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Abstract. Iterated Even-Mansour (IEM) schemes consist of a small
number of fixed permutations separated by round key additions. They
enjoy provable security, assuming the permutations are public and ran-
dom. In particular, regarding chosen-key security in the sense of sequen-
tial indifferentiability (seq-indifferentiability), Cogliati and Seurin (EU-
ROCRYPT 2015) showed that without key schedule functions, the 4-
round Even-Mansour with Independent Permutations and no key sched-
ule EMIP4(k, u) = k⊕p4

(
k⊕p3

(
k⊕p2(k⊕p1(k⊕u))

))
is sequentially

indifferentiable.
Minimizing IEM variants for classical strong (tweakable) pseudorandom
security has stimulated an attractive line of research. In this paper,
we seek for minimizing the EMIP4 construction while retaining seq-
indifferentiability. We first consider EMSP, a natural variant of EMIP
using a single round permutation. Unfortunately, we exhibit a slide at-
tack against EMSP with any number of rounds. In light of this, we show
that the 4-round EM2Pp1,p2

4 (k, u) = k⊕p1

(
k⊕p2

(
k⊕p2(k⊕p1(k⊕u))

))
using 2 independent random permutations p1,p2 is seq-indifferentiable.
This provides the minimal seq-indifferentiable IEM without key schedule.

Keywords: blockcipher · sequential indifferentiability · key-alternating
cipher · iterated Even-Mansour cipher

1 Introduction

A fundamental cryptographic problem is to construct secure blockciphers from
keyless permutations. A natural solution is the Iterated Even-Mansour (IEM)
scheme (a.k.a. key-alternating cipher) initiated in [19] and extended and popular-
ized in a series of works [24,4,17,1]. Given t permutations p1, ...,pt : {0, 1}n →
{0, 1}n and a key schedule −→ϕ = (ϕ0, ..., ϕt), ϕi : {0, 1}κ → {0, 1}n, and for
(k, u) ∈ {0, 1}κ × {0, 1}n, the scheme is defined as

EM[−→ϕ ]t(k, u) := ϕt(k)⊕ pt
(
...ϕ2(k)⊕ p2

(
ϕ1(k)⊕ p1(ϕ0(k)⊕ u)

)
...
)
.



It abstracts substitution-permutation network that has been used by a num-
ber of standards [33,26,27]. Modeling p1, ...,pt as public random permutations,
variants of this scheme provably achieve various security notions, including in-
distinguishability [19,4,28,7,6,32,25,37,36], related-key security [20,8], known-key
security [2,9], chosen-key security in the sense of correlation intractability [8,23],
and indifferentiability [1,29,13]. Despite the theoretical uninstantiatability of the
random oracle model [5], such arguments dismiss generic attacks and are typi-
cally viewed as evidences of the soundness of the design approaches.

Indifferentiability of IEM. The classical security definition for a blockci-
pher is indistinguishability from a (secret) random permutation. Though, reliable
blockciphers are broadly used as ideal ciphers, i.e., randomly chosen blockciphers.
Motivated by this, the notion of indifferentiability [31] from ideal ciphers was
proposed [11,1,29] as the strongest security for blockcipher structures built upon
(public) random functions and random permutations. Briefly speaking, for the
IEM cipher EMP built upon random permutations P, if there exists an effi-
cient simulator SE that queries an ideal cipher E to mimic its (non-existent)
underlying permutations, such that (E,SE) is indistinguishable from (EMP ,P),
then EMP is indifferentiable from E [31]. This property implies that the cipher
EMP inherits all ideal cipher-properties defined by single-stage security games,
including security against (various forms of) related-key and chosen-key attacks.

As results, Andreeva et al. [1] proposed the IEM variant EMKDt(k, u) =
h(k)⊕pt(...h(k)⊕p2(h(k)⊕p1(h(k)⊕u))...) using a random oracle h : {0, 1}κ →
{0, 1}n to derive the round key h(k), and proved indifferentiability at 5 rounds.
Concurrently, Lampe and Seurin [29] proposed to consider the “single-key” Even-
Mansour variant EMIPt(k, u) = k ⊕ pt(...k ⊕ p2(k ⊕ p1(k ⊕ u))...) without any
non-trivial key schedule, and proved indifferentiability at 12 rounds. Both results
are tightened in subsequent works [13,22], showing that 3-round EMKD and 5-
round EMIP achieve indifferentiability.

Sequential Indifferentiability. Indifferentiable blockciphers [11,1,29,13,22]
typically require unnecessarily complicated constructions [35], and their prac-
tical influences are not as notable as the analogues for hash function [10,15].
To remedy, weaker security definitions have been proposed [30,2,9,34]. In par-
ticular, to formalize chosen-key security, Mandal et al. [30] and subsequently
Cogliati and Seurin [8] advocated the notion of sequential-indifferentiability (seq-
indifferentiability), which is a variant of indifferentiability concentrating on dis-
tinguishers that follow a strict restriction on the order of queries. The use-
fulness of seq-indifferentiability lies in its implication towards correlation in-
tractability [5], meaning that no (chosen-key) adversary can find inputs/outputs
of the blockcipher that satisfies evasive relations. For the aforementioned Even-
Mansour variants, seq-indifferentiability (and CI) have been established for 3-
round EMKD [23] and 4-round EMIP [8], both of which are tight. The fact that
4-round EMIP is seq-indifferentiable/CI but not “fully” indifferentiable also sep-
arated the two security notions [13].

2



Our Question. Besides initial positive results on the general EM[−→ϕ ]t model,
another attractive line of work has been set to seek for minimizing IEM ci-
pher for certain security properties. In detail, Dunkelman [17] was the first to
minimize the 1-round Even-Mansour cipher by halving the key size without af-
fecting its SPRP security. Following this and with significant technical novelty,
Chen et al. [6] proposed minimal 2-round IEM variants with beyond-birthday
SPRP security. Subsequently, Dutta [18] extended the discussion to tweakable
Even-Mansour (TEM) ciphers and proposed minimal 2-round and 4-round IEM
variants, depending on the assumptions on tweak schedule functions.

Regarding (seq-)indifferentiability, we stress that all the aforementioned re-
sults on IEM [1,29,8,23,13,22] requires using t independent random permutations
in the t rounds. As will be elaborated, this independence is crucial for their
(seq-)indifferentiability simulators. A natural next step is to investigate whether
(weaker) indifferentiability is achievable using a single permutation. In partic-
ular, without key schedule, does the single-permutation Even-Mansour variant
EMSPt(k, u) = k ⊕ p(...k ⊕ p(k ⊕ p(k ⊕ u))...) suffice?

