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Abstract. The design of FLIP stream cipher presented at Eurocrypt 2016 motivates the study of
Boolean functions with good cryptographic criteria when restricted to subsets of Fn

2 . Since the security
of FLIP relies on properties of functions restricted to subsets of constant Hamming weight, called slices,
several studies investigate functions with good properties on the slices, i.e. weightwise properties. A
major challenge is to build functions balanced on each slice, from which we get the notion of Weightwise
Almost Perfectly Balanced (WAPB) functions. Although various constructions of WAPB functions have
been exhibited since 2017, building WAPB functions with high weightwise nonlinearities remains a
difficult task. Lower bounds on the weightwise nonlinearities of WAPB functions are known for very few
families, and exact values were computed only for functions in at most 16 variables.
In this article, we introduce and study two new secondary constructions of WAPB functions. This new
strategy allows us to bound the weightwise nonlinearities from those of the parent functions, enabling
us to produce WAPB functions with high weightwise nonlinearities. As a practical application, we build
several novel WAPB functions in up to 16 variables by taking parent functions from two different known
families. Moreover, combining these outputs, we also produce the 16-variable WAPB function with the
highest weightwise nonlinearities known so far.

Keywords: FLIP cipher, Boolean functions, Weightwise (almost) perfectly balanced function, Weight-
wise nonlinearity.

1 Introduction

The study of Boolean functions with good cryptographic criteria when restricted to subsets of Fn2
became recently relevant due to their role in the security of FLIP stream cipher introduced by
Méaux, Journault, Standaert, and Carlet at Eurocrypt 2016 [MJSC16]. FLIP’s filter function is
evaluated on a set of vectors of Fn2 having constant Hamming weight, as a consequence of design
choices to make the cipher homomorphic-friendly. Hence, the security of FLIP family relates to
certain properties of Boolean functions when they are restricted to some input subsets, e.g. slices
Ek,n = {x ∈ Fn2 |wH(x) = k} of the hypercube Fn2 . In [CMR17], the Boolean cryptographic criteria
on restricted sets such as balancedness, nonlinearity and algebraic immunity were first studied. In
particular, the concept of balancedness for a Boolean function f : Fn2 → F2, i.e. the preimages of 0
and 1 under f have the same cardinality, is extended to weightwise perfectly balancedness, i.e. all
the restrictions of f to the slices Ek,n are balanced. As balanced functions are generally suitable
for avoiding constructions with statistical biases, we expect the same for Weightwise Perfectly
Balanced (WPB) functions in the context of inputs with fixed Hamming weight. More precisely,
WPB functions are functions balanced on each slice with 1 ≤ k ≤ n−1, equal to 0 in 0n and to 1 in 1n.
However, WPB functions only exist for n a power of 2, since the balancedness on each slice requires
the cardinality of each one of these sets to be even. Thus, the authors also introduced the notion of
weightwise almost perfectly balancedness allowing a tolerance for slices of odd cardinality sufficiently
small to preserve the reliability of these functions. Namely, for Weightwise Almost Perfectly Balanced
(WAPB) functions we allow the cardinalities of the preimages of 0 and 1 to differ of 1 when the
slice Ek,n has an odd cardinality.

Carlet et al. also provided in [CMR17] a recursive construction of WAPB functions for all
n and a secondary construction of WPB functions. Afterwards, several other constructions have
been proposed [LM19,TL19,LS20,MS21,ZS21,MSL21,GS22,ZS22,MPJ+22,GM22]. Being WAPB
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function relevant in a cryptographic context, all these works aim to produce W(A)PB functions
having good parameters relatively to the other cryptographic criteria such as restricted and global
nonlinearity, algebraic immunity and degree. For instance, the functions proposed in [TL19] have
optimal algebraic immunity, while the family described in [LM19] has good nonlinearity on all the
slices, also called weightwise nonlinearities. In fact, the weightwise nonlinearity is the criterion that
got the most attention in these constructions, often used to compare the different families. It is
also the criterion with more open problems; differently from Fn2 (and the associated concept of bent
functions), the maximum nonlinearity that can take a function restricted to a slice is unknown, and
bounds on this maximum are studied in different works [CMR17, MZD19, GM22]. Furthermore, a
notion of restricted Walsh transform has been introduced [MMM+18] to study better the weightwise
nonlinearity. Except for the exact weightwise nonlinearities obtained experimentally on functions up
to 16 variables, in very few cases, this parameter is known or even bounded for a construction. There
are lower bounds known for two families of WPB functions, the recursive construction of [CMR17],
whose weightwise nonlinearities are studied in [Su21], and one construction from [LM19].

In this article, we present two novel secondary constructions of WAPB functions for all n with
proven bound on their weightwise nonlinearities, and we use them to build a 16-variable WPB
function with the highest weightwise nonlinearities exhibited so far. More precisely, our contribu-
tions are the following. First, we study the impact of the addition of symmetric functions and of
Siegenthaler’s construction on the restricted Walsh transform. Secondly, we introduce the notion of
Special WAPB (SWAPB) functions, a sub-family where we fix the support size on the slices of odd
cardinality. Then, we give two secondary constructions of SWAPB functions, first from an n-variable
SWAPB function and an n-variable WAPB function to an (n + 1)-variable WAPB function, and
then from an n-variable SWAPB function to a n + t-variable SWAPB function. Very differently
from the precedent constructions, these functions are obtained combining Siegenthaler’s construc-
tion and addition of symmetric functions, which allows to derive a lower bound on the weightwise
nonlinearities of the child function from the parameters of the parent functions. Furthermore, we
prove that the recursive construction of [CMR17] gives WAPB functions that are inherently special.
Finally, we provide an experimental part, where we determine the exact parameters of functions
in 8 and 16 variables. Specifically, we first build 8 and 16-variable WPB functions from our sec-
ond construction seeded with CMR functions and with LM functions, i.e. functions from [CMR17]
and [LM19], respectively. Thereafter, we combine (slice by slice) these functions in 16 variables to
obtain the 16-variable function with the highest weightwise nonlinearities exhibited so far.

Organization: In Section 2 we give the necessary preliminaries on Boolean functions and (weight-
wise) cryptograhic criteria, and properties on the parity of binary coefficients. In Section 3 we
introduce and study special WAPB functions, we give two secondary constructions and prove a
lower bound on their weightwise nonlinearities. We prove that CMR WAPB functions are special
functions in Section 4. Then, We give concrete functions in 8 and 16 variables, they are obtained from
one of our new construction seeded by CMR functions, by LM functions, of mixing such functions
to obtain higher weightwise nonlinearities. Finally, we conclude briefly the article in Section 5.

2 Preliminaries

In addition to classic notations we use [a, b] to denote the subset of all integers between a and b:
{a, a + 1, . . . , b}. For readability we use the notation + instead of ⊕ to denote the addition in F2

and
∑

instead of
⊕

. For a vector v ∈ Fn2 we denote wH(v) its Hamming weight wH(v) = |{i ∈
[1, n] | vi = 1}|.

