13] = v13
S0[0][44] = S0[1][44] = v44 S0[1][12] = v12
S0[0][43] = v43 S0[1][11] = v11
S0[0][42] = v42 S0[0][10] = v10
S0[0][41] = S0[1][41] = v41 S0[0][9] = v9
S0[1][40] = v40 S0[0][8] = v8
S0[1][39] = v39 S0[0][7] = v7
S0[0][38] = v38 S0[0][6] = v6
S0[0][37] = v37 S0[0][5] = v5
S0[0][36] = v36 S0[0][4] = v4
S0[0][35] = v35 S0[0][3] = S0[1][3] = v3
S0[1][34] = v34 S0[0][2] = S0[1][2] = v2
S0[1][33] = v33 S0[0][1] = v1
S0[0][32] = v32 S0[0][0] = v0
S0[0][31] = v31

Table 10: 14 Conditions of Pattern-D to satisfy Re-
quirement 3

Conditions Count

S0[3][61] = S0[4][61] 1
S0[3][60] = S0[4][60] 1
S0[3][59] = S0[4][59] 1
S0[3][54] = S0[4][54] 1
S0[2][50] = S0[3][50] = S0[4][50] = 1 3
S0[2][49] = S0[3][49] = S0[4][49] 2
S0[2][44] = S0[3][44] = S0[4][44] 2
S0[2][41] = S0[3][41] 1
S0[2][19] = S0[3][19] 1
S0[3][3] = S0[4][3] 1

Proof. We concentrate on showing that a quadratic
term v50vi for vi ∈ V1 appears on S1.5 if all the
conditions on column #50 of S0 are true and γ is
wrong. When all the conditions on column #50 of
S0 are true, by (1), S0.5[2][50] contains v50 only as
a linear term and the other bits of the column #50
of S0.5 are constant. After the pL layer, S1[2][50],
S1[2][49] and S1[2][44] contain v50 as a linear term.

Similarly to the proof of Lemma 2, we can show
that v50v2 appears on the column #49 of S1.5 when
γ0 ̸= S0[3][2]⊕ S0[4][2], that v50v24 appears on the
column #49 of S1.5 when γ1 ̸= S0[2][24]⊕S0[3][24],
that v50v25 appears on the column #50 of S1.5 when
γ2 ̸= S0[2][25]⊕S0[3][25], that v50v46 appears on the
column #49 of S1.5 when γ3 ̸= S0[2][46]⊕S0[3][46],
and that v50v47 appears on the column #50 of S1.5

when γ4 ̸= S0[2][47]⊕ S0[3][47].
The remaining of the proof is similar to that of

Lemma 1.

3.5 Pattern-E

We assume that δ = (δ7, ..., δ0) ∈ {0, 1}8 is a
guessed value for (S0[2][34] ⊕ S0[3][34], S0[2][29] ⊕
S0[3][29], S0[3][13] ⊕ S0[4][13], S0[3][12] ⊕ S0[4][12],
S0[3][7] ⊕ S0[4][7], S0[3][6] ⊕ S0[4][6], S0[3][5] ⊕
S0[4][5], S0[3][0]⊕ S0[4][0]). Pattern-E has 64 cube
variables vi for 0 ≤ i ≤ 63. v60 is the only
V0-variable and assigned as S0[0][60] = v60 and
S0[1][60] = v60 ⊕ 1. V1-variables are assigned to
S0 as listed in Table 11. Additionally, we assign
more V1-variables depending on δ as follows.

S0[0][34] = v34 if δ7 = 0;
S0[0][29] = v29 if δ6 = 0;
S0[1][13] = v13 if δ5 = 0;
S0[1][12] = v12 if δ4 = 0;
S0[1][7] = v7 if δ3 = 0;
S0[1][6] = v6 if δ2 = 0;
S0[1][5] = v5 if δ1 = 0;
S0[1][0] = v0 if δ0 = 0.

(13)

The other bits of S0 are constants. (13) implies
that Pattern-E contains 256 different assignments
of cube variables depending on δ ∈ {0, 1}8. Ta-
ble 12 lists 11 conditions of Pattern-E with δ for
satisfying Requirement 3. Then, we get Lemma 5.

Lemma 5. Under the setting of Pattern-E with a
guessed value δ ∈ {0, 1}8, the state of S2 does not
have any v60vi for vi ∈ V1 if and only if δ is correct
and all conditions in Table 12 are true.

Proof. We concentrate on showing that a quadratic
term v60vi for vi ∈ V1 appears on S1.5 if all the
conditions on column #60 of S0 are true and δ is
wrong. When all the conditions on column #60 of

10

Table 11: Assignment of V1-variables for Pattern-E

Setting Setting

S0[1][63] = v63 S0[0][30] = v30
S0[0][62] = v62 S0[1][29] = v29
S0[1][61] = v61 S0[0][28] = v28
S0[0][59] = S0[1][59] = v59 S0[1][27] = v27
S0[0][58] = v58 S0[0][26] = v26
S0[0][57] = S0[1][57] = v57 S0[0][25] = v25
S0[0][56] = S0[1][56] = v56 S0[0][24] = v24
S0[0][55] = v55 S0[0][23] = v23
S0[0][54] = S0[1][54] = v54 S0[1][22] = v22
S0[0][53] = v53 S0[1][21] = v21
S0[0][52] = v52 S0[0][20] = v20
S0[0][51] = S0[1][51] = v51 S0[0][19] = v19
S0[1][50] = v50 S0[0][18] = v18
S0[1][49] = v49 S0[0][17] = v17
S0[0][48] = v48 S0[0][16] = v16
S0[0][47] = v47 S0[0][15] = v15
S0[0][46] = v46 S0[0][14] = v14
S0[0][45] = v45 S0[0][13] = v13
S0[1][44] = v44 S0[0][12] = v12
S0[1][43] = v43 S0[0][11] = v11
S0[0][42] = v42 S0[0][10] = v10
S0[0][41] = v41 S0[0][9] = v9
S0[0][40] = v40 S0[0][8] = v8
S0[0][39] = v39 S0[0][7] = S0[1][7] = v7
S0[0][38] = v38 S0[0][6] = v6
S0[0][37] = v37 S0[0][5] = v5
S0[0][36] = v36 S0[0][4] = v4
S0[0][35] = S0[1][35] = v35 S0[0][3] = v3
S0[1][34] = v34 S0[1][2] = v2
S0[0][33] = v33 S0[0][1] = v1
S0[0][32] = v32 S0[0][0] = v0
S0[0][31] = v31

