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Abstract—We extend a previous framework for designing
differentially private (DP) mechanisms via randomized graph
colorings that was restricted to binary functions, corresponding
to colorings in a graph, to multi-valued functions. As before,
datasets are nodes in the graph and any two neighboring
datasets are connected by an edge. In our setting, we assume
each dataset has a preferential ordering for the possible outputs
of the mechanism, which we refer to as a rainbow. Different
rainbows partition the graph of datasets into different regions.
We show that when the DP mechanism is pre-specified at the
boundary of such regions, at most one optimal mechanism can
exist. Moreover, if the mechanism is to behave identically for all
same-rainbow boundary datasets, the problem can be greatly
simplified and solved by means of a morphism to a line graph.
We then show closed form expressions for the line graph in
the case of ternary functions. Treatment of ternary queries in
this paper displays enough richness to be extended to higher-
dimensional query spaces with preferential query ordering, but
the optimality proof does not seem to follow directly from the
ternary proof.

I. INTRODUCTION

Differential privacy (DP), proposed in [1], [2], is a general
privacy-preserving framework that aims to limit the statistical
capability of a curious analyst, regardless of its computational
power, in determining whether or not the data of a specific
individual was used in response to its query1. Since its
inception, DP has attracted extensive research effort; see [4]
for a survey and [5] for a treatment of the subject. Recent
high-profile applications of DP include the 2020 US Census
[6], as well as by Google, Apple and Microsoft [7]–[9].

The DP constraints are defined on any neighboring datasets
that differ in data from one individual. These constraints are
local, relative and dataset-independent contributing to the
success of DP as a privacy preserving framework. However,
an undesirable byproduct has been that many DP implemen-
tations are agnostic to the actual dataset at hand. Indeed, a
vast majority of output perturbation DP mechanisms take the
worst-case query sensitivity between any two neighboring
datasets to determine the scale of noise [5]. This is a pes-
simistic approach and can adversely affect query utility [10].
Several fixes have been proposed to improve utility. In one di-
rection, noise calibration to smooth sensitivity was proposed
in [11], for which a chosen utility level is not guaranteed and
the mechanism suffers from a heavy tail leading to outliers.
Another direction is relaxation of the DP constraints [10],

1DP variants assuming a finite compute power for the adversary have been
studied in works including [3] but are not within the scope of our work.

[12], [13]. For example, [10] proposed individual-DP, which
defines DP constraints only between the given realization of
a dataset and its neighbors. This, however, destroys group DP,
i.e., implied DP constraints between non-neighboring datasets
no longer remain. Recently, [14] proposed designing dataset-
dependent DP mechanisms for binary-valued queries that
guarantee optimal utility and yet, do not weaken the original
DP constraints in any way; see also [15]. Each dataset has
a true query value (e.g., blue or red) and is represented
as a node on a graph with edges representing neighboring
datasets. Let mechanism randomness be homogeneously pre-
specified only at the boundary datasets. [14] showed how
these initial constraints can be optimally extended in closed-
form for all other datasets, where the probability of giving
the truthful query response is maximized by taking into
account the distance to the boundary while tightly satisfying
all (ε,δ )-DP constraints.

In this paper, we consider a strict extension of [14] by
increasing the number of possible query outputs (e.g., blue,
red, or green representing majority votes among three
choices). This extension is challenging in several ways. In
the binary case, optimal probability assignment to outputting
one value (e.g., blue) automatically specifies the whole
mechanism. In the multivariate case this is not enough. In
order to circumvent this, we assume a preferential order,
which resembles a rainbow, in outputting query values and
solve the problem sequentially (e.g., first for blue then red,
where green is automatically specified if we consider three
colors). Second, solving the problem optimally to achieve ap-
proximate (ε,δ )-DP appears hard for the multivariate case, so
we consider δ = 0 (i.e., pure DP). With these simplifications,
we are then able to provide the following results.