2.1 Boolean functions and weightwise considerations

In this subsection we recall the main concepts on Boolean functions and their weightwise properties
we will use in this article. We refer to e.g. [Car21] for Boolean functions and cryptographic parame-
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ters and to [CMR17] for the weightwise properties, also called properties on the slices. For k ∈ [0, n]
we call slice of the Boolean hypercube (of dimension n) the set Ek,n = {x ∈ Fn2 |wH(x) = k}. Ac-
cordingly, the Boolean hypercube is partitioned into n+ 1 slices where the elements have the same
Hamming weight.

Definition 1 (Boolean Function). A Boolean function f in n variables is a function from Fn2 to
F2. The set of all n-variable Boolean functions is denoted Bn.

Definition 2 (Algebraic Normal Form (ANF) and degree). We call Algebraic Normal Form
of a Boolean function f its n-variable polynomial representation over F2 (i.e. belonging to
F2[x1, . . . , xn]/(x21 + x1, . . . , x

2
n + xn)):

f(x1, . . . , xn) =
∑

I⊆[1,n]

aI

(∏
i∈I

xi

)

where aI ∈ F2. The (algebraic) degree of f , denoted deg(f) is:

deg(f) = max
I⊆[1,n]

{|I| | aI = 1} if f is not null, 0 otherwise.

To denote when a definition or a property is restricted to a slice we will use the subscript k. For
example, for a n-variable Boolean function f we denote its support supp(f) = {x ∈ Fn2 | f(x) = 1}
and we refer to suppk(f) for its support restricted to a slice, that is supp(f) ∩ Ek,n.

Definition 3 (Balancedness). A Boolean function f ∈ Bn is called balanced if |supp(f)| = 2n−1 =
|supp(f + 1)|.

For k ∈ [0, n], f is said balanced on the slice k if ||suppk(f)| − |suppk(f + 1)|| ≤ 1. In particular
when |Ek,n| is even |suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Definition 4 (Weightwise (Almost) Perfectly Balanced Function (WPB and WAPB)).
Let m ∈ N∗ and f be a Boolean function in n = 2m variables. It will be called weightwise perfectly
balanced (WPB) if, for every k ∈ [1, n − 1], f is balanced on the slice k, that is ∀k ∈ [1, n −
1], |suppk(f)| =

(
n
k

)
/2, and:

f(0, · · · , 0) = 0, and f(1, · · · , 1) = 1.

The set of WPB functions in 2m variables is denoted WPBm.
When n is not a power of 2, other weights than k = 0 and n give slices of odd cardinality, in

this case we call f ∈ Bn weightwise almost perfectly balanced (WAPB) if:

|suppk(f)| =

{
|Ek,n|/2 if |Ek,n| is even,

(|Ek,n| ± 1)/2 if |Ek,n| is odd.

The set of WAPB functions in n variables is denoted WAPBn.

Note that the definition of WAPB functions above (as introduced in [CMR17]) is more general
than the one of WPB functions, for n = 2m the WPB functions are a subset of the WAPB functions
since the value in 0n and 1n can be taken freely for the latter. Alternatively,WAPBn corresponds to
the set of functions at maximal distance from the set of n-variable symmetric functions SYMn, that
is WAPBn is metrically regular for the Hamming distance and SYMn is its metric complement.
We refer to [Tok12] for the notion of metrically regular sets and the survey [Obl20]. In [SSB18]
various metrically regular sets are considered, WAPB functions are presented under the name of
maximally asymmetric functions, and the authors provide the cardinality of WAPBn (also given
in [IMM13]) and the number of balanced WAPB functions.
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Definition 5 (Nonlinearity and weightwise nonlinearity). The nonlinearity NL(f) of a Boolean
function f ∈ Bn, where n is a positive integer, is the minimum Hamming distance between f and
all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where g(x) = a · x+ ε, a ∈ Fn2 , ε ∈ F2 (where · is some inner product in Fn2 ; any choice of an inner
product will give the same value of NL(f)).

For k ∈ [0, n] we denote NLk the nonlinearity on the slice k, the minimum Hamming distance
between f restricted to Ek,n and the restrictions to Ek,n of affine functions over Fn2 . Accordingly:

NLk(f) = min
g, deg(g)≤1

|suppk(f + g)|.

We also recall the concept of Walsh transform, and restricted Walsh transform [MMM+18],
which are of particular interest to study the (restricted) nonlinearity or balancedness.

Definition 6 (Walsh transform and restricted Walsh transform). Let f ∈ Bn be a Boolean
function, its Walsh transform Wf at a ∈ Fn2 is defined as:

Wf (a) :=
∑
x∈Fn

2

(−1)f(x)+a·x.

Let f ∈ Bn, S ⊂ Fn2 , its Walsh transform restricted to S at a ∈ Fn2 is defined as:

Wf,S(a) :=
∑
x∈S

(−1)f(x)+ax.

For S = Ek,n we denote Wf,Ek,n
(a) by Wf,k(a).

Property 1 (Nonlinearity on the slice, adapted from [CMR17], Proposition 6). Let n ∈ N∗, k ∈
[0, n], for every n-variable Boolean function f over Ek,n:

NLk(f) =
|Ek,n|

2
−

maxa∈Fn
2
|Wf,k(a)|
2

.

Property 2 (Balancedness on the slice and restricted Walsh transform). Let n ∈ N∗, k ∈ [0, n],
f ∈ Bn is balanced over Ek,n if and only if:

Wf,k(0|Ek,n|) =

{
0 if |Ek,n| is even,

±1 if |Ek,n| is odd.

2.2 Siegenthaler’s construction, symmetric functions

In the following we recall the Siegenthaler construction, a common secondary construction which
combines two n-variable functions to obtain an (n+ 1)-variable function:

Definition 7 (Siegenthaler’s Construction). Let n ∈ N, f0, f1 ∈ Bn, we call Siegenthaler’s
construction f from components f0 and f1:

f ∈ Bn+1, ∀x ∈ Fn2 ,∀y ∈ F2, f(x, y) = (1 + y) · f0(x) + y · f1(x).

We recall definitions and properties on symmetric functions since they will be used for the
main secondary construction we present in the article. Symmetric functions are functions such that
changing the order of the inputs does not change the output. They have been the focus of many works
for their cryptographic parameters such as [Car04, CV05, BP05, DMS06, QLF07, SM07, QFLW09,
CL11], or more recently [TLD16,CM19,CZGC19,Méa19,Méa21,CM22].
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Definition 8 (Symmetric Functions). Let n ∈ N∗, the Boolean symmetric functions are the
functions which are constant on each Ek,n for k ∈ [0, n]. The set of n variable symmetric functions
is denoted SYMn and |SYMn| = 2n+1. We distinguish families of symmetric functions:
– Elementary symmetric functions. Let i ∈ [0, n], the elementary symmetric function of degree i

in n variables, denoted σi,n, is the function which ANF contains all monomials of degree i and
no monomials of other degrees.

