Assisted Multi-Party Computation

Philipp Muth! and Stefan Katzenbeisser?

! TU Darmstadt, Department of Computer Science
philipp.muth@tu-darmstadt.de
2 Universitét Passau, Faculty for Computer Science and Mathematics

Abstract. Since their introduction in the 1970s, multi-party computa-
tion protocols have become the prevalent method for two or more parties
to jointly compute an agreed upon function on private inputs without
revealing them to other parties. While some efficiency gains in the of-
fline phase of MPC protocols have been achieved, most works in the past
have focused on optimising the online phase. Improvements to the on-
line phase typically shifted significant workload to the offline phase. In
this work we explore a novel approach to streamline the offline phase of
secret sharing based MPC protocols by introducing a helper party that
executes the preprocessing for the parties engaged in the online phase.
We prove, that the security guarantees provided by the MPC protocols
stay unchanged and demonstrate the efficiency of our approach in two
sets of benchmarks. We furthermore give three examples of real world
instantiations of the helper party to demonstrate that our approach is
not only of a theoretical nature.

Keywords: Multi-party computation - Secret sharing - Preprocessing
speed up

1 Introduction

1.1 Motivation

The privacy of data has been a concern to the earliest societies that commu-
nicated via literary language. From military communication to trade secrets or
medical information confidentiality has been of utmost importance. This need
has seamlessly carried over to the digital age with the amount of data being gen-
erated, transmitted and stored steadily increasing and containing more and more
personal details. In fact, with eavesdroppers’ — be that statefunded or private
— computational power and cryptoanalytical capabilities improving perpetually,
the need for privacy has rarely been more dire.

The introduction of computers has not only improved attackers’ capabilities
but also has grown the field of applications with a need for privacy. It is no longer
restricted to protecting data in communication and storage, it also includes
computation on private data. Especially when computing on data from multiple
sources, maintaining confidentiality yields a pressing challenge.

For this scenario, the first so-called secure multi-party computation (MPC)
protocols were introduced in the 1970s. An MPC protocol enables a set of parties
to jointly evaluate an agreed upon function represented as a circuit, so that each
party provides a private input, the parties jointly execute the computation and
a result is produced while each party learns only the result and what can be
derived from the output with respect to the other parties’ inputs.

Garbled circuits and secret sharing based protocols are the two most impor-
tant categories of MPC protocols. The most prominent example of the former
category is Yao’s garbled circuit [26]. The latter contains protocols, in which
inputs to a circuit are distributed among the parties via a secret sharing scheme.
The circuit is evaluated layer by layer in communication rounds and the result
is jointly opened by publishing the shares of the result. In this work we focus on
secret sharing based MPC protocols.

Secret sharing based MPC protocols comprise of an offline or preprocessing
phase and an online phase. In the offline phase, the engaged parties jointly gen-
erate and share the auxiliary data necessary for the evaluation of the circuit.
For example, many secret sharing based MPC protocols use random "Beaver
triples" for performing multiplications, that are computed in the offline phase.
The offline phase is executed independently of the parties’ inputs, it solely de-
pends on the structure of the circuit. In the online phase the actual evaluation
of the circuit takes place. The parties provide their respective private inputs and
jointly compute the output of each gate to arrive at the final result.

In recent years, the focus of most research aiming to improve the efficiency
of MPC protocols has been on optimising the online phase, and remarkable
achievements have been made. Yet in most cases, these improvements to the
online phase entail performance penalties in the offline phase. While preprocess-
ing can be executed far in advance to the online phase and is independent of
the parties’ inputs, it can however not be skipped. An example, that illustrates
the performance disparity between offline and online phase, is the minimum eu-
clidean distance computation for 1000 values of 128 bits in the framework ABY
[10] between two parties with a network delay of 50ms. The time for the online
phase amounts to 4442ms, whereas the offline phase takes 16506ms, i.e., close to
80 percent of the protocol’s duration was spent on preprocessing.

1.2 Owur contribution

In this work we propose an approach to significantly improve the performance
of the offline phase for secret sharing based MPC protocols. We achieve this
by introducing an independent helper party that assists in executing the offline
phase and sharing the resulting data among the original parties. The helper party
will not take part in the online phase, it can hence not obtain any knowledge
with respect to the parties’ inputs or the execution of the online phase. Indeed,
we show that the introduction of the helper party does not affect the security
guarantees provided by the original MPC protocol. We furthermore demonstrate
the practical applicability of our approach by giving an implementation of the
helper party for the SPDZ offline phase. We empirically test the efficiency of our

implementation in two scenarios. The first is the rate of Beaver triples generated
and shared per second among two to five parties. The second is the preprocess-
ing for a Vickrey auction with one hundred bids. Our tests show a performance
improvement of up to a factor of 69 in comparison to previous works like SPDZ
[8] and evolutions thereof. We discuss three real world instantiations of our ap-
proach. We elaborate on their respective limitations and advantages regarding
performance. We thereby demonstrate that our approach is not of a purely the-
oretical nature, but can in fact be deployed in real executions of secret sharing
based MPC protocols. Our approach is applicable to any MPC protocol based
on secret sharing.