If all boundary datasets have their mechanism pre-
specified, then at most one unique mechanism with order
reasonable optimal utility can be found. Furthermore, if the
mechanism is identical for all same-preference boundary
datasets, the problem can be greatly simplified, by reducing
it to a line (path) graph. We present a closed form solution to
line graphs for the case of three colors. This ternary solution
recovers the binary case of [14] as a special case, but a new
general pattern emerges: the first preferred value has up to
two operating regimes that are characterized by its boundary
probability and ε . However, the second preferred value can
exhibit up to three operating regimes that additionally depend
on the sum of the boundary probabilities of the first and sec-
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(b) The boundary rainbow graph.

Fig. 1: A rainbow graph and its corresponding boundary graph. Each vertex represents a dataset and neighboring datasets
are connected by an edge. The function output space is represented by colors blue, red, and green. Each dataset has
a color preference, represented by the ordering inside the vertex. For example, vertex a prefers blue to red and red to
green. We call this color ordering a rainbow. In this context, a DP mechanism is a probability distribution on colors of
each vertex. In (b), we show the boundary rainbow graph of the rainbow graph shown in (a), as described in Definition 8.
In Theorem 3 we show how, for boundary homogeneous rainbow graphs defined in Definition 6, optimal ε-DP mechanisms
on (a) can be retrieved from optimal ones on (b), which then can be obtained from Theorems 4 and 5.

ond highest-priority values. Treatment of ternary queries in
this paper displays enough richness to be extended to higher-
dimensional query spaces with preferential query ordering,
but the optimality proof does not seem to follow directly
from the ternary proof.

II. SETTING

We denote by (D,∼) a family of datasets together with
a symmetric neighborhood relationship, where d,d′ ∈ D are
neighbors if d∼ d′. We consider a finite output space V . Each
dataset d ∈ D has an ordered preference for the elements of
V , captured by what we call a rainbow.

Definition 1. Let V be a finite output space. A rainbow
on V is a total ordering of V . We denote a rainbow as a
permutation vector c ∈ Sym(V), where Sym(V) is the set of
all permutations of V .

Then, the preference of a dataset is captured by the pref-
erence function f :D→ Sym(V) which assigns a rainbow to
each dataset d ∈D. Thus, if f (d) = (blue,red, green),
then the dataset d ∈ D prefers blue to red and red to
green. The goal is to construct a random functionM :D→
V that for each dataset d ∈D randomly outputs an element of
V such that for a given DP constraint a certain utility function
is maximized. As commonly done in the DP literature, we
refer to the random function as a mechanism. A mechanism
is differentially private if the distribution of its output on
neighboring datasets are approximately indistinguishable, as
we formalize next.

Definition 2 ([5]). Let ε be a non-negative real number.
Then, a mechanism M : D → V is ε-DP if for any d ∼ d′

and S ⊆ V , it holds that Pr[M(d) ∈ S]≤ eε Pr[M(d′) ∈ S].
We denote the set of all ε-DP mechanisms by M.

For finite output space V it suffices to consider subsets
S ⊆ V with |S| = 1, i.e., Definition 2 holds, if and only if,
Pr[M(d) = v]≤ eε Pr[M(d′) = v] for every d ∼ d′ and v∈V .

Performance of a mechanism is measured through a utility
function U : M→ R, where U [M]≥U [M′] means that the
mechanism M outperforms M′. In this work, we consider

utility functions that agree with the preference function
f : D → Sym(V), i.e., all things equal, it is preferable for
a dataset d ∈ D to output a color it prefers according to its
rainbow f (d) ∈ Sym(V).

Definition 3. Let � be the lexicographical ordering on the
probability simplex ∆(V) = {x∈ [0,1]|V| : x1+ · · ·+x|V| = 1}.
For every mechanismM∈M and dataset d ∈D, let ~M(d)∈
∆(V) be the vector with coordinates ~Mi = Pr[M(d)= f (d)i].
Then, a mechanism M∈M dominates another mechanism
M′ ∈ M if for every dataset d ∈ D, ~M(d) � ~M′(d).
Moreover, we define a utility function U : M→ R as order
reasonable if whenever a mechanism M ∈ M dominates
another mechanism M′ ∈M, then U [M]≥U [M′].