Table 12: 11 Conditions of Pattern-E to satisfy Re-
quirement 3

Conditions Count

S0[2][60] = S0[3][60] = S0[4][60] = 1 3
S0[2][59] = S0[3][59] = S0[4][59] 2
S0[2][57] = S0[3][57] 1
S0[2][56] = S0[3][56] 1
S0[2][54] = S0[3][54] = S0[4][54] 2
S0[2][51] = S0[3][51] 1
S0[2][35] = S0[3][35] 1

S0 are true, by (1), S0.5[2][60] contains v60 only as
a linear term and the other bits of the column #60
of S0.5 are constant. After the pL layer, S1[2][60],
S1[2][59] and S1[2][54] contain v60 as a linear term.

Similarly to the proof of Lemma 2, we can show
that v60v0 appears on the column #54 of S1.5 when
δ0 ̸= S0[3][0] ⊕ S0[4][0], that v60v5 appears on the
column #59 of S1.5 when δ1 ̸= S0[3][5] ⊕ S0[4][5],
that v60v6 appears on the column #60 of S1.5 when
δ2 ̸= S0[3][6] ⊕ S0[4][6], that v60v7 appears on the
column #54 of S1.5 when δ3 ̸= S0[3][7] ⊕ S0[4][7],
that v60v12 appears on the column #59 of S1.5 when
δ4 ̸= S0[3][12]⊕S0[4][12], that v60v13 appears on the
column #60 of S1.5 when δ5 ̸= S0[3][13]⊕S0[4][13],
that v60v29 appears on the column #54 of S1.5 when
δ6 ̸= S0[2][29] ⊕ S0[3][29], and that v60v34 appears
on the column #59 of S1.5 when δ7 ̸= S0[2][34] ⊕
S0[3][34].

The remaining of the proof is similar to that of
Lemma 1.

3.6 A Family of Patterns Pattern-F

We denote a cube variable assigned to bits of the
column #i for 0 ≤ i ≤ 63 of the initial state S0 by
vi. We define a family of patterns, {Pattern-F(t)}
for t ∈ {0, 1, ..., 63}. Pattern-F(t) has 40 cube vari-
ables. vt is the only V0-variable of Pattern-F(t) and
assigned as S0[0][t] = vt. We define the set V1(t) of
the V1-variables of Pattern-F(t) as

V1(t) = {vi | i ∈ It ∪ Jt},

where

I0 = {1, 4, 5, 6, 8, 12, 14, 15, 16, 21, 23, 26, 27,
30, 34, 37, 38, 40, 48, 49, 50, 56, 57, 58,

59, 60, 63},
It = {a+ t mod 64 | a ∈ I0},
J0 = {7, 17, 19, 28, 32, 35, 41, 43, 46, 52, 55,

62}, and

Jt = {a+ t mod 64 | a ∈ J0}.

Then, 39 V1-variables are assigned as S0[0][i] = vi
for vi ∈ V1(t). The other bits of S0 are constants.
Table 13 lists 13 conditions of Pattern-F(t) for sat-
isfying Requirement 3. Then, we get Lemma 6.

Lemma 6. For a given t ∈ {0, 1, ..., 63}, under the
setting of Pattern-F(t), the state S2 does not have
any vtvi for i ∈ V1(t) if and only if all conditions in
Table 13 are true.

Proof. We assume that all conditions in Table 13
are true. Then, by the setting of S0[0][t] = vt
and the equations (1) of the pS layer, S0.5[0][t],

11

Table 13: 13 conditions of Pattern-F(t) to satisfy
Requirement 3

Conditions Count

S0[1][t] = 0 1
S0[3][t+ 62]⊕ S0[4][t+ 62] = 1 1
S0[3][t+ 55]⊕ S0[4][t+ 55] = 1 1
S0[1][t+ 52] = 0 1
S0[3][t+ 46]⊕ S0[4][t+ 46] = 1 1
S0[1][t+ 43] = 0 1
S0[1][t+ 41] = 0 1
S0[3][t+ 35]⊕ S0[4][t+ 35] = 1 1
S0[1][t+ 32] = 0 1
S0[1][t+ 28] = 1 1
S0[1][t+ 19] = 1 1
S0[3][t+ 17]⊕ S0[4][t+ 17] = 1 1
S0[1][t+ 7] = 0 1

S0.5[1][t], and S0.5[3][t] contain vt only as a linear
term. After the pL layer, the only state bits S1[0][t],
S1[1][t], S1[3][t], S1[1][t+ 3], S1[1][t+ 25], S1[0][t+
36], S1[0][t+45], S1[3][t+47], and S1[3][t+54] con-
tain vt as a linear term, too. Likewise, it is easy
to see that the other bits in columns #t, #(t+ 3),
#(t + 25), #(t + 36), #(t + 45), #(t + 47), and
#(t+54) are constants. Therefore, by (1), no mul-
tiplication between vt and vi for any i ∈ It ∪ Jt
appears on S1.5 and S2.