1.3 Structure

First, we present our approach to improve the efficiency of the offline phase in
Section 3, that is an additional helper party P, that takes on executing the
offline phase and distributing the resulting shares to the original parties of the
MPC protocol. Second, we prove that if the original protocol was simulatable,
the resulting protocol with P}, executing the offline phase is simulatable as well.
Third, we discuss how our approach can be applied to SPDZ [8] in Section 4.1.
Fourth, we give benchmark results for our implementation of the helper party in
the context of SPDZ in Section 4.2, that show a significant performance benefit
from our approach in comparison to the unmodified protocols. Finally we discuss
feasible real world implementations of our model in Section 5.

1.4 Related work

Secret sharing schemes were first introduced independently in the 1970s by
Shamir [23] and Blakley [3]. Both proposed threshold secret sharing schemes
with perfect secrecy over the ring Z, for a prime p larger than the number of
shareholders. Verifiable secret sharing was developed as an additional feature in
works like [20] and [14]. Fitzi et al. [13] presented a different approach to ver-
ifiable secret sharing, that provided a storage efficient scheme in three rounds
to share a secret. Tassa [24] introduced an extension of Shamir’s scheme, that
enables a multi-level threshold access structures, so that for reconstruction the
threshold of each hierarchy level has to be fulfilled. Traverso et al. [25] further
improved the capabilities of hierarchical secret sharing by proposing a scheme
that was also dynamic and verifiable. Our approach is applicable to any se-
cret sharing based MPC protocol, independent of the underlying secret sharing
scheme.

A scheme enabling integer secrets outside Z, was later presented by Damgard
and Thorbek [9] along with a protocol for distributed exponentiation on the
shared secret. Its caveat is that the security is only computational. Rabin and
Ben-Or [21] combined verifiable secret sharing with general computation on
shared secrets, thus a more general approach, yet less performant.

The field of secure multi-party computation holds a wide choice of schemes
that have been established over the years, most prominent of which are Gol-
dreich et al.’s GMW [15] and Damgard et al.’s SPDZ [8]. Both schemes rely on
computational assumptions with respect to security, whereas Bogdanov et al. [4]
provide an entirely information theoretically secure approach with Sharemind at
the cost of performance. Cramer et al. [6] transposed SPDZ to a setting where
computation is not over finite fields IF,,» but over the more practical binary field
For, providing the same security guarantees. We will show, that our proposition
maintains the security guarantees of the MPC protocol, that it is being applied
to, while yielding a significant performance boost to the offline phase.

A secure two-party computation protocol employing a third party for the
circuit evaluation was discussed by Feige et al. [11]. We continue this direc-
tion of research by employing the additional party exclusively for preprocessing,
thereby strengthening the security properties of their approach, since we neither
introduce nor rely on further computational hardness assumptions.

The approach of outsourcing the offline phase to a smaller set of parties — ei-
ther disjoint or a subset of the original set of parties — was discussed previously by
Scholl et al. [22]. A different direction was taken in Keller et al.’s MASCOT [16],
where the offline phase was improved by employing oblivious transfer protocols
(OT). In Overdrive, Keller et al. [17] proposed that SPDZ with improvements
on its original design provides an offline phase that is similar to the improve-
ments achieved by MASCOT. With Overdrive2k, Orsini et al. [19] transferred
the improvements of Overdrive to the setting of computation over For. Their
works engage all parties of the online phase in the offline phase, whereas we
have the helper party Pj execute the offline phase. We test the performance of
our approach on the offline phase of SPDZ.

2 Preliminaries

2.1 Notation

Throughout this work we will use the following notational conventions. For an
algorithm A, we denote its output y upon receiving input « by y < A(x). If A
is a probabilistic algorithm, we write y < A(x).

For a set X, we denote the order, that is the number of elements contained
in it, by #X.

Let Dy and Dy be two random variables sampling from the same set X. For
an algorithm 4, we denote the advantage in distinguishing Dy and D; by

AdvE¥ p, (A) =

Pr[ExpdDi:fDl(A) = 1} - ;‘

If, for any algorithm A, we have Adv‘gﬁfDl (A) = 0, then we call Dy and D
perfectly indistinguishable and write

erf
Do = Dy.

Expipgp, (A) Op, ()

b<+s{0,1} x <5 Dy
b« A°Ds return z
return b == b’

Fig. 1. Experiment Exp$>*, (A)

2.2 Secret Sharing Schemes

A secret sharing scheme is a cryptographic primitive that enables a dealer D
to distribute a secret from a given secret space among a set of shareholders
{S1,...,5n}. A subset of parties that can reconstruct a shared secret from their
respective shares is called authorised. The set of all authorised sets of parties is
called an access structure, which we denote by I' ¢ 215152} " An instance S of
a secret sharing scheme is thus defined by the set of shareholders {S1,...,S,},
the secret space and the access structure I.

A secret sharing scheme provides two protocols share and recon. In an
instance S, the dealer D executes S.share(s) on a secret s to obtain shares
{s1,..., 8k} These shares are then assigned and distributed to the shareholders
according to a surjective map ¢ : {1,...,k} — {1,...,n}, ie., shareholder S;
receives all shares s; € {s1,...,s;} with ¢(j) = 4. An authorised set S € I

can then execute recon({sj} Suie S) on their respective shares to reconstruct
J

a previously shared secret.
In this work we consider information theoretic secret sharing schemes, that is
to any unauthorised set of shareholders S’ ¢ I', and any distinct secrets s # &',

Pr [{si}sw(i)es, c 5.share(s)] —Pr [{Si}swey C S.share(s')

holds.