The notion of domination in Definition 3 induces a partial
order on the set M of all ε-DP mechanisms. When a
mechanismM dominatesM′, it means thatM outperforms
M′ for any order reasonable utility. In this setting, we say a
mechanism is optimal if no other mechanism dominates it.

As in [14], we represent a family of datasets together with
their neighboring relation (D,∼, f ) by a simple graph, where
the vertices are the datasets in D and there is an edge between
d,d′ ∈ D if and only if they are neighbors, i.e., d ∼ d′.

Definition 4 ([14]). A morphism between (D1,
1∼) and

(D2,
2∼) is a function g : (D1,

1∼)→ (D2,
2∼) such that d 1∼ d′

implies in either g(d) 2∼ g(d′) or g(d) = g(d′) for every
d,d′ ∈ D1.

An example of a morphism is shown in Fig. 1. A morphism
g : (D1,

1∼)→ (D2,
2∼) allows to transport ε-DP mechanisms

from its codomain to its domain.

Theorem 1 ([14]). Let g : (D1,
1∼)→ (D2,

2∼) be a morphism
andM2 :D2→V be an ε-DP mechanism on (D2,

2∼). Then,
the mechanismM1 :D1→V given by the pullback operation
M1 =M2 ◦g is an ε-DP mechanism on D1.

III. OPTIMAL RAINBOW DIFFERENTIAL PRIVACY

In [14], DP schemes were interpreted as randomized graph
colorings. In that setting, each dataset’s preference was



characterized by a single color. In general, for larger output
spaces, each dataset has a corresponding rainbow according
to its ordering preference. Thus, we call the triple (D,∼, f )
a rainbow graph, where D is the family of datasets, ∼ is
the neighborhood relationship, and f : D → Sym(V) is the
preference function. We define a morphism g :(D1,

1∼, f1)→
(D2,

2∼, f2) as rainbow-preserving if f1 = f2 ◦g. Indeed, the
morphism in Fig. 1 is rainbow-preserving. We consider the
following topological notions.

Definition 5. Let (D,∼, f ) be a rainbow graph. Then, for
every c ∈ Sym(V), we denote C = {d ∈ D : f (d) = c}. The
interior of C is the set Co = {d ∈C : d ∼ d′⇒ d′ ∈C} and
its boundary is the set ∂C =C−Co.

Our next result shows that optimal DP mechanisms are
fully characterized by their values at the boundary set.

Theorem 2. Let (D,∼, f ) be a rainbow graph and,
for every rainbow c ∈ Sym(V) and d ∈ ∂C, let
(m1(d),m2(d), . . . ,m|V|(d)) = ~m(d) ∈ ∆(V) be a fixed
probability distribution. Then, there exists at most
one optimal ε-DP mechanism M : D → V such that
Pr[M(d) = vi] = mi(d), for every d ∈ ∂C.

Proof. We assume there exists at least one mechanism sat-
isfying the ε-DP constraints, otherwise the result trivially
holds. Let c ∈ Sym(V) be a rainbow and consider the set C.
We denote Ci

d = Pr[M(d) = ci]. Then, the ε-DP constraints
in C are equivalent to the following statement: for every
i ∈ [1 : |V|] and d ∼ d′ with d,d ∈ C, it holds that Ci

d ≥ 0,
∑
|V|
j=1 C j

d = 1, Ci
d ≤ eε ·Ci

d′ , and Ci
d′ ≤ eε ·Ci

d .
Consider the highest priority color c1 in C. If d ∼ d′ are

two neighboring datasets in C, the dataset d′ imposes two
upper bounds on d, namely C1

d ≤ eε ·C1
d′ and

C1
d = 1−

|V|

∑
j=2

C j
d ≤ 1− e−ε

|V|

∑
j=2

C j
d′ =

eε −1+C1
d′

eε
.

