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Abstract. Time-lock puzzles (TLP) are a fascinating type of cryptographic problem that is easy to
generate, but takes a certain time to solve, even when arbitrary parallel speedup is allowed. TLPs have
wide-ranging applications including fairness, round efficient computation, and more. To reduce the
effort needed to solve large numbers of TLPs, prior work has proposed batching techniques to reduce
the cost of solving. However, these proposals either require: (1) a trusted setup or (2) the puzzle size
linear in the maximum batch size, which implies setting an a priori bound on the maximum size of the
batch. Any of these limitations restrict the utility of TLPs in decentralized and dynamic settings like
permissionless blockchains.
In this work, we demonstrate the feasibility and usefulness of a TLP that overcomes all of the above
limitations. Our construction is based on indistinguishable obfuscation and shows that there are no
fundamental barriers in achieving such a TLP construction. As a main application of our TLP, we show
how to improve the resilience of consensus protocols toward network-level adversaries in the following
two settings: (1) We show a generic compiler that boosts the resilience of a Byzantine broadcast protocol
Π as follows: if Π is secure against t < n weakly adaptive corruptions, then the compiled protocol is
secure against t < n strongly adaptive corruptions. Here, ‘strong’ refers to adaptively corrupting a
party and deleting messages that it sent while still honest. Our compiler is round and communication
preserving, and gives the first expected constant-round Byzantine broadcast protocol against a strongly
adaptive adversary for the dishonest majority setting. (2) We adapt the Nakamoto consensus protocol
to a weak model of synchrony where the adversary can adaptively create minority partitions in the
network. Unlike prior works, we do not assume that all honest messages are delivered within a known
upper bound on the message delay. To the best of our knowledge, this is the first work to show that it is
possible to achieve consensus in the permissionless setting even after relaxing the standard synchrony
assumption.

1 Introduction

A Time-Lock Puzzle (TLP) is a cryptographic primitive that allows a sender to lock a message as a
computational puzzle in a manner where the receiver will be able to solve the puzzle after a stipu-
lated time T. In terms of efficiency, a sender should be able to generate a puzzle substantially faster
than the time required to solve, and in terms of security, an adversary should not be able to solve the
puzzle faster than the stipulated time, even with parallel computation. Rivest, Shamir, and Wagner
(RSW) [45] proposed the first TLP construction based on the sequentiality of repeated modular
squaring in the RSA group. Many other TLP constructions [8,39,49] have followed suit in differ-
ent settings but require the same flavor of sequential operations during solving. TLPs have found
a wide variety of applications including sealed-bid auctions [45,39], timed-commitments [33,49], e-
voting [14,39], fair contract signing [9,39], zero-knowledge proofs [18], cryptocurrency payments [48],
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distributed consensus [50], blockchain front-running prevention [1], and more applications continue
to emerge.

In many TLP applications involving multiple users, it is often the case that a user is required
to solve the puzzles of all other users, and record all of the solutions. Say an auction house has to
open all the time-locked bids and declare them publicly before announcing the winner. Batching
and solving the puzzles is essential for scalability in such TLP applications that have large number
of participating users. Intuitively, batch solving of TLPs allows a receiver to solve multiple puzzles
simultaneously (at the price of solving of one puzzle) without needing to solve each puzzle separately.
Specifically, the total running time of the batch-solve operation is bounded by some p(λ,T)+p̃(λ, n)
for some fixed polynomials p and p̃, where λ is the security parameter, n is the number of puzzles
to be batched, and T is the timing hardness of a single puzzle.

Modern TLP constructions achieve the seemingly impossible batch-solve property under various
settings and assumptions [39,48,49]. However, all existing batch solving TLP schemes suffer from
the following limitations: (1) requires a trusted setup to generate structured reference string, and/or
(2) individual puzzle size scales linearly in the maximum number of puzzles that can be batched,
which further implies that there is an a priori upper bound on the number of puzzles that can be
batched (which is set upfront during puzzle generation).

Yet emerging blockchain applications like Miner Extractable Value (MEV) prevention [1], cryp-
tocurrency payments [48], distributed consensus [50], etc., either for security or performance, require
the TLP scheme to have a transparent setup, the puzzle size independent of the number of puzzles
batched and thereby support batching an unbounded number of puzzles. These requirements arise
in blockchain systems especially in the permissionless setting for the following reasons:
– First, it is often impossible or impractical to rely on a trusted party to generate the public pa-

rameters. Moreover, a compromised setup with trapdoors can violate the security of the system.
Precisely for these reasons, such trusted parties are not assumed to exist and usage of cryp-
tosystems requiring such trusted setups are actively discouraged in permissionless blockchain
systems.

– Second, in permissionless systems (like Bitcoin), nodes can join and leave the network at will, and
there are no mechanisms to authenticate any participant. So the exact number of participants
n is unknown at any point in time. However, existing TLP schemes require the bound on the
number of users at the time of puzzle generation. Thus, restricting the ability to accommodate
more participants on demand after the puzzle generation phase.

– Third, large puzzle size increases the total communication costs. For instance, in a setting where
all participants have to exchange puzzles with each other, a linear-sized puzzle of the prior
constructions blows up the total communication overhead to O(n3).
Motivated by these open problems and applications, we ask the following question:

Is it possible to build a TLP scheme with batch solving that has a transparent setup, puzzle size
independent of the batch size, and therefore allows unbounded batching?

In this work, we affirmatively answer this question and use our new TLP scheme to solve two elusive
problems in distributed consensus. Namely,

1. The problem of expected constant round Byzantine broadcast under corrupt majority and
strongly adaptive model.

2. The problem of permissionless consensus in any network model that does not assume that all
messages will be delivered by a known upper bound on the network delay.
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Below, we motivate how our TLP with the above properties can enhance security and reduce
communication costs in the two applications we consider.