1.1 Our Contributions

We make the first step towards answering our question and analyze the IEM
cipher with identical permutation w.r.t. the seq-indifferentiability.

New Attack Against Seq-Indifferentiability. Our first observation is that,
even in the weaker model of seq-indifferentiability, the aforementioned “single-
key”, single-permutation Even-Mansour variant EMSP remains insecure, regard-
less of the number of rounds. Concretely, we exhibit a chosen-key attack that
makes just 1 permutation query and 1 encryption query. Our attack utilized a
sort of weakness that is related to slide attacks [3]. In detail, in the EMSP con-
struction, a single input/output pair p(x) = y of the permutation already yields
a full t-round EMSPt evaluation y → (x, y)→ ...→ (x, y)︸ ︷︷ ︸

t times

→ x with k = x ⊕ y,

by acting as the involved evaluations in all the t rounds.

Minimal and Secure Construction. Given our negative result on EMSP, to
achieve security, one has to enhance 4-round EMSP by using at least 2 indepen-
dent random permutations. This consideration yields a minimal IEM solution
scheme EM2Pp1,p2

4 : {0, 1}n × {0, 1}n → {0, 1}n uses two random permutations
p1,p2 though no key schedule:

EM2Pp1,p2

4 (k, u) := k ⊕ p1

(
k ⊕ p2

(
k ⊕ p2(k ⊕ p1(k ⊕ u))

))
.

See Fig. 1 for an illustration. We established seq-indifferentiability for EM2Pp1,p2

4

with O(q2) simulator complexity and O(q4/2n) security which are comparable
with EMIP4 [8]. For ease of comparison, we summarize our results and the
existing in Table 1.
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Fig. 1: The minimal construction EM2Pp1,p2

4 using two independent random per-
mutations p1,p2 : {0, 1}n → {0, 1}n and no key schedule.

Table 1: Comparison of ours with existing seq-indifferentiable/CI IEM results.
The column Key sch. indicates the key schedule functions in the schemes. The
column Complex. indicates the simulator complexities.

Scheme ]Rounds ]Primitives Key sch. Complex. Bounds Ref.

EMIPp1,p2,p3,p4
4 4 4 no q2 q4/2n [8]

EMKDh,p1,p2,p3
3 3 4

random

oracle h
q2 q4/2n [23]

EMSPp t 1 no insecure insecure Sect. 3

EM2Pp1,p2
4 4 2 no q2 q4/2n Sect. 4

Proof Approach. Our proof for the seq-indifferentiability of EM2Pp1,p2

4 is
an extension of [8], with subtle changes addressing new collision events due to
permutation-reusing.

In general, to establish indifferentiability-type security, the first step is to
construct a simulator that resists obvious attack. Then, it remains to argue:

– The simulator is efficient, i.e., its complexity can be bounded;

– The simulator gives rise to an ideal world (E,SE) that is indistinguishable
from the real world (EMP ,P).

To design a simulator, we mostly follow the simulator strategy for EMIP4

(which uses independent permutations) [8], taking queries to the middle (2nd
and 3rd) rounds as “signals” for chain detection and the outer (1st and 4th)
rounds for adaptations.

For example, a distinguisher D may arbitrarily pick k, u ∈ {0, 1}n and eval-
uate x1 ← k ⊕ u, p1(x1) → y1, x2 ← k ⊕ y1, p2(x2) → y2, x3 ← k ⊕ y2,
p2(x3) → y3, x4 ← k ⊕ y4, p1(x4) → y4, x5 ← k ⊕ y4. This creates a sequence
of four (query) records

(
(1, x1, y1), (2, x2, y2), (2, x3, y3), (1, x4, y4)

)
that will be

called a computation chain (the number 1 or 2 indicates the index of the permu-
tation). When D is in the real world (EM2Pp1,p2

4 , (p1,p2)), it necessarily holds
EM2Pp1,p2

4 (k, u) = x5. To be consistent with this in the ideal world (E,SE), S
should “detect” such actions of D, “run ahead” of D and define some simulated
(query) records to “complete” a similar computation chain.
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The crucial observation on EM2P4 is that permutations used in the middle
(2nd and 3rd) rounds and the outer (1st and 4th) rounds remain independent.
Consequently, upon D querying the permutation, the simulator can identify in
clear if D is evaluating in the middle (when D queries P2) or in the outer rounds
(when D queries P1). With these ideas, every time D queries P2 or P−1

2 , our
simulator completes all new pairs of records

(
(2, x, y), (2, x′, y′)

)
of P2.4

Concretely, facing the aforementioned attack, S pinpoints the key k = y2 ⊕
x3 and recognize the “partial chain”

(
(1, x1, y1), (2, x2, y2), (2, x3, y3)

)
upon the

third permutation query P2(x3) → y3. S then queries the ideal cipher E(k, k ⊕
x1) → x5 and adapts the simulated P1 by enforcing P1(k ⊕ y3) := k ⊕ x5.
As such, a simulated computation chain

(
(1, x1, y1), (2, x2, y2), (2, x3, y3), (1, k⊕

y3, k ⊕ x5)
)

with E(k, k ⊕ x1) = x5 is completed. Worth noting, queries to P2

only function as “signals” for detection, while adaptations only create records
on P1 (such “adapted” records thus won’t trigger new detection). This idea of
assigning a unique role to every round/simulated primitive was initiated in [11],
and it indeed significantly simplifies arguments.

Of course, D may pick k′, y′4 ∈ {0, 1}n and evaluate “conversely”. In this case,
our simulator detects the “partial chain”

(
(2, x′2, y

′
2), (2, x′3, y

′
3), (1, x′4, y

′
4)
)

after

D’s third query P−1
2 (y′2) → x′2, queries E−1(k′, k′ ⊕ y′4) → x′0 and pre-enforces

P1(k′⊕x′0) := k′⊕x′5 to reach
(
(1, k′⊕x′0, k′⊕x′5), (2, x′2, y

′
2), (2, x′3, y

′
3), (1, x′4, y

′
4)
)

with E(k′, k′ ⊕ x′1) = x′5. In the seq-indifferentiability setting, these have cov-
ered all adversarial possibilities. In particular, the distinguisher D cannot pick
k′, y′1 and evaluate P−1

1 (y′1) → x′1, u′ ← k′ ⊕ x′1, E(k′, u′) → v′, and P−1
1 (k′ ⊕

v′) → x′4, since this violates the query restriction. This greatly simplifies simu-
lation [30,8,21,23] compared with the “full” indifferentiability setting.