Since both bounds are non-decreasing in C1
d′ , it holds that all

C1
d with d ∈ Co can be simultaneously maximized. Denote

these maximums by C̄1
d .

Now, when we consider the second highest priority color
c2 in C, if we set C1

d = C̄1
d , then the ε-DP constraints in

C are equivalent to the following statement: for every i ∈
[1 : |V|]− {1} and d ∼ d′ with d,d ∈C, it holds that Ci

d ≥ 0,
∑
|V|
j=2 C j

d = 1−C̄1
d , Ci

d ≤ eε ·Ci
d′ , and Ci

d′ ≤ eε ·Ci
d . Analogously

to the case of c1, if d ∼ d′ are two neighboring datasets in C,
the dataset d′ imposes two upper bounds on d with respect
to C2

d′ , both of which are non-decreasing in it. Thus, all the
C2

d with d ∈ Co can be simultaneously maximized. Denote
these maximums by C̄2

d .
Repeating this argument for every color in V , and then for

every rainbow c in the rainbow graph, we obtain a unique
optimal ε-DP mechanism.

As it is the case for binary functions [14], when the
mechanism satisfies a homogeneity condition on its boundary
datasets, the optimal ε-DP mechanism can be retrieved from
a simple graph, as we show in Theorem 3. The homogeneity
condition is defined as follows.

Definition 6. A mechanism M : D → V is boundary ho-
mogeneous if, for every rainbow c ∈ Sym(V), it holds that
any two boundary datasets d,d′ ∈ ∂C satisfy Pr[M(d) = v] =
Pr[M(d′) = v] for every v ∈ V .

Another key notion we utilize is that of the line graph.

Definition 7. Let c ∈ Sym(V) be a rainbow and n ∈ N. The
(n,c)-line is the rainbow graph (D,∼, f ) with datasets D =
[1 : (n− 1)], neighboring relation i ∼ j if |i− j| = 1, and
preference function f (d) = c for every d ∈ D.

The last notion we need for Theorem 3 is that of the
boundary rainbow graph of a rainbow graph.

Definition 8. The boundary morphism of a rainbow graph
(D,∼, f ) is the morphism g∂ : D → Sym(V)×N such that
g∂ = [ f (d),dist(d,∂ f (d))]. The boundary rainbow graph of
(D,∼, f ) is then the rainbow graph (D∂ ,

∂∼, f∂ ) with datasets
D∂ = g∂ (D), preference functions f∂ = f ◦ g−1

∂
, and neigh-

boring relationship where two distinct datasets are d′1
∂∼ d′2 if

g−1
∂
(d′1)∼ g−1

∂
(d′2). For every rainbow c∈ Sym(V), we define

C∂ = {d ∈ D∂ : f (d) = c}.

Thus, the boundary rainbow graph consists of a series of
line graphs, each for a different rainbow occurring in the
original graph. We now show that optimal mechanisms for
boundary homogeneous rainbow graphs can be obtained by
pulling them back from their boundary rainbow graphs.

Theorem 3. Let (D,∼, f ) be a rainbow graph and M∂ :
D∂ → V be the optimal ε-DP mechanism on its boundary
graph subject to some fixed boundary probabilities. Then,
the pullback M =M∂ ◦ g∂ is the optimal boundary ho-
mogeneous ε-DP mechanism subject to the same boundary
probabilities.

Proof. From Theorem 1, it follows that the morphism g∂ :
D → D∂ induces an ε-DP mechanism on D defined by
M∂ ◦ g∂ . This mechanism is clearly boundary homogeneous.
From Theorem 2, it follows that there is a unique optimal
boundary homogeneous ε-DP mechanism on D. Denote this
mechanism by M. We next show that M=M∂ ◦g∂ .