At a high level, in both applications, TLPs help to defend against a powerful network adversary
that has the ability to delay or delete messages from the network. For instance, a powerful network
adversary can simply learn the contents of the message sent by any honest party before deciding to
corrupt or deliver the message. However, by time-lock encrypting the message, the adversary cannot
learn the contents of the message before time T without doing sequential work. In the meantime, all
the honest messages would have been delivered. Thus, the adversary is forced to corrupt an honest
node without inspecting the contents of the message. Prior works [50,15] showed the feasibility of
the distributed consensus in the presence of a network level adversary using TLPs (without batching
property) at the cost of polylogarithmic blowup in round complexity. However, batch solving and
compact puzzles aid in improving the round complexity and communication costs, respectively, in
these applications.

Round-efficient Byzantine broadcast. Byzantine broadcast (BB) is a well-studied problem in
distributed consensus, and, in recent times, BB has emerged as a fundamental building block in
blockchains [26]. Despite decades of study in improving the round efficiency, no prior BB protocol
has expected constant round-complexity under strongly adaptive and dishonest majority setting.
In the strongly adaptive model, an adversary can observe all the honest messages, corrupt honest
nodes on the fly, and perform after-the-fact removal, that is, the adversary can delete any honest
message in-flight before it reaches any other honest nodes.

Current success in constant round BB is in the weakly adaptive model where the adversary’s
power is severely limited [51]. Wan et al. proposed the first sub-linear BB protocol under strongly
adaptive and dishonest majority setting [50]. Their work used TLPs to prevent the adversary from
inspecting the contents of the message before corrupting a node. Since their TLP construction
did not support batching, they proposed a sub-protocol with polylogarithmic round complexity to
distribute task of opening all puzzles to honest nodes, rather than solving the puzzles individually.
We observe that by using a TLP with batching property and puzzle size independent of the batch
size as a building block, it is possible to achieve expected constant round Byzantine broadcast
under strongly adaptive and dishonest majority setting.

Permissionless protocol in the mobile sluggish model. Guo et al. introduced a relaxation
of the synchronous model, which was subsequently called the mobile sluggish model [29,3]. In the
mobile sluggish model, a subset of honest nodes, called sluggish nodes, can arbitrarily lose synchrony,
but they faithfully follow the rest of the protocol. The remaining honest nodes, called prompt nodes,
are synchronous and faithfully follow the protocol. Moreover, sluggishness can be mobile, that is,
any honest can become sluggish over the protocol execution, and if a sluggish node becomes prompt
by regaining synchrony, it will receive all the backlogged messages. This model is stronger than the
partially synchronous and asynchronous model but weaker than the synchronous model. Pass and
Shi showed that it is impossible to achieve permissionless consensus in a partially synchronous
or asynchronous network [43]. Unfortunately, Nakamoto consensus is vulnerable to consistency
violations even in the mobile sluggish model, as we show in this work. Specifically, even a single
mobile sluggish fault can effectively reduce the collective mining rate of honest nodes by half!

One way to defend against a mobile sluggish adversary is to let an honest block winner simply
time-lock encrypt the message before sending it, and other honest nodes time-lock encrypt a decoy to
distract the adversary from spotting the block winner. Since the adversary cannot learn the contents
of the puzzle without spending sufficient time, by setting the TLP duration slightly greater than
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the round duration, the adversary is now forced to corrupt or deliver the message randomly. At the
end of the round, honest nodes can batch solve the TLPs they received and update their chains.
Unfortunately, no prior TLP with batch solving works in this application, due to the requirements
and challenges in the permissionless setting: we cannot rely on a trusted setup [45,39,48], we do not
know the number of users in the network a priori, and we do not want to blowup the round [45]
and communication complexity [39,48,49].

1.1 Our Contributions

We give the first TLP construction (§4) that simultaneously achieves:

• Transparent Setup: Requires an one-time transparent (public-coin) setup.

• Batch Solving : Supports batch solving of any polynomial number of puzzles even after puzzle
generation, and the size of individual puzzles is independent of the number of puzzles to be
batched.

Our construction is based on Indistinguishable Obfuscation (IO) [24] where users’ puzzles are ob-
fuscated programs. We employ new techniques to achieve compactness in the puzzle size while
supporting unbounded batch sizes. Even though our construction is far from being practically effi-
cient, our construction crucially shows that there are no fundamental barriers from achieving a TLP
with the above properties and lays a blueprint for future work to instantiate our new techniques
with more efficient tools. In §2, we briefly explain why existing techniques for TLP fail to achieve
the desired properties, along with giving a brief overview of the key techniques used in our TLP
scheme.

We use our TLP construction as a fundamental building block and overcome other challenges
to solve two longstanding open problems in consensus:

1. Round-efficient Byzantine broadcast: In the years of distributed consensus research, we
present (§5) the first expected constant round Byzantine broadcast under strongly adaptive and
corrupt majority setting. To realize our result, we develop a generic compiler that uses any batch
solving TLP construction to convert any broadcast protocol secure against a weakly adaptive
adversary [51] into a broadcast protocol secure against a strongly adaptive adversary in a round
preserving way, which could also be of independent interest. With our TLP, this compiler is
additionally communication preserving. We formally prove the security (Thm. 3) of our compiler
in the programmable random oracle (RO) model.

