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Abstract. Users of decentralized financial networks suffer from inven-
tive security exploits. Identity-based fraud prevention methods are inap-
plicable in these networks, as they contradict their privacy-minded de-
sign philosophy. Novel mitigation strategies are therefore needed. Their
rollout, however, may damage other desirable network properties.
In this work, we introduce an evaluation framework for mitigation strate-
gies in decentralized financial networks. This framework allows researchers
and developers to examine and compare proposed protocol modifications
along multiple axes, such as privacy, security, and user experience.
As an example, we focus on the jamming attack in the Lightning Net-
work. Lightning is a peer-to-peer payment channel network on top of
Bitcoin. Jamming is a cheap denial-of-service attack that allows an ad-
versary to temporarily disable Lightning channels by flooding them with
failing payments.
We propose a practical solution to jamming that combines unconditional
fees and peer reputation. Guided by the framework, we show that, while
discouraging jamming, our solution keeps the protocol incentive com-
patible. It also preserves security, privacy, and user experience, and is
straightforward to implement. We support our claims analytically and
with simulations. Moreover, our anti-jamming solution may help alleviate
other Lightning issues, such as malicious channel balance probing.
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1 Introduction

Decentralized blockchain protocols, such as Bitcoin, represent a new paradigm
for financial networks. Their core design principles are permissionless access1 and
user privacy. To that end, users are identified by public keys and can generate
as many of those as they wish. Anyone can join the network without formal
identification. This feature renders traditional identity-based anti-fraud methods
inapplicable on the protocol level.

At the same time, decentralized financial networks are a valuable target for
attackers. Users and service providers lose access to their funds or have their
privacy eroded.
1 Permissioned networks, in contrast, are run by a known set of participants. Such
systems are outside the scope of this paper.
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Reputation and economic incentives become the main tools for designing
mitigation strategies in this setting. The former aims to selectively block mis-
behaving actors by distinguishing them from honest users. The latter impose
a cost on undesired behavior, ideally making it prohibitively expensive, while
potentially also compensating the victims.

When suggesting a protocol change, one should assess its effects on the net-
work as a whole. The proposal must not introduce new attack vectors, diminish
user experience, or jeopardize privacy and security. A failure to acknowledge
and navigate inevitable trade-offs may render the mitigation strategy useless.
Implementation difficulty should also be taken into account.

This work focuses on mitigation strategies against attacks on permissionless
financial networks. Our major concern is that a proposed solution, while ad-
dressing the attack, would significantly damage other aspects of the protocol.
To avoid "throwing out the baby with the bathwater", we introduce a general
framework for the design and evaluation of mitigation strategies. As a case study,
we consider mitigations of the jamming attack in the Lightning Network (LN).

The LN, a payment network on top of Bitcoin, has been designed to ad-
dress an inherent limit on Bitcoin’s transaction throughput. Jamming is a long-
standing, and yet unfixed, denial-of-service attack in Lightning. It allows an
attacker to cheaply and efficiently block victim channels. Jamming deprives
LN users of the network’s core functionality and reduces their routing fee rev-
enue. Many approaches to mitigating jamming have been discussed in the LN
community, but none has been implemented.

To demonstrate the power of our framework, we use it to distill an effective
solution to jamming without any fundamental drawbacks.

Our Contributions

– We introduce a general framework for evaluating attack mitigations
in decentralized financial networks. This framework helps ensure that sug-
gested changes do not significantly diminish existing protocol guarantees.

– We propose a mitigation strategy against jamming in Lightning. Our
solution combines unconditional fees and local reputation based on prior
behavior. We justify our design choices by evaluating our solution through
the lens of the framework defined above.

The rest of this paper is structured as follows. First, we introduce the eval-
uation framework (Section 2). Then we provide the background on the LN and
on jamming in particular (Section 3). We apply the framework to the design de-
cisions related to jamming mitigation strategies (Section 4), and introduce our
solution to jamming (Section 5) that combines unconditional fees (Section 5.1)
and local reputation (Section 5.2). We then discuss simulation results (Section 6)
and review related work (Section 7). Finally, we outline future work directions
(Section 8) and conclude (Section 9).
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2 A Framework for Mitigation Evaluation

We suggest evaluating attack mitigations by the following criteria.