Compared with [8], our novelty lies in handling new collision events that
are harmless in the setting of EMIP4. E.g., consider the previous example of
enforcing P1(k ⊕ y3) := k ⊕ x5 to complete

(
(1, x1, y1), (2, x2, y2), (2, x3, y3)

)
.

Since the 1st and 4th rounds are using the same permutation P1, the collisions
k ⊕ y3 = x1 and k ⊕ x5 = y1 also incur inconsistency in the simulated P1

and prevent adaptation. But we do not need a paradigm-level shift: with all
such events characterized, the proof follows that for EMIP4. Clearly, the simula-
tor detects and completes O(q2) chains, and indistinguishability of (E,SE) and
(EM2Pp1,p2

4 ,P) follows a randomness mapping argument similar to [8].

1.2 Organization.

Sect. 2 serves notations and definitions. Then, in Sect. 3 and 4, we provide
our attack on EMSPp

t and sequential indifferentiability of 4-round EM2Pp1,p2

4

respectively. We finally conclude in Sect. 5.

4 In comparison, Cogliati and Seurin’s simulator for EMIP4 completes all newly con-
stituted pairs

(
(2, x2, y2), (3, x3, y3)

)
of records of P2 and P3.
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2 Preliminaries

Notation. An n-bit random permutation p : {0, 1}n → {0, 1}n is a permutation
that is uniformly chosen from all (2n)! possible choices, and its inverse is denoted
by p−1. Denote by P a tuple of independent random permutations (p1, ...,pr),
where the number t depends on the concrete context (and will be made concrete
later). For integers κ and n, an ideal blockcipher E[κ, n] : {0, 1}κ × {0, 1}n →
{0, 1}n is chosen randomly from the set of all blockciphers with key space {0, 1}κ
and message and ciphertext space {0, 1}n. For each key k ∈ {0, 1}κ, the map
E(k, ·) is a random permutation with inversion oracle E−1(k, ·). Since we focus
on the case of κ = n, we will simply use E instead of E[n, n].

Sequential Indifferentiability. The notion of sequential indifferentiability
(seq-indifferentiability), introduced by Mandal et al. [30], is a weakened variant
of (full) indifferentiability of Maurer et al. [31] tailored to sequential distinguish-
ers [30], a class of restricted distinguishers. For concreteness, our formalism
concentrates on blockciphers. Consider the blockcipher construction CP built

upon several random permutations P. A distinguisher DC
P ,P with oracle access

to both the cipher and the underlying permutations is trying to distinguish CP
from the ideal cipher E. Then, D is sequential, if it proceeds in the following
steps in a strict order: (1) queries the underlying permutations P in arbitrary;
(2) queries the cipher CP in arbitrary; (3) outputs, and cannot query P again in
this phase. This order of queries is illustrated by the numbers in Fig. 2.

In this setting, if there is a simulator SE that has access to E and can
mimic P such that in the view of any sequential distinguisher D, the system
(E,SE) is indistinguishable from the system (CP ,P), then CP is sequentially
indifferentiable (seq-indifferentiable) from E.

To characterize the adversarial power, we define a notion total oracle query
cost of D, which refers to the total number of queries received by P (from
D or CP) when D interacts with (CP ,P) [30]. Then, the definition of seq-
indifferentiability due to Cogliati and Seurin [8] is as follows.

Definition 1 (Seq-indifferentiability). A blockcipher construction CP with
oracle access to a tuple of random permutations P is statistically and strongly
(q, σ, t, ε)-seq-indifferentiable from an ideal cipher E, if there exists a simulator
SE such that for any sequential distinguisher D of total oracle query cost at most
q, SE issues at most σ queries to E and runs in time at most t, and it holds∣∣∣PrP [DC

P ,P = 1]− PrE [DE,SE

= 1]
∣∣∣ ≤ ε.

If D makes q queries, then its total oracle query cost is poly(q). As a concrete
example, the t-round EM cipher EMPt makes t queries to P to answer any query
it receives, and if D makes qe queries to EMPt and qp queries to P, then the total
oracle query cost of D is qp + tqe = poly(qp + qe) = poly(q).

Albeit being weaker than “full” indifferentiability [31] (which can be viewed
as seq-indifferentiability without restricting distinguishers to sequential), seq-
indifferentiability already implies correlation intractability in the ideal model [30,8].
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The notion of correlation intractability was introduced by Canetti et al. [5] and
adapted to ideal models by Mandal et al. [30] to formalize the hardness of finding
exploitable relation between the inputs and outputs of function ensembles. For
simplicity, we only present asymptotic definitions. Consider a relation R over
pairs of binary sequences.

– R is evasive with respect to an ideal cipher E, if no efficient oracle Turing ma-
chineME can output anm-tuple (x1, . . . , xm) such that

(
(x1, . . . , xm), (E(x1),

. . . , E(xm))
)
∈ R with a significant success probability;

– An idealized blockcipher EMP is correlation intractable with respect to R, if
no efficient oracle Turing machine MP can output an m-tuple (x1, . . . , xm)
such that

(
(x1, . . . , xm), (EMP(x1), . . . ,EMP(xm))

)
∈ R with a significant

success probability.

With these, the implication [30,8] states that if EMP is seq-indifferentiable
from E, then for any m-ary relation R which is evasive with respect to E, EMP

is correlation intractable with respect to R.

D

C P E S

0/1

12

Fig. 2: Setting for seq-indifferentiability. The numbers 1 and 2 indicate the query
order that D has to follow.

3 Slide Attack on the Single-key, Single-permutation
EMSP

The t-round EMSPp
t uses the same permutation in every round, and is defined

as
EMSPp

t (k, u) := k ⊕ p
(
...k ⊕ p

(
k ⊕ p(k ⊕ p(k ⊕ u))

)
...
)
.

Our attack proceeds as follows.

1. Picks x ∈ {0, 1}n in arbitrary and query p(x)→ y.
2. Computes k ← x⊕ y. Outputs 1 if and only if E(k, y) = x.

Clearly, it always outputs 1 when interacting with (EMSPp
t ,p) with any rounds t.

