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Abstract. Bent functions are optimal combinatorial objects and have
been studied over the last four decades. Secondary construction plays
a central role in constructing bent functions since it may generate bent
functions outside the primary classes of bent functions. In this study, we
improve a theoretical framework of the secondary construction of bent
functions in terms of the composition of Boolean functions. Based on this
framework, we propose several constructions of bent functions through
the composition of a balanced Boolean function and dually isomorphic
(DI) bent functions defined herein. In addition, we present a construction
of self-dual bent functions.
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1 Introduction

Boolean functions (including vectorial cases) play a central role in building non-

linear components of symmetric ciphers. As one of the most effective attacking

methods, linear cryptanalysis makes use of the correlation between the input and

output of the component to recover the key of the cipher. To resist linear crypt-

analysis, high nonlinearity is a primary requirement for Boolean functions used

in symmetric cryptosystems [5, 11]. The nonlinearity of a Boolean function f is

defined as the minimum Hamming distance between f and affine functions. It

can be efficiently computed by the Walsh transform of the constituent functions.

However, the computation is generally more difficult in the scenario of the

composition of functions. Some progress was made independently by Bernasconi

in [1, Lemma 2.17] and Nyberg in [17]. Three correlation theorems were presented

and then were applied to the cryptanalysis of some block ciphers and stream
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ciphers. Gupta and Sarkar [8] refined Nyberg’s work and proposed a concise

and lucid formula related to the Walsh transform of the composition of Boolean

functions, which they called the “Composition Theorem.”

Bent functions are maximally nonlinear Boolean functions with an even num-

ber of variables and were introduced by Rothaus [18]. Such functions have been

extensively studied for their wide applications in cryptography, spread spectrum,

coding theory, and combinatorial design [7]. Since the complete classification of

bent functions seems elusive, many researchers have focused on constructing

bent functions. Bent functions constructed from scratch are called primary con-

structions [4, 16], and bent functions constructed from known bent functions

are called secondary constructions. The two well-known primary constructions

are the Maiorana-McFarland class of bent functions [16] and the partial spread

(PS) class of bent functions [4]. As there are so few primary constructions in the

literature, secondary constructions are often used to obtain new bent functions.

Two interesting secondary constructions of bent functions are those devel-

oped by Rothaus [18] with extension of the number of variables and by Carlet [2]

without extension of the number of variables. A series of constructions have been

obtained by revisiting or generalizing these results [12–15,21,23]. It was proved

in [6] that some well-known secondary constructions of bent functions can be

described by the composition of a Boolean function and some bent functions.

Then a relationship between the secondary constructions and the composition of

Boolean functions was established, and two constructions of bent functions were

proposed. From the composite view of point, Hodžić et.al. recently [9] presented

several new classes of bent or plateaued Boolean functions with some slight con-

ditions. But it is difficult to determine whether these constructed bent functions

belong to the completed versions of primary classes up to affine equivalence.

More details may be found in a recently published book [13].

The present study is devoted to developing a general theory of secondary con-

structions of bent functions under the framework of a composition of Boolean

functions. The paper is organized as follows. After introducing some formal no-

tations and necessary preliminaries in Section 2, we introduce the definition of

dually isomorphic (DI) bent functions in Section 3. We prove that the composi-

tion of any balanced Boolean function and the DI bent function is also a bent

function without extension of the number of variables. We show that vectorial



bent functions in the PS class are DI bent functions. By using this conclusion,

we give a positive answer to the open problem proposed by Mesnager. We then

consider the secondary constructions of bent functions with extension of the

number of variables. In Section 4, we present construction of the self-dual bent

functions. Finally, we list our conclusions in Section 5.

2 Preliminaries

Let Fn2 be the n-dimensional vector space over the finite field F2 = {0, 1}. An n-

variable Boolean function f(x), where x = (x1, . . . , xn) ∈ Fn2 , is a mapping from

Fn2 to F2, which can be represented in a unique way as an n-variable polynomial

whose degree relative to each variable is at most 1, called its algebraic normal

form (ANF):

f(x1, . . . , xn) =
∑

I⊆{1,··· ,n}

λI
∏
i∈I

xi, λI ∈ F2.