2.3 MPC Protocols

A multi-party computation (MPC) protocol is an algorithm, that — when ex-
ecuted correctly — enables two or more parties to jointly evaluate a prescribed
function on their respective inputs. In this work, we focus on secret sharing based
MPC protocols. That is, we consider protocols that evaluate arithmetic circuits
C'y representing a function

fF" =S TF" (21, 20) = (Y1,- -, Yn)

for a field F, where z; is a party P;’s input and y; its output for ¢ = 1,...,n.
The execution of a secret sharing based MPC protocol is handled in two
phases: the offline or preprocessing phase and the online phase. In the offline

phase the parties generate and share the auxiliary data necessary for the evalu-
ation of the circuit Cy. This includes but is not limited to the randomness used
throughout the online phase and additional shared data for the evaluation of
individual gates such as Beaver triples. The data generated in the offline phase
is independent of the inputs, that the parties provide in the online phase. There-
fore significant time can elapse between the execution of the offline phase and
the online phase. In the online phase the circuit C is evaluated with the parties’
inputs utilising the data generated during the offline phase. Each player receives
his output according to the prespecified output gates.

A multi-party computation protocol has two main aims: correctness and pri-
vacy. Correctness implies, that for any input (z1,...,2,) the MPC protocol
outputs (y1,...,yn) = f(z1,...,z,) to the parties engaged in the online phase.
Privacy means, that the protocol must avoid divulging more information to a
party P; than it could otherwise derive from its input x; and the output y;. For
that, we define the view of a party P; as its input, the randomness used in the
online phase and the messages it received, i.e.,

view; 1= {xi, (ri);, (mZ)J}

Since the view of a party P; contains (r;) j the randomness, that P; uses in the
online phase, and the messages that it receives from the other parties, view; is a
random variable.

If a view of an unauthorised set of parties, that is indistinguishable from
a real view, can be produced from those parties’ inputs and outputs, we have
perfect privacy, since no information can be derived from the knowledge gained
during the online phase.

Definition 1 (Simulatability). We call an MPC protocol simulatable, if there
exists an efficient algorithm Sim, that for any unauthorised set C C {Py,...,P,}
upon input {x;,y;} pec produces an output, that is perfectly indistinguishable
from the real view of C, i.e. for any adversary A, we have

Advd’ist

Sim ({xi’yi}PieC) 1{Viewi}PieC

(A) = 0.

2.4 Adversary

We consider a static and active attacker. That is an attacker, that upon the
initialisation of the protocol corrupts an unauthorised subset C C {Py,..., P,}
of the shareholders. Throughout the execution of the MPC protocol, this set
cannot be changed. The adversary obtains all knowledge, that the corrupted
shareholders have. This includes their inputs {z;}p ., the randomness used
by the shareholders {(r;);} p,cc and the messages they receive from the other
parties in the protocol {(m;);}p - The adversary controls all outputs of the
corrupted parties and the messages, that they send to other parties.

3 Model

In the offline phase of an MPC protocol, the parties P, ..., P, jointly generate
data, that is used in the online phase to evaluate C'y. This data is independent of
the inputs, that P, ..., P, provide in the online phase. The structure of the data
is determined by the gates contained in Cy. For an arbitrary but fixed circuit
Cy, let {t1,...,ty} therefore be the set of all types of gate contained in Cy. In
an arithmetic circuit, ¢t; may for example denote input gates, to multiplication
gates, t3 addition gates and ¢4 output gates. We denote the set of all gates in C
by G = {gl, e ,g‘cﬂ}. Furthermore, we define a function ¢ : G — {t1,...,tmn},
that maps a gate to its type. In the offline phase, the parties P, ..., P, jointly
sample a data set D = {dl, NN }, where d; contains the data necessary for
the evaluation of the gate g;, i = 1,...,|Cy|. Let Dy,...,D,, be a partition of
D faithful to the gates’ type, that is

6 Di=D (3.1)

holds, while D; N D; = () for all 1 <i < j < m, as well as
Vi=1,...,m:V¥d,d € D;: ¢(d) = ¢(d).

For each D;, 1 < i < m, there exists an underlying distribution X; from which
D; is sampled.

We introduce a new party to the MPC protocol. This party we call the "helper
party" Pj. Its purpose is to execute the offline phase in place of the parties
Py, ..., P, in order to give a significant speed up compared to the traditional
execution. The parties Pi,..., P, give a description of the circuit C; and a
probability p; > 0, that indicates the trust they have in Py, as input to Pj,. We
further elaborate on p; later on. From the descrciption of Cy, P}, derives the
set of data D according to (3.1), that is to be produced in the offline phase. P,
generates and shares a data set corresponding to the distribution of D, thereby
executing the offline phase in place of Pi,..., P,. After providing P,..., P,
with the auxiliary data necessary for the evaluation of Cy, P, resets itself, if it
will be employed in future executions of the MPC protocol. Otherwise it shuts
down. In the online phase P, does not take part, it especially neither provides
input nor receives output with respect to the evaluation of C;.

Our approach implies, that the helper party P, sends the generated shares
to each party P;, i = 1,...,n, privately. Communication between pairs P; and
P;, 1 < i < j < n,is not intended. This contrasts traditional approaches, in
which the offline phase requires communication among all parties. We therefore
reduce the number of necessary secure private channels from n(n — 1) between
each pair of parties to n channels between P, and each P;, i = 1,...,n. This
further improves the efficiency of the offline phase. We point out that this does
not have any impact on the online phase, which is explicitly left unmodified in
any MPC protocol our approach is applied to.