– Threshold Functions. Let d ∈ [0, n], the threshold function of threshold d is defined as:
∀x ∈ Fn2 , Td,n(x) = 1 if and only if wH(x) ≥ d.

– Slice indicator functions. Let k ∈ [0, n], the indicator function of the slice of weight k is defined
as:

∀x ∈ Fn2 , ϕk,n(x) = 1 if and only if wH(x) = k.

The n + 1 n-variable symmetric functions of each family form a basis of SYMn (that is every
element of SYMn can be written as a linear combination of these n+ 1 functions). Now, we precise
on how to express ϕk,n as a sum of symmetric elementary function. To do so, we use the expression
of threshold functions in term of symmetric elementary functions from [Méa19], since ϕk,n is the
sum of two consecutive threshold functions.

Property 3 (Algebraic normal form of threshold functions (adapted from [Méa19], Theorem 1)).
Let n, d ∈ N∗ such that 0 < d ≤ n+ 1, let D = 2dlog de. For v ∈ Fn2 we denote v the complementary
of v ∈ Fn2 : ∀i ∈ [1, n], vi = 1 − vi. We denote � the partial order on Fn2 defined as a � b ⇔ ∀i ∈
[1, n], ai ≤ bi, where ≤ denotes the usual order on Z and the elements ai and bi of F2 are identified
to 0 or 1 in Z. We denote the set:

Ad = {v ∈ [0, D − 1] | v � D − d} = {v ∈ Fdlog de2 | v � d− 1},

where d− 1 is considered over logD − 1 bits. We also denote:

Bd,n = {kD + d+ v | k ∈ N, v ∈ Ad} ∩ [1, n] = {kD − v | k ∈ N∗, v ∈ Ad} ∩ [1, n].

The ANF of the threshold function is given by: Td,n =
∑
i∈Bd,n

σi,n.

Since ϕk,n = Tk,n + Tk+1,n its ANF is given by Bk,n∆Bk+1,n, where ∆ denotes the symmetric
difference of sets (i.e. A∆B = (A ∪B) \ (A ∩B)).

2.3 Parity of binomial coefficients

This section contains results about binomial coefficients that will be used in this article. As a
convention we set

(
a
b

)
= 0 if b < 0 and b > a.

Property 4 (Pascal’s formula). Let a, b ∈ N. Then(
a

b

)
=

(
a− 1

b

)
+

(
a− 1

b− 1

)
.

Property 5 (Vandermonde Convolution). Let a, b, c ∈ N. Then(
a+ c

b

)
=

b∑
j=0

(
c

b− j

)(
a

j

)
.

Property 6 (Lucas’ Theorem, e.g. [Fin47]). Let a, b, p ∈ N be integers such that a > b and p is
a prime. Consider their p-adic expansions a =

∑q
j=0 ajp

j and b =
∑q

j=0 bjp
j such that 0 ≤ aj < p

and 0 ≤ bj < p for each j ∈ [0, q] and aq 6= 0. Then(
a

b

)
≡

q∏
j=0

(
aj
bj

)
(mod p).
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00

0 1

0 211

0 31 2

0 41 322

0 51 42 3

0 61 52 433

0 71 62 53 4

0 81 72 63 544

0 91 82 73 64 5

0 101 92 83 74 655

0 111 102 93 84 75 6

0 121 112 103 94 85 766

0 131 122 113 104 95 86 7

0 141 132 123 114 105 96 877

0 151 142 133 124 115 106 97 8

Fig. 1. Binomial coefficients and parity for n ∈ [0, 15]. The square labeled with k at level n corresponds to the binomial
coefficient

(
n
k

)
and it is colored in yellow if the coefficient is even and teal if the coefficient is odd.

Proposition 1. Let a, b ∈ N and their binary decomposition be a =
∑qa

j=0 aj2
j and b =

∑qb
j=0 bj2

j

such that 0 ≤ aj < 2 and 0 ≤ bj < 2 for each j, and aqa , bqb 6= 0.

1.
(
2a

b

)
is even for 0 < b < 2a.

2. If a ≡ 0 mod 2 and b ≡ 1 mod 2, then
(
a
b

)
≡ 0 mod 2.

3. If a ≡ 1 mod 2 and b ≡ 0 mod 2, then
(
a
b

)
≡
(
a−1
b

)
mod 2.

4.
(
a
b

)
≡ 1 mod 2 if and only if for all j ∈ [0, qb] it holds aj ≥ bj.

Proof. 1. If 0 < b < 2a, there exists at least a coefficient bj = 1 in the binary expansion of b for
j < a. Then by Property 6

(
2a

b

)
≡ 0 mod 2 since

(
0
bj

)
≡ 0.

2. If a ≡ 0 mod 2, then 0 ≡ a
(
a−1
b−1
)
≡ b
(
a
b

)
≡
(
a
b

)
mod 2.

3. This comes from Property 4 and point 2.
4. From Lucas’ theorem we have that

(
a
b

)
≡ 1 mod 2 if and only if

(aj
bj

)
≡ 1 mod 2 for each

j ∈ [0, qb] if and only if aj ≥ bj for each j ∈ [0, qb].

We prove the following fact, illustrated by Figure 1 for n < 16.

Lemma 1. Let u ≥ 2 and t ∈ [1, 2u−2], for all k ∈ [2u−1 − 2t+ 1, 2u−1 − 1] the binomial coefficient(
2u−2t
k

)
is even.

Proof. We write 2u − 2t = 2u−1 + (2u−1 − 2t), then using Property 5 we obtain(
2u − 2t

k

)
=

k∑
j=0

(
2u−1 − 2t

k − j

)(
2u−1

j

)
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Since the coefficients
(
2u−1

j

)
are even for 0 < j < 2u−1 by Proposition 1.1, reducing the convo-

lution modulo 2 we obtain (recall that
(
a
b

)
= 0 if b < 0 and b > a, therefore for certain values of k

some addenda can be zero by default):(
2u − 2t

k

)
≡
(

2u−1 − 2t

k

)
+

(
2u−1 − 2t

k − 2u−1

)
mod 2.

Therefore,
(
2u−2t
k

)
is even if k ∈ [2u−1 − 2t+ 1, 2u−1 − 1].

3 Special WAPB functions and secondary constructions

In this section, we begin with properties of the restricted Walsh transform relatively to Siegenthaler’s
construction and addition of symmetric functions. Then, we define a subset of balanced WAPB
functions and give a construction to transform any WAPB function into a function in this subclass.
Finally, we provide and study a secondary construction of (n + 1)-variable WAPB function from
two n-variable WAPB functions.

3.1 Restricted Walsh transform and properties

First, we study the weightwise restricted Walsh transform of functions obtained through Siegen-
thaler’s construction.

Proposition 2 (Weightwise restricted Walsh transform and Siegenthaler’s construc-
tion). Let n ∈ N, f0, f1 ∈ Bn, f obtained through Siegenthaler’s construction with components
f0 and f1 has the following property:

∀k ∈ [0, n],∀(a, b) ∈ Fn2 × F2, Wf,k(a, b) =Wf0,k(a) + (−1)bWf1,k−1(a).