Effectiveness. A mitigation should discourage or prevent the attack. The adver-
sary must bear a cost, which may take the form of money (fees or penalties), time
(the need to accumulate reputation before attacking), or a combination thereof.
Note that the attackers’ motivation is not always purely financial (e.g., griefing).

Incentive Compatibility. A mitigation should keep the protocol incentive com-
patible. Decentralized networks rely on the rationality of their participants: it
should be in their best interest to adhere to the rules. Payment networks should
incentivize nodes to forward payments and to report errors truthfully.

User Experience (UX). A mitigation should not deteriorate the UX. Changes in
user interface should be intuitive and easily explainable. UX should be evaluated
from the viewpoint of end users as well as professional service providers.

Privacy & Security. Amitigation should not significantly diminish users’ privacy.
When it comes to security, we must ensure that a proposed protocol change
does not introduce new attack vectors. Negative effects of a proposed mitigation
should be carefully weighed against its potential benefits.

Ease of Implementation. A mitigation should be straightforward to implement.
Protocol changes require rough consensus among developers [42]. Easily imple-
mentable proposals are more likely to be adopted and not perpetually delayed.

The framework outlined above can be used as follows. First, consider all pos-
sible classes of mitigation strategies. Second, exclude strategies that are clearly
incompatible with at least one of the outlined criteria. Finally, compare the costs
and benefits of the remaining options in the context of a particular network.

We note that the former two criteria (effectiveness and incentive compat-
ibility) are required for a functioning solution. The latter three criteria often
imply trade-offs. User experience can sometimes be improved by using a more
centralized architecture or accumulating more user data, which erodes privacy.
Similarly, implementation may be simpler for strategies that require users to
additionally trust some designated third parties.

Note that some criteria listed above are (at least to some extent) objectively
quantifiable, while others are largely subjective. Navigating these trade-offs de-
pends on the network and the attack in question.

3 Overview of Lightning and Jamming

Permissionless blockchain networks suffer from inherent scalability challenges
that second-layer (L2) protocols aim to solve [17]. They increase transaction
throughput while leveraging the security guarantees of the underlying network.
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The LN is a major Bitcoin-based L2 protocol [34]. Pairs of LN nodes open
payment channels by locking up funds in a collaboratively owned address. They
then make payments by reflecting the up-to-date distribution of funds in the
channel state. Payments happen off-chain and are only settled on-chain when
needed. A penalty mechanism ensures economic security of balance updates.

To initiate a multi-hop payment, the sender first finds a suitable route of
channels to the receiver. Consider a node Ui on a route U0, . . . , Um, 0 ≤ i ≤ m.
The portion of the route towards the sender (Uj , where 0 ≤ j < i) is referred to
as upstream. Analogously, the part of the route towards the receiver (Uj , where
i < j ≤ m) is called downstream. The peers of Ui on the route (Ui−1 and Ui+1)
are referred to as its upstream and downstream peer, respectively.

Each routing node, upon receiving a forwarding request, either forwards the
payment or fails it. If a routing node fails a payment, it notifies the sender, who
may then route around the erring node. The receiver, upon getting the payment,
can either claim or fail it. By claiming the payment from the last routing node,
the receiver reveals the secret that allows that node to claim the money from its
upstream peer, and so on.

The receiving node cannot reject an incoming payment without updating the
channel state with its upstream peer. Nodes are only supposed to fail a payment
if they lack the resources (e.g., liquidity) to forward it. Nodes generally do not
limit the amount of liquidity an incoming payment may use.

We call a payment resolved if it has either been claimed or has failed. Pay-
ments that are not resolved within a certain timeout are canceled and trigger
channel closure2.

Unresolved payments lock up liquidity in all channels along the route. This
liquidity cannot be used to forward other payments. Moreover, each channel
can only hold up to a certain number of unresolved payments at any one time.
This limit stems from Bitcoin protocol rules: a fraudulent closure of a channel
with too many unresolved payments cannot be disputed on-chain3. We say that
each channel has a limited number of payment slots. Each unresolved payment
occupies one slot and a portion of the liquidity.