Next, we consider the case that not all condi-
tions in Table 13 are true. It can be split into two
subcases as follows:

• Subcase 1: If any of the conditions on the
column #t of S0 is false, then vtvi for some
i ∈ It appears on S2. This is proved similarly
to that given in Appendix A.1.

• Subcase 2: If all conditions on the column #t
of S0 are true, but any of the other conditions
is false, then vtvj for some j ∈ Jt appears on
S2. This is proved similarly to that given in
Appendix A.2.

Therefore, the proof is completed.

Additionally, we define Pattern-F(t,G) as the
cube pattern having vt as the only V0-variable and
{vi}i∈It∪G as V1-variables, where G ⊂ Jt. Lemma
6 also implies that Pattern-F(t,G) satisfies Require-
ment 3 if and only if all conditions of the columns
#j (j ∈ G) of the state S0 in Table 13 are true.

4 Conditional Cube Attack on
Ascon-128a

We assume that the AD A is empty. Let S0 =
S0[0]∥ · · · ∥S0[4] be the input state to the As-
con permutation for the first block of plaintext
in the encryption phase. Because of the rate r =
128 for Ascon-128a, we can control or know val-
ues of S0[0]∥S0[1] by choosing the first plaintext
blocks and obtaining the corresponding ciphertext
blocks, while S0[2]∥S0[3]∥S0[4] is secret and uncon-
trollable, and depends on the nonce N . We show
how the state-recovery attack in Section 4.1 re-
covers S0[2]∥S0[3]∥S0[4] for (⋆, 7, ⋆)-round Ascon-
128a, and how the key recovery attack in Section
4.2 recovers the secret key K for (⋆, 7, ⋆)-round As-
con-128a based on the knowledge of the recovered
state S0.

4.1 State-recovery Attack

Our state-recovery attack on Ascon-128a recovers
192 bits S0[2]∥S0[3]∥S0[4] of the state S0 by using
Pattern-A, Pattern-B, Pattern-C, Pattern-D, and
Pattern-E in this order. We construct cubes based
on them. Since we have λ = 1 and µ = 63 for
each pattern, we have n = 5 and so, by Theorem 1,
the cube-sums corresponding to the patterns after
Round6 of Ascon permutation would be zero if all
conditions for them are satisfied. Figure 5 shows
how we use these patterns. The conditions which
are highlighted with gray color were already defined
from the previous pattern. We expect each of the
conditions which are highlighted with a black-line
box be satisfied with probability 1

2 . In total, 74
different conditions should be satisfied for success
of the attack.

In order to make a cube, for the same nonce N ,
we choose the first plaintext blocks such that the
cube variables on S0[0]∥S0[1] are activated and the
other bits on S0[0]∥S0[1] are constants. The sec-
ond plaintext blocks can be any values. Then, we
check whether the cube-sum is zero by using the
knowledge of plaintexts and ciphertexts in the sec-
ond block. Namely, we use online cubes and online
cube-sum computations.

The procedure of our state-recovery attack on
(⋆, 7, ⋆)-round Ascon-128a consists of five steps as
depicted in Figure 6, and is described as follows.

Step 1. We make a cube for Pattern-A and check
whether its cube-sum on S7[0]∥S7[1] is zero, where
S7 is the state right after Round6 and the first
two rows of the output of p7 in the first block of
the encryption phase. We repeat this process until

12

S0[0]

S0[1]

S0[2]

S0[3]

S0[4]

63 0

0

S0.5[0]

S0.5[1]

S0.5[2]

S0.5[3]

S0.5[4]

63

0

S1[0]

S1[1]

S1[2]

S1[3]

S1[4]

63

Figure 3: Propagation of the V0-variable v0 and V1-variables in Pattern-F(0). The bits influenced by v0
are marked in red; vi’s for i ∈ I0 are marked in yellow; vi’s for i ∈ J0 are marked in green; the bits
influenced by V1-variables and not by v0 are marked in gray; The bits marked in white are constants.

064||K

IV ||K||N

192

320

P1

0191||1

C1 P2||1 C2

p12

K||064 K

T

128
127

S0[2]
S0[3]
S0[4]

128 128

192 128192

S0[0]
S0[1]

p12 p7

128

192

Figure 4: State recovery attack on (⋆, 7, ⋆)-round
Ascon-128a

a zero cube-sum is found, by choosing the nonce
N randomly. Since the all the 38 conditions in
Table 4 hold with the probability 2−38, on average,
we expect 238 iterations for it. With each N ,
we choose 264 two-block plaintexts of the form
P = P1∥P2 where P1’s are used for constructing
a cube and (P2, C2)’s are used for evaluating the
cube-sum. In particular, to minimize the data
complexity, we choose the last plaintext block P2’s
with Len(P2) = 127. It implies that we can check
the cube-sum for 127 bits at the output of p7.
We expect that Step 1 require 2102 (=238 × 264)
plaintexts, while the chance that false conditions
make such a cube-sum to be zero is negligible. If
we find a zero cube-sum, we go to Step 2 together
with the corresponding nonce N , which we denote
by Nzero.

Step 2. We make cubes for Pattern-B with Nzero.

Pattern-A and Pattern-B share 8 conditions,
highlighted with gray color in Pattern-B column in
Figure 5. Guessing α ∈ {0, 1}7, we try at most 27

cubes. If we find a zero cube-sum on S7[0]∥S7[1],
we go to Step 3. Otherwise, we go to Step 1. So,
Step 2 requires at most 271 (=27 × 264) two-block
plaintexts. Since Step 1 ensures those common
conditions are true, we only need to consider the
remaining 4 conditions for Pattern-B. Therefore,
we go to Step 3 with the probability of 2−4.