Let C⊆D be a subset of datasets with the same preference
function. It follows from the optimality of M that ~M(d)�−−−−−→
M∂ ◦g∂ (d). Let d0 be the closest dataset to d belonging
to ∂C. Let G = {d,ddist(d,∂B)−1, . . . ,d0} be a set of datasets
which forms a shortest path from d to d0. Since g∂ |G is
injective, it has a left inverse, which we denote as h : g∂ (G)→
G. But h is a morphism and, therefore, from Theorem 4
M◦h is an ε-DP mechanism on D∂ . Then, since M∂ is the
optimal mechanism on D∂ , it follows that M∂ |g∂ (G) is the
optimal mechanism on g∂ (G). Thus,

−−−−−→
M∂ ◦g∂ (d) � ~M(d),

which implies ~M(d) =
−−−−−→
M∂ ◦g∂ (d).

Since the boundary rainbow graph consists of a series of
line graphs, the problem of finding optimal mechanisms can
be reduced to finding them for line graphs.

IV. OPTIMAL LINE GRAPHS FOR 3-COLORED RAINBOWS

In this section we present closed form expressions for
the optimal ε-DP mechanisms over (n,c)-line graphs for
3-colored rainbows. We denote the output space by V =



{blue, red, green} and consider, without loss of gen-
erality, the rainbow c = (blue, red, green). To sim-
plify notation, we denote by Bi = Pr[M(i) = blue], Ri =
Pr[M(i) = red], and Gi = Pr[M(i) = green].

For every a ∈ R, we define {a}+ = max{a,0}. We also
define the following index thresholds.

τB =

⌊{
−

ln
(
B0 · (eε +1)

)
ε

+1
}+
⌋

(1)

τR =

⌊{
−

ln
(
(B0 +R0) · (eε +1)

)
ε

+1
}+
⌋
. (2)

Consider di,di+1 ∈ B such that di ∼ di+1
for all i = [0 : (n − 1)], then all active ε-DP
constraints for the ternary output space V are

Bi, Ri, Gi ≥ 0 (3)
Bi ≤ eε ·Bi+1 (4)
Ri ≤ eε ·Ri+1 (5)
Gi ≤ eε ·Gi+1 (6)

Bi +Ri +Gi = 1 (7)
Bi+1 ≤ eε ·Bi (8)
Ri+1 ≤ eε ·Ri (9)
Gi+1 ≤ eε ·Gi. (10)

Now, we denote the probabilities outputs of an optimal ε-
DP mechanism on dataset i by B∗i , R∗i , and G∗i , and consider
the problem of finding a closed form for them as a function
of the values at B∗0, R∗0, and G∗0. We begin with B∗i .

Theorem 4. Let B0,R0,G0 ∈ ∆(V). Then, the unique optimal
boundary homogeneous ε-DP mechanism for the (n,c)-line
with rainbow c = (blue, red, green) such that B∗0 =
B0, R∗0 = R0, and G∗0 = G0 satisfies

B∗i =

{
eiε B0 if 1≤ i≤ τB

1−e(τB−i)ε+e(2τB−i)ε B0 if τB < i < n.
(11)

Proof. Since blue is the first element in the rainbow, it
should be maximized first. There are two achievable upper
bounds on Bi+1 imposed to satisfy the ε-DP constraints in
(3)-(10). The first one is characterized by (8), and the second
is characterized jointly by (5)-(7) such that

Bi+1 ≤ 1− e−ε(Ri +Gi) = 1− e−ε(1−Bi). (12)

The two upper bounds in (8) and (12) on Bi+1 are equal when
Bi is equal to the threshold

T , (eε +1)−1
. (13)

Furthermore, by (8) we have

B∗i = eε Bi−1 if Bi−1 ≤ T (14)

which can be represented equivalently as

B∗i = eiε B0 if B∗i−1 ≤ T (15)

since B∗i−1 is non-decreasing in i if B∗i−1 ≤ T and where

B∗i−1 = e(i−1)ε ·B0 ≤ T ⇐⇒ i≤−
ln
(
B0(eε +1)

)
ε

+1. (16)

Thus, from the definition of τB in (1), the first case in (11)
holds. Next, by (12) we obtain

B∗i = 1− e−ε(1−Bi−1) if Bi−1 > T (17)

which is equivalent to

B∗i = 1− e−(i−τB)ε(1−B∗τB
) if τB < i≤ n−1. (18)

Inserting B∗τB
= eτBε ·B0 into (18), we have

B∗i = 1−e−(i−τB)ε+e−(i−2τB)ε B0 if τB< i≤n−1 (19)

which proves the second case in (11).