Proof. We rewrite Wf,k(a, b):

Wf,k(a, b) =
∑

(x,y)∈Ek,n+1

(−1)f(x,y)+(a,b)·(x,y)

=
∑

x∈Ek,n

(−1)f(x,0)+(a,b)·(x,0) +
∑

x∈Ek−1,n

(−1)f(x,1)+(a,b)·(x,1)

=
∑

x∈Ek,n

(−1)f0(x)+a·x +
∑

x∈Ek−1,n

(−1)f1(x)+a·x+b

=Wf0,k(a) + (−1)bWf1,k−1(a).

Proposition 3 (Weightwise nonlinearity bound on Siegenthaler’s construction). Let n ∈
N, f0, f1 ∈ Bn, f obtained through Siegenthaler’s construction with components f0 and f1 has the
following property:

∀k ∈ [0, n], NLk(f) ≥ NLk(f0) + NLk−1(f1).

Proof. First, we bound max(a,b)∈Fn
2×F2

|Wf,k(a, b)| using Proposition 2:

max
(a,b)∈Fn

2×F2

|Wf,k(a, b)| = max
(a,b)∈Fn

2×F2

|Wf0,k(a) + (−1)bWf1,k−1(a)|

= max
a∈Fn

2

(|Wf0,k(a)|+ |Wf1,k−1(a)|) .
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Then, we use Property 1:

max
a∈Fn

2

(|Wf0,k(a)|+ |Wf1,k−1(a)|) ≤ max
a∈Fn

2

|Wf0,k(a)|+ max
a∈Fn

2

|Wf1,k−1(a)|

≤ |Ek,n| − 2NLk(f0) + |Ek−1,n| − 2NLk−1(f1)

≤ |Ek,n+1| − 2(NLk(f0) + NLk−1(f1)).

Finally, using again Property 1: NLk(f) ≥ NLk(f0) + NLk−1(f1).

In the following we consider the impact on the weightwise restricted Walsh transform of adding
a symmetric function.

Proposition 4 (Weightwise restricted Walsh transform and addition of symmetric func-
tion). Let n ∈ N∗, k ∈ [0, n] and f ∈ Bn, the following holds on f + ϕk,n

∀a ∈ Fn2 ,∀i ∈ [0, n] \ {k},Wf+ϕk,n,i(a) =Wf,i(a), and Wf+ϕk,n,k(a) = −Wf,i(a).

Proof. Rewriting Wf+ϕk,n,i(a) we obtain:

Wf+ϕk,n,i(a) =
∑
x∈Ei,n

(−1)(f+ϕk,n)(x)+a·x =

{
Wf,i(a) if i 6= k,

−Wf,i(a) if i = k.

consequently, Proposition 4 directly implies that adding symmetric functions do not alter the
weightwise balancedness nor the weightwise nonlinearity of a function.

3.2 Special WAPB functions

In the following we specify a sub-part of balanced WAPB functions called special WAPB. To do so
we use the characterization of WAPB through the weightwise restricted Walsh transform.

Definition 9 (Special Weightwise Almost Perfectly Balanced functions (SWAPB)). Let
n ∈ N∗, f is a WAPB function if:

Wf,k(0n) =

{
0 if |Ek,n| is even,

±1 if |Ek,n| is odd.

Additionally, the function is called special WAPB (SWAPB) if:

Wf,k(0n) =


0 if |Ek,n| is even,

1 if |Ek,n| is odd and k < n/2,

−1 if |Ek,n| is odd and k > n/2.

The set of SWAPB functions in n variables is denoted SWAPBn.

Property 1 (Basic properties of SWAPB functions). Let n ∈ N∗, the following hold for SWAPBn:

– SWAPBn ⊂ WAPBn,

– if n = 2m then SWAPBn =WPBm,

– |SWAPBn| =
∏n
k=0

(
ν
bν/2c

)
for ν =

(
n
k

)
.

The next proposition allows to build a SWAPB function from a WAPB function.
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Proposition 5 (From WAPB to SWAPB). Let n ∈ N∗ and f ∈ WAPBn. Let Sf ⊂ [0, n] the
set defined as Sf = {k ∈ [0, n/2[, |Wf,k(0n) = −1} ∪ {k ∈]n/2, n], |Wf,k(0n) = 1}, the function

f ′ = f +
∑
k∈Sf

ϕk,n belongs to SWAPBn.

Proof. Using the characterization through the restricted Walsh transform and the definition of Sf
we get:

Wf,k(0n) =



0 if |Ek,n| is even,

1 if |Ek,n| is odd, k < n/2, and k 6∈ Sf ,
−1 if |Ek,n| is odd, k < n/2, and k ∈ Sf ,
−1 if |Ek,n| is odd, k > n/2, and k 6∈ Sf ,
1 if |Ek,n| is odd, k > n/2, and k ∈ Sf .

Applying Proposition 4, the value of Wf ′,k(0n) is flipped for all k ∈ Sf and unchanged for the other
weights (relatively to f). Thereafter, f ′ is SWAPB.

3.3 Secondary constructions of WAPB functions

We introduce a secondary construction from two n-variables SWAPB functions to one n+1 SWAPB
function. Repetitively using this construction allows us to build WAPB functions for all n.

Construction 1
Input: Let n ∈ N∗ f0, f1 two n-variable SWAPB functions.
Output: f an n+ 1-variable SWAPB function.

1: Define Sn as Sn = {k ∈ [1, n/2[ |
(
n
k−1
)
≡
(
n
k

)
≡ 1 mod 2}.

2: for k ∈ Sn do
3: f1 ← f1 + ϕk−1,n + ϕn−k,n,
4: end for
5: Compute f = (1 + xn+1)f0 + xn+1f1.
6: return f .

Theorem 1 (Special weightwise almost perfectly balancedness of Construction 1). Let
n ∈ N∗, f0 ∈ SWAPBn, and f1 ∈ WAPBn, the function f given by Construction 1 belongs to
SWAPBn+1.

Proof. By construction f is obtained from Siegenthaler’s construction with components f0 and
f ′1 = f1+

∑
k∈Sn

(ϕk−1,n+ϕn−k,n) where f0 and f1 are SWAPB functions. Accordingly, the restricted
Walsh transform values of f can be obtained from the ones of f0 and f1 using Proposition 2. The
values of the restricted Walsh transform of f0 and f1 are given by Definition 9 since these two
functions are SWAPB. Then, Wf ′1,k

(0n) can be determined by using Proposition 4.

We do a disjunction of cases to determine Wf,k(0n+1), considering the parity of
(
n
k−1
)

and
(
n
k

)
,

for k ∈ [0, n/2[:

– Case
(
n
k−1
)
≡
(
n
k

)
≡ 0 mod 2. In this case:

Wf,k(0n+1) =Wf0,k(0n) +Wf ′1,k−1(0n) = 0 +Wf1,k−1(0n) = 0,

and

Wf,n+1−k(0n+1) =Wf0,n−k+1(0n) +Wf ′1,n−k(0n) = 0 +Wf1,n−k(0n) = 0.