Step 3. We make cubes for Pattern-C with Nzero.
Pattern-C shares 10 conditions with previous pat-
terns, highlighted with gray color in Pattern-C col-
umn in Figure 5. Letting (β5, β3, β0) = (α5, α3, α0)
and guessing (β4, β2, β1) ∈ {0, 1}3, we try at most
23 cubes. If we find a zero cube-sum on S7[0]∥S7[1],
we go to Step 4. Otherwise, we go to Step 1. So,
Step 3 requires at most 267 (=23 × 264) two-block
plaintexts. Since Step 2 ensures those common
conditions are true, we only need to consider the
remaining 3 conditions for Pattern-C. Therefore,
we go to Step 4 with the probability of 2−3.

Step 4. We make cubes for Pattern-D with
zero. Pattern-D shares 7 conditions with previous
patterns, highlighted with gray color in Pattern-D
column in Figure 5. Letting γ0 = β0 and guessing
(γ4, ..., γ1) ∈ {0, 1}4, we try at most 24 cubes. If we
find a zero cube-sum on S7[0]∥S7[1], we go to Step
5. Otherwise, we go to Step 1. So, Step 4 requires
at most 268 (=24 × 264) two-block plaintexts.
Since Step 3 ensures those common conditions are

13

Pattern-A
(38 conditions)

63: S0[2][63] = S0[3][63] = S0[4][63] = 0

62:

61:

60:

59:

58:

57:

56:

55:

54:

53:

52:

51: S0[4][51] = 0

50:

49:

48:

47:

46:

45:

44:

43:

42:

41:

40:

39:

38:

37:

36:

35:

34:

33:

32:

31:

30:

29:

28:

27:

26:

25:

24:

23:

22:

21:

20:

19:

18:

17:

16:

15:

14:

13:

12:

11:

10:

9:

8:

7:

6:

5:

4:

3:

2:

1:

0:

S0[2][62] = S0[3][62] = S0[4][62]

S0[3][61] = S0[4][61]

S0[2][60] = S0[3][60]

S0[2][59] = S0[3][59]

S0[2][57] = S0[3][57] = S0[4][57]

S0[2][54] = S0[3][54] = S0[4][54]

S0[3][52] = S0[4][52]

S0[3][45] = S0[4][45]

S0[2][44] = S0[3][44] = S0[4][44] = 0

S0[4][42] = 0

S0[2][41] = S0[3][41]

S0[4][40] = 0

S0[2][38] = S0[3][38]

S0[2][37] = S0[3][37]

S0[2][35] = S0[3][35] = S0[4][35] = 0

S0[2][32] = S0[3][32]

S0[4][21] = 0

S0[2][19] = S0[3][19]

S0[3][16] = S0[4][16]

S0[3][15] = S0[4][15]

S0[4][12] = 0

S0[4][6] = 0

S0[3][9] = S0[4][9]

S0[3][8] = S0[4][8]

S0[3][3] = S0[4][3]

S0[2][10] = S0[3][10] = S0[4][10]

(19 conditions)

Pattern-B

S0[2][56] = S0[3][56] = S0[4][56]

Pattern-C
(19 conditions)

Pattern-D
(19 conditions)

S0[2][50] = S0[3][50] = S0[4][50] = 1

Pattern-E
(19 conditions)

S0[2][51] = S0[3][51] = S0[4][51]

S0[3][60] = S0[4][60]

S0[3][59] = S0[4][59]

S0[2][49] = S0[3][49] = S0[4][49]

S0[2][62] = S0[3][62] = S0[4][62] = 1

S0[3][61] = S0[4][61] S0[3][61] = S0[4][61]S0[2][61] = S0[3][61] = S0[4][61]

S0[2][60] = S0[3][60] = S0[4][60] = 1

S0[2][59] = S0[3][59]

S0[2][56] = S0[3][56] = S0[4][56]

S0[2][54] = S0[3][54] S0[3][54] = S0[4][54]

S0[2][59] = S0[3][59] = S0[4][59]

S0[2][57] = S0[3][57]

S0[2][56] = S0[3][56]

S0[2][54] = S0[3][54] = S0[4][54]

S0[2][51] = S0[3][51]

S0[2][37] = S0[3][37]

S0[2][32] = S0[3][32]

S0[2][41] = S0[3][41]

S0[2][44] = S0[3][44] = S0[4][44]

S0[2][35] = S0[3][35]

S0[2][19] = S0[3][19]

S0[3][15] = S0[4][15]

S0[3][9] = S0[4][9]

S0[3][8] = S0[4][8]

S0[3][10] = S0[4][10]

S0[3][9] = S0[4][9]

S0[3][3] = S0[4][3] S0[3][3] = S0[4][3]

S0[2][57] = S0[3][57] = S0[4][57] = 1

Figure 5: Five patterns for the state recovery attack (74 different conditions in total)

14

Find N such that the cube-sum for Pattern-A is zero.

Find α such that the cube-sum for Pattern-B is zero.

Find β such that the cube-sum for Pattern-C is zero.

Succeed (st1 = α)

Find γ such that the cube-sum for Pattern-D is zero.

Succeed (st2 = (β, st1))

Find δ such that the cube-sum for Pattern-E is zero.

Succeed (st3 = (γ, st2))

Succeed

Start

Return: 74-bit secret information of S0

With Prob. 2−3

With Prob. 2−4

With Prob. 2−7

With Prob. 2−1

Step 1

Step 2

Step 3

Step 4

Step 5

Fail

Fail

Fail

Fail

Figure 6: Procedure of the state recovery attack on
Ascon-128a

true, we only need to consider the remaining 7
conditions for Pattern-D. Therefore, we go to Step
5 with the probability of 2−7.