Depending on the concrete instantiation of Py, the parties Pi,..., P, must
assume, that P, does not collude with any other party. We give examples for
the non-collusion of Pj, being a necessary assumption as well as is not being
necessary in Section 5.

While P, has neither input nor output in the online phase, malformed pre-
processing data can falsify the output or even reveal a party’s input. We thus
present P in two flavours, depending on whether P} is trusted by P, ..., P,
which is indicated by the probability py.

— If Py, is regarded as a trusted party by Pi,...,P,, we have py = 1. P}
produces a data set D’ corresponding to the distribution of the set D. That
is for each D;, i = 1,...,m, P, samples a set D} of size #D, from X;. P,
shares each d € D} among P1,..., P, via S.share(d), where S is the secret
sharing scheme underlying the MPC protocol. The parties P, ..., P, utilise
the shares received from P, in place of the output of the offline phase and
evaluate C'y accordingly. The online phase hence remains unchanged.

— An untrusted helper party is indicated by py < 1. The parties Pi,..., P,
agreed on a probability ps, that they accept as a chance of undetected dis-
honest behaviour on P,’s side. For each D; in (3.1), P generates

additional items according to the distribution of D; for each i € {1,...,m}.
We denote the resulting set by D}, where #D; = #D; + k;.

Prior to evaluating C'y in the online phase, P, ..., P, apply a cut-and-choose
approach to the shares they received from P, in that they randomly choose a
portion of k; elements of each set D}, i = 1,...,m, and publicly reconstruct

them. If a malformed data item is opened this way, P, will be considered
dishonest and the received data is discarded. Otherwise the data received
from Py, is deemed correct and the evaluation of C'y is continued with the
remaining unopened data. Since we have #D) = #D; + k; items for each
i=1,...,m, a sufficient number of unopened data items remains. We show
in Theorem 3, that py bounds the probability with which P}, can successfully
provide malformed data items without being detected.

Expiél;i—trans (A)

Expi(l;;i—prep (A) c+s{0,1}

! S
¢+s{0,1} S «s$2°\TI"

for P, € S’

S 525\ or €

T; <8 X
p<s[0,1]

Yi <$Y

prepgy < Oreal prep (Cf7p7 S/)

* endfor
prep; — Ph(Cf7p)
prep, < prep;|s to < Simp ((xi’yi)&es')
/
¢ + A(prep,) t1 < Simp/ ((xi’yi)Pies')
return c == ¢ /
¢ — Alte)
Fig. 2. Experiment Expg}‘:'prep(A) return ¢ == ¢’

Fig. 3. Experiment Expig}i'"a“s(A)

Remark 1. The scenario of a trusted helper party can be regarded as a special
case of the untrusted helper party, where we have py =1 and thereby k; = 0.

Theorem 1 (Cheating probability of Py,). The probability that Py, generates
a malformed data set without detection is upper bounded by py.

We give a proof of Theorem 3 in the Appendix.

3.1 Security

We will now prove, that the introduction of the helper party does not weaken
the security of the MPC protocol. To this end, we show that a simulatable MPC
protocol remains simulatable after the introduction of Pj.

We model the indistinguishability of the output of a real offline phase from
the output of Py, in Experiment Expl(’;;l_prep (A) given in Figure 2. In this game, we
denote by Oreal prep(-) an oracle, that upon being handed the circuit description
Cy, the failure probability p and an unauthorised set S’ internally executes a

preprocessing phase according to C'y and p and outputs the shares of the parties
in S’

Definition 2. For a circuit Cy, let A be an arbitrary algorithm. The advantage
of A in Ezperiment Expglfd'prep(A) is defined as

, 1 .
Advgbfd_prep(A) = '2 —Pr [Expglfd'pmp(fl) = true}

Lemma 1. For any unauthorised subset of sharcholders S' C {Py,...,P,}, the
data produced in the preprocessing phase is perfectly indistinguishable from the
data provided by Py. That is, for any adversary A and any circuit Cy and any
failure probability py, we have

AdvETTTP(A) = 0.

We give a proof of this Lemma in the Appendix. We now prove that the
MPC protocol, that arises from introducing the helper party to a simulatable
MPC protocol, is simulatable itself. We capture this notion in Expfnd‘"ans().
Definition 3. The advantage of an adversary A in Experiment Expglfd"tmns(A)
is defined as ‘

. 1 i
Adve " (A) = ’2 = Pr[Bxpg 7 (A) = true

An MPC protocol is simulatable, if for any circuit Cy and any adversary A we
have
ind-trans _
Advs ; (A) =0.
Theorem 2. Let P be a simulatable, secret sharing based MPC protocol. And let
P’ be an identical protocol, yet with the modification detailed above applied to it,
that is the offline phase is executed by a helper party Py. Then P’ is simulatable.

We give a proof of Theorem 2 in the Appendix.

4 SPDZ application and performance

4.1 Application to SPDZ

We demonstrate the practicality of our approach by applying it to the offline
phase in the SPDZ multi-party computation protocol established by Damgard
et al. [8]. SPDZ enables a set of at least two parties to evaluate arithmetic circuits
in Z, for a prime p, where all gate inputs and outputs are certified with a global
key. SPDZ thus naturally integrates a correctness measure for the computation.