2. Permissionless protocol in the mobile sluggish model:We first show an attack to illustrate
that Nakamoto consensus is not secure even in the mobile sluggish model (§6.1). We then present
a proof-of-work based permissionless protocol (§6.3) which does not assume that the network
is synchronous or all honest messages arrive on time. To the best of our knowledge, this is the
first work to show that it is possible to achieve consensus in the permissionless setting even
after relaxing the standard synchrony assumption! To do this, we develop a novel proof-of-work
based decoy mechanism that uses TLPs to defend against a mobile sluggish adversary that can
arbitrarily delay a subset of honest messages. We formally analyze our protocol to prove that it
achieves consistency and liveness. Specifically, we show that our protocol realizes the standard
properties namely, chain growth (Thm. 5), chain quality (Thm. 6), and common prefix (Thm.
7).
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1.2 Related Work

Time-lock puzzles. Bitanski et al. [8] proposed a different approach to construct time-lock puz-
zles, assuming the existence of succinct randomized encodings [7] and non-parallelizable languages.
Similar to RSW puzzles, during solving each puzzle has to be solved individually to obtain their so-
lutions. Liu et al. [38] combine (extractable) witness encryption [25] and a public reference clock like
the Bitcoin blockchain. In their construction, one can batch open many puzzles as the blockchain
reaches a certain height as the computational effort is shared by the entire blockchain network in
mining new blocks. Their construction relies on Succinct Non-Interactive Argument of Knowledge
(SNARKs) [6] and thus non-falsifiable assumptions. Our construction on the other hand does not
require such assumptions and does not rely on a global reference clock like a blockchain. In fact,
one of the main applications of our TLP construction is to build such a blockchain. Malavolta and
Thyagarajan introduced Homomorphic time-lock puzzles [39]. Their construction allowed homo-
morphic function evaluations to be performed on puzzles to obtain a single puzzle that embeds the
function of all the original solutions. Subsequently, their solution was shown [48] to be useful also
to batch a bounded number of solutions into a single puzzle, provided there is a trusted setup. In
a recent work, Thyagarajan et al. [49] proposed a Class group based construction that gets rid of
the trusted setup and only requires a transparent public-coin setup. In Table 1, we compare these
TLP constructions with our construction in this work.

Recently, Burdges and Feo [11] proposed a related but a new notion called delay encryption.
On a high level, users encrypt their messages to some common previously unpredictable identity
ID using an Identity-Based Encryption (IBE) scheme. The decryption key for the identity ID can
be derived anyone but the derivation is a delayed operation, meaning that it takes time T to derive
the key. We can batch decrypt several encryptions provided they are wrt. to the same ID. The
drawback of their construction is the requirement of a trusted setup which is considered a strong
assumption in the applications of our interest.

Table 1: Comparison with other batch TLP schemes. λ is the security parameter and T is time hardness parameter.
Compactness of puzzles here refers to the size of puzzles being independent of the batch size.

Scheme
Transparent

setup
Unbounded
batching

Compact
puzzles

One-time Setup
time

Practical
efficiency

RSA-based [48,39] ✗ ✗ ✗ O(log(T), λ) ✓

Class-groups based [49] ✓ ✗ ✗ O(T, λ) ✓

IO-based (This work) ✓ ✓ ✓ O(T, λ) ✗

Strongly adaptive Byzantine broadcast. Despite the rich literature in BB, Wan et al. proposed
the first expected sub-linear round protocol in the strongly adaptive setting using Public-Key In-
frastructure (PKI) and time-lock puzzles [50]. Subsequently, Cohen, Garay, and Zikas [15] explored
the feasibility of fair broadcast in the strongly adaptive setting for both property-based defini-
tion and simulation-based definitions. Whereas, our focus is on achieving expected constant-round
Byzantine broadcast under strongly adaptive and dishonest majority setting. We relate to other
prior works in App. A.

Protocols in the mobile sluggish model. Guo et al. first introduced the mobile sluggish model
as “weakly synchronous” model and showed that it is impossible for a Byzantine broadcast proto-
col to tolerate majority faults (Byzantine or sluggish) [29]. Subsequently, Abraham et al. presented
Byzantine Fault Tolerant blockchain protocol that can tolerate minority corruptions in the mobile
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sluggish model [3]. Kim et al. [35] observed that many proof-of-stake protocols, such as Dfinity [30],
Streamlet [12], OptSync [47], can support mobile sluggish faults. These prior techniques heavily
relied on using messages (votes) from a majority of the nodes (certificates) to establish communi-
cation with sluggish nodes and ensure safety of the protocol. Since Nakamoto consensus does not
rely on using such certificates, their techniques do not apply in our setting.

Nakamoto style protocols. Prior works can be categorized based on the flavor of synchrony
used to analyze Nakamoto consensus. In the lock-step model of synchrony, Garay et al. formally
analyzed Nakamoto consensus [21]. Subsequently, Pass et al. and Kiffer et al. showed that the
Nakamoto consensus is secure even in the non-lock-step synchrony model where the message delay
is bounded and the time proceeds in discrete rounds [41,21,34,54]. Ren discarded the notion of
discrete rounds and proved the security of Nakamoto consensus in the continuous model [44]. Even
parallelly composed Nakamoto protocols such as Prism and OHIE are also in the lock-step model of
synchrony [4,53]. Unfortunately, all these analyses assume that any honest message reaches other
honest nodes in ∆ time regardless of the flavor of synchrony. Our analysis is in the mobile sluggish
model, which assumes that a subset of honest nodes can violate the ∆-assumption. However, the
prompt nodes in our setting are assumed to be in lock-step model of synchrony.

Network-adversary lower bounds and impossibilities. Abraham et al. showed that a sub-
quadratic protocol could not be resilient against a strongly adaptive adversary that can perform
after-the-fact removal [2]. In Nakamoto consensus, delaying an honest block has the same effects
as deleting the block. For example, if a newly mined block is delayed for a sufficiently long time,
it could end up as an orphan block, which eventually gets pruned after the main chain stabilizes.
Moreover, sluggishness can be mobile, thus making the sluggish adversary more powerful than the
strongly adaptive adversary. Pass and Shi showed that it is impossible to achieve permissionless
consensus in the partially synchronous or asynchronous network [43]. However, since the mobile
sluggish model is stronger than the partially synchronous model, this impossibility does not apply
to our setting.