9



– Case
(
n
k−1
)
6≡
(
n
k

)
mod 2. In this case:

Wf,k(0n+1) =Wf0,k(0n) +Wf ′1,k−1(0n) =Wf0,k(0n) +Wf1,k−1(0n) = 1,

and Wf,n+1−k(0n+1) =Wf0,n−k+1(0n) +Wf1,n−k(0n) = −1.

– Case
(
n
k−1
)
≡
(
n
k

)
≡ 1 mod 2. In this case:

Wf,k(0n+1) =Wf0,k(0n) +Wf ′1,k−1(0n) = 1 +Wf1+ϕk,n,k−1(0n) = 1− 1 = 0,

and

Wf,n+1−k(0n+1) =Wf0,n−k+1(0n) +Wf ′1,n−k(0n)

= −1 +Wf1+ϕn−k,n,n−k(0n) = −1 + 1 = 0.

Using Pascal’s formula |Ek,n+1| is even if and only if
(
n
k−1
)
≡
(
n
k

)
mod 2, and regrouping the

different cases we obtain:

Wf,k(0n+1) =


0 if |Ek,n+1| is even,

1 if |Ek,n+1| is odd and k < (n+ 1)/2,

−1 if |Ek,n+1| is odd and k > (n+ 1)/2.

Therefore, f ∈ SWAPBn.

Remark 1. From Proposition 1 we have that for each n ∈ N Sn = ∅ if n ≡ 0 mod 2. Therefore, if
n is even, the input function f1 of Construction 1 is not modified by Step 1 to 4. Thus, one can
output directly f = (1 + xn+1)f0 + xn+1f1.

Combining Proposition 5 and Theorem 1 enables us to obtain a SWAPB function in n + 1
variable from any n variable WAPB function. Since the obtained function is SWAPB, the theorem
can be reapplied with twice this function. Thus, repeating this procedure allows us to build SWAPB
functions for all n′ > n. Moreover, the weightwise nonlinearity of such built functions can be bounded
using Proposition 3. Thereafter, we describe the construction obtained by using t times the same
SWAPB function, i.e. Construction 2.

Theorem 2 (Special weightwise almost perfectly balancedness and weightwise nonlin-
earity bound of Construction 2). Let n, t ∈ N∗ and f ∈ SWAPBn, the function g generated by
Construction 2 is such that:

g ∈ SWAPBn+t, and ∀k ∈ [0, n+ t], NLk(g) ≥
min{k,t}∑
i=0

(
t

i

)
NLk−i(f).

Proof. Note that for t = 1, it corresponds to:

g =f + xn+1

∑
k∈Sn

ϕk−1,n + ϕn−k,n


=(1 + xn+1)f + xn+1

f +
∑
k∈Sn

ϕk−1,n + ϕn−k,n

 ,

i.e. the function obtained by Construction 1 from f0 = f1 = f . Therefore, using Theorem 1, g
is SWABP, and Proposition 3 gives the bound on NLk(g). The results for t > 1 are obtained by
immediate recursion.
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Construction 2
Input: Let n, t ∈ N∗ f a n-variable SWAPB functions.
Output: g an (n+ t)-variable SWAPB function.

1: Initialize g, g ← f .
2: for i ∈ [1, t] do
3: h = 0
4: if n+ i− 1 ≡ 0 mod 2 then
5: Sn+i−1 ← {k ∈ [1, (n+ i− 1)/2[ |

(
n+i−1
k−1

)
≡
(
n+i−1
k

)
≡ 1 mod 2},

6: for k ∈ Sn+i−1 do
7: h← h+ ϕk−1,n+i−1 + ϕn+i−1−k,n+i−1,
8: end for
9: end if

10: g ← g + xn+ih,
11: end for
12: return g.

4 Concrete constructions and parameters

In the first part of this section we recall the CMR construction from [CMR17] of WAPB functions
for all n, and we prove that CMR functions are SWAPB. This implies that we can use functions
from this family as seeds for Construction 2 to obtain other SWAPB functions. Hence, we collect
some relevant cryptographic parameters of new WPB functions in 8 and 16 variables computed by
using this strategy. Finally, we also apply Construction 2 with some LM functions from [LM19] as
input, and we explain how to combine all these functions to get another function in WPB4 having
high weightwise nonlinearity on every slice.

The methods that we applied to explicitly determine the functions and the value of their cryp-
tographic parameters are discussed in Section 4.4

4.1 Building SWAPB functions from CMR construction

Definition 10 (CMR WAPB construction (adapted from [CMR17], Proposition 5)). Let
n ∈ N, n ≥ 2, the WAPB function fn is recursively defined by f2(x1, x2) = x1 and for n ≥ 3:

fn(x1, . . . , xn) =


fn−1(x1, . . . , xn−1) if n odd,

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d−1

i=1 xn−i if n = 2d; d > 1,

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d

i=1 xn−i if n = p · 2d; p odd.

For example, the 16-variable function from this construction is:

f16 = x1 + x2 + x2x3 + x4 + x4x5 + x6 + x4x5x6x7

+ x8 + x8x9 + x10 + x8x9x10x11 + x12 + x12x13 + x14 + x8x9x10x11x12x13x14x15,

and the function fi for i ∈ [2, 15] is given by the ANF of f16 reduced to the variables with index
smaller than i for i even and i− 1 for i odd.

We prove that functions from CMR WAPB construction are SWAPB.

Theorem 3. Let n ∈ N, n ≥ 2 and fn be the n-variable WAPB function from CMR construction
(Definition 10). Then, fn ∈ SWAPBn.

Proof. If n = 2d for d > 1 we have that fn is WPB by [CMR17, Proposition 5], hence it is
special by Property 1. If n = 3, explicit computations show that |supp0(f3)| = 0 = (|E0,3| − 1)/2,

11



|supp1(f3)| = 1 = (|E1,3| − 1)/2, |supp2(f3)| = 2 = (|E2,3|+ 1)/2 and |supp3(f3)| = 1 = (|E0,3|+ 1)/2.
This implies that f3 ∈ SWAPB3, too.

Now, we prove that fn ∈ SWAPBn by induction on n for the missing values. Since our results
extends [CMR17, Proposition 5], for the sake of simplicity, we recall here some facts from its proof
denoting them by (?), and we refer to the original paper for details. Specifically, let us assume that
for n ≥ 5 for 2 ≤ i < n fi is SWAPB.

– If n ≡ 1 mod 2, we can write it as 2` + 1. For any k ∈ [1, n − 1] it holds |suppk(fn)| =
|suppk−1(fn−1)| + |suppk(fn−1)|. Namely, Wfn,k(0n) = Wfn−1,k(0n−1) +Wfn−1,k−1(0n−1). From
Proposition 1, we get that at least one cardinality between |Ek−1,n−1| and |Ek,n−1| is even. If
both are even, |Ek,n−1|+ |Ek−1,n−1| = |Ek,n| is even and Wfn,k(0n) = 0.
If one is odd, then |Ek,n| is also odd and we have the following cases:
• Suppose k < `. Then |suppk(fn)| = |Ek,n−1|/2 + |Ek−1,n−1|/2 − 1/2 = (|Ek,n| − 1)/2, i.e.
Wfn,k(0n) = 1 , since fn−1 is SWABP.
• Suppose k > `+ 1. Then |suppk(fn)| = |Ek,n−1|/2 + |Ek−1,n−1|/2 + 1/2 = (|Ek,n|+ 1)/2, i.e.
Wfn,k(0n) = −1, since fn−1 is SWABP.