The offline phase in SPDZ can be considered as a process in two steps. First
a public key pk is established with an according secret key «. Each party P,
1 < i < n, obtains a share of a. Second the data necessary for the evaluation
of each gate in the circuit to be evaluated in the online phase is generated. In
SPDZ, we distinguish two methods of sharing. For a value z, we denote

= (v (Br@hoeen@l))

PR

where > z; = z and Y ., 7(3:)3 = zf; for all j = 1,...,n. Each party

P; holds shares z;, 8;,v(x)], ... ,’y(x)fl. The secret key « is shared as [a]. The
sharing (x) denotes

<£C> = (5» (‘Tlv v axn)) (’V(x)lv cee 77(m)n))7

where § is publicly known and each party P;, 1 <14 < n, obtains z; and y(z), so
that 3" #; =z and)., y(z), = a(z + §) hold.

A circuit suitable for SPDZ contains four types of gate: input gate, addition
gate, multiplication gate and output gate. The preprocessing for an input gate
consists of a random value r, that is shared as (r) as well as [r]. To input a value
x, a party P; has the other parties open [r] to him and computes and publishes
€ < x—r. The parties then derive their local shares of © = e+ (r). For an addition
of two shared values (z) and (y), the parties locally add their respective shares
according to the sharing described above. Thus no preprocessing is required for
addition gates. A multiplication gate requires two Beaver triples (a), (b), (¢) and
(x), (y), (z), where ab = ¢ and zy = z, and a random [t]. The sharings (x),
(y), (z) and [t] are opened to verify the correctness of the triple (a), (b) and {c),
which is then used for the multiplication itself. The preprocessing for an output
gate entails a simple shared random value [r].

In assisting the offline phase of SPDZ, the helper party analyses the circuit
to be evaluated for the gates types it contains and determines the data to be
generated. The helper party P, then samples the respective data items and
shares them among Py, ..., P, in the appropriate format of (-) or [-]. We assume
the existence of secure private channels between P, and each P;, i = 1,...,n.
The discussion on how to instantiate such a channel is out of the scope of this
work, we refer to [12] as an example for how instantiate such channels. If py < 1,
that is the helper party is not assumed trusted by Pi,..., P,, P, samples and
shares additional data items according to the value of py.

4.2 Performance

We demonstrate the performance gains of our approach in the offline phase over
the original SPDZ protocol as presented in [8] and the improvements proposed
in Overdrive [17] and MASCOT [16]. For that we implement the protocol to
be executed by Py in C++. We use the boost library in its version 1.74. This
natively enables us to generate and share data items of 128 bits, so that our
results are comparable to those of [17,16], who also used 128 bits of randomness
in their implementation.

We evaluate the performance of our implementation on commodity PCs in a
local network, where the helper party is run on a machine with eight cores and
thirty-two GB of RAM. This setup is almost identical to that of the performance
test of MASCOT [16].

Our test is executed in two scenarios: First, we measure the maximum pos-
sible rate of generating and sharing Beaver triples {(a), (b), (c) and (x), (y), (2)
along with the complimenting randomness [t]. Second, we execute the offline
phase for a Vickrey auction with one hundred bids.

This work SPDZ|MASCOT Overdrive
of parties 2 31415 2 2 5 |2 (low gear)|2 (high gear)
Avg. Beaver tr./s |134k|108k| 85k |69k| 4.2k |4.8k| 1k 15k 2.3k
Interquartile range|3252{1521|1096|741 no data given
Maximum 140k|112k| 87k |71k no data given
Minimum 126k |103k| 82k |66k no data given

Fig. 4. Benchmark results for 10,000 Beaver triples in Fy,, [log, p] = 128

Output of Beaver triples for SPDZ. We measure the time elapsed for gener-
ating the preprocessing for 10,000 multiplication gates, deriving the throughput
per second. Our test is executed for two to five parties. We give the resulting
performance numbers in Figure 4 with a visual representation in Figure 5. It can
be seen, that in the setting of two parties in the online phase, our implementa-
tion improves the results of SPDZ and MASCOT at a factor of 30, and those of
Overdrive more than nine-fold. In the setting of five parties, our implementation

outperforms MASCOT by a factor of

10k

14 — %
12 —
10 —
=+
8 —I
T
6 —
‘ ‘ ‘ ‘
2 3 4 5

of parties

Fig.5. Generating Beaver triples for
up to five parties

69.

time [s]

I I I
20 40 60

of parties

80

I I
100

Fig. 6. Vickrey auction preprocessing

for up to 50 parties

Vickrey Auction. In the second scenario, we simulate the preprocessing for a
Vickrey auction with one hundred bids. The winner of the auction is the highest
bidder, yet the price to be paid by the winning party is the second highest bid.
The layout of this auction incentivises the parties to provide realistic bids. A
modified version of this is in fact utilised by online auction house eBay.

We simulate the preprocessing for an online phase that is carried out between
two up to one hundred parties. We test each setting one hundred times. The
circuit uses 44571 Beaver triples. We give the performance numbers in Figure 7.