2 Technical Overview

We give an overview of our TLP construction that supports batch solving for unbounded number
of puzzles. Furthermore, we give an overview of our protocols that use our TLP construction as a
fundamental building block to tolerate network-level adversaries in the Byzantine broadcast and
Nakamoto consensus.

2.1 Time-Lock Puzzles with Batch Solving

Bounded batching of TLPs. Before delving into the specific of our construction, we show how
standard techniques [39,49] readily give a construction of TLP with bounded batched solving, i.e.,
where the number n of batched solutions is fixed at puzzle generation time. Given a Linearly
Homomorphic Time-Lock puzzle scheme LHP with homomorphism over Zq and a large enough q,
we can homomorphically evaluate the packing algorithm. In more detail, we are given n puzzles
Z1, . . . , Zn (of the LHP scheme) each encoding λ-bit values with timing hardness of each puzzle being
T. To batch solve these puzzles, we first homomorphically evaluate the following linear function:

f(x1, . . . , xn) =
n∑

i=1

2(i−1)·λ · xi.
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The resultant evaluated puzzle Z∗ is then solved in time T to obtain all the n values where
each of these values were originally encoded as λ-bit values. Importantly, this means that the
bit-representation of the plaintext space must be large enough to accommodate all n-secrets, i.e.,
log(q) ≈ n · λ. Since the domain has to be fixed at the time of puzzle generation, this means that
each puzzle scales linearly with n. In settings with n parties, where each party generates a puzzle
and broadcasts it to the other parties, the total communication is O(n3), assuming a total of O(n2)
communication for a broadcast of a single bit and ignoring factors that depend on λ.

Unbounded batching? The question that we set out to answer is whether it is possible to
construct a TLP that supports unbounded batch-solving. One approach to do that is to “defer”
the choice of the plaintext space at the solving time, so that the solver can select the appropriate
domain, depending on how many puzzles need to be batched. A naive idea is to define a program P
that, on input the batch size n, outputs a LHP puzzle Z embedding the user’s message m and where
the message space is sufficiently large to accommodate packing of n puzzles. This solution is clearly
insecure as it reveals m in the plain, so to amend this we obfuscate the program P̃ := iO(P),
using indistinguishability obfuscation (IO) [24,32]. Setting a super-polynomial upper bound on
n ≈ 2ω(log(λ)) allows one to batch any polynomial number of puzzles.

Unfortunately, this simple construction runs into issues when proving security. A natural strat-
egy when proving security would be to hybrid over all possible n, hardwire the corresponding
puzzle in the description of the circuit and the swap with for a puzzle encoding a fixed string (say
0) appealing to the security of the time-lock puzzle. However it is not hard to see that this would
quickly run into issues: As n grows to super-polynomial, the size of the corresponding puzzle, and
consequently of the obfuscated circuit, would also be super-polynomial. This is not only an issue of
the security proof, since the actual obfuscated circuit must be padded to the maximum size of the
circuits that is defined in the analysis. To get this strategy to work, our construction would yield
a super-polynomial size puzzle!

Our solution. To understand our solution, we first discuss a way to circumvent the above issue.
We change the output of the obfuscated circuit to output the n dimensional vector (0, . . . ,m, . . . , 0),
where m is inserted in the i-th slot, masked by the output of a puncturable pseudorandom function
(PRF) F and a LHP puzzle Z encoding the PRF key k.

0
...
m
...
0

+


F(k, 1)

...
F(k, i)

...
F(k, n)

 =


F(k, 1)

...
F(k, i) +m

...
F(k, n)


This structured solution allows us to solve the proof problem by puncturing each position indi-
vidually, thereby avoiding an exponential blow-up in the size of the obfuscated circuit. To solve
this puzzle, the solver can arrange the various masked plaintexts (from other obfuscated circuits of
other users) diagonally, and sum up all the results, to obtain

F(k1, 1) +m1

F(k1, 2)
...

F(k1, n)

+


F(k2, 1)

F(k2, 2) +m2
...

F(k2, n)

+ . . .+


F(kn, 1)
F(kn, 2)

...
F(kn, n) +mn
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Here ki and mi are the PRF key and message, respectively, of the i-th obfuscated program. However
at this point it is not clear how to batch solve the resulting puzzles, since each party will use an
independent PRF key ki. This means that we shifted the problem from recovering the n messages
to recovering n PRF keys, bringing us back to square one. Our last idea is to use instead a key-
homomorphic PRF F. Assuming a suitable instantiation [10], we have the above expression evaluate
to

=


∑

i F(ki, 1) +m1∑
i F(ki, 2) +m2

...∑
i F(ki, n) +mn

 ≈

F (
∑

i ki, 1) +m1

F (
∑

i ki, 2) +m2
...

F (
∑

i ki, n) +mn


We also have a LHP puzzle from each party encoding ki. The solver can now add all keys homo-
morphically and solve the resulting LHP puzzle in time T to obtain

∑
i ki. Once the key is known,

the solver can simply unmask all the values in the above vector by evaluating the PRF at points
(1, . . . , n) using the key

∑
i ki. Subtracting the output yields the vector of n plaintexts.

This gives an outline of our construction. In the actual scheme, extra care is needed to match
the modulus of the TLPs with the key space of the PRF, to set the parameters to account for the
imperfect homomorphism, and deal with the lack of imperfect correctness of punctured keys in the
proof (see §4 for more details). Notice that the size of each puzzle is dominated by the obfuscated
program P̃, which can be implemented to be of size logarithmic in n (the batch size). Therefore, in
a multi-party setting, we get a total communication of Õ(n2) assuming O(n2) communication for
single bit broadcast and ignoring factors that depend on λ.