• The central binomial
(
2`
`

)
is always even for ` > 1, since by Pascal’s formula (Property 4)(

2`
`

)
≡ 22`−2

∑`−1
j=0

(
2`
j

)
≡ 0 mod 2. Being n−1 = 2`, we have |E`,n−1| ≡ 0 mod 2. Then, by

Pascal’s formula we obtain that |E`,n| ≡ |E`−1,n−1| mod 2 and |E`+1,n| ≡ |E`+1,n−1| mod 2
.
Therefore, since fn−1 is SWABP

Wfn,`(0n) =Wfn−1,`(0n−1) +Wfn−1,`−1(0n−1) =Wfn−1,`−1(0n−1) = 1,

Wfn,`+1(0n) =Wfn−1,`+1(0n−1) +Wfn−1,`(0n−1) =Wfn−1,`+1(0n−1) = −1.

Moreover, |supp0(fn)| = |supp0(fn−1)| = 0 and |suppn(fn)| = |suppn(fn−1)| = 1. Therefore, fn is
SWAPB if n ≡ 1 mod 2.

– Suppose n = p · 2d and p > 1 odd. Let us denote nd = n− 2d. We have the following cases:
• If k = 0, |supp0(fn)| = |supp0(fn)| = 0 (?).
• If k ∈ [1, 2d − 1], it holds

|suppk(fn)| = |suppk(fnd
)|+ 1

2

((
n

k

)
−
(
nd
k

))
(?),

that is Wfn,k(0n) =Wfnd
,k(0nd

).

If |Ek,nd
| ≡ 0 mod 2, then Wfn,k(0n) = 0. Conversely, since (nd)/2 = 2d−1(p − 1) > 2d for

p > 3, Wfn,k(0n) = Wfnd
,k(0nd

) = 1. If p = 3, Wfn,k(0n) = 0 for each k ∈ [1, 2d − 1], since
fnd

is WPB.
• If k ∈ [2d, n− 1], setting s = k − 2d it holds

|suppk(fn)| = |suppk(fnd
)|+ |supps(fnd

)|+ 1

2

((
n

k

)
−
(
nd
k

)
−
(
nd
s

))
(?).

This is equivalent to
Wfn,k(0n) =Wfnd

,k(0nd
) +Wfnd

,s(0nd
)

Depending on the value of k by induction we know that

Wfnd
,k(0nd

) ∈

{
{1, 0} if k < nd/2,

{−1, 0} if k ≥ nd/2.

Wfnd
,s(0nd

) ∈

{
{1, 0} if k < nd/2 + 2d,

{−1, 0} if k ≥ nd/2 + 2d.
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Wfn,k(0n)

Wfnd
,k(0nd

)

Wfnd
,k−2d(0nd

)

n
k

nn
22d0 nd

2
ndnd+2d−1

2

Fig. 2. Light orange and light blue areas correspond to intervals of k where the restricted Walsh transform of the
corresponding CMR function is either in {0, 1} or {0,−1}, respectively. While, dashed areas correspond to intervals
of k where we prove it to be zero. For the studied k we have Wfn,k(0n) =Wfnd

,k(0nd) +Wfnd
,s(0nd). Therefore, the

coloring of the top row is fully determined by those of the rows below.

Notice that, at least one between |Ek,nd
| and |Es,nd

| is even. Indeed, consider the binary
decomposition nd =

∑q
j=0 aj2

j , k =
∑q

j=0 kj2
j and s = k − 2d =

∑q
j=0 sj2

j (where q =

blog2(n)c). If
(
nd
k

)
is odd, from Proposition 1 we have that aj ≥ bj for each j. In particular,

since nd = 2d(p − 1), ad = 0 and consequently kd = 0. This implies that sd = 1, hence(
ad
sd

)
= 0. Thus, by Lucas’ theorem

(
nd
s

)
is even if

(
nd
k

)
is odd.

This implies that for k ∈ [2d, nd/2] we have that Wfn,k(0n) ∈ {1, 0}, while that Wfn,k(0n) ∈
{−1, 0} for k ∈ [nd/2 + 2d, n− 1]. See Figure 2.

In order to conclude, it is sufficient to show that
(
nd
k

)
is even for k ∈ [nd/2 − 2d−1, nd/2].

Indeed, by using the symmetries of binomial coefficient this implies

Wfn,k(0n) =

{
Wfnd

,s(0nd
) ∈ {1, 0} if k ∈ [nd/2, n/2],

Wfnd
,k(0nd

) ∈ {−1, 0} if k ∈ [n/2, nd/2 + 2d].
(1)

Recall that nd = 2d(p− 1). If p = 3, fnd
is WPB and all the

(
nd
k

)
are even for k ∈ [1, nd− 1].

Hence, suppose p > 3. Setting L = blog2(p)c + 1, since p is odd, we can write p = 2L−1 +∑L−2
j=1 pj2

j + 1 with pj ∈ {0, 1}. Let u = d+ L, then 2d < nd < n < 2u and

nd =2d(p− 1) = 2d+L−1 +
L−2∑
j=1

pj2
j+d = 2u−1 +

u−2∑
j=d+1

pj−d2
j

=2u − 2u−1 +
u−2∑
j=d+1

pj−d2
j = 2u − 2(2u−2 −

u−3∑
i=d

pi−d+12
i)

This implies that we can write nd = 2u− 2t with t ∈ [1, 2u−2]. Therefore, applying Lemma 1
we obtain that for k ∈ [2u−1−2t+ 1, 2u−1− t] = [nd/2− t+ 1, nd/2] the binomial coefficients(
nd
k

)
are even.

Furthermore, since nd + 2d = n < 2d+L = 2u, we must have t > 2d−1, i.e. t ∈]2d−1, 2u−2].
Then, [nd/2− 2d−1, nd/2] ⊆ [nd/2− t+ 1, nd/2].

This implies that for k ∈ [nd/2− 2d−1, nd/2] the coefficients
(
nd
k

)
are even and consequently

(1) holds true.

• If k = n, |suppn(fn)| = 1 (?).

Therefore, fn is SWAPB.
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Now, we can define a novel family of functions obtained by Construction 2 seeded by the SWAPB
CMR functions.

Definition 11 (SWAPB functions g`,n). Let n, ` ∈ N with ` ∈ [2, n−1], we call g`,n the SWAPB
function obtained by applying Proposition 5 and Construction 2 with t = n− ` and f`, the `-variable
WAPB function from CMR construction. We set gn,n = fn.