Let Bn denote the set of Boolean functions of n variables. The binary sequence

defined by (f(v0), f(v1), . . . , f(v2n−1)) is called the truth table of a Boolean func-

tion f ∈ Bn, where v0 = (0, . . . , 0, 0), v1 = (0, . . . , 0, 1), . . ., v2n−1 = (1, . . . , 1, 1)

are ordered by lexicographical order. The Lagrange interpolation formula in

terms of Boolean function is defined as

f(x1, . . . , xn) =

2n−1∑
i=0

f(vi)(x1 + vi,1 + 1)(x2 + vi,2 + 1) · · · (xn + vi,n + 1). (1)

By applying the Lagrange interpolation method, it is a simple matter to obtain

the ANF of every Boolean function from its truth table. The support of f is

defined as supp(f) = {x ∈ Fn2 | f(x) = 1}. If | supp(f)| = 2n−1, then we call

f(x) balanced.

We say that two n-variable Boolean functions f(x) and g(x) are affinely

equivalent if g(x) = f(xA+ b), where b ∈ Fn2 , A is an n× n nonsingular binary

matrix, and xA is the product of the row-vector x and A. An important tool for

studying Boolean functions is the Walsh transform. Given x = (x1, . . . , xn) ∈ Fn2
and w = (w1, w2, . . . , wn) ∈ Fn2 , the inner product of w and x is defined as

w ·x = w1x1+· · ·+wnxn. The “sign” function of f is the integer-valued function,

usually denoted by χf (x) = (−1)f(x). The Walsh transform of f is the discrete



Fourier transform of χf associated with this inner product, which is an integer-

valued function over Fn2 :

Wf (w) =
∑
x∈Fn

2

(−1)f(x)+w·x.

It is easy to see that f is balanced if and only if Wf (0n) = 0, where 0n denotes

the zero vector of Fn2 . We define the support of the Walsh spectrum of f as

follows:

supp(Wf ) = {w |Wf (w) 6= 0, w ∈ Fn2}.

The inverse Walsh transform is given by

(−1)f(x) =
1

2n

∑
w∈Fn

2

Wf (w)(−1)w·x.

The Walsh spectrum of f is the multiset of values Wf (w), where w ranges over

Fn2 . The nonlinearity of an n-variable Boolean function can be computed by

Nf = 2n−1 − 1

2
max
w∈Fn

2

|Wf (w)|.

From the Poisson summation formula, we can derive the Parseval’s relation:∑
w∈Fn

2

Wf
2(w) = 22n.

By this relation, we have the upper bound of the nonlinearity of a Boolean

function Nf ≤ 2n−1 − 2n/2. Bent functions are those Boolean functions with

maximal nonlinearity in even numbers of variables. A function f ∈ Bn is called

a plateaued function if Wf (α) ∈ {0,±2λ} for any α ∈ Fn2 , where λ ≥ n/2 is a

positive integer.

Definition 1 Let n = 2m be even. A Boolean function f ∈ Bn is bent if its

Walsh coefficients satisfy

Wf (w) = ±2m, for all w ∈ Fn2 .

The dual function of a bent function f ∈ Bn, denoted by f̃ , is the Boolean

function of n variables defined by

Wf (w) = 2n/2(−1)f̃(w). (2)



Let n, k be two positive integers, where k ≤ n. We call F : Fn2 7→ Fk2 ,

F =
(
f1, f2, . . . , fk

)
,

an (n, k) function, where f1, f2, . . . , fk ∈ Bn. Suppose f1, f2, . . . , fk are bent

functions. We define the (n, k) function F̃ as follows:

F̃ = (f̃1, f̃2, . . . , f̃k).

For v = (v1, . . . , vk) ∈ Fk2
∗
, let

fv = v · F = v1f1 + . . .+ vkfk.

If fv is balanced for any v ∈ Fk2
∗
, then we call F a balanced (n, k) function. If

fv is a bent function for any v ∈ Fk2
∗
, then we call F an (n, k) bent function.

The composition of a Boolean function g ∈ Bk and an (n, k) function F ,

denoted by g ◦ F , is an n-variable Boolean function, defined by

g ◦ F = g
(
F (x)

)
= g
(
f1(x), f2(x), . . . , fk(x)

)
.

3 Main construction

In [17], Nyberg considered composite applications for the cryptanalysis of block

ciphers and stream ciphers. Gupta and Sarkar [8] generalized Nyberg’s work

and obtained the Walsh spectrum of the composition of Boolean functions by

computing the corresponding inverse Walsh transform.