2.2 Application 1: Efficient Byzantine Broadcast

Byzantine broadcast (BB) is a classical problem in distributed consensus, where a designated sender
holds a bit b and wants to transmit b to all n nodes in the presence of t faults. A BB protocol is
secure if it can guarantee consistency (all honest nodes output the same bit) and validity (if the
designated sender is honest, all honest nodes output the designated sender’s input b).

With increasing applications for BB (cryptography, blockchains, etc.), we study the round-
efficiency of BB under the dishonest majority setting. Prior BB protocols in the dishonest majority
setting can broadly tolerate: (1) weakly adaptive or (2) strongly adaptive adversary. Both strongly
and weakly adaptive adversary can corrupt honest nodes on the fly. But, a weakly adaptive adver-
sary cannot perform after-the-fact removal.

Despite decades of study, the state-of-art round-efficient of BB in the dishonest majority is in
the weakly adaptive setting [51]. Thus, it raises the question:

Is it possible to achieve an expected constant-round Byzantine broadcast
under strongly adaptive and corrupt majority?

We affirmatively answer this using PKI, RO, and any batch solvable TLP construction. Our solution
is a generic round preserving compiler that can convert any weakly adaptive BB protocol into a
strongly adaptive one. With our batch solvable TLP, our compiler is additionally communication
preserving as well!

The key ingredient in our compiler is that we use TLPs to hide the contents of the messages
sent by the underlying protocol so that the strongly adaptive adversary cannot learn the contents
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of any message before honest nodes receives it. Prior works use the RSW puzzles to defend against
a strongly adaptive adversary [50,15]. But, due to the inability to batch solve RSW proofs, opening
all puzzles collectively adds an overhead of polylogarithmic rounds to the any protocol [50]. An
alternate approach is to use batch solvable TLPs defined in [49,48] to remove the polylogarithmic
communication overhead incurred by RSW puzzles. But this increases communication complexity
by a linear factor since prior batch solvable TLPs are not compact. Since our TLP is compact and
batchable, we can solve all puzzles in one round without increasing the communication complexity.

Even though TLPs can prevent the adversary from inspecting the contents of the message, the
primary challenge is in proving that the compiled protocol is secure against an adversary that can
perform after-the-fact removal. This is because TLPs, apart from hiding the message contents for
T, also serve as a commitment to the message inside the puzzle, which prevents the simulator
from simulating the honest nodes without knowing the actual contents of the puzzle! Cohen et al.
encountered a similar problem in the context of simulation-based fair BB and they proposed a
non-committing TLP to overcome this challenge [15, Theorem 5].

Non-committing TLPs. Informally, it allows the simulator to equivocate a time-lock puzzle.
That is, the simulator first generates and sends a “fake” TLP to the network, which can be later
“opened” be to any message. Thus, when the simulator is asked to explain the contents, it programs
the RO to open the desired message. In §4.3, we show how to achieve this property with our TLP
construction as well.

Compiler overview. Abstractly, in a weakly adaptive protocol Πbb−wa, a node performs three
basic steps: In every round, (1) receives the messages sent by other nodes, (2) performs the state
transition based on the messages received and computes the messages to send, and (3) sends the
messages to other nodes. Our compiler interleaves each step of Πbb−wa with TLP operations to
obtain a strongly adaptive protocol, Πbb−sa.

In a bit more detail, before sending a message in the compiled Πbb−sa, a node uses non-
committing TLPs to encrypt the message it wants to send and computes the puzzle with proof
of well-formedness of the puzzle. Thus, instead of sending the plaintext in Πbb−wa, a node in Πbb−sa

sends the puzzle, ciphertext, and the proof of well-formedness to other nodes. When a node receives
puzzles, ciphertexts, proofs of well-formedness from the network, instead of opening one puzzle at
time, Πbb−sa uses the batchable TLP proposed in this work to obtain all the solutions simultane-
ously without incurring additional round complexity or communication complexity to open all the
puzzles. Thus, after opening all the puzzles, a node in Πbb−sa invokes the state transition function
just like a node in Πbb−wa. This process is repeated for every round.

We remark that our compiler is round preserving for any batch solvable TLP. Thus, our compiler
can be realized in practice using the constructions based on RSA or Class-groups [49,48]. We defer
the details of our compiler to §5.2.

2.3 Application 2: Permissionless Consensus in the Mobile Sluggish Model

Nakamoto’s protocol, used in Bitcoin, achieves consensus over the Internet in a permissionless
setting, where: any node can join and leave the system at any time, the exact number of participating
nodes is unknown, and the nodes have to communicate over unauthenticated channels. However, to
realize consistency and liveness, the protocol assumes that the network is synchronous – all honest
messages get delivered to one another within a known upper bound ∆.

Unfortunately, assuming that an Internet scale protocol is synchronous is excessively optimistic.
Moreover, Pass and Shi [43] showed that it is impossible to achieve permissionless consensus in
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an asynchronous or even in a partially synchronous network [5], which are relaxations of the syn-
chronous model. Thus, to deploy the protocol in the real-world, the protocol designers are compelled
to choose a loose upper bound ∆ as the network delay to accommodate nodes with slow network.

In this work, we relax the standard synchrony assumption and study Nakamoto consensus under
the mobile sluggish model [3,29]. For Internet scale protocols, the sluggish model is a pragmatic
trade-off between the synchronous model and partially synchronous/asynchronous model. Thus,
we ask the following question:

Is it possible to achieve consensus in a permissionless setting
in the presence of mobile sluggish faults?