In Tables 1 and 2 we report degree, algebraic immunity, nonlinearity and NLk for k = 2, . . . , n−2
of the functions g`,n for n = 8 and n = 16, respectively. Studying only g`,n for ` even is sufficient,
since the following fact holds:

Proposition 6. Let n, s ∈ N and s ∈ [1, (n− 1)/2]. Then g2s,n = g2s+1,n.

Proof. Following Definition 11, the function g2s,n is obtained by applying Construction 2 with f2s
as input. Therefore, we have

g2s,n = f2s +
n−2s∑
i=1

x2s+ih2s+i−1

where hj =
∑

k∈Sj
ϕk−1,j + ϕj−k,j . By Remark 1 we have S2s = ∅ and consequently h2s = 0.

Moreover, we have that f2s+1(x1, . . . , x2s+1) = f2s(x1, . . . , x2s) from Definition 10. This implies
that

g2s,n =f2s +
n−2s∑
i=1

x2s+ih2s+i−1 = f2s + x2s+1h2s + x2s+2h2s+1 + · · ·+ xnhn−1

=f2s+1 + x2s+2h2s+1 + · · ·+ xnhn−1 = g2s+1,n.

degree AI NL NL2 NL3 NL4 NL5 NL6

g2,8 4 3 88 5 10 16 12 5

g4,8 4 3 88 3 7 15 11 3

g6,8 4 3 96 2 12 18 12 2

g8,8 4 3 88 2 12 19 12 6

Table 1. Cryptographic parameters of the SWAPB functions g`,8.

4.2 Building other WPB functions from LM construction

In this subsection we study the output of Construction 2 seeded by WPB functions introduced
in [LM19]. We recall the definition of these LM functions, referring to the original paper and
to [Car21] for the notions of coset leaders of the cyclotomic classes and trace form of a Boolean
function.

Definition 12 (LM WPB construction (adapted from [LM19], Corollary 3.5)). Let n ∈
N, n ≥ 2, we denote by Γn the set of all the coset leaders of the cyclotomic classes of 2 modulo
2n − 1 and by o(j) the cardinality of the cyclotomic class of 2 modulo 2n − 1 containing j. Define

Tj : F2o(j) → F2 the function y 7→
∑o(j)−1

i=0 y2
i
. For any fixed β primitive element of F22 and any

given any function ι : Γn \ {0} → {1, 2}, the LM WPB function associate to ι is

LMι(x) =
∑

j∈Γn\{0}

Tj(β
ι(j)xj).
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deg AI NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

g2,16 8 6 28576 16 97 459 1508 3078 4209 4699 4441 3157 1674 671 170 26

g4,16 8 6 28032 14 75 383 1343 2879 4010 4534 4354 3126 1555 627 168 24

g6,16 8 6 29792 10 44 344 1458 3110 4502 4947 4321 2897 1326 580 157 20

g8,16 8 6 27712 10 44 328 1326 2818 3815 4083 4105 3047 1534 656 144 16

g10,16 8 6 29840 5 43 377 1595 3279 4446 5066 4714 3320 1655 507 105 11

g12,16 8 5 29152 5 43 265 1397 3148 4439 4971 4803 3396 1712 627 151 13

g14,16 8 5 29824 4 56 350 1288 3108 4774 5540 4902 3228 1664 638 152 12

g16,16 8 4 29488 4 56 350 1288 3108 4774 5539 4902 3236 1672 654 152 28

Table 2. Cryptographic parameters of the SWAPB functions g`,16.

These functions are proven to be WPB functions defined in 2m variables, hence SWAPB. There-
fore, they can be used to generate other SWAPB by using Construction 2 for all n. We observed
that when we apply Construction 2 exhaustively to all LM functions in 4 variables to construct
new 8-variable WPB functions we obtain functions having two possible configurations of degree,
algebraic immunity, nonlinearity and NLk for k = 2, . . . , n− 2, summarized by Table 3.

degree AI NL NL2 NL3 NL4 NL5 NL6

profile 1 4 4 96 5 13 19 17 5

profile 2 4 4 96 5 16 20 17 5
Table 3. Profiles of WPB functions in 8 variables returned by Construction 2 applied to the LM family in 4 variables.

In order to get new 16-variable WPB functions, we considered in practice two functions as a
seed for Construction 2 derived from LM construction having good cryptographic properties. See
Table 4.

degree AI NL NL2 NL3 NL4 NL5 NL6

l 7 4 108 6 21 27 22 9

l0 7 4 104 9 22 27 22 9
Table 4. Cryptographic parameters of two WPB functions in 8 variables derived from LM construction.

Specifically, we took l as a LM WPB function optimizing NL4, NL5,and NL6 for LM construction
(see [LM19, Table 1]), while we obtained l0 as ϕ0,n(x)l(x) +

∑3
k=1 ϕk,n(x)l̄(x) +

∑n
k=4 ϕk,n(x)l(x),

where for any f ∈ Bn we denote by f̄(x) the Boolean function f(x+1n) obtained by the composition
of the bit-wise negation of x and f . Applying Construction 2 for n = t = 8 and as a input either l or
l0, we get two distinct functions g and g0, respectively. We collect in Table 5 their degree, algebraic
immunity, nonlinearity and NLk for k = 2, . . . , n− 2.

4.3 Hybrid function with high weightwise nonlinearity in WPB4

In the previous subsections we described the properties of some WPB in 16 variables obtained by
Construction 2 seeded both with CMR and LM functions. Namely, we computed some functions
in WPB4 having high weightwise nonlinearity on certain slices. In Table 2 and 5 the maximal
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deg AI NL NL2 NL3 NL4 NL5 NL6 NL7 NL8 NL9 NL10 NL11 NL12 NL13 NL14

g 8 7 30720 22 160 672 1878 3570 4983 5567 5103 3629 1884 688 172 24

g0 8 7 30592 22 160 672 1865 3581 4951 5455 5071 3603 1880 688 172 24

Table 5. Cryptographic parameters of the WPB functions g and g0.

realised values are in red. Therefore, by combining these functions we can obtain the following
hybrid function:

h16(x) =

2∑
k∈{1,2}

ϕk,n(x)f̄16(x) +
∑

k∈{3,4,5,6,7}

ϕk,n(x)ḡ(x)+

+
∑

k∈{8,9,10,11,12,13}

ϕk,n(x)g(x) +
∑

k∈{14,15,16,0}

ϕk,n(x)f16(x) ∈ WPB4

Table 6 contains the degree, algebraic immunity, nonlinearity and NLk for k = 2, . . . , n− 2 of h16.

deg AI NL NL2 NL3 NL4 NL5 NL6 NL7 NL8

h16 14 8 30704 28 172 688 1884 3629 5103 5567

Table 6. Cryptographic parameters of h16. By construction NLk(h16) = NLn−k(h16).