As can be seen in Figure 6, the time elapsed for the preprocessing increases
linearly with the number of parties in the online phase, which agrees with the
amount of data to be generated. In MASCOT a setting of two parties was eval-
uated, which we outperform by a factor of over 60. And in Overdrive the online
phase was carried out between 100 parties, which we improved on by a factor of
over 20.

of parties| 2 | 10 | 20 | 30 | 50 | 60 | 70 | 80 | 90 | 100 MASCOT|Overdrive
Avg. time [s]{0.16/0.50/0.95|1.40|2.34|2.82{3.32|3.81|4.30|4.81 10 98
Maximum [0.17]0.50(0.98|1.46|2.39|2.91|3.42{3.91{4.40(5.01 no data given
Minimum [0.14]0.48|0.92|1.37(2.29|2.77(3.23|3.73|4.24|4.72 no data given
IQR 0.00{0.01{0.02|0.02{0.03]0.03]0.03|0.05|0.06{0.07 no data given

Fig. 7. The Vickrey auction preprocessing for up to 50 parties in Fp, [log, p] = 128

5 Instantiations for P,

In Section 3, we introduced the helper party P, and proved that a simulatable
MPC protocol stays simulatable, if the offline phase is executed by the helper
party. We demonstrated the efficiency gained by the introduction of P, in Section
4.2. In this section we discuss feasible real world instantiations for P, and their
advantages and shortcomings as well as the underlying assumptions. Since the
data shared by the helper party is known in plaintext to Py, the role of P, cannot
be assumed by a computing party P;, 1 <1 < n, itself.

5.1 Trusted Execution Environment

The computing parties P, ..., P, delegate the offline phase to an agreed upon
trusted execution environment (TEE), such as ARM’s TrustZone [1] or AMD’s
Secure Processor [18]. A TEE provides the capability to have an (almost) arbi-
trary computation executed by an external party in a secure and trusted way.
This is achieved by having the TEE prove that the program executed coincides
with the program that was given as input via a remote attestation protocol.
Thus the parties ascertain, that the TEE executes the protocol for the helper

party and only that. A TEE is to be found in virtually any main stream CPU
sold today, thus it is widely available.

To ensure safe communication with the TEE, each party P;, i = 1,...,n,
establishes a secure and private channel with the TEE by appropriate means.
This channel is then used to transmit the shares, that the TEE generates in
executing the helper party’s task.

Utilising a TEE to implement P, allows for a entirely counter-intuitive ap-
proach: a party P; € {P1,...,P,} that has a TEE at its disposal may provide
the other parties access to it and have the helper party’s protocol executed in it.
With the parties F;, ¢ # j, establishing private channels to the TEE, P; cannot
obtain knowledge on the shares received by P;, less it breaks the TEE or the
channel protocol.

It is reasonable to propose, that the parties forgo the MPC protocol by
sending the TEE their private inputs and having it evaluate the circuit C¢. Yet
modern applications making use of library components such the GNU C library
(glibc) or the C mathematical library (libm) require substantial amounts of
memory for their execution due to the size of said libraries. In many cases, these
exceed the hardware limitations inherent to the TEE implementation, as the
128 MB memory limit of Intel’s SGX [2] implementation on Windows operating
systems demonstrates. The direct evaluation of large circuits such as privacy
preserving machine learning [5,7] hence cannot be achieved in a typical TEE.
Executing the offline phase is nevertheless entirely actionable with the amount
of data to be persistently held in memory being almost negligible.

Having a TEE implement the helper party allows Pi,..., P, to assume P}
as trusted. The protocol of Pj, can therefore be instantiated in its most efficient
configuration.

Overall we claim that a TEE represents a feasible instantiation of Py, since its
widespread availability and the helper party protocol being in its most efficient
configuration outweigh the limitations inherent to this approach.

5.2 Unrelated External Party

The parties Pi,..., P, may alternatively employ an unrelated external party
for the task of P,. This approach distinguishes itself from the former in that
Py, is considered untrusted outright. The parties hence agree on a probability
py < 1 as detailed in Section 3 and apply the cut-and-choose method to verify
the correctness of the received shares. The external party executing the task of
P, is incentivised to behave honestly by monetary reward. This means, that if
the shares are considered honestly generated after P, ..., P, verified them, the
helper party receives a previously agreed upon payment. With the computational
effort of the protocol for the helper party being comparatively low even for
large circuits, the monetary reward for the external party is little. As a concrete
instantiation the parties may employ a minimalistic cloud instance as can readily
be hired at a wide variety of commercial providers.

A major advantage of this approach in comparison to a TEE is that the
external party is not limited with respect to the implementation of Pj. This
results in an efficiently computed preprocessing phase by the external party.

A caveat of this approach is that the parties Py, ..., P, must assume that P,
is not colluding with either of the parties, as we illustrated in Section 3. Also,
the protocol for P, cannot be instantiated in its most efficient fashion, i.e., a
trusted helper party, since py < 1 must hold.

In fact, the performance statistics presented in Section 4.2 were obtained in
this setting, that is on a comodity PC without specialised hardware. Further
improved performance can be achieved with the use of hardware specialised for
parallel computations.