Lemma 1 [8] (Composition Theorem): Let g ∈ Bk and F be an (n, k) function.

Then for any w ∈ Fn2 ,

Wg◦F (w) =
1

2k

∑
v∈Fk

2

Wg(v) ·Wv·F (w). (3)

We next introduce a hypothetical property, the “dual isomorphism” of an

(n, k) function, which will play an important role in the construction of new

bent functions by dint of the composition theorem.

Definition 2 Let F = (f1, f2, . . . , fk) be an (n, k) function and the set S ⊆ F k2
∗
.

If there exists an (n, k) function H = (h1(x), h2(x), . . . , hk(x)) such that for any

v ∈ S,



– v · F is a bent function, and

– ṽ · F = v ·H,

then we call the vectorial functions F and H a pair of dually isomorphic (DI)

(n, k) bent functions on S. Functions F and H are called DI (n, k) bent functions

on S, respectively.

Theorem 1 Let g(z) ∈ Bk be any balanced Boolean function, and let F and H

be a pair of DI (n, k) bent functions on supp(Wg). Then the composition function

g ◦ F is a bent function, and its dual is g ◦H.

Proof. Since the Boolean function g is balanced, then 0n /∈ sup(Wg). For any

w ∈ Fn2 , we have

Wg◦F (w) =
1

2k

∑
v∈Fk

2

Wg(z)(v) ·Wv·F (w)

= 2
n
2

 1

2k

∑
v∈sup(Wg)

Wg(z)(v)(−1)ṽ·F (w)


= 2

n
2

 1

2k

∑
v∈sup(Wg)

Wg(z)(v)(−1)v·H(w)


= 2

n
2 (−1)g◦H(w).

The last equation holds because it can be dealed by the inverse Walsh transform

of g at the vector H(w). We conclude that the composition function g ◦ F is a

bent function with its dual g ◦H.

It is worth noting that it is unnecessary for each fi, i = 1, 2, . . . , k, to be

bent in Definition 2. In this study, we mainly explore the particular case where

fi, i = 1, 2, . . . , k, are all bent functions, and H = F̃ = (f̃1, f̃2, . . . , f̃k).

Example 1. Let g ∈ B3 with g(z1, z2, z3) = z1z2+z1z3+z2z3, where (z1, z2, z3) ∈
F3
2. Note that g is balanced, and its Walsh support is supp(Wg) = {(001), (010), (100), (111)}.

Let F = (f1, f2, f3) be a DI (n, 3) bent function on supp(Wg). Then g(f1, f2, f3)

is an n-variable bent function.

The method to obtain a bent function in Example 1 is in fact a construction

in [2], and this method has been generalized in [12,19,20].

The result of Theorem 1 can be generalized to construct vectorial bent func-

tions.



Corollary 1 Let G be a balanced (k, r)-function with 1 ≤ r ≤ k. If F is a DI

(n, k) bent function on

supp(Wα·G)

for any α ∈ Fr2
∗, then the composition function G ◦ F is an (n, r) bent function.

Proof. Note that G is a balanced (k, r)-function. Then gα = α ·G is balanced for

any α ∈ Fr2
∗. Since F is a DI (n, k) bent function on supp(Wα·G), by Theorem

1, gα ◦ F is a bent function. This implies G ◦ F is an (n, r) bent function.

3.1 A class of dually isomorphic (n, k) bent functions

In this subsection, we will show that there is an infinite class of bent functions

that satisfy the hypothesis of Definition 2. That is, there exist DI (n, k) bent

functions. More precisely, a PS (n, k) bent function is a kind of DI (n, k) bent

function.

Below we describe the construction of PS bent functions, introduced by

Dillon [4], in terms of disjoint linear codes.

Definition 3 [10] For 1 ≤ i ≤ N , let Ei be a set of [n,m] linear codes. The

set E = {E1, E2, . . . , EN} such that

Ei ∩ Ej = {0n}, 1 ≤ i < j ≤ N (4)

is called a set of (n,m) disjoint linear codes of cardinality N .

Lemma 2 Let f ∈ Bn, where n = 2m. Let E = {E0, E1, . . . , E2m} be a set of

(n,m) disjoint linear codes with
⋃2m

i=0Ei = Fn2 . Then f is a PS− (resp. PS+)

bent function when it satisfies (a) (resp. (b)):

(a) supp(f) =
⋃2m−1−1
i=0 Ei

∗, where E∗i = Ei\{0n};
(b) supp(f) =

⋃2m−1

i=0 Ei.