In the ideal world, the simulator has to find a triple (x⊕y, y, x) ∈ ({0, 1}n)3 such
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that E(x⊕y, y) = x for the ideal cipher E. When the simulator makes qS queries,
it is easy to see: the probability that a forward ideal cipher query E(x ⊕ y, y)
responds with x is at most 1/(2n − qS); the probability that a backward query
E−1(x⊕y, y) responds with x is at most 1/(2n− qS). Thus, the probability that
the simulator pinpoints E(x⊕ y, y) = x is at most qS/(2

n − qS), and the attack
advantage is at least 1− qS/(2n − qS).

It is also easy to see that, the above attack essentially leverages a relation
that is evasive [8] w.r.t. an ideal cipher.

4 Seq-Indifferentiability of EM2P4

This section proves seq-indifferentiability for the 4-round EM2Pp1,p2

4 , the variant
of single-key IEM using two permutations p1,p2, as shown in Fig. 1.

Theorem 1. Assume that p1 and p2 are two independent random permutations.
Then, the 4-round single-key Even-Mansour scheme EM2Pp1,p2

4 defined as

EM2Pp1,p2

4 (k, u) := k ⊕ p1(k ⊕ p2(k ⊕ p2(k ⊕ p1(k ⊕ u))))

is strongly and statistically (q, σ, t, ε)-seq-indifferentiable from an ideal cipher E,

where σ = q2, t = O(q2), and ε ≤ 20q3+29q4

2n = O( q
4

2n ) (assuming q+2q2 ≤ 2n/2).

To prove Theorem 1, we first describe our simulator in Sect. 4.1.

4.1 Simulator of EM2P4

Randomness and Interfaces. The simulator S offers four interfaces P1, P−1
1 ,

P2 and P−1
2 to the distinguisher for querying the internal permutations, and the

input of the query is any element in the set {0, 1}n.
To handily describe lazying sampling during simulation, we follow previ-

ous works [1,29,21,16,12,14,11,13] and make the randomness used by S explicit
through two random permutations p1 and p2. Namely, S queries p1 and p2 (see
below for concreteness) to have a random value z rather than straightforwardly

sampling z
$← {0, 1}n. Let P = (p1,p2). We denote by SE,P the simulator that

emulates the primitives for E and queries p1 and p2 for necessary random val-
ues. As argued in [1], explicit randomness is merely an equivalent formalism of
lazying sampling.

Maintaining Query Records. To keep track of previously answered permuta-
tion queries, S internally maintains two sets Π1 and Π2 that have entries in the
form of (i, x, y) ∈ {1, 2}×{0, 1}n×{0, 1}n. S will ensure that for any x ∈ {0, 1}n
and i ∈ {1, 2}, there is at most one y ∈ {0, 1}n such that (i, x, y) ∈ Πi, and vice
versa. As will be elaborated later, S aborts whenever it fails to ensure such
consistency. By this, the sets Π1 and Π2 will define two partial permutations,
and we denote by domain(Πi) (range(Πi), resp.) the (time-dependent) set of all
n-bit values x (y, resp.) satisfying ∃z ∈ {0, 1}n s.t. (i, x, z) ∈ Πi ((i, z, y) ∈ Πi,
resp.). We further denote by Πi(x) (Π−1

i (y), resp.) the corresponding value of z.
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Simulation Strategy. Upon the distinguisherD querying Pi(x) (P−1
i (y), resp.),

S checks if x ∈ Π1 (y ∈ Π−1
1 , resp.), and answers with Π1(x) (Π−1

1 (y), resp.)
when it is the case. Otherwise, the query is new, and S queries pi for y ← pi(x)
(x ← p−1

i (y), resp.). If y /∈ range(Πi), S adds the record (i, x, y) to the set Πi;
otherwise, S aborts to avoid inconsistency in Πi (as mentioned). Then, when
i = 1, S simply answers with x (y, resp.); when i = 2, S completes the partial
chains formed by this new record (2, x, y) and previously created records in Π2

(as mentioned in the Introduction).
In detail, when the new adversarial query is to P2(x) and S adds a new

record (2, x, y) to Π2, S considers all pairs of triples
(
(2, x, y), (2, x′, y′)

)
∈ (Π2)2

(including the pair
(
(2, x, y), (2, x, y)

)
) and all

(
(2, x′, y′), (2, x, y)

)
∈ (Π2)2 (with

x′ 6= x for distinction). Then,

– For every pair
(
(2, x, y), (2, x′, y′)

)
∈ (Π2)2, S computes k ← y ⊕ x′ and

x4 ← y′⊕k. S then internally invokes P1 to have y4 ← P1(x4) and v ← y4⊕k.
S then queries the ideal cipher to have u ← E−1(k, v), and further com-
putes x1 ← u ⊕ k and y1 ← x ⊕ k. Finally, if x1 /∈ domain(Π1) and
y1 /∈ range(Π1), S adds the record (i, x, y) to the set Πi, to complete
the 4-chain

(
(1, x1, y1), (2, x, y), (2, x′, y′), (1, x4, y4)

)
; otherwise, S aborts to

avoid inconsistency. The record (1, x1, y1) is called adapted, since it is cre-
ated to “link” the simulated computation. In our pseudocode, this process
is implemented as a procedure Complete−;

– For every pair
(
(2, x′, y′), (2, x, y)

)
∈ (Π2)2, S computes k ← y′ ⊕ x, y1 ←

x′⊕ k, x1 ← P−1
1 (y1), u← x1⊕ k; v ← E(k, u), y4 ← v⊕ k and x4 ← y⊕ k.

S finally adds the adapted record (1, x4, y4) to Π1 when x4 /∈ domain(Π1)
and y4 /∈ range(Π1), to complete

(
(1, x1, y1), (2, x′, y′), (2, x, y), (1, x4, y4)

)
,

or aborts otherwise. In our pseudocode, this process is implemented as a
procedure Complete+.

Upon D querying P−1
2 (y), the simulator actions are similar to P2(x) by sym-

metry. Our strategy is formally described via pseudocode in the next paragraph.

Simulator in Pseudocode.