5.3 Minimal Special Purpose Hardware

The parties P, ..., P, may deploy a piece of purpose-built computing hardware
to execute the task of the helper party P,. The design for said hardware is made
public in a format like VHDL, so that any party can verify that the computation
carried out agrees with the protocol for Pj. As we already discussed in Section
5.1, even a minimalistic hardware design is sufficient for a successful execution
of the preprocessing phase. In contrast, purpose built hardware achieves signifi-
cantly higher efficiency compared to general computing hardware such as a TEE
or an external party. Since the design of the purpose-built hardware is public,
no trust assumptions have to be placed in the helper party, which enables the
protocol of P} in its most efficient configuration, i.e., py = 1.

Obtaining a piece of purpose-built hardware is however rather costly com-
pared to the previously proposed instantiations. With the preprocessing data
for an MPC protocol being identical with respect to structure and at most dis-
tinct in proportion, a piece of dedicated hardware is highly reusable in future
executions of the MPC protocol.

The advantages of employing a minimalistic piece of hardware to implement
P, are efficient computation of the preprocessing data and an indepence from
a third party hosting a TEE or executing the protocol of P,. In our oppinion
these advantages outweigh the caveat of the initial cost of deployment by far.

The real world instantiations of the helper party discussed above are of course
not exhaustive. We gave three examples to illustrate, that it is feasible to in-
stantiate P, without substantial monetary or organisational overhead while ob-
taining reasonable guarantees with respect to correctness and confidentiality of
the generated data.

6 Conclusion

In this work we proposed to speed up the offline phase for secret sharing based
MPC protocols by introducing a helper party P}, that generates and shares the
preprocessing data necessary for the online phase. The resulting MPC protocol

provides the same security guarantees as the MPC protocol without the introduc-
tion of Py, in that if the original protocol is simulatable, then so is the protocol
after the introduction of Pj,. We tested the performance of our approach in the
setting of an untrusted external party providing the preprocessing for a SPDZ
instance on off-the-shelf hardware in a local network setting. Our approach out-
performs prior work. Furhermore, we gave three feasible real world instantiations
to demonstrate that our approach is not only of a theoretical nature.

References
1. Arm security technology, building a secure system using
trustzone®) technology (2009), https://community.arm.com/

10.

11.

12.

13.

14.

cfs-file/__key/telligent-evolution-components-attachments/
01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_
trustzone_5F00_security_5FO00_whitepaper.pdf

Intel® software guard extensions (intel® sgx), debug and build configura-
tions (2017), https://www.intel.com/content/dam/develop/external/us/en/
documents/intel-sgx-build-configuration-737361.pdf

Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of AFIPS 1979 Na-
tional Computer Conference 48, 313-317 (1979)

Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast
privacy-preserving computations. pp. 192-206 (2008). https://doi.org/10.1007/
978-3-540-88313-5_13

Chaudhari, H., Rachuri, R., Suresh, A.: Trident: Efficient 4PC framework for pri-
vacy preserving machine learning (2020)

Cramer, R., Damgard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z,x: Efficient
MPC mod 2F for dishonest majority. pp. 769-798 (2018). https://doi.org/10.
1007/978-3-319-96881-0_26

Damgard, 1., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private ma-
chine learning. pp. 1102-1120 (2019). https://doi.org/10.1109/SP.2019.00078
Damgard, 1., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. pp. 643-662 (2012). https://doi.org/10.
1007/978-3-642-32009-5_38

Damgard, 1., Thorbek, R.: Linear integer secret sharing and distributed exponen-
tiation. pp. 75-90 (2006). https://doi.org/10.1007/11745853_6

Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation (2015)

Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). pp. 554-563 (1994). https://doi.org/10.1145/195058.195408
Fischlin, M., Giinther, F., Muth, P.: Information-theoretic security of cryptographic
channels. pp. 295-311 (2020). https://doi.org/10.1007/978-3-030-61078-4_17
Fitzi, M., Garay, J.A., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-optimal
and efficient verifiable secret sharing. pp. 329-342 (2006). https://doi.org/10.
1007/11681878_17

Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. pp. 32-46 (1998). https://doi.org/
10.1007/BFb0054115

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-build-configuration-737361.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-build-configuration-737361.pdf
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/11745853_6
https://doi.org/10.1145/195058.195408
https://doi.org/10.1007/978-3-030-61078-4_17
https://doi.org/10.1007/11681878_17
https://doi.org/10.1007/11681878_17
https://doi.org/10.1007/BFb0054115
https://doi.org/10.1007/BFb0054115

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. pp. 218-229 (1987).
https://doi.org/10.1145/28395.28420

Keller, M., Orsini, E., Scholl, P.. MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. pp. 830-842 (2016). https://doi.org/10.
1145/2976749.2978357

Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. pp. 158—
189 (2018). https://doi.org/10.1007/978-3-319-78372-7_6

Malhotra, A.: Amd ryzen™ pro 5000 series mobile processors, making defenses
count: Designing for substantial depth (2021), https://www.amd.com/system/
files/documents/amd-security-white-paper.pdf

Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure MPC over
Zok from somewhat homomorphic encryption. pp. 254-283 (2020). https://doi.
org/10.1007/978-3-030-40186-3_12

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. pp. 129-140 (1992). https://doi.org/10.1007/3-540-46766-1_9
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with hon-
est majority (extended abstract). pp. 73—-85 (1989). https://doi.org/10.1145/
73007.73014

Scholl, P., Smart, N.P., Wood, T.: When it’s all just too much: Outsourcing MPC-
preprocessing. pp. 77-99 (2017)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612613 (Nov 1979)
Tassa, T.: Hierarchical threshold secret sharing 20(2), 237-264 (Apr 2007). https:
//doi.org/10.1007/s00145-006-0334-8