Step 5. We make cubes for Pattern-E with
zero. Pattern-E shares 10 conditions with pre-
vious patterns, highlighted with gray color in
Pattern-E column in Figure 5. Letting δ3 = α1

and guessing (δ7, ..., δ4, δ2, ..., δ0) ∈ {0, 1}7, we try
at most 27 cubes. If we find a zero cube-sum on
S7[0]∥S7[1], we return 74 bits of secret informa-
tion of S0[2]∥S0[3]∥S0[4] because the number of
essentially considered conditions from Pattern-A
to Pattern-E is 53 and the number of essentially
guessed bits Step 2 to Step 5 is 21. Otherwise,
we go to Step 1. So, Step 5 requires at most 271

(=27 × 264) two-block plaintexts. Since Step 4
ensures those common conditions are true, we only
need to consider the one remaining condition for
Pattern-E. Therefore, we terminate this procedure
and get the 74-bit information of S0[2]∥S0[3]∥S0[4]
with the probability of 2−1.

Note that the nonce N is randomly chosen for
different cubes. Therefore, this attack requires the
data complexity of 2117 two-block plaintexts be-
cause Step 1 requires the data complexity of 2102

and is repeated 215(= 24 × 23 × 27 × 2). After re-
covering 74 bits of S0[2]∥S0[3]∥S0[4], we recover the
remaining 118 bits of S0[2]∥S0[3]∥S0[4] through an
exhaustive search by using a plaintext P = P1∥P2

and the corresponding ciphertext C = C1∥C2. Con-
sidering the discussion about time complexity in
Section 2.3, we estimate its time complexity as
2116.2(≈ 2118 × 7/24).

4.2 Key Recovery Attack

We assume that the full information of the state
right after the initialization phase is recovered by
the state-recovery attack in Section 4.1 and that
we reuse the nonce value Nzero such that the re-
covered state information is fixed during the key
recovery attack. The attack consists of online and
offline phases, and requires the memory complexity
of 232 256-bit values. Since the state-recovery at-
tack must be preceded for the key recovery attack
and the complexity of the former largely dominates
that of the latter both in data and time, we do
not specifically explain any cost except memory in
Sections 4.2.1 and 4.2.2.

128

64

X0

Yi

Z0

128

K

p12

K

128

Vj

P1 C1 P2||1 C2

127

S0[2]
S0[3]
S0[4]

128

192

S0[0]
S0[1]

p7

128

128

192

Ti

Wj

Figure 7: Key recovery attack on (⋆, 7, ⋆)-round
Ascon-128a

4.2.1 Online Phase

Let X∥Y ∥Z be the state right after the encryption
phase, where X and Y are 128 bits and Z is 64
bits, as you see Figure 7. We construct a two-block
plaintext as follows. The first 128-bit block P1 is
randomly chosen. Since we know the state value
after the initialization phase, we can use P1 to get
the output state of the permutation p7 by offline
computation. P2 is chosen as the 127-bit value for
which the padded last block P2∥1 is XORed with
the first 128 bits of the output state of the permu-
tation p7 to fix the most significant 127 bits of X
to a certain value. After this computation, (X,Z)
is fixed to a certain 192-bit value (X0, Z0) with the
probability of 2−65. At cost of 297 operations of
p7, we can collect 232 X0∥Y ∥Z0’s. We denote them
by {X0∥Yi∥Z0}1≤i≤232 . Then, by using the plain-
texts P1∥P2’s corresponding to {X0∥Yi∥Z0}1≤i≤232

as an online query where the nonce is fixed, we get
{(X0∥Yi∥Z0, Ti)}1≤i≤232 , where Ti is the tag corre-
sponding to X0∥Yi∥Z0. Essentially, we only need to
store {(Yi, Ti)}1≤i≤232 and (X0, Z0) in a table Q.

4.2.2 Offline Phase

Let V be the 128-bit value such that V = Y ⊕K for
the 128-bit secret key K. Let W be the 64-bit value

15

such that T = W⊕K for the tag T by Ascon-128a.
As you see Figure 7, V and W are contained in the
input and output states of the Ascon permutation
p12 in the finalization phase.

Given X0 and Z0 which were computed from the
online phase, we randomly choose 296 128-bit values
of Vj to get the corresponding Wj ’s by the offline
computation of p12(X0∥Vj∥Z0). Since we have 232

tuples of (Yi, Ti)’s and tuples of 296 (Vj ,Wj) and
(14) holds with the probability of 2−128, we expect
to get one match.

Yi ⊕ Ti = Vj ⊕Wj . (14)

Then, we expect to obtain the right key value for
K by computing the form of Yi ⊕ Vj . We can run
this process without any additional memory.

4.2.3 Complexity

We should consider that the full-state-recovery at-
tack must precede the key recovery attack. There-
fore, we estimate the total cost for the key recov-
ery attack on the (⋆, 7, ⋆)-round Ascon-128a as
the data complexity of 2117, the time complexity
of 2116.2, and the memory complexity of 232.