We now give an expression for R∗i .

Theorem 5. Let B0,R0,G0 ∈ ∆(V). Then, the unique optimal
boundary homogeneous ε-DP mechanism for the (n,c)-line
with rainbow c = (blue, red, green) such that B∗0 =
B0, R∗0 = R0, and G∗0 = G0 satisfies

R∗i =


eiε R0 if 1≤ i≤ τR

RMid(i) if τR < i≤ τB

e−(i−τB)ε RMid(τB) if τB < i < n
(20)

where

RMid(i) = 1− e−(i−τR)ε − eiε B0 + e−(i−2τR)ε(B0 +R0). (21)

Proof. Since red is the second color that should be maxi-
mized after blue is maximized, we analyze R∗i separately
for the two index regimes given in (11) that are characterized
by τB ≥ 0.

First, for 1≤ i≤ τB, there are two achievable upper bounds
on Ri+1 that satisfy the ε-DP constraints. We first have the
upper bound in (9), and a second upper bound follows from
(6), (7), (14), and (16), namely B∗i+1 = eε B∗i for 1≤ i≤ τB−1,
such that we obtain

Ri+1 ≤ 1− eε B∗i − e−ε(1−B∗i −Ri). (22)

The two upper bounds in (9) and (22) are equal if the sum
(B∗i +Ri) is equal to the threshold given in (13). Furthermore,
it follows from (9) that R∗i = eiε R0 if (B∗i−1+R∗i−1)≤ T , since
(B∗i−1 + R∗i−1) is non-decreasing in i if (B∗i−1 + R∗i−1) ≤ T .
Similar to (16), using (14) and (15) we have (B∗i−1+R∗i−1)≤
T if and only if

i≤−
ln
(
(B0 +R0)(eε +1)

)
ε

+1. (23)

By defining the new index threshold τR as in (2), the first
case in (20), i.e., 1 ≤ i ≤ τR case, is proved. Next, by (15)
and (22) we obtain for τR < i≤ τB that

R∗i = 1− eiε B0− e−(i−τR)ε(1− (B∗τR
+R∗τR

))

= 1− eiε B0− e−(i−τR)ε(1− eτRε(B0 +R0))

= 1− e−(i−τR)ε − eiε B0 + e−(i−2τR)ε(B0 +R0)

= RMid(i) (24)

where RMid(i) is as defined in (21).
Second, for τB < i ≤ n− 1, there is no achievable upper

bound on Ri+1 that satisfies the ε-DP constraints since by
(12) and (17) we have

B∗i = 1− e−ε(R∗i−1 +Gi−1) if τB < i≤ n−1

and by (7)

B∗i = 1− (R∗i +Gi) for all 1≤ i≤ n−1. (25)
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green vs. the distance i to the blue boundary, given
(B0,R0,G0)=(0.1636,0.0545,0.7818) and ε = 0.1823.

Fig. 2: Two examples that illustrate behaviors of color probabilities. The first preferred value blue has up to two operating
regimes that are characterized by its boundary probability and ε . The second preferred value red can exhibit up to three
operating regimes that are characterized additionally by the sum of boundary probabilities of blue and red.

Thus, to maximize the probability B∗i of the first color blue
for τB < i≤ n−1 in which it cannot grow exponentially, one
should minimize both Ri and Gi such that ε-DP constraints
are satisfied since this is equivalent to minimizing (Ri +Gi).
By (5), we obtain

R∗i = e−ε R∗i−1 if τB < i≤ n−1 (26)

which can be expressed equivalently as

R∗i =e−(i−τB)ε R∗τB
=e−(i−τB)ε RMid(τB) (27)

if τB < i≤ (n−1), which proves the last case in (20).