Traverso, G., Demirel, D., Buchmann, J.A.: Dynamic and verifiable hierarchical
secret sharing. pp. 24-43 (2016). https://doi.org/10.1007/978-3-319-49175-2_
2

Yao, A.C.C.: Protocols for secure computations (extended abstract). pp. 160-164
(1982). https://doi.org/10.1109/SFCS.1982.38

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://www.amd.com/system/files/documents/amd-security-white-paper.pdf
https://www.amd.com/system/files/documents/amd-security-white-paper.pdf
https://doi.org/10.1007/978-3-030-40186-3_12
https://doi.org/10.1007/978-3-030-40186-3_12
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1007/s00145-006-0334-8
https://doi.org/10.1007/s00145-006-0334-8
https://doi.org/10.1007/978-3-319-49175-2_2
https://doi.org/10.1007/978-3-319-49175-2_2
https://doi.org/10.1109/SFCS.1982.38

Appendix 1.A Proofs

Proof (Proof of Lemma 1). Each data item produced in a real preprocessing
phase is information theoretically hidden from S’. This holds for each data item,
that was generated and shared among the computing parties by P. Since each
data item is sampled independently from each other, the data sets received are
perfectly indistinguishable.

Proof (Proof of Theorem 2). We prove Theorem 2 in three steps: first we give
a simulator for any unauthorised subset of {Py,..., P,} in the protocol P’ sec-
ond we prove the indistinguishability of said simulator from that of the original
protocol P which gives us the simulatibility of P’ in the third step.

We denote by Cy the circuit, that P and hence P’ are to evaluate. Let
S’ & I be an arbitrary unauthorised subset of { P, ..., P,} and let Simp denote
the simulator of P. Thus upon receiving

{(301‘7 yi)PieS’}

as input, Simp outputs a transcript that is indistinguishable from {view;} Pies

We give a simulator Simp: for P’. The simulator Simp/ uses Simp in the
following manner. Let {(x;,yg)ﬂ_es,} denote the input of Simp,. Simp, runs
Simp((as;, yé)P,-eS') and returns whatever Simp outputs.

It remains to prove, that the output of Simp: indistinguishable from that
of Simp. We capture this in Experiment Expic“;l'tmns(A) in Figure 3. We give
a reduction of the preprocessing distinguishing problem to the simulator dis-
tinguishing problem to show the hardness of the former. Hence let D be an

adversary in Expié};l‘“ans() with positive advantage. We construct a polynomial-

time adversary D’ against Expgf;j'prep(-) that uses D to gain the same advan-

tage. The input to an adversary D’ in Expgl;i'pmp(D’) is a set of preprocessing
shares {prep; } , c 5 for an unauthorised set S’. To simulate Exp?fditm”s(-) to D,
D' samples (7;)p, cg and (yi)p, cg from their respective distributions. D’ then
hands
erf ~.
te = Slm’/’((mia yi)P,b-eS')

to D. D’ then outputs whatever decision bit D outputs. It remains to argue, that
D’ has the same advantage in Exp‘él;l'prep(D’) as D has in Exp‘g?'trans(l)). The
output of a simulator Sim((zs,%i) p,cs/) = (@4, (135, (mi);) p, 5 looks identically
distributed to an unauthorised set of parties S’ ¢ I'. The randomness (r;); is
either shared among all parties or locally sampled for each party P; in a secret
sharing based MPc protocol. Thus for any {(ri);}p g We have

perf

Simp (2, 9i) pesr) = (@i (1) g5 (Mi)) pegr =

(@i, (17) 5> (Mi)j) pegr = Sim%(((ﬂﬁi,yi) : (Tg)j)pie&)a

where Sim;; outputs the same as Simp, but replaces the randomness (r;); for
(r});. This gives us
Simp (2, i) pegr) = Simpr (24, 4i) pegr)
and thus . .
AdvPIP (Cp) = Advip™™ (C) .

With Lemma 1, this gives us Advisi™*" (C';) = 0, thus the output of Sim’,
is thus indistinguishable from that of Simgs/, which in turn is indistinguishable
from the real view viewg,. The MPC protocol P’ is therefore simulatable.

Proof (Proof of Theorem 8). Fix an arbitrary subset D}, 1 < ¢ < m. Let a denote
the number of malformed items in D]. If @ > #D;, then the computing parties
necessarily selects a malformed data item for opening, since #D; = #D;+k;. The
probability of successful cheating for P, is thus 0. We hence assume a < #D;.
Let us first consider the case of single malformed data item in D, i.e., a = 1.
The probability of P, ..., P, not selecting the malformed item is therefore

(#D,’L.—l) (1) (#Dﬁk—l) (1) (#Di+k—1)!

k o) _ k o) _ K\#Di=1)!
(#D;) o (#Dﬁk) T (#Di+k)!
k k E'#D;!

#D; #D;

= < =
#Di+k = D+ TELAD;

Dy-

The statement therefore holds for ¢ = 1. For a > 1, that is more than one
malformed data item, the probability of malformed items not being selected
and opened in the cut-and-choose paradigm is clearly upper bounded by the
probability in the case of a = 1. Therefore, P, can only successfully cheat with
a probability at most py.

	Assisted Multi-Party Computation