LN payments are onion-routed for privacy. A routing node only knows its
immediate peers on the route, but does not know the original sender or receiver4.

Jamming

Jamming is a denial-of-service attack on LN channels. The attacker, who controls
both ends of a target route, sends payments (jams) and delays claiming them,
blocking liquidity and slots along the whole route. The attacker can fail jams and
immediately send new ones, prolonging the attack. The goal of a jammer may
be to disrupt a specific set of channels (e.g., belonging to a business competitor)
or the whole network.
2 See e.g. [8] for a comprehensive protocol description.
3 At any given time, each channel direction may hold up to 483 unresolved payments.
Users may set lower limits for their channels.

4 This assumption can be violated with timing attacks [38].



Unjamming Lightning: A Systematic Approach 5

We distinguish liquidity-based and slot-based jamming. The former locks up
the liquidity of the victim channels, whereas the latter occupies all their slots. In
general, liquidity-based jams have higher value than slot-based jams. To occupy
a slot, a jam just needs to exceed the minimum payment size that nodes on the
route agree to forward5. Slot-based jamming is arguably more efficient, as it only
requires a constant amount of capital to block channels of any capacity.

We also differentiate between quick and slow jamming. In quick jamming, the
attacker sends a continuous flow of jams that resolve in seconds, mimicking failed
honest payments. In contrast, slow jams are resolved after a very long delay (on
the order of hours or days), which allows the victim to detect the attack. The
borderline between quick and slow jamming depends on a subjective definition
of the maximal honest payment resolution delay.

The attacker may pursue different goals. We note that users join the network
for two main reasons: to send and receive payments and to earn fees from routing.
Thus, the jammer may want to prevent users from exchanging payments or to
deprive routing service providers of fee revenue.

The jamming attack is essentially free. The jammer pays no fees, as routing
nodes do not charge for failed6 payment attempts. The only expense for the
attacker is the opportunity cost of capital7 locked up for the duration of jamming.
Onion routing further complicates jamming mitigation.

4 Design Decisions for a Jamming Mitigation

Multiple mitigation strategies against jamming have been proposed [14,31]. They
can be grouped into monetary and reputation-based. To systematically analyze
the solution space, we start by listing the design decisions to be made. We then
evaluate our options based on the framework introduced in Section 2.

4.1 Monetary Strategies

Monetary mitigation strategies aim to make attacks expensive. These strategies
can also compensate the victim for the damage. In the context of jamming, the
monetary approach implies charging fees for failed payment attempts in addition
to existing (success-case) fees. We consider the following design decisions.

– Who receives the fee? The receivers may be: the downstream peer, an
agreed-upon third party, or no one (provably burning the fee).

5 Slot-based jams must also be larger than the dust limit – the minimal amount that
occupies a slot in a forwarding channel. Payments below the dust limit are allowed
(albeit with weaker security guarantees), but they cannot be used in (slot-based)
jamming because they do not occupy slots. Due to their minuscule value, they are
impractical for liquidity-based jamming too.

6 Technically, an attacker may also resolve the jams as regular successful payments,
which would incur paying fees. In what follows, we assume that jams always fail.

7 For further details on channel costs, see [16].
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– What currency is the fee paid in? Fees might be paid in the native
asset of the network (bitcoins in the case of the LN) or in another asset. In
schemes that imply fee burning, fees can take the form of a solution to a
proof-of-work puzzle.

– Is the fee conditional? The simplest fee design is an unconditional fee paid
upfront, that is, while offering a payment. An alternative approach would be
to return the (fail-case) upfront fee if the payment succeeds. Other conditions
may also be considered.

– How is the fee amount calculated? Currently, LN fees are composed of
a base fee and a part that is linearly proportional to the payment amount.
More complex formulas may include other parameters besides the amount.