1: Simulator SE,P

2: Variables: Sets Π1, Π2, XDom, and XRng, all initially empty

3: public procedure P1(x)
4: if x /∈ domain(Π1) then
5: y ← p1(x)
6: if Π−1

1 (y) 6=⊥ then abort
7: if y ∈ XRng then abort
8: Π1 ← Π1 ∪ {(1, x, y)}
9: return Π1(x)

10: public procedure P−1
1 (y)

11: if y /∈ range(Π1) then
12: x← p−1

1 (y)
13: if Π1(x) 6=⊥ then abort
14: if x ∈ XDom then abort
15: Π1 ← Π1 ∪ {(1, x, y)}
16: return Π−1

1 (y)

9



17: public procedure P2(x)
18: if x /∈ domain(Π2) then
19: y ← p2(x)
20: Π2 ← Π2 ∪ {(2, x, y)}
21: forall (2, x′, y′) ∈ Π2 do
22: // 3+ chain
23: k ← y′ ⊕ x
24: if y ⊕ k ∈ domain(Π1)
25: then abort
26: XDom ← XDom ∪ {y ⊕ k}
27: XRng ← XRng ∪ {x′ ⊕ k}
28: // 2+ chain
29: k ← y ⊕ x′

30: if x⊕ k ∈ range(Π1)
31: then abort
32: if ∃(2, x′′, y′′) ∈ Π2 :

x′ ⊕ y′ ⊕ x = x⊕ y ⊕ x′′

then abort
33: XDom ← XDom ∪ {y′ ⊕ k}
34: XRng ← XRng ∪ {x⊕ k}
35: forall (2, x′, y′) ∈ Π2

s.t. x′ 6= x do
36: k ← x⊕ y′

37: Complete+(x′, k)
38: forall (2, x′, y′) ∈ Π2 do
39: k ← y ⊕ x′

40: Complete−(y′, k)
41: // Clear the pending sets
42: XDom ← ∅, XRng ← ∅
43: return Π2(x)

44: public procedure P−1
2 (y)

45: if y /∈ range(Π2) then
46: x← p−1

2 (y)
47: Π2 ← Π2 ∪ {(2, x, y)}
48: forall (2, x′, y′) ∈ Π2 do
49: // 2− chain
50: k ← y ⊕ x′

51: if x⊕ k ∈ range(Π1)
52: then abort
53: XDom ← XDom ∪ {y′ ⊕ k}
54: XRng ← XRng ∪ {x⊕ k}
55: // 3− chain
56: k ← y′ ⊕ x
57: if y ⊕ k ∈ domain(Π1)
58: then abort
59: if ∃(2, x′′, y′′) ∈ Π2 :

y′ ⊕ x′ ⊕ y = y′′ ⊕ x⊕ y
then abort

60: XDom ← XDom ∪ {y ⊕ k}
61: XRng ← XRng ∪ {x′ ⊕ k}
62: forall (2, x′, y′) ∈ Π2

s.t. x′ 6= x do
63: k ← y ⊕ x′

64: Complete−(y′, k)
65: forall (2, x′, y′) ∈ Π2 do
66: k ← x⊕ y′

67: Complete+(x′, k)
68: // Clear the pending sets
69: XDom ← ∅, XRng ← ∅
70: return Π−1

2 (y)

71: private procedure Complete+(x2, k)

72: y1 ← x2 ⊕ k, x1 ← P−1
1 (y1)

73: u← x1 ⊕ k, v ← E(k, u)
74: y4 ← v ⊕ k
75: y2 ← P2(x)
76: x3 ← y2 ⊕ k, y3 ← P2(x3)
77: x4 ← y3 ⊕ k
78: if x4 ∈ domain(Π1) then abort
79: if y4 ∈ range(Π1) then abort
80: if y4 ∈ XRng then abort
81: Π1 ← Π1 ∪ {(1, x4, y4)}

82: private procedure Complete−(y3, k)

83: x4 ← y3 ⊕ k, y4 ← P1(x4)
84: v ← y4 ⊕ k, u← E−1(k, v)
85: x1 ← u⊕ k
86: x3 ← P−1

2 (y3)
87: y2 ← x3 ⊕ k, x2 ← P−1

2 (y2)
88: y1 ← x2 ⊕ k
89: if x1 ∈ domain(Π1) then abort
90: if y1 ∈ range(Π1) then abort
91: if x1 ∈ XDom then abort
92: Π1 ← Π1 ∪ {(1, x1, y1)}

We identify a number of bad events during the simulation and coded them in
S. The occurrence of such events indicates potential abortions due to adaptations
in future. In detail, before calling Complete+ and Complete−, S creates two sets
XRng and XDom for the values that will be used in subsequent adaptations: for
every x ∈ XDom, S will create an adapted record of the form (1, x, ?); for every
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y ∈ XRng, S will create an adapted record of the form (1, ?, y). Therefore,
collisions among values in XDom and domain(Π1) (resp., XRng and range(Π1))
already indicate the failure of some future adaptations. Thus, once such events
occur, S also aborts to terminate the doomed execution.

4.2 The Indistinguishability Proof

It remains to establish two claims for any distinguisher D: (a) the simulator SE,P
has bounded complexity; (b) the real and ideal worlds are indistinguishable. To
this end, we introduce a helper intermediate system in the next paragraph. Then,
subsequent paragraphs establish claims (a) and (b) in turn.

Intermediate System. As shown in Fig. 3, we use three systems for the proof.
In detail, let Σ1(E,SE,P) be the system capturing the ideal world, where E
is an ideal cipher and p1, p2 are independent random permutations; and let
Σ3(EM2PP4 ,P) be the real world.

We follow [30,8] and introduce Σ2(EM2PS
E,P

4 ,SE,P) as an intermediate sys-
tem, which is modified from Σ1 by replacing E with an EM2P4 instance that
queries the simulator to evaluate.

D

E S

p1 p2

D

EM2P4 S

p1 p2E

D

EM2P4

p1 p2

Σ1 Σ2 Σ3

Fig. 3: Systems used in the proof.

Then, consider a fixed sequential distinguisher D of total oracle query cost
at most q. The remaining key points are as follows.

Complexity of SE,P . As the key observation, SE,P never adds records to
Π2 internally. Thus, |Π2| increases by 1 after each adversarial query, and thus
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|Π2| ≤ q. By this, the number of detected chains
(
(2, x2, y2), (2, x′2, y

′
2)
)
∈ (Π2)2

is at most q2. This also means SE,P makes at most q2 queries to E, since such a
query only appears during completing a detected chain. For each detected chain,
SE,P adds at most 2 records to Π1. Moreover, |Π1| may also increase by q due
to D straightforwardly querying P1 or P−1

1 . It thus holds |Π1| ≤ q+2q2. Finally,
the running time is dominated by completing chains, and is thus O(q2).

Indistinguishability of Σ1, Σ2 and Σ3. First, we need to show that the two
simulated permutations are consistent, which is of course necessary for indistin-
guishability. Note that the occurrence of such inconsistency would particularly
render SE,P abort. Therefore, via a fine-grained analysis of the various involved
values, we establish an upper bound on the probability that SE,P aborts.