Definition 4 The (n, k) function F is called a PS (n, k) bent function if for

any v ∈ Fk2
∗
, if v · F is a PS (PS− or PS+) bent function.

In the following lemma, we describe a construction method of PS (n, k) bent

functions based on disjoint linear codes.



Lemma 3 [22] Let n be even, and let {E0, E1, · · · , E2n/2−1, E2n/2} be a set of

(n, n/2) disjoint linear codes of cardinality 2n/2 + 1. Let H = (h1, . . . , hk) be

a balanced (n/2, k)-function, where 2 ≤ k ≤ n/2, and hi ∈ Bn/2, i = 1, . . . , k.

Define the functions fi ∈ Bn by

supp(fi) =
⋃

y∈supp(hi)

E∗[y], (5)

where [y] denotes the decimal representation of y. Then, F = (f1, . . . , fk) is an

(n, k) bent function.

Proof. By Lemma 2, for i = 1, . . . ,m, fi is obviously a PS− bent function. Since

H is a balanced (n/2, k)-function, then hv = v1h1 + · · · + vkhk is a balanced

Boolean function, where v = (v1, . . . , vk) ∈ Fk2
∗
. Let fv = v1f1 + · · ·+ vkfk be a

nonzero linear combination of f1, . . . , fk. Notice that

supp(fv) =
⋃

y∈supp(hv)

E∗[y]. (6)

By Lemma 2, fv is also a PS− bent function, and therefore F = (f1, . . . , fk) is

an (n, k) bent function.

Theorem 2 Let n be even, and k ≤ n/2. A function F constructed as in Lemma

3 is a DI (n, k) bent function on Fk2
∗
.

Proof. Let F =
(
f1(x), f2(x), . . . , fk(x)

)
be an (n, k) bent function as in Lemma

3. For any v ∈ Fk2
∗
, v · F is a bent function. Let

Sv = {[y] | y ∈ supp(hv)}.

For any w ∈ Fn2 , we have

Wv·F (w) = (−1)0 +

2n/2∑
i=0

∑
x∈E∗

i

(−1)v·F (x)+w·x

= 1 +
∑
y/∈Sv

∑
x∈E∗

i

(−1)0+w·x +
∑
y∈Sv

∑
x∈E∗

i

(−1)1+w·x

=
∑
i/∈Sv

∑
x∈Ei

(−1)w·x −
∑
i∈Sv

∑
x∈Ei

(−1)w·x.



The last equation holds in view of the balanced hv-function. For a fixed j, 0 ≤
j ≤ 2n/2, if 0n 6= w ∈ E⊥j , then

∑
x∈Ei

(−1)w·x =


+2n/2, if i = j, i /∈ Sv
−2n/2, if i = j, i ∈ Sv
0, if i 6= j.

We have

Wv·F (w) =

{
+2n/2, if i /∈ Sv
−2n/2, if i ∈ Sv.

(7)

Combining (2), (6), and (7), we obtain

supp(ṽ · F ) =
⋃
i∈Sv

E⊥i
∗ ⇔ supp(v · F ) =

⋃
i∈Sv

E∗i ⇔ supp(v · F̃ ) =
⋃
i∈Sv

E⊥i
∗
.

(8)

This implies ṽ · F = v · F̃ . Thus, F is a DI (n, k) bent function on Fk2
∗
.

In Lemma 3, the nonzero linear combinations of F are limited to PS− bent

functions. In fact, for a PS (n, k) bent function, the result of Theorem 2 is still

correct.

Corollary 2 Let F be a PS (n, k) bent function. Then for any balanced Boolean

function g ∈ Bk, the composition function g ◦ F is a PS type bent function and

its dual is g ◦ F̃ .

The previously constructed bent functions are bent functions without exten-

sion of variables of the ingredient functions. In the remainder of this subsection,

we build a framework of the composition construction of bent functions with

extension of variables of the ingredient functions.