Paying a fee to a peer is simpler than to a third party, as introducing a third
party complicates the incentives. The LN offers no obvious way to provably
burn funds8, which makes proof-of-burn schemes difficult to implement. Hence,
we narrow down our decision space to monetary fees paid to the downstream
peer. Non-refundable unconditional fees are easier to implement than fees with
refunds. As for the fee amount calculation, for simplicity, we adopt the existing
success-case fee structure (i.e., a base fee and a proportional part). We assume
that fee amounts are always positive9 (i.e., paid downstream, not upstream).
Making the fee amount dependent of the factual payment resolution time would
be desirable, yet we are currently unaware of any reliable way to implement this
idea. When it comes to UX, privacy, and security, the available design choices
share similar benefits and drawbacks.

4.2 Reputation-Based Strategies

In reputation-based strategies, nodes track their level of trust towards other
nodes. In the jamming context, reputation scores help routing nodes distinguish
good peers from bad peers, and then either fail payments offered by the latter
or disconnect from them altogether. When designing a reputation scheme, we
make the following design decisions.

– Whose reputation affects payment forwarding? A common design
pattern in P2P networks [26] implies that a routing node just considers its
upstream peer’s reputation. Alternatively, the original sender’s reputation
may be attached to the payment. We call a reputation scheme local if each
node only assigns reputation scores to its peers, and global otherwise.

– Does reputation require consensus? Nodes can assign reputation scores
independently or try to reach consensus about the reputation of all nodes in
the network.

8 In contrast, bitcoins on the base layer can be sent to a provably unspendable address.
9 Bi-directional fees that include a component paid upstream have been discussed [14].
As advertising a negative fee may attract unwanted traffic, this proposal needs fur-
ther evaluation.
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– Is reputation fungible? Fungible reputation takes the form of tokens that
can be transferred between nodes. Non-fungible reputation, in contrast, is
inseparable from the node is was initially assigned to.

– How is reputation assigned? One way to assign reputation scores is to
do so based on the peer’s prior behavior. Another approach implies assigning
reputation based on commitments to some scarce resource, such as proof-of-
work solutions or proofs of bitcoin ownership (stake certificates [32]).

Attaching the sender’s reputation to payments contradicts the LN’s privacy-
focused goals. As nodes can only objectively perceive the actions of their peers,
reputation should be local. In light of Sybil attacks, we opt for independent rather
than consensus-based reputation. We prefer non-fungible schemes, as secondary
markets for reputation tokens are non-trivial to design securely10. Finally, we
choose to assign reputation scores based on prior behavior rather than commit-
ments to a scarce resource. Proof-of-work does not look promising in this respect,
judging from its failure as a spam prevention technique [23]. In particular, puzzle
difficulty that is sufficient to deter attacks turned out to be unacceptably high for
honest users. We leave the evaluation of other resource-based reputation schemes
for future work.

5 Our Solution to Jamming

Based on the arguments laid out in Section 4, we propose a combination of two
strategies to mitigate jamming.

1. Unconditional fee paid to the downstream peer addresses quick jamming
by imposing a small cost on every payment.

2. Local reputation based on past behavior addresses slow jamming by pun-
ishing peers who forward payments that take too long to resolve.

In Subsections 5.1 and 5.2, we give further details on unconditional fees and
local reputation, respectively. We examine both parts of our mitigation strategy
through the lens on the framework introduced in Section 2 and discuss best
practices for parameter choices.

5.1 Unconditional Fee

Consider a payment route U0, . . . , Um. Let fi,i+1 denote a fee that Ui pays to
Ui+1, where i ∈ [0,m−1]. Let us denote success-case fees as fS and unconditional
fees as fN . For X ∈ {S,N}, the fee revenue of type X is the difference between
what Ui pays and what it receives:

FX
i = fXi−1,i − fXi,i+1 (1)

For a routing node Ui, the proposed fee scheme is as follows (see Figure 1).
10 Prior research has shown that designing a secondary market for utility tokens is a

challenging task [10,13,45]. For instance, large entities could hoard large quantities
of such tokens to manipulate the market.
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Ui receives fNi−1,i

Ui fails the payment

fNi−1,i

Ui forwards the payment

Payment fails

FNi

Payment succeeds

FNi + FSi

Fig. 1. Decision tree for a routing node Ui. The values at leaves denote total fee revenue.