4.3 Abort Probability of SE,P

As discussed in Sect. 4.2, when the total oracle query cost of D does not exceed q,
it holds |Π2| ≤ q, and the total number of detected chains

(
(2, x2, y2), (2, x′2, y

′
2)
)
∈

(Π2)2 is at most q2. The latter means:

(i) the number of adapted records in Π1 is at most q;
(ii) the number of calls to P1 and P−1

1 is at most q + q2 in total (which is the
number of detected chains plus the number of adversarial queries to P1 and
P−1

1 );
(iii) |XDom| ≤ q2, |XRng| ≤ q2.

With the above bounds, we analyze the abort conditions in turn.

Lemma 1. The probability that SE,P aborts at lines 6, 7, 13 and 14 is at most
(2q3 + 2q4)/2n.

Proof. Consider lines 6 and 7 in P1 first. The value y ← p1(x) newly “down-
loaded” from p1 is uniformly distributed in 2n−|Π1| ≥ 2n−q−2q2 possibilities.
This value y is independent of the values in Π1 and XRng. Thus, the conditions
for lines 6 and 7 are fulfilled with probability at most |range(Π1)∪XRng|. How-
ever, it is easy to see that, the size of the union set range(Π1) ∪ XRng cannot
exceed the upper bound on the number of adapted records in Π1 at the end of
the execution, since every value y′ in XRng eventually becomes a correspond-
ing adapted record (1, x′, y′) in Π1 as long as SE,P does not abort. Therefore,
|range(Π1) ∪ XRng| ≤ q2, and thus each call to P1 aborts with probability at
most q2/(2n − q − 2q2). Similarly by symmetry, each call to P−1

1 aborts with
probability at most q2/(2n − q − 2q2). Since the number of calls to P1 and P−1

1

is at most q + q2 in total, the probability that SE,P aborts at lines 6, 7, 13 and
14 is at most

(q + q2) · q2

2n − (q + 2q2)
≤ 2q3 + 2q4

2n
,

assuming q + 2q2 ≤ 2n/2. ut
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Next, we analyze the probability of the “early abort” conditions in P2 and
P−1

2 .

Lemma 2. The probability that SE,P aborts at lines 25, 31 and 32 in the pro-
cedure P2 (resp., lines 52, 58 and 59 in the procedure P−1

2 ) is at most (6q3 +
8q4)/2n.

Proof. Consider the conditions in P2 first. The value y ← p1(x) newly “down-
loaded” from p1 is uniformly distributed in 2n−|Π1| ≥ 2n−q−2q2 possibilities.
Moreover, this value y is independent of the values in Π1, Π2 and XRng.

With the above in mind, we analyze the conditions in turn. First, consider
line 25. For every detected partial chain

(
(2, x′, y′), (2, x, y)

)
, the condition y ⊕

k ∈ domain(Π1) translates into y ⊕ y′ ⊕ x ∈ domain(Π1), which holds with
probability at most |domain(Π1)|/(2n − q − 2q2) ≤ (q + 2q2)/(2n − q − 2q2)
(since |Π1| ≤ q + 2q2).

The arguments for the remaining conditions are similar: since y is uniform,

– for every detected partial chain
(
(2, x, y), (2, x′, y′)

)
, the condition x ⊕ k ∈

range(Π1) ⇔ x ⊕ y ⊕ x′ ∈ range(Π1) is fulfilled with probability at most
(q + 2q2)/(2n − q) (again using |Π1| ≤ q + 2q2);

– for every detected partial chain
(
(2, x′, y′), (2, x, y)

)
, the probability to have

x′⊕y′⊕x = x⊕y⊕x′′ for some (2, x′′, y′′) ∈ Π2 is at most q/(2n−q−2q2)(since
|Π2| ≤ q).

Since the number of detected partial chains
(
(2, x′, y′), (2, x, y)

)
is at most

|Π2| ≤ q, the probability that a single query or call to P2(x) aborts at lines 25,
31 and 32 is at most

q ×
( q + 2q2

2n − q − 2q2
+

q + 2q2

2n − q − 2q2
+

q

2n − q − 2q2

)
≤ 3q2 + 4q3

2n − q − 2q2
≤ 6q2 + 8q3

2n
,

assuming q + 2q2 ≤ 2n/2.
The above complete the analysis for P2. The analysis for lines 52, 58 and

59 in P−1
2 is similar by symmetry, yielding the same bound. Summing over

the at most q queries or calls to P2 and P−1
2 , we reach the claimed bound

q(6q2 + 8q3)/2n ≤ 6q3 + 8q4/2n. ut

For the subsequent argument, we introduce a bad event BadE` regarding
the ideal cipher queries made during S processing the `-th adversarial query to
P2(x(`)) or P−1

2 (y(`)). Formally, BadE` occurs if:

– In this period, during a call to Complete+(x2, k) in this period, a query
to v ← E(k, u) is made, and the response satisfies v ⊕ k ∈ range(Π1) or
v ⊕ k ∈ XRng; or

– In this period, during a call to Complete−(y3, k) in this period, a query to
u ← E−1(k, v) is made, and the response satisfies u ⊕ k ∈ domain(Π1) or
u⊕ k ∈ XDom.

To analyze BadE`, we need a helper lemma as follows.
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Lemma 3. Inside every call to Complete+, resp. Complete−, the ideal cipher
query E(k, u), resp. E−1(k, v), is fresh. Namely, the simulator SE,P never made
this query E(k, u), resp. E−1(k, v), before.

Proof. Assume that this does not hold. Then this means that such a query pre-
viously occurred when completing another chain. By the construction of EM2P4

and our simulator, this means right after the call to Complete+ or Complete−

that queried E(k, u), all the four corresponding round inputs/outputs (1, x1, y1),
(2, x2, y2), (2, x3, y3) and (1, x4, y4) with k = u⊕x1 = y1⊕x2 = ... = y4⊕E(k, u)
have been in Π1 and Π2. This in particular includes the query to P2/P−1

2 that
was purported to incur the current call to Complete+/Complete−. But since the
query to P2/P−1

2 is not new, this contradicts the construction of our simulator.
Therefore, the ideal cipher query must be fresh. ut

The probability of BadE` is then bounded as follows.

Lemma 4. In each call to Complete+ or Complete−, the probability that BadE`
occurs is at most 2(q + 2q2)/2n.