The expression for G∗i follows directly from the previous
theorems together with the probability constraint.

Corollary 1. Let B0,R0,G0 ∈∆(V). Then, the unique optimal
boundary homogeneous ε-DP mechanism for the (n,c)-line
with rainbow c = (blue, red, green) such that B∗0 =
B0, R∗0 = R0, and G∗0 = G0 satisfies

G∗i =

{
1− eiε(B0 +R0) if 1≤ i≤ τR

e−(i−τR)ε · (1−eτRε(B0 +R0)) if τR < i < n.
(28)

As another corollary, we recover the expressions for two
colors given in [14].

Corollary 2. Theorems 4 and 5 generalize [14, Theorem 4]
for δ = 0.

Proof. For two colors we have B0+R0 = 1, so we obtain τR =
0 since the output of the {·}+ operation in (2) is 0 for this
case. Furthermore, for the 2-color problem in (20) we obtain
RMid(i) = 1− eiε B0 and RTer(i) = e−(i−τB)ε RMid(τB), which
recovers the 2-color problem results in [14, Theorem 4] when
δ = 0 is imposed to provide ε-DP.

V. THREE COLOR RAINBOW DP EXAMPLES

Given (B0,R0,G0,ε), the unique optimal boundary
homogeneous ε-DP mechanism for the rainbow c =
(blue, red, green) is characterized by (11), (20), and
(28), as proved above. We now illustrate the behavior of

the (B∗i ,R
∗
i ,G

∗
i ) for 1 ≤ i ≤ (n− 1) for different boundary

probabilities and DP parameters.

Example 1. Suppose (B0,R0,G0) =
(0.0545,0.1636,0.7818), where the order B0 < R0 < G0
is the inverse of the color priority order for the rainbow
c = (blue, red, green), and ε = 0.1823 such
that τR = 5 and τB = 12. We plot the results of the
corresponding unique optimal ε-DP mechanism in the
rainbow c= (blue, red, green) for i= 0,1, . . . ,(n−1)
in Fig. 2a, where the optimal probabilities (B∗i ,R

∗
i ,G

∗
i ) for

each vertex, and index thresholds τR and τB are depicted. We
remark that one can choose n as large as possible since the
probabilities and the thresholds do not depend on the number
n of vertices in the rainbow c = (blue, red, green).

For 1 ≤ i ≤ τR, both blue and red increase exponen-
tially. Then, for τR < i ≤ τB, blue can continue increasing
exponentially, whereas red first increases but then decreases.
Finally, for τB < i ≤ (n− 1), red and green decrease ex-
ponentially, while blue increases slower than exponentially.

In the index range 0≤ i≤ 5, the initial order B0 < R0 <G0
is preserved, and in 5 < i≤ 8 the order is Bi ≤Gi ≤ Ri, then
in 8 < i ≤ 11 we have Gi ≤ Bi ≤ Ri, and finally in 11 <
i ≤ (n− 1) the priority order Gi ≤ Ri ≤ Bi in the rainbow
c = (blue, red, green) is achieved and preserved.

Example 2. Suppose next (B0,R0,G0) =
(0.1636,0.0545,0.7818), where the order is R0 < B0 < G0,
and ε = 0.1823 such that τR = 5 and τB = 6. We plot
the results of the corresponding unique optimal ε-DP
mechanism in the rainbow c = (blue, red, green) in
Fig. 2b. Similar curve patterns to patterns in Fig. 2a are
observed in Fig. 2b for the three colors within the index
regions 1≤ i≤ τR, τR < i≤ τB, and τB < i≤ (n−1), except
that the red curve does not increase in the second index
range. Furthermore, we observe that between the index
ranges 0 ≤ i ≤ 5 the order R0 < B0 < G0 is preserved, and
then in 5 < i≤ (n−1) the order Ri ≤Gi ≤ Bi in the rainbow
c = (blue, red, green) is achieved and preserved.
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