1. Ui−1 pays fNi−1,i to Ui.
2. Ui decides either to fail or to forward the payment. If Ui fails the payment,

no more fees are paid.
3. If Ui decides to forward the payment, it pays fNi,i+1 to Ui+1.
4. The process continues until the payment either fails downstream or succeeds.

If the payment succeeds, Ui receives fSi−1,i and pays fSi,i+1.

The fee revenue for Ui is equal to fNi−1,i if Ui fails the payment without
forwarding, FNi if the payment is forwarded and fails, or FSi +FNi if it succeeds.

Note that each fee payment f includes not only the fee for the neighboring
peer, but for all routing nodes further downstream. As an example, consider a
four-node route (U1, U2, U3, U4), where U2 and U3 charge a flat routing fee of
1 satoshi11 per payment. The sender U1 would attach a fee of 2 satoshis when
forwarding a payment to U2: f1,2 = 2, but f2,3 = 1. Fee revenues would then be
equal to F2 = f1,2 − f2,3 = 2 − 1 = 1 and F3 = f2,3 − f3,4 = 1 − 0 = 1. This
applies to both success-case and unconditional fees.

Effectiveness With unconditional fees, jamming is no longer free. Moreover, the
two components of the unconditional fee (a base fee and a proportional part)
address slot-based and liquidity-based jamming, respectively. Low-value jams
aimed at occupying slots are discouraged with base fees, whereas the proportional
component plays a larger role in deterring high-value liquidity-targeted jams.

With properly set fee coefficients, fees may provide a similar revenue to rout-
ing nodes compared to what they earn from honest payments12, compensating
them for the financial damage of jamming. Unconditional fees can be relatively
low to achieve this effect, as the attacker continuously sends jams to keep chan-
nels blocked, while honest payments usually only occupy a small portion of
channel resources. Simulations confirm this intuition (see Section 6).

11 The smallest unit of bitcoin. 1 bitcoin equals 100 million satoshis.
12 Honest fee revenue of a given node depends on its position in the network, its liquidity

management practices (e.g., rebalancing), and other factors.
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Incentive Compatibility To forward a payment, a routing node allocates a
slot and a portion of liquidity in one of its channels with its downstream peer.
These resources remain unavailable until the payment succeeds or fails, which
becomes costly if the payment takes long to resolve. Hence, we face an incentive
compatibility challenge: a routing node can take the unconditional fee and then
deliberately fail the payment. To ensure that nodes are incentivized to forward
if possible, success-case fees must compensate them for the associated risk.

Let θ be the probability of payment failure. If Ui decides to forward the
payment, its expected fee revenue is:

E(Fi|Forward) =(1− θ)(FSi + FNi ) + θFNi (2)

=FNi + (1− θ)FSi = (fNi−1,i − fNi,i+1) + (1− θ)FS . (3)

The fee revenue if Ui decides to fail the payment is simply fNi−1,i.
To ensure that Ui prefers to forward the payment rather than to fail it, the

expected revenue for forwarding must be higher than for failing:

fNi−1,i − fNi,i+1 + (1− θ)FS > fNi−1,i (4)

(1− θ)FS > fNi,i+1 (5)

In other words, the expected additional revenue from forwarding must at least
compensate the routing node for the unconditional fee it would pay downstream.

User Experience The key UX concern is that the fees for failed payment
attempts would deter users. Wallets can feasibly abstract this detail away, as the
expected number of attempts per payment is low13 even if the payment failure
probability θ is moderately high. For the payment to succeed with probability
at least p after at most K attempts, the following needs to hold:

1− θK > p (6)

This is equivalent to:

log(1− p) > K log θ (7)~� as log θ < 0

log (1− p)
log θ

< K. (8)

The number of required attempts grows slowly (logarithmically in required
success probability p). Even assuming θ = 20%, a single attempt gives a success
probability of p = 80%, two attempts guarantee p = 96%, and three attempts
13 Assuming wallets retry payments, which is not always possible on mobile devices.
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Fig. 2. The number of payment attempts needed as a function of the required success
probability p, for various probabilities of payment failures θ.

suffice for p = 99%. We conclude that the negative UX effects would be minimal
due to a small number of attempts per payment, as well as low unconditional
fee amounts (see Figure 2).