Theorem 3 Let k, s be two positive integers. Let g(z, y) ∈ Bk+s, z ∈ Fk2 , y ∈
Fs2 be a balanced Boolean function, and let F = (f1(x), f2(x), . . . , fk(x)) be an

(n, k) function satisfying the condition that the component v · F is bent for any

(v, e) ∈ supp(Wg) ⊆ Fk+s2

∗
, where v ∈ Fk2

∗
and e ∈ Fs2. Then the composition

function g
(
f1(x), f2(x), . . . , fk(x), y

)
is an (n + s)-variable bent function if the

following conditions hold:

– g(z, y) is plateaued with amplitude 2k+
s
2 (s is even);

– For any (v, e) ∈ supp(Wg) and (v′, e′) ∈ supp(Wg), where v, v′ ∈ Fk2
∗

and

e, e′ ∈ Fs2, v = v′ if any only if e = e′.



Proof. Since g is balanced, then 0k+s /∈ supp(Wg). If the conditions of Theorem

3 hold, then for any w ∈ Fn2 , e ∈ Fs2, we have

Wg(f1,f2,...,fk,y)(w, e) =
1

2k+s

∑
(v,u)∈Fk+s

2

Wg(z,y)(v, u) ·Wv·F+u·y(w, e)

=
1

2k+s

 ∑
(v,u)∈supp(Wg)

Wg(z,y)(v, u)Wv·F (w)Wu·y(e)


=

1

2k

 ∑
(v,e)∈supp(Wg)

Wg(z,y)(v, e)Wv·F (w)


= ±2

n+s
2 .

(9)

Therefore, g(f1(x), f2(x), . . . , fk(x), y) is a bent function.

Remark 1. The constructions of bent functions in [18] and [6, Thorem 6,7] are

special cases of Theorem 3. We can also compute the dual of the bent function

g(f1, f2, . . . , fk, y) by Lagrange interpolation as in [6], if the signs of the Walsh

spectra Wg(z,y)(v, e), (v, e) ∈ supp(Wg), are known.

3.2 An answer to an open problem bent functions in univariate
form

We identify the vector space Fn2 with the finite field F2n . For any positive integer

k dividing n, we denote the trace function z+ z2
k

+ · · ·+ z2
n−k

from F2n to F2k

by Trnk . It satisfies the transitivity property Trn1 = Trk1 ◦Trnk .

Every function f : F2n 7→ F2n has a unique univariate representation of the

form f(z) =
∑2n−1
i=0 uiz

i, where ui ∈ F2n . When f is Boolean (i.e., valued in F2),

that is, it satisfies (f(z))2 = f(z) (mod z2
n

+ z), its univariate representation

can be written in the form

f(z) =
∑
j∈Γn

Tr
o(j)
1 (ajz

j) + a2n−1z
2n−1, , (10)

called its trace representation, where Γn is the set of integers obtained by choos-

ing one element in each cyclotomic coset of 2 modulo 2n − 1, o(j) is the size of

the corresponding cyclotomic coset containing j, aj ∈ F2o(j) , and a2n−1 ∈ F2.

The algebraic degree of f (i.e., the degree of its ANF when its input vector is

decomposed over some basis) equals max{w2(j) | aj 6= 0}, where the 2-weight



w2(j) of j is the Hamming weight of its binary expansion [3]. Taking the inner

product u · z = Trn1 (uz), the Walsh transform of f is defined as

Wf (u) =
∑
z∈F2n

(−1)f(z)+Trn1 (uz), u ∈ F2n .

For any Boolean function f(x) over F2n , choosing a normal basis (α, α2, . . . , α2n−1

)

of F2n and decomposing x over this basis gives a Boolean function f over Fn2 .

Mesnager proposed two open problems about the secondary construction of

some class of bent functions [12]. The first problem was solved in [19], and we

present the second problem as follows.

Problem 1. Let n be an even positive integer and r be a positive integer with

r ≤ n/2. Let F be a bent vectorial map from F2n to F2r . For b ∈ F2r , denote by

fb a component of F and by fb its dual. Find (a1, a2, a3) a 3-tuple of pairwise

distinct elements of F∗2r with a3 6= a1 +a2 such that fa1+a2+a3˜ = f̃a3 + f̃a1 + f̃a2 .

The existence of such a vectorial bent function will lead to the construction

of a bent function as g(x) = fa1fa2 + fa2fa3 + fa1fa3 . By identifying the finite

fields F2n and F2r with the vectorial spaces Fn2 and Fr2, we will give a positive

answer to this problem.