5 Conditional Cube Attack on
Ascon-128 and Ascon-80pq

We assume that the AD A is empty. Let S0 =
S0[0]∥ · · · ∥S0[4] be the input state to the As-
con permutation for the first block of plaintext in
the encryption phase. Because of the rate r = 64
for Ascon-128 and Ascon-80pq, we can control or
know values of S0[0] by choosing the first plaintext
blocks and obtaining the corresponding ciphertext
blocks, while S0[1]∥S0[2]∥S0[3]∥S0[4] is secret and
uncontrollable, and only depends on the nonce N
to change. We show how the state-recovery attack
in Section 5.1 recovers S0[1]∥S0[2]∥S0[3]∥S0[4] for
(⋆, 6, ⋆)-round Ascon-128 and Ascon-80pq, and
how the key recovery attack in Section 4.2 recovers
the secret keys for (⋆, 6, ⋆)-round Ascon-128 and
Ascon-80pq based on the knowledge of the recov-
ered state S0.

5.1 State-recovery attack

Our state-recovery attack on Ascon-128 and As-
con-80pq recovers 256 bits S0[1]∥S0[2]∥S0[3]∥S0[4]
of S0 by using {Pattern-F(t)} described in Section
3.6. We construct cubes based on them. Each of
them uses λ = 1 and µ = 31. So, n = 4 and by The-
orem 1, the cube-sums corresponding to the pat-

terns after Round5 of Ascon permutation would
be zero if all conditions for them are satisfied.

In order to make a cube, for the same nonce N ,
we choose the first plaintext blocks such that the
cube variables on S0[0] are activated and the other
bits on S0[0] are constants. The second plaintext
blocks can be any values. Then, we check wether
the cube-sum is zero by using the knowledge of
plaintexts and ciphertexts in the second block.

The procedure of the state-recovery attack on
(⋆, 6, ⋆)-round Ascon-128 or Ascon-80pq consists
of four steps and is described as follows.

Step 1. We use Pattern-F(0,G) by defining
G = {7, 17, 19, 28} ⊂ J0. We choose a nonce N
randomly, make a cube for Pattern-F(0,G), and
check whether its cube-sum on S6[0] is zero, where
S6 is the state right after Round5 and the first
row of the output of p6 in the first block of the
encryption phase. We repeat this process until
a zero cube-sum is found, by choosing the nonce
N randomly. Since the five conditions related to
v0, v7, v17, v19 and v28 in Table 13 hold with the
probability of 2−5, on average, we expect 25 itera-
tions for it. With each N , we choose 232 two-block
plaintexts of the form P = P1∥P2 where P1’s are
used for constructing a cube and (P2, C2)’s are
used for evaluating the cube-sum. So, we expect
Step 1 require 237(= 25× 232) plaintexts, while the
chance that false conditions mask such a cube-sum
to be zero is negligible. If we find a zero cube-sum,
we go to Step 2 together with the corresponding
nonce Nzero.

Step 2. We consider a set A = {7, 17, 19, 28} and
an index i0 = 28, and do the followings.

We make a cube for Pattern-F(0,G) with Nzero

by redefining G such that the element i0 is replaced
with any other element in J0 \ A and by choosing
232 two-block plaintexts similarly to Step 1. If the
cube-sum on S6[0] is zero, we guess the condition
corresponding to i0 is true. Otherwise, we guess
the condition corresponding to i0 is wrong.

We repeat the above process by updating
A ← A ∪ {i0} until we get information of all
conditions corresponding to J0. Since we need 8
iterations, we expect Step 2 require 235(= 8× 232)
plaintexts. At the end of Step 2, we have 13-bit
information of S0[1]∥S0[2]∥S0[3]∥S0[4], and go to
Step 3.

Step 3. In Step 3, we use various Pattern-F(t,G)
with t ̸= 0. We should take an index t such that
S0[1][t] = 0 which is necessary for the application
of Pattern-F(t,G). For example, we can take t = 7,
32, 41, 43 or 52 because we have S0[1][i] = 0 for

16

i = 7, 32, 41, 43, 52 from Step 2.

Then, with an index t such that S0[1][t] = 0, we
define G as the set of any four elements randomly
selected from Jt, make a cube for Pattern-F(t,G),
and check whether its cube-sum on S6[0] is zero.

If the cube-sum is nonzero, we try the above pro-
cess by selecting any other four elements from Jt
to redefine G. Since the number of ways to choose
4 out of 12 indices is

(
12
4

)
= 495, we should repeat

the above process at most 495 times for finding a
zero cube-sum. However, since a cube has a zero
cube-sum with the high probability of 92.7%, we
expect the number of iterations to average 16. It
requires 236 = 24 × 232 plaintexts.

If we do not find any zero cube-sum, we apply a
new cube for Pattern-F(t,G) with a different t to
the above process. If a zero-sum is found, we go to
Step 4 together with t.

Step 4. Step 4 is similar to Step 2. Let A = G. We
select an index i0 from A, and do the followings.

We make a cube for Pattern-F(t,G) with Nzero

by redefining G such that the element i0 is replaced
with any other element in Jt\A. If the cube-sum on
S6[0] is zero, we guess the condition corresponding
to i0 is true. Otherwise, we guess the condition
corresponding to i0 is wrong.

We repeat the above process by updating A ←
A ∪ {i0} until we get information of all conditions
corresponding to Jt. Since we need 8 iterations, we
expect it require 235(= 8× 232) plaintexts.

We repeat these Steps 3 and 4 31 times to collect
secret information of (S0[1], S0[3]⊕ S0[4]).

We expect around 32 patterns among 64 pat-
terns in {Pattern-F(t)} be available because the
condition S0[1][t] = 0 corresponding to the cube
variable vt is true with the probability of 2−1.
Our experiment with 10,000 trials shows that 31
iterations of Steps 3 and 4 lead to about 12%
chance to recover the full 128-bit information of
(S0[1], S0[3] ⊕ S0[4]). Therefore, the full informa-
tion of (S0[1], S0[3] ⊕ S0[4]) is recovered with high
probability, during 9 (> (12%)−1) iterations of the
entire process from Step 1 to Step 4. We expect re-
covering 128-bit (S0[1], S0[3]⊕ S0[4]) require 244.78

(=9×(237+235+31×(236+235))) two-block plain-
texts.