Privacy and Security Routing nodes should not know their position within
the route. Unconditional fees weaken this claim, as they allow a routing node to
deduce its distance to the receiver from fee amounts and public fee policies14.
This issue can be addressed by the sender allocating a part of the final amount
(what the receiver is supposed to get) to the last-hop unconditional fee, as if the
route extended beyond the receiver. The drawback of this approach is that high
unconditional fees lead to misaligned incentives for routing nodes. We do not
expect this issue to be too serious, considering low unconditional fee amounts.

Implementation Unconditional fees are straightforward to implement. One
approach could be to pay unconditional fees upfront. In an alternative method,
a downstream node Ui withholds the fee fNi−1,i when returning the payment
amount to Ui−1 in case of failure, as a proof-of-concept implementation demon-
strates [43]. Other implementation tasks include advertising extended fee policies
in gossip messages and accounting for unconditional fees in route selection.

14 This issue does not apply to the same extent to success-case fees because they are
merged into the body of the payment. Routing nodes do not know which portion
of the amount represents downstream success-case fees (they can make educated
guesses). Unconditional fees, in contrast, are separate from the payment body.
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5.2 Local Reputation

A reputation scheme is defined by three components: initialization, reputation
updates, and making decisions based on reputation scores.

Initialization In the initialization phase, a node sets the following parameters:

– τ (seconds) – the maximal resolution time to consider a payment honest;
– t (seconds), T (seconds), A (satoshis per second) – reputation update pa-

rameters (see below);
– K (integer), L (satoshis) – the high-risk quota of slots and liquidity.

The values for the parameters defined above depend on the node’s risk pref-
erences. For instance, lower values for K and L reflect a higher risk tolerance.
Routing nodes should weigh the potentially increased revenue from honest but
high-risk payments (e.g., from new nodes) against jamming risk. The values of
t, T , and A may depend on the cost of opening new channels that would handle
honest payments while existing channels remain jammed.

Updating Reputation Scores We consider two possible values for reputation
scores: high and low (more granular schemes are possible). Initially, all peers
receive a low score. A payment is deemed honest if it resolves within τ seconds.
Otherwise, it is considered a jam. A peer’s behavior is defined as good if it only
offers honest payments for forwarding. Moreover, those payments must pay at
least A satoshis per second in fees to the routing node. Reputation of a peer
grows if it demonstrates good behavior for a long enough period.

More precisely, a reputation score is updated as follows:

– to high, if the peer has maintained good behavior for duration t;
– to low, if there was no interval of good behavior of duration t within a time

window of duration T .

A reputation update algorithm based on a sliding time window forgives oc-
casional mistakes while punishing consistent misbehavior. This is a common
pattern in peer-to-peer reputation systems.

If peers agree beforehand to tolerate payments with intentionally delayed
resolution15, such payments do not harm the offering node’s reputation.

Forwarding The offering node may (but does not have to) mark a payment
as low-risk, thereby endorsing it. Its downstream (receiving) peer considers a
payment as low-risk if and only if it is endorsed by a high-reputation peer. Low-
risk payments are forwarded on the best effort basis. High-risk payments, in
contrast, can only use the quota of K slots and L satoshis of liquidity. The high-
risk quota is defined per channel and not per peer. This prevents an attacker
from gaining an advantage by opening many channels to the victim.
15 This is useful for some L2 protocols, such as atomic swaps [48] (e.g., submarine

swaps [6]) and Discreet Log Contracts [24]. More research is needed to analyze such
protocols in a multi-hop setting.
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Effectiveness A low-reputation attacker can no longer fully jam a channel that
allocates at least some resources exclusively to low-risk payments. To circumvent
this countermeasure, the attacker would need to build up reputation in advance,
which requires effort and resources. Recall that in order to be assigned a high
reputation score, a node must forward payments that pay A satoshis per second
in fees for at least t seconds.