Proof. We first analyze the abort probabilities of calls to Complete+ and Complete−.
Consider a call to Complete+(x2, k) first. By Lemma 3, the ideal cipher query
E(k, u) → v made inside this call is new. Since SE,P makes at most q2 queries
to E, the value v is uniform in at least 2n − q2 possibilities. Furthermore, v is
independent of the values in XRng and range(Π1). Therefore,

Pr[v ⊕ k ∈ (XRng ∪ range(Π1))] ≤ |XRng ∪ range(Π1)|
2n − q2

.

It is easy to see that |XRng ∪ range(Π1)| cannot exceed the upper bound q+ 2q2

on |Π1| at the end of the execution. Therefore, the probability to have BadE` in
a call to Complete+(x2, k) is at most (q + 2q2)/(2n − q2).

The analysis of Complete−(y3, k) is similar by symmetry, yielding the same
bound (q + 2q2)/(2n − q2). Assuming q2 ≤ 2n/2, we obtain the claim. ut

Then, we address the abort probability due to adaptations in Complete+

and Complete− call.

Lemma 5. The probability that SE,P aborts at lines 78, 79, and 80; 89, 90, and
91 is at most (2q3 + 4q4)/2n.

Proof. Noting that Complete+ and Complete− are only called during processing
adversarial queries to P2(x)/P−1

2 (y), we quickly sketch the process of the latter.
Wlog we focus on processing a query P2(x), as the case of P−1

2 (y) is similar by
symmetry.

Upon D making the `-th query to P2(x(`)), SE,P first “downloads” the re-
sponse y(`) ← p2(x) from p2 and then detects a number of partial chains as
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follows:

2+chains :
(
(2, x(1), y(1)), (2, x(`), y(`))

)
, ...,

(
(2, x(`−1), y(`−1)), (2, x(`), y(`))

)
,

3+chains :
(
(2, x(`), y(`)), (2, x(1), y(1))

)
, ...,

(
(2, x(`), y(`)), (2, x(`−1), y(`−1))

)
,(

(2, x(`), y(`)), (2, x(`), y(`))
)
,

where (2, x(1), y(1)), ..., (2, x(`−1), y(`−1)) ∈ Π2 are the triples created due to the
earlier ` − 1 adversarial queries to P2 or P−1

2 . For conceptual convenience we
refer to the former type of chains as 2+chains and the latter as 3+chains. S then
proceeds in two steps:

– First, completes the 3+chains in turn, making a number of calls to Complete+;
– Second, completes the 2+chains in turn, making a number of calls to Complete−.

We proceed to argue that, during processing the `-th query to P2(x(`)), the
above calls to Complete+/Complete− abort with probability at most

(
2(2` −

1)(q + 2q2)
)
/2n in total.

To this end, consider the j-th 3+chain
(
(2, x(j), y(j)), (2, x(`), y(`))

)
. Let k(j) =

y(j) ⊕ x(`) and x
(j)
4 = k(j) ⊕ y(`). Since S did not abort at line 25, it holds

x
(j)
4 /∈ domain(Π1) right after S “downloads” y(`) ← p2(x). We then show that

x
(j)
4 /∈ domain(Π1) is kept till the call to Complete+(x(j), k(j)) adapts by adding

(1, x
(j)
4 , y

(j)
4 ) to Π1, so that lines 78, 79 and 80 won’t cause abort.

– First, for any 3+chain
(
(2, x(j′), y(j′)), (2, x(`), y(`))

)
completed before the

chain
(
(2, x(j), y(j)), (2, x(`), y(`))

)
, its adaptation cannot add (1, x

(j)
4 , ?) to

Π1, since its adapted pair is of the form x
(j′)
4 = y(j′) ⊕ x(`) ⊕ y(`) 6= x

(j)
4 ;

– Second, internal queries to P−1
1 (y1) → x1 (with x1 ← p−1

1 (y1)) during this

period cannot add (1, x
(j)
4 , ?) to Π1, since x

(j)
4 was added to XDom and since

x1 /∈ XDom (otherwise S has aborted at line 7).

Thus, line 78 won’t cause abort at all. On the other hand, with ¬BadE` as the

condition, y
(j)
4 /∈ (range(Π1)∪XRng) necessarily holds. Therefore, in the call to

Complete+(x(j), k(j)) adapts, lines 79 and 80 will not cause abort. The above
completes the argument for Complete+ calls due to 3+chains.

We then address 2+chains by considering the j-th
(
(2, x(`), y(`)), (2, x(j), y(j))

)
.

Let k(j) = y(j) ⊕ x(`) and x
(j)
4 = k(j) ⊕ y(`). Since S did not abort at line 25, it

holds x
(j)
4 /∈ domain(Π1) right after S downloads y(`) ← p2(x). We then show

that x
(j)
4 /∈ domain(Π1) is kept till the call to Complete+(x(j), k(j)) adapts by

adding (1, x
(j)
4 , y

(j)
4 ) to Π1, so that lines 78, 79 and 80 won’t cause abort.

Therefore, during processing the `-th query to P2(x(`)) or P−1
2 (y(`)), the

probability that S aborts in each call to Complete+ or Complete− is equal to
Pr[BadE`], which does not exceed 2(q + 2q2)/2n by Lemma 4.
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To summarize, recall that the total number of detected partial chains/calls to
Complete+ or Complete− is bounded by |Π2|2 ≤ q2. Therefore, the probability
that SE,P aborts at lines 78, 79, and 80; 89, 90, and 91 is bounded by

q2 ×
(2(q + 2q2)

2n

)
≤ 2q3 + 4q4

2n
,

as claimed. ut

Lemma 6. The probability that SE,P aborts in DΣ2 is at most (10q3+14q4)/2n.

Proof. Gathering Lemmas 1, 2 and 5 yields the bound.

4.4 Indistinguishability of Σ1 and Σ3

A random tuple (E,P) is good, if SE,P does not abort in DΣ2(E,P). It can be
proved that, for any good tuple (E,P), the transcript of the interaction of D
with Σ1(E,P) and Σ2(E,P) is exactly the same. This means the gap between
Σ1 and Σ2 is the abort probability.

Σ1 to Σ2.

Lemma 7. For any distinguisher D of total oracle query cost at most q, it holds∣∣∣Pr[DΣ1(E,SE,P) = 1]− Pr[DΣ2(EM2PS
E,P

4 ,SE,P) = 1]
∣∣∣ ≤ 10q3 + 14q4

2n
.