We affirmatively answer this question by proposing a protocol that uses our TLP construction
from §4 as a fundamental building block to show that it is possible to achieve consistency (any two
prompt chains can differ only in the last few blocks) and liveness (every prompt node eventually
commits all transactions) even in the presence of mobile sluggish faults.

In this subsection, we show how to adapt the Nakamoto consensus to defend against a mobile
sluggish adversary using the our TLP. In our protocol, we use the following ideas: (1) All honest
nodes time-lock encrypt any message they transmit, (2) all honest nodes send decoys to protect the
block winner from getting caught by the adversary, (3) restrict the adversary from flooding with
decoys, and (4) ignore malformed puzzles sent by the adversary.

Formally, we define a round, a super-round, and duration of a round in §6.2 and §6.3. However,
as a warm-up, we present strawman solutions to illustrate the inadequacies of the well-known
approaches.

Strawman solutions. The first straightforward solution is to use RSW puzzles to time-lock en-
crypt any message with a duration equal to the network delay before transmitting across the
network [45]. Unfortunately, this approach does not work for the following reasons:

• Recall that in a protocol like the Nakamoto consensus, only the block winner sends a message
to the network. Thus, the adversary can easily stop the one message transmitted, whether or
not the message is encrypted.

• Say the other honest nodes send out time-lock encrypted dummy messages, which acts as a
decoy to protect an honest block winner from getting caught. Unfortunately, the honest parties
have to open all the puzzles to find the winning block. Thus, the honest parties either have to
open all the puzzles individually or open them using the distributed-solve primitive proposed
by Wan et al. [50, Section 4.2]. Both these approaches increase the round complexity of the
protocol by linear and polylogarithmic rounds, respectively.

An alternate approach is to use TLPs with batch solving property defined in [49,48], but we would
suffer from large communication costs and fixed batch size problem as explained before. Instead,
we can now use our TLP that gets rid of the these issues. Below we give an overview of other
challenges we encounter in designing our permissionless consensus protocol.

Decoys, spam prevention, and malformed puzzles. Since the Nakamoto consensus is in the
permissionless setting, there are no identities to tackle Sybil attacks. This setting raises an important
question: how to stop the adversary from spawning multiple identities to send decoys? We resort
to proof-of-work to tackle the Sybil attack!

Say the difficulty threshold to mine a block is T , then we set the threshold to mine a decoy as
Tc, such that T < Tc. Each RO query made by a node simultaneously tries to mine a block and
a decoy. That is, say h is the output of the hash function. If h < T , then a block is mined, else
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if T ≤ h < Tc, then a decoy is mined. This is the “2-for-1 POW” trick introduced by Garay et
al. [21,42,4]. The parameter Tc presents an interesting trade-off: Tc should be sufficiently high so
that honest nodes mine enough decoys whereas the adversary should not be able to overwhelm the
honest nodes with many decoy puzzles.

One of the challenges is that nodes do not know the exact number of decoys mined at a given
time. However, since our TLP construction can batch a variable number of puzzles, nodes can
flexibly batch puzzles on demand. Observe that Tc restricts the number of decoys that the adversary
(and the honest nodes) can mine. But, this does not stop the adversary from flooding the honest
nodes with malformed puzzles. Batching malformed puzzles along with honest puzzles prevents a
node from obtaining the solutions to honest puzzles. To circumvent this problem we equip our TLP
with a verifiability property that allows an honest node to reject a puzzle that is not well-formed
according to the puzzle generation algorithm. Thus, a valid proof guarantees that the plaintext can
be obtained by solving the puzzle.

Mine phase and solve phase. Since the mining process is stochastic, the arrival times of a decoy
and a block are random. Say if an honest node sends the puzzle as soon as it finds the block, it
is unlikely that the rest of the honest nodes will also be sending the decoy puzzles at the same
time. If enough honest nodes do not provide “cover” to the block winner, then the probability
of the adversary guessing the block winner is high. However, if all honest nodes wait until a pre-
determined time to send the respective puzzles, then block winner will have the best chance of not
being detected by the adversary.

In order to capture this intuition, we have two phases in our protocol:

– Mine phase: All nodes spend a sequence of m rounds mining a block or decoy without sending
or receiving any messages.

– Solve phase: This phase begins as soon as the mine phase ends and consists of two rounds. In
the first round, nodes send and receive the puzzles they have mined in the mine phase, and
check the well-formedness of the received puzzles. In the second round, nodes will batch solve
the TLPs to find the block, if any, and update the longest chain.
We generically denote the duration of the solve phase as D rounds. If one employs RSW puzzles
and the distributed-solve primitive from Wan et al. [50] instead of our TLP construction, then
D can be thought of as the number of rounds required to perform distributed-solve procedure.
However, when our protocol is instantiated with our TLP construction we have D = 2.

Thus, the duration of a super-round is (m+D) rounds.

Putting it all together. In summary, by using our TLP, the decoy mechanism, and super-rounds,
our protocol works as follows: Every honest node performs the following steps in every super-round:
(1) Receive transactions from the environment, (2) choose the longest chain it has seen so far and
break ties arbitrarily, (3) mine for m rounds (mine phase), and (4) solve for D rounds (solve phase)
and update the longest chain. We defer the details of the protocol to §6.3.

3 Cryptographic Background

We denote by λ ∈ N the security parameter. We say that a function µ is negligible if it vanishes
faster than any polynomial. The notation [n] denotes a set {1, . . . , n}. Background and notations
relevant to the two applications are deferred to §6.2 and §5.1, respectively.
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3.1 Time-Lock Puzzles

In the following we give a definition for the main object of interest of this work, namely time-lock
puzzles (TLPs) [45]. The syntax follows the standard notation for time-lock puzzles except that we
consider an additional setup phase that depends on the hardness parameter but not on the secret.