The downside of the proposed reputation scheme is potential under-utilization
of channel resources. In case of high payment flow, some honest high-risk pay-
ments may fail due to the lack of resources in the high-risk quota.

Incentive Compatibility Routing nodes should be motivated to endorse pay-
ments to the best of their knowledge. The two possible deviating strategies are
endorsing a high-risk payment and not endorsing a low-risk one. Not endorsing
a low-risk payment clearly decreases the node’s own fee revenue. More interest-
ingly, by endorsing a high-risk payment, a node increases its expected revenue
if the payment succeeds at the risk of losing reputation with its downstream
peer if it turns out to be a jam. By setting reputation parameters appropriately,
this strategy can be made unprofitable. If regaining reputation is very expensive,
additional fee revenue would not justify falsely endorsing high-risk payments.

User Experience The UX consequences of our proposal largely concern new
users, who can experience higher failure rates due to their initially low reputa-
tion. For casual users, this may not be a significant issue, as high-risk quotas in
their peers’ channels would be sufficient to handle their low payment volume.
Moreover, professional LN service providers may offer more permissive reputa-
tion policies to their clients.

Privacy and Security By choosing whether to endorse a payment, a node
leaks information on its possible origin. To preserve the sender’s privacy, nodes
may choose not to endorse some low-risk payments (at the cost of fee revenue).

A security risk for a reputation scheme is a cascading attack, where jams sent
through long routes decrease reputation scores network-wide. This would harm
the overall network performance, as nodes would wrongfully fail many low-risk
payments. Even though decreasing routing nodes’ reputation makes payments
more likely to fail, it cannot stop the payment flow completely.

Cascading network dynamics have been studied in various contexts, such as
finance [30], IoT [15], and viral spread [47]. These papers have quantified the
risks based on theoretical results (such as [7,11,35]). In light of these studies and
the LN properties [27], we conjecture that cascading attacks would be difficult.
Further research on the parameter choice and attack strategies is needed.

Implementation The implementation of the proposed reputation system is
rather straightforward. Additional fields should be added to the payment data
structure to encode endorsement. Nodes should also be able to record their peers’
reputation scores in their local databases.
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6 Simulation

We implement an LN simulator that models payments with unconditional fees.
Let the success-case fee be calculated as:

fS = bS + rSa

where bS is the success-case base fee, rS is the success-case proportional fee rate,
and a is the payment amount.

Let n be the unconditional fee coefficient, which is the ratio between the
unconditional fee and the success-case fee. That is, bN = nbS and rN = nrS are
the unconditional base fee and proportional fee, respectively. The unconditional
fee structure is analogous to the success-case fee:

fN = bN + rNa

The goal of our simulations is to deduce the breakeven point n̂ – the minimal
value of n that provides routing nodes with the same revenue under jamming as
they earn from honest payments.

We make the following assumptions:

– honest payment amounts are distributed lognormally [25] with a mean of
50 000 satoshis16 and σ = 0.7;

– for a channel with capacity c, a payment with amount a fails17 with proba-
bility min {1, a/c};

– an honest resolution time is 1 second plus an exponentially distributed ran-
dom value with expectation of 3 seconds.

Each jam has the amount of 354 satoshis (the dust limit) and resolves after
7 seconds. Each channel has 483 slots18.

We consider two configurations: a channel-based one and a node-based one. In
the channel-based configuration, we forward payments through a chain of three
channels. The parties of the channel in the middle are considered routing nodes
(they do not send their own payments). We vary the routing channel capacity
from 0.1 to 10 million satoshis. For the node-based configuration, we consider
a medium-sized LN node from a public network snapshot19. This routing node
has five bidirectional channels with approximate capacities (in million satoshis):
0.3, 1, 1.001, 1.021, and 1.1. The node does not send payments, it only forwards
payments from one of its peers to another. We model the rest of the network as
one "virtual" node connected to all other nodes involved.