Based on this attack result, the full state informa-
tion can be recovered. Independently, Baudrin et
al. [1] presented a better full-state-recovery attack
on full-round Ascon-128 with both data complex-
ity and time complexity of 239.6. Ours and Baudrin
et al.’s attacks can be also applied to Ascon-80pq.

5.2 Key Recovery Attack on Ascon-
80pq

We assume that the full state information is already
recovered with the empty AD A by Baudrin et al’s
attack [1] and that we know the nonce Nzero related
to the recovered information. We describe the key
recovery attack on Ascon-80pq based on the state
information. The attack recovers the 160-bit secret
key through online and offline phases. We reuse
the nonce value Nzero such that the recovered state
information is fixed during the key recovery attack.

64

96

X0

Yi

Z0

160

K

p12

LSB128(K)

128

Vj

P3 C3 P4||1 C4

6364

256

p6

64

64

256

Ti

Wj

Figure 8: Key recovery attack on Ascon-80pq

5.2.1 Online Phase

Let X∥Y ∥Z be the state right after the encryption
phase, where X is 64 bits, Y is 160 bits, and Z is
96 bits, as you see Fig. 8. We need 232 X∥Y ∥Z’s
for the next attack phase, where X and Z are fixed.
Note that we know the state value after the initial-
ization phase. We can compute them with four-
block plaintext P = (P1, P2, P3, P4) at cost of 2

129

offline computations of p6, as follows. Firstly, we
perform two operations for the first p6 permutation
with two randomly chosen 64-bit values for P1. Sec-
ondly, for two output states of the first p6 permu-
tation, we perform 264 operations for the second p6

permutation with all possible 264 64-bit values for
P2. Thirdly, for the 2

65 output states of the second
p6 permutation, we perform 264 operations for the
third p6 permutation with all possible 264 64-bit
values for P3. Finally, for the 2129 output states
of the third p6 permutation, we choose the 63-bit
values for P4 such that the most significant 63 bits
of X is fixed to a certain 63-bit value. After these
computations, for a fixed 160-bit value (X0, Z0),
we obtain 232 X0∥Y ∥Z0’s because each P leads to
(X0, Z0) with the probability of 2−97.

We denote the computed X0∥Y ∥Z0’s by
{X0∥Yi∥Z0}1≤i≤232 . Then, by using the plaintexts
P1∥P2∥P3’s corresponding to {X0∥Yi∥Z0}1≤i≤232 as
online queries where the nonce is fixed, we get
{(X0∥Yi∥Z0, Ti)}1≤i≤232 , where Ti is the tag cor-
responding to X0∥Yi∥Z0. Essentially, we only need
to store {(Yi, Ti)}1≤i≤232 and (X0, Z0) in a table Q.

17

5.2.2 Offline Phase

Let V be the 160-bit value such that V = Y ⊕ K
for the 160-bit secret key K. Let W be the 128-bit
value such that T = W ⊕ LSB128(K) for the tag
T by Ascon-80pq. As you see Figure 8, V and W
are contained in the input and output states of the
Ascon permutation p12 in the finalization phase.
Given X0 and Z0 which were computed from the

online phase, we randomly choose 2128 160-bit val-
ues of Vj to get the corresponding Wj ’s by the of-
fline computation of p12(X0∥Vj∥Z0). Since we have
232 tuples of (Yi, Ti)’s and tuples of 2128 (Vj ,Wj)
and (15) holds with the probability of 2−128, we
expect to get 232 matches.

LSB128(Yi)⊕ Ti = LSB128(Vj)⊕Wj . (15)

Then, we expect to obtain the right key value for
K by testing 232 candidates with the form of Yi ⊕
Vj . We can run this process without any additional
memory.

5.2.3 Complexity

We should consider that the full-state-recovery at-
tack must precede the key recovery attack. There-
fore, considering the discussion about time com-
plexity in Section 2.3, we estimate the total cost
for the key recovery attack on the full-round As-
con-80pq as the data complexity of 239.6, the time
complexity of 2128(≈ 2129 × 6/24 + 2128 × 12/24),
and the memory complexity of 232.

6 Conclusion

In this paper, we study the resistance of the As-
con family against conditional cube attacks in
nonce-misuse setting, and present new state- and
key-recovery attacks. In particular, our attack re-
sults on Ascon-128a are the best known ones as far
as we know. Although our attacks do not invalidate
designers’ claim, those allow us to understand the
security of Ascon in nonce-misuse setting.

References

[1] Jules Baudrin, Anne Canteaut, and Léo Per-
rin. Practical Cube-attack against Nonce-
misused Ascon. Fifth NIST Lightweight Cryp-
tography Workshop 2022, May 2022.

[2] Guido Bertoni, Joan Daemen, Michaël Peeters,
and Gilles Van Assche. Permutation-based En-
cryption, Authentication and Authenticated

Encryption. DIAC – Directions in Authenti-
cated Ciphers, 2012. https://keccak.team/

files/KeccakDIAC2012.pdf.

[3] CAESAR committee. CAESAR: Competition
for Authenticated Encryption: Security, Ap-
plicability, and Robustness, 2014-2019. https:
//competitions.cr.yp.to/caesar.html.

[4] Itai Dinur and Adi Shamir. Cube attacks on
tweakable black box polynomials. In Antoine
Joux, editor, Advances in Cryptology - EU-
ROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, volume 5479
of Lecture Notes in Computer Science, pages
278–299. Springer, 2009.