NL2 NL3 NL4 NL5 NL6 NL7 NL8

h16 28 172 688 1884 3629 5103 5567

lower bound 34 222 803 2016 3774 5443 6141

upper bound 54 268 888 2150 3959 5666 6378

Table 7. Comparison with known lower bound [GM22, Proposition 9] and upper bound [GM22, Proposition 10] for
Mk,16, i.e. the maximum weightwise nonlinearity of WPB4 over Ek,16.

Table 7 shows that the values NLk(h16) are below the known lower bound of Mk,16, the maximum
weightwise nonlinearity of WPB4 over Ek,16. Nevertheless, according to [GM22, Table 5], h16 is the
currently known (explicitly constructed) function with the best weightwise nonlinearity on the slices.

4.4 Computational aspects

We provided the exact value of cryptographic parameters of the WPB functions that we analyzed,
both in 8 and 16 variables. We retrieved them by concrete computations via sagemath [The22].
Specifically, we used BooleanFunction class from the module sage.crypto.boolean function to
encode the functions, and we applied the built-in methods for computing degree and algebraic
immunity. Then, we computed the weightwise nonlinearity on the slices NLk for k = 2, . . . , n− 2 by
adapting the strategy from [GM22]. See Algorithm 1. For Construction 2 we built the ϕk,n functions
via truth tables for compatibility. Another possible approach can be via ANF using Property 3.

Data parallelism and iterators allowed us to obtain these values in less then one hour by using
128 cores, by 2xAMD Epyc ROME 7H12 @ 2.6 GHz [64c/280W], i.e. one regular node of the UL
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Aion supercomputer https://hpc.uni.lu/ [VBCG14]. Our code is available at https://github.
com/agnesegini/WAPB_pub. Additionally, the repository includes functions to explicitly build l, l0
and h16.

Algorithm 1

Input: Let n, k ∈ N∗ with 0 < k < n , and f ∈ Bn.
Output: NLk(f)

1: Compute vf the vector of evaluations of f over the Ek,n.
2: Generate Pk,n the spherically punctured Reed Muller code of order 1 of length ν =

(
n
k

)
.

3: Compute δ the distance between vf and Pk,n. . This can be performed in parallel.
4: return δ

5 Conclusion

In this article we introduced two secondary constructions of weightwise almost perfectly balanced
functions and provided examples up to 16 variables. While former approaches focused on modifying
the support of a low degree functions to make it W(A)PB, our technique is based on an iterative ap-
plication of Siegenthaler’s construction and addition of symmetric functions. This directly provides
us a theoretical lower bound on the weightwise nonlinearities based on the parameters of the parent
function (Theorem 2). Moreover, via this construction, we explicitly built SWAPB functions up
to 16 variables and determined exactly their main cryptographic parameters. Finally, we combined
these functions by taking for each slice k the one from the function obtaining the highest NLk, which
gave us the function h16 with the highest weightwise nonlinearities exhibited so far.

Open questions:

– Higher weightwise nonlinearities. The function h16 is obtained by combining the functions with
highest NLk built with Construction 2 from CMR of LM functions. One natural next step
would be to use other WPB families as seed for Construction 2 and possibly combine those
functions with best NLk. Moreover, it would be interesting to try to reach (or overcome) the
non-constructive lower bound from [GM22]. See Table 7.

– Parameters of equivalent WAPB functions. Considering W(A)PB functions relatively to classes
equivalent up to addition of symmetric functions is a good start to build more constructions,
and it has the advantage to group WAPB functions having exactly the same NLk. As a matter of
fact, using special WAPB functions rather than WAPB functions has been useful in this article
to exhibit a secondary construction. Taking a special WAPB function is not restrictive since
any WAPB function is equivalent to a special one up to the addition of symmetric functions.
Major questions relatively to these classes would be to determine the variation of cryptographic
parameters inside the same class, and find a criterion to choose the best representative.
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A Explicit WPB functions

In the following we display the algebraic normal form of function l from Table 4.

l =x1x2x3x4x5x6x8 + x1x2x3x4x5x7 + x1x2x3x4x5x8 + x1x2x3x4x5+

x1x2x3x4x6x7x8 + x1x2x3x4x6x7 + x1x2x3x4x6 + x1x2x3x4 + x1x2x3x5x7x8+

x1x2x3x6x7x8 + x1x2x3x6x7 + x1x2x3x6x8 + x1x2x3x7x8 + x1x2x3x7+

x1x2x3 + x1x2x4x5x6x7x8 + x1x2x4x5x6x8 + x1x2x4x5x7x8 + x1x2x4x5x8+

x1x2x4x5 + x1x2x4x6x7 + x1x2x4x6x8 + x1x2x4x6 + x1x2x4x7x8 + x1x2x4x7+

x1x2x4x8 + x1x2x4 + x1x2x5x6 + x1x2x5x8 + x1x2x5 + x1x2x6+

x1x2x7x8 + x1x3x4x5x6x7 + x1x3x4x5x6x8 + x1x3x4x5x8+

x1x3x4x5 + x1x3x4x6x8 + x1x3x4x6 + x1x3x5x6x7x8+

x1x3x5x7 + x1x4x5x6x7x8 + x1x4x5x6x8 + x1x4x5x6 + x1x4x5x7x8+

x1x4x6x7x8 + x1x4x6x8 + x1x4x6 + x1x4 + x1x5x6x7x8 + x1x5x6x8+

x1x5x6 + x1x5x7x8 + x1x6x8 + x1x7x8 + x1x8 + x1 + x2x3x4x5x6x7x8+

x2x3x4x5x6x7 + x2x3x4x5x8 + x2x3x4x6x7x8 + x2x3x4x6x7 + x2x3x4x6x8+

x2x3x4x6 + x2x3x4x7 + x2x3x5x6x7x8 + x2x3x5x6x7+

x2x3x5x6x8 + x2x3x6x7x8 + x2x3x6x8 + x2x3x7x8 + x2x3x8 + x2x3+

x2x4x5x6x7 + x2x4x5x6x8 + x2x4x5x7x8 + x2x4x5x8 + x2x4x5+

x2x4x6x7x8 + x2x4x6x7 + x2x4x6 + x2x4x7x8 + x2x4x7 + x2x4x8 + +

x2x4 + x2x5x6x7x8 + x2x5x6x8 + x2x5x6+

x2x5x7x8 + x2x5x8 + x2x6x7x8 + x2x6x8 + x2x6 + x2x7x8 + x2x7 + x2x8+

x3x4x5x6x7 + x3x4x5x6x8 + x3x4x5x6 + x3x4x5 + x3x4x6x7+

x3x4x6x8 + x3x4x6 + x3x4x7x8 + x3x4x7 + x3x4x8 + x3x5x6x7+

x3x5x6x8 + x3x6x7x8 + x3x6x8 + x3x6 + x3x7x8 + x3 + x4x5x6x8+

x4x5 + x4x6x7 + x4x6x8 + x4x6 + x4x7x8 + x4x8 + x5x6x7x8+

x5x6x7 + x5x6x8 + x5x8 + x5 + x6x7 + x6x8 + x7

This is function can be built in sagemath along with l0 and h16 by using the public code available
at https://github.com/agnesegini/WAPB_pub.
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