For both configurations, we run simulations in two scenarios. In the honest
scenario, routing nodes forwards honest payments with a frequency varying from
16 An equivalent of 10 USD at 20 thousand USD per bitcoin.
17 We do not model balance distributions in channels. We do, however, model channel

capacities, payment amounts, and fees calculated based on them.
18 The LN specifications define the maximum number of slots [3] and the minimum

payments size [4].
19 Node ID 0263a6d2f0fed7b1e14d01a0c6a6a1c0fae6e0907c0ac415574091e7839a00405b.
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Fig. 3. The breakeven point (the minimal sufficient n̂) for the node-based and various
channel-based configurations, and for various honest payment frequencies.

0.1 to 1 payments per second. The success-case fee is set to 1 satoshi plus 5 parts
per million. In the attack scenario, an attacker jams all channels with as few jams
as possible (it may use looped routes in the node-base configuration). For each
configuration, we iterate through values of n to find n̂.

We observe that n̂ is quite low for all considered scenarios (Figure 3). For a
1million satoshi channel that routes 1 honest payment per second, the breakeven
point n̂ = 1.88%. In other words, our jamming countermeasure only increases
the total fee by 1.88% by introducing an unconditional component. For a smaller
channel with a capacity of 100 thousand satoshis, n̂ is even lower (1.15%).

As we increase channel capacity, n̂ goes up, but reaches saturation after
500 thousand satoshis. The explanation is that smaller channels do not earn
that much from honest payments, as more of them fail. This effect, in turn,
decreases the unconditional fees needed to offset the lost revenue. For larger
channel capacities, the difference in capacity has no strong effect on n̂, as most
payments succeed.

For the node-based configuration, n̂ is lower than for the channel-based con-
figuration. This is explained by the fact that the attacker must forward more
jams through the victim node to jam all of its channels. The honest payment
flow, however, does not depend on the configuration. As a result, for a node-
based configuration that implies more jams, a lower fee per jam is sufficient to
offset honest revenue.

We conclude that even a small unconditional fee effectively compensates rout-
ing nodes for the damage from jamming.
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7 Related Work

Jamming discussions date back to as early as 2015 [1,40]. Summaries of modern
approaches are provided in [14,31,36].

The impact of jamming, as well as attack optimizations and potential coun-
termeasures, has been widely studied [28,29,33,37,46]. Upfront payments have
been previously discussed as a countermeasure [41,20]. Related proposals include
stake certificates [32] and node-level firewall-like defenses [2]. Centralized global
node scoring is available but rarely used in practice [5].

Attacks like flood-and-loot [18] and mass exit [44] exploit L2 protocols by
inducing base-layer congestion. Privacy attacks on the LN include balance prob-
ing [12,19], timing attacks [38], and cross-layer deanonymization [21,39]. No mit-
igation strategies have been adopted to date.

8 Future Work

Future work directions include simulating more attack scenarios and reputation-
based defense strategies. More broadly, feasibility of alternative design choices
can be considered. Accounting for payment resolution times in fee amounts and
privacy-preserving sender reputation are of particular interest, although these
ideas present practical and theoretical challenges yet to be resolved. Additionally,
the cost and efficiency of jamming can be studied for various attack goals and
success metrics.

An effective countermeasure against jamming may alleviate other pressing
LN issues. First, it would discourage probing attacks [19], which, similarly to
jamming, require sending many failing payments. Second, our fee scheme may
also be useful for trustless incentivization of watchtowers [9,22] – third-party
services that dispute fraudulent channel closures on their users’ behalf.

9 Conclusion

In this work, we have established an evaluation framework for attack mitigation
strategies in decentralized financial networks. As a case study, we consider jam-
ming – a long-standing denial-of-service attack vector threatening the Lightning
Network, a prominent layer-two protocol on top of Bitcoin. After considering
multiple design decisions through the lens of our framework, we propose an ef-
fective solution that mitigates jamming through a combination of unconditional
fees and behavior-based local reputation. We demonstrate the feasibility of our
proposal with simulations and analytical calculations.

Acknowledgments We thank Sergi Delgado Segura for the PoC implementa-
tion of unconditional fees. We thank Carla Kirk-Cohen, Joost Jager, and the LN
developer community for thoughtful discussions.
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