Definition 1 (Time-Lock Puzzles). Let S be a finite domain. A time-lock puzzle (TLP) with
solution space S is tuple of four algorithms (PSetup,PGen,PSol) defined as follows.

– pp← PSetup(1λ,T) a probabilistic algorithm that takes as input a security parameter 1λ and a
time hardness parameter T, and outputs public parameters pp.

– Z ← PGen(pp, s) a probabilistic algorithm that takes as input public parameters pp, and a
solution s ∈ S, and outputs a puzzle Z.

– s← PSol(pp, Z) a deterministic algorithm that takes as input public parameters pp and a puzzle
Z and outputs a solution s.

Definition 2 (Correctness). A TLP scheme (PSetup,PGen,PSol) is correct if for all λ ∈ N, all
polynomials T in λ, all secrets s ∈ S, and all pp in the support of PSetup(1λ,T), it holds that:
Pr [PSol(pp,PGen(pp, s)) = s] = 1.

Security requires that the solution of the puzzles is hidden for all adversaries that run in (par-
allel) time less than T.

Definition 3 (Security). A TLP scheme (PSetup,PGen,PSol) is secure with gap ε < 1 if there
exists a polynomial T̃(·) such that for all polynomials T(·) ≥ T̃(·) and every polynomial-size ad-
versary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from above by Tε(λ), there
exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr

b← A2(pp, Z, st)
∧ (s0, s1) ∈ S2

:
pp← PSetup(1λ,T(λ))
(st, s0, s1)← A1(1

λ, pp)
b← {0, 1}, Z ← PGen(pp, sb)

 ≤ 1

2
+ µ(λ)

Homomorphic Time-Lock Puzzles. We also recall the definition of homomorphic time-lock puz-
zles [39], which allows one to compute functions on secrets homomorphically, without solving the
puzzles first.

Definition 4 (Homomorphic TLPs). Let C = {Cλ}λ∈N be a family of circuits (together with
their respective representations). A TLP scheme (PSetup,PGen,PSol) is homomorphic if the syntax
is augmented with the following interface:

– Z ′ ← PEval(C, pp, Z1, . . . , Zn) a probabilistic algorithm that takes as input a circuit C ∈ Cλ,
public parameters pp and a set of n puzzles (Z1, . . . , Zn) and outputs a puzzle Z ′.

Homomorphic TLPs must satisfy the following notion of evaluation correctness.

Definition 5 (Evaluation Correctness). Let C = {Cλ}λ∈N be a family of circuits (together
with their respective representations). An homomorphic TLP scheme (PSetup,PGen,PSol,PEval)
is correct (for the class C) if for all λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and
respective inputs (s1, . . . , sn) ∈ Sn, all pp in the support of PSetup(1λ,T), and all Zi in the support
of PGen(pp, si), the following conditions are satisfied:
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– It holds that
Pr [PSol(pp,PEval(C, pp, Z1, . . . , Zn)) = C(s1, . . . , sn)] = 1.

– There exists a fixed polynomial p(·) such that the runtime of PSol is bounded by p(λ,T) and the
runtime of PEval is bounded by p(λ).

We require homomorphic TLPs specifically that support homomorphic evaluations of linear
functions over the puzzles, that are secure against depth bounded but sub-exponential size adver-
saries. We have such constructions from RSA groups [39] and Class groups with imaginary quadratic
order [49]. These constructions are proven secure against such adversaries by conjecturing the hard-
ness of the sequential squaring assumption [39,37] against depth bounded but sub-exponential size
adversaries.

3.2 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (PRF) is an augmented PRF that has an additional punc-
turing algorithm. Such an algorithm produces a punctured version of the key that can evaluate the
PRF at all points except for the punctured one. It is required that the PRF value at that specific
point is pseudorandom even given the punctured key. A puncturable PRF can be constructed from
any one-way function [27].

Definition 6 (Puncturable PRFs). A puncturable family of PRFs is a tuple of polynomial-time
algorithms (Setup,KGen,Punc,F) defined as follows.
– pp ← Setup(1λ) a probabilistic algorithm that takes as input the security parameter 1λ and

outputs public parameters pp. Public parameters pp are taken as input in all other algorithms.

– K ← KGen(pp) a probabilistic algorithm that takes as input the public parameters pp and outputs
a key K.

– Ki ← Punc(K, i) a deterministic algorithm that takes as input a key K ∈ K and a position
i ∈ X and returns a punctured key Ki.

– y ← F(K, i) a deterministic algorithm that takes as input a key K and a string i ∈ X and
returns a string y ∈ Y.

Definition 7 (Correctness). For all λ ∈ N, for all outputs K ← KGen(1λ), for all points i ∈ X
and x ∈ X \ i, and for all K−i ← Punc(K, i), we have that F(K−i, x) = F(K,x).

We require that punctured points are pseudorandom to the eyes of any efficient distinguisher.

Definition 8 (Pseudorandomness at Punctured Points). For all λ ∈ N and for every PPT
adversaries (A1,A2) there is a negligible function µ(·), such that

Pr

b← A2(τ,Ki, i, y) :
pp← Setup(1λ), (i, τ)← A1(pp)

K ← KGen(pp),Ki ← Punc(K, i), b← {0, 1}
if b = 0 then y ← Y, else y ← F(K, i)

 ≤ 1

2
+ µ(λ).

Key Homomorphism. We also assume the existence of constructions of puncturable PRFs that
satisfy key homomorphism [10].

Definition 9 (γ-Almost Key-Homomorphic PRF). Let function F : K × X → Zm
p be such

that (K,+) is a group. Then the tuple (F,+) is said to be γ-almost key-homomorphic PRF if the
following two conditions hold:
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– F is a (puncturable) pseudorandom function.