Proof. Let vectors a1, a2, a3 ∈ Fr2
∗ with a3 6= a1 + a2, and let F be an (n, r)-

function constructed by Lemma 3. According to Theorem 2, the function F is a

DI (n, r) bent function on Fr2
∗. Then

fa1+a2+a3˜ = (a1 + a2 + a3) · F̃

= (a1 + a2 + a3) · F̃

= a1 · F̃ + a2 · F̃ + a3 · F̃

= ã1 · F + ã2 · F + ã3 · F

= f̃a1 + f̃a2 + f̃a3 .

This implies that the open problem is solved.

4 Construction of self-dual bent functions

Let n = 2m = 4t for a positive integer t. Mesnager [12] showed that the monomial

function f(x) = Trn1 (λx2
t+1) is self-dual bent for any fixed λ /∈ {x1+2t , x ∈ F2n}



with λ+ λ2
3t

= 1. The latter equation is equivalent to λ+ λ2
t

= 1. This implies

that λ ∈ F22t . That is, f(x) is a self-dual bent function if λ ∈ F22t and Tr2tt (λ) =

1.

Let k be a positive integer, where k ≤ 2t− 1. Let λ1, λ2, ..., λk be k elements

in F22t such that Trn1 (λix
2t+1) is a self-dual bent function for 1 ≤ i ≤ k. Define

an (n, k) function

F (x) =
(

Trn1 (λ1x
2t+1),Trn1 (λ2x

2t+1), ...,Trn1 (λkx
2t+1)

)
. (11)

For any 0k 6= v ∈ Fk2 , the component function v ·F (x) is a self-dual bent function

if the Hamming weight of v is odd. By following these results, we can construct

an infinite class of self-dual bent functions.

Theorem 4 Assume that the vectorial function F (x) is defined as in (11). Let

g(z) ∈ Bk be a balanced Boolean function whose Walsh support is a set of vectors

with odd Hamming weight. Then the compostion function g◦F is a self-dual bent

function.

The balanced Boolean function g(x) in Theorem 4 can be easily constructed

by the so-called partially bent function [?]. The characterization of the partially

bent functions can be described with the following lemma.

Lemma 4 Let g ∈ Bn and let k be an even positive integer. Then g is a partially

bent function if and only if there exists a subspace V of dimension k and a vector

t of Fn2 such that

W 2
g (w + t) =

{
22n−k, w ∈ V ;

0, otherwise.

Choose k linearly independent vectors of Fn2 with even Hamming weight and

then span the subspace V . For any vector t ∈ Fn2 with odd Hamming weight, we

construct the partially bent function g(x) as in Lemma 4. Then g is a balanced

Boolean function whose Walsh support is a set of vectors with odd Hamming

weight.

Example 2. Let

V =


1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

 .



It is easy to check that rank(V ) = 6. Choosing any vector t in F7
2 with odd

Hamming weight, we construct E = {t + uV, u ∈ F6
2}. Then E is a flat of F7

2,

and the Hamming weight of each vector of E is odd. By following the method

in [6, Theorem 6], we obtain a partially bent function

g(z0, z1, z2, z3, z4, z5) = z0z2z3 + z0z1z4 + z1z3z4 + z1z2z5 + z0z3z5 + z2z4z5 + z0z1z6

+ z0z2z6 + z1z2z6 + z1z3z6 + z2z3z6 + z0z4z6 + z2z4z6 + z3z4z6

+ z0z5z6 + z1z5z6 + z3z5z6 + z4z5z6 + z0z1 + z1z2 + z0z3 + z2z3

+ z1z4 + z3z4 + z0z5 + z2z5 + z4z5 + z0 + z1 + z2 + z5 + 1.

The Walsh support of g is E.

5 Conclusion

In this study, we developed a general theory of secondary constructions of bent

functions under the framework of composition of Boolean functions. First, we

established the relationships between the secondary constructions of bent func-

tions and the composition of Boolean functions in terms of the dually isomorphic

bent functions. Next, we proposed various constructions of bent functions, in-

cluding the self-dual case, according to this framework, and we also derived the

dual functions of these bent functions. Subsequently, we demonstrated how the

open problem proposed by Mesnager can be solved by the existence of a du-

ally isomorphic bent function. Finding more classes of dually isomorphic bent

functions is an interesting direction of this research field to generate more bent

functions.
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