Proof. Note that in Σ1 and Σ2, the sequential distinguisher D necessarily first
queries S and then E (in Σ1) or EM2P4 (in Σ2) only. Thus, the transcript
of the first phase of the interaction (i.e., for the queries of D to SE,P) are
clearly the same, since in both cases they are answered by S using the same
randomness (E,P). For the second phase of the interaction (i.e., queries of D
to its left oracle), it directly follows from the adaptation mechanism. Hence, the
transcripts of the interaction of D with Σ1(E,P) and Σ2(E,P) are the same for
any good tuple (E,P). Further using Lemma 6 yields∣∣∣Pr[DΣ1(E,SE,P) = 1]− Pr[DΣ2(EM2PS

E,P
4 ,SE,P) = 1]

∣∣∣
≤ Pr[(E,P) is bad] ≤ 10q3 + 14q4

2n
,

as claimed. ut

Σ2 to Σ3: Randomness Mapping. We now bound the gap between Σ2 and
Σ3. Following [11,8], the technique is the randomness mapping argument.

We define a map Λ mapping pairs (E,P) either to the special symbol ⊥
when (E,P) is bad, or to a pair of partial permutations P ′ = (p′1,p

′
2) when

(E,P) is good. A partial permutation is functions p′i: {0, 1}n → {0, 1}n ∪ {∗}
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and p′i
−1

: {0, 1}n → {0, 1}n ∪ {∗}, such that for all x, y ∈ {0, 1}n, p′i(x) = y 6=
∗ ⇔ p′i

−1
(y) = x 6= ∗.

Then map Λ is defined for good pairs (E,P) as follows: run DΣ2(E,P), and
consider the tables Πi of the simulator at the end of the execution: then fill all
undefined entries of the Πi’s with the special symbol ∗. The result is exactly
Λ(E,P). Since for a good pair (E,P), the simulator never overwrite an entry in
its tables, it follows that Λ(E,P) is a pair of partial permutations as just defined
above. We say that a pair of partial permutations P ′ = (p′1,p

′
2) is good if it has

a good preimage by Λ. Then, we say that a pair of permutations P extends a
pair of partial permutations P ′ = (p′1,p

′
2), denoted P ` P ′, if for each i = 1, 2,

pi and p′i agree on all entries such that p′i(x) 6= ∗ and p′i
−1

(y) 6= ∗.
By definition of the randomness mapping, for any good tuple of partial per-

mutations P ′, the outputs of DΣ2(E,P) and DΣ3(P) are equal for any pair (E,P)
such that Λ(E,P) = P ′ and any tuple of permutations P such that P ` P ′. Let
Ω1 be the set of partial permutations P ′ such that DΣ2(E,P) output 1 for any
pair (E,P) such that Λ(E,P) = P ′. Then, we have the following ratio.

Lemma 8. Consider a fixed distinguisher D with total oracle query cost at most
q. Then, for any P ′ = (p′1,p

′
2) ∈ Ω1, it holds

Pr
[
P ` P ′

]
Pr
[
Λ(E,P) = P ′

] ≥ 1− q4

2n
.

Proof. Since the number of “non-empty” entries p′1(x) 6= ∗ and p′2(x) 6= ∗ are
|Π1| and |Π2| respectively, we have

Pr
[
P ` P ′

]
=

( |Π1|−1∏
j=0

1

2n − j

)( |Π2|−1∏
j=0

1

2n − j

)
.

Fix any good preimage (Ẽ, P̃) of P ′. One can check that for any tuple (E,P),
Λ(E,P) = P ′ iff the transcript of the interaction of S with (E,P) in DΣ2(E,P)

is the same as the transcript of the interaction of S with (Ẽ, P̃) in DΣ2(Ẽ,P̃).

Assume that during the Σ2 execution DΣ2(EM2PS
E,P

4 ,SE,P), S makes qe, q1

and q2 queries to E, p1 and p2 respectively. Then,

Pr
[
Λ(E,P) = P ′

]
≤
( qe−1∏

j=0

1

2n − j

)( q1−1∏
j=0

1

2n − j

)( q2−1∏
j=0

1

2n − j

)
.

It is easy to see that, qe+q1 +q2 = |Π1|+ |Π2|: because q1 +q2 equal the number
of lazily sampled records in Π1 and Π2, while qe equal the number of adapted
records in Π1.
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Furthermore, qe ≤ q2 by Sect. 4.2. It thus holds

Pr
[
P ` P ′

]
Pr
[
Λ(E,P) = P ′

] ≥
(∏|Π1|−1

j=0
1

2n−j

)(∏|Π2|−1
j=0

1
2n−j

)
(∏qe−1

j=0
1

2n−j

)(∏q1−1
j=0

1
2n−j

)(∏q2−1
j=0

1
2n−j

)
≥
q2−1∏
j=0

(
1− j

2n

)
≥ 1− (q2)2

2n
≥ 1− q4

2n
,

as claimed. ut

Lemma 9. For any distinguisher D with total oracle query cost at most q, it
holds∣∣∣Pr

[
DΣ2(EM2PS

E,P
4 ,SE,P) = 1

]
− Pr

[
DΣ3(EM2PP4 ,P) = 1

]∣∣∣ ≤ 10q3 + 15q4

2n
.

Proof. Gathering Lemmas 6 and 8 yields∣∣∣Pr
[
DΣ2(EM2PS

E,P
4 ,SE,P) = 1

]
− Pr

[
DΣ3(EM2PP4 ,P) = 1

]∣∣∣
≤Pr

[
(E,P) is bad

]
+
∑
P′∈Ω1

Pr
[
Λ(E,P) = P ′

]
−
∑
P′∈Ω1

Pr
[
P ` P ′

]
≤Pr

[
(E,P) is bad

]
+
∑
P′∈Ω1

Pr
[
Λ(E,P) = P ′

](
1−

Pr
[
P ` P ′

]
Pr
[
Λ(E,P) = P ′

])

≤10q3 + 14q4

2n
+
q4

2n

∑
P′∈Ω1

Pr
[
Λ(E,P) = P ′

]
≤10q3 + 15q4

2n
,

as claimed. ut

Gathering Lemmas 7 and 9 yields the bound in Theorem 1.

5 Conclusion

We make a step towards minimizing the 4-round iterated Even-Mansour ciphers
while retaining sequential indifferentiability. On the negative side, we exhibit an
attack against single-key, single-permutation Even-Mansour with any rounds; on
the positive side, we prove sequential indifferentiability for 4-round single-key
Even-Mansour using 2 permutations. These provide the minimal Even-Mansour
variant that achieve sequential indifferentiability without key schedule functions.
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