– For all k1, k2 ∈ K and all x ∈ X , there exists a vector e ∈ [0, γ]m such that

F(k1, x) + F(k2, x) = F(k1 + k2, x) + e (mod p).

The scheme presented in [10] satisfies (additive) key-homomorphism over Zn
q , which we also use in

this work. Their scheme satisfies a weaker notion of correctness, which we state below.

Definition 10 (Computational Functionality Preservation). For all λ ∈ N and all PPT
adversaries (A1,A2), there exists a negligible function µ(·), such that

Pr

x∗ ← AF(K,·)
2 (1λ,Ki∗ , τ) ∧
x∗ ̸= i∗ ∧

F(K,x∗) ̸= F(Ki∗ , x
∗)

:
pp← Setup(1λ),K ← KGen(pp)

(i∗, τ)← A1(pp)
Ki∗ ← Punc(K, i∗)

 ≤ µ(λ).

For our purposes, we require the above property of the key-homomorphic puncturable PRF
from [10] to hold against super-polynomial adversaries, which is possible assuming the hardness of
LWE against super-polynomial adversaries.

3.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation (iO) for circuits from [24].

Definition 11 (iO for Circuits [24]). A uniform PPT machine iO is an indistinguishable ob-
fuscator for circuit class {Cλ}, if the following are satisfied:

– For all λ ∈ N, or all C ∈ Cλ, for all inputs x, we have

Pr
[
C ′(x) = C(x) : C ′ ← iO(λ,C)

]
= 1

– For all λ ∈ N, all pairs of circuit (C0, C1) ∈ Cλ such that |C0| = |C1| and C0(x) = C1(x) on
all inputs x, it holds that the distributions {iO(λ,C0)} and {iO(λ,C1)} are computationally
indistinguishable.

4 Time-Lock Puzzles with Batch Solving

In this section we formally present the notion and constructions for time-lock puzzles with batched
solving.

4.1 Definition

We define the notion of TLPs with batched solving. We borrow the standard interfaces of a TLP
from §3.1 and append it with an interface to allow for batched solving of n puzzles.

Definition 12 (Batch Solving). A TLP scheme (PSetup,PGen,PSol) supports batch solving with
the aid of an additional interface defined below

– (s1, . . . , sn) ← BatchPSol(pp, Z1, . . . , Zn) a deterministic algorithm that takes as input public
parameters pp and puzzles Z1, . . . , Zn, and outputs solutions s1, . . . , sn.
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Definition 13 (Batch Solving Correctness). An TLP scheme (PSetup,PGen,PSol) with batch
solving interface BatchPSol is correct if for all λ ∈ N, all polynomials T in λ, all polynomials n in
λ, all solutions (s1, . . . , sn) ∈ Sn, all pp in the support of PSetup(1λ,T), and all Zi in the support
of PGen(pp, si), the following conditions are satisfied:
– There exists a negligible function µ(·) such that

Pr [BatchPSol(pp, Z1, . . . , Zn) ̸= (s1, . . . , sn)] ≤ µ(λ).

– There exist fixed polynomials p(·), p̃(·) such that the size complexity of the circuit evaluating
BatchPSol(pp, Z1, . . . , Zn) is bounded by p(λ,T) + p̃(λ, n).

Notice that the above definition rules out trivial solutions, where you solve the n puzzles indi-
vidually and output the solutions. This is because, in this solution the size scales with n ·T, while
the definition above only permits the scale to be n+T. One can view p̃(λ, n) as capturing the time
taken to read and process the n puzzles, and returning the n solutions. The factor p(λ,T) captures
the solving of a single puzzle and itself is independent of n.

4.2 Bounded Batching of TLPs

As hinted to in §2.1, given a linearly homomorphic time-lock puzzle with homomorphism over Zq,
that has a large enough message space, it was shown in [48,49] that we can homomorphically pack
several puzzles into a single puzzle using standard techniques. Solving the single puzzle reveals
the solutions to all the n puzzles that we started out with. A crucial requirement for the above
batch solving to work is that the message space of the homomorphic time-lock puzzle must be large
enough to accommodate all the n λ-bit values. It was shown [48] that this is indeed possible for
by instantiating the Paillier-based linearly homomorphic time-lock puzzle construction from [39]
in the same way Damg̊ard-Jurik [16] extended the Paillier cryptosystem [40]. That is, instantiate
the Paillier-based linearly homomorphic time-lock puzzle from [39] with a modulus N s instead of
modulus N2, for a large enough value s. A similar domain extension was also shown in the settings
of class groups of imaginary quadratic orders [49] that only require a public-coin (transparent)
setup.

More formally, the LHP scheme from [39] has the LHP.PSetup algorithm output ppLHP =
(T, N, g, h), where N = pq for some λ-bit primes p and q, g is the generator of J∗N , and h :=

g2
T
mod N . Here J∗N denotes the elements in Z∗

N with Jacobi symbol +1. The puzzle Z embedding
message m is of the form (u, v) where

u := gr mod N and v := hr·N (1 +N)m mod N2,

with randomness r ← [N2]. The security of the scheme follows from the sequential squaring as-
sumption [45,39]. The Damg̊ard-Jurik extension from [39,48] lets the puzzle generation algorithm
additionally choose s ∈ Z, and set the puzzle Z := (u, v) where

u := gr mod N and v := hr·N
s−1

(1 +N)m mod N s.

Here, the message space is ZNs−1 while the puzzle component v is in ZNs .
Consider n puzzles Z1, . . . , Zn each encoding λ-bit values with timing hardness T, and each of

these puzzles are of the Damg̊ard-Jurik extended form. The LHP.BatchPSol algorithm internally
evaluates the following linear function
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f(x1, . . . , xn) =
n∑