[5] C. Dobraunig, M. Eichlseder, F. Mendel,
and M. Schläffer. Ascon. Submission
to the NIST Lightweight Cryptography
Standardization Process, 2021. https:

//csrc.nist.gov/CSRC/media/Projects/

lightweight-cryptography/documents/

finalist-round/updated-spec-doc/

ascon-spec-final.pdf.

[6] Senyang Huang, XiaoyunWang, Guangwu Xu,
Meiqin Wang, and Jingyuan Zhao. Condi-
tional cube attack on reduced-round keccak
sponge function. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the The-
ory and Applications of Cryptographic Tech-
niques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, volume 10211 of Lecture
Notes in Computer Science, pages 259–288,
2017.

[7] Xuejia Lai. Higher order derivatives and dif-
ferential cryptanalysis. In Richard E. Blahut-
Daniel J. CostelloJr.Ueli MaurerThomas Mit-
telholzer, editor, Communications and Cryp-
tography. The Springer International Series
in Engineering and Computer Science (Com-
munications and Information Theory), volume
276, pages 227–233. Springer, 1994.

[8] Yanbin Li, Guoyan Zhang, Wei Wang, and
Meiqin Wang. Cryptanalysis of round-reduced
ASCON. Sci. China Inf. Sci., 60(3):38102,
2017.

[9] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang.
Conditional Cube Attack on Round-Reduced
ASCON. IACR Transactions on Symmetric
Cryptology, 2017(1):175–202, Mar. 2017.

18

[10] Raghvendra Rohit, Kai Hu, Sumanta Sarkar,
and Siwei Sun. Misuse-free key-recovery and
distinguishing attacks on 7-round ascon. IACR
Trans. Symmetric Cryptol., 2021(1):130–155,
2021.

A Proofs of Subcases in the
Proof of Lemma 1

A.1 Proof of Subcase 1

We assume that all conditions on the column #0 of
S0, S0[2][63] = S0[3][63] = S0[4][63] = 0, in Table 4
are not true. Namely, we consider that S0[2][63] ̸=
S0[3][63], S0[3][63] ̸= S0[4][63], or S0[4][63] ̸= 0.

Firstly, we suppose that S0[2][63] ̸= S0[3][63].
Then, by (2), S0.5[1][63] contains the V0-variable
v63 as a linear term. By Σ1 operation, S1[1][63],
S1[1][24], and S1[1][2] also contain v63 as a linear
term. On the other hand, S0.5[2][8] and S0.5[2][3]
contain v8 and v3 as linear terms, respectively. By
Σ2 operation, S1[2][2] contains v8 and v3 as a lin-
ear term. After pS operation on the state S1, the
product between S1[1][2] and S1[2][2] appears on
the column #2 of S1.5, which contains v63v8 and
v63v3.

Secondly, we suppose that S0[3][63] ̸= S0[4][63].
Then, by (3), S0.5[3][63] contains the V0-variable
v63 as a linear term. By Σ3 operation, S1[3][63],
S1[3][53], and S1[3][46] also contain v63 as a linear
term. On the other hand, S0.5[2][59], S0.5[2][54],
and S0.5[2][52] contain v59, v54, and v52 as linear
terms, respectively. By Σ2, S1[2][53] contains v59
and v54 as linear terms, and S1[2][46] contains v52
as a linear term. After pS operation on the state S1,
the product between S1[2][53] and S1[3][53] appears
on the column #53 of S1.5, which contains v63v59
and v63v54, and the product between S1[2][46] and
S1[3][46] appears on the column #46 of S1.5, which
contains v63v52.

Finally, we suppose that S0[4][63] = 1. Then,
by (1), S0.5[4][63] contains the conditional cube
variable v63 as a linear term. By Σ4 operation,
S1[4][63], S1[4][56], and S1[4][23] also contain v63
as a linear term. On the other hand, S0.5[1][53]
and S0.5[1][31] contain v53 and v31 as linear terms,
respectively. By Σ1, S1[1][56] contains v53 and v31
as linear terms. After pS operation on the state S1,
the product between S1[1][56] and S1[4][56] appears
on the column #56 of S1.5, which contains v63v53
and v63v31.

A.2 Proof of Subcase 2

Since the conditions on the column #63 of S0 are
true, by (1), S0.5[0][63] and S0.5[2][63] contain the
V0-variable v63 only as a linear term. After the
pL layer, S1[0][63], S1[0][44], S1[0][35], S1[2][63],
S1[2][62], and S1[2][57] contain v63 as a linear term.
Then, for any i ̸= 63, if any condition on the column
#i of S0 in Table 4 is false, then the V1-variable vi
appears as a linear term on the columns #63, #62,
#57, #44, or #35 of the state S1, It is followed by
the appearance of the quadratic term v63vi appear
on the states S1.5 and S2.

Table 14 summarizes (i, j)’s such that v63vi ap-
pears on the column #j of S1.5 if any condition
on the column #i for nonzero i of S1 in Table 4 is
false. Note that j ∈ {35, 44, 57, 62, 63}. With Ta-
ble 14 we can conclude the proof because it implies
a quadratic term v63vi for some nonzero i also ap-
pears on the state S2 under the same assumption.

Table 14: (i, j)’s implying that v63vi appears on the
column #j of S1.5 if all conditions on the column
#i for nonzero i of S1 in Table 4 are not true, while
conditions on the column #63 of S1 in Table 4 are
true.

i j i j i j
62 62 44 44 19 44
61 44 42 35 16 63
60 63 41 44 15 62
59 62 40 63 12 35
57 57 38 63 10 57
54 57 37 62 9 63
52 35 35 35 8 62
51 44 32 57, 35 6 63
45 35 21 44 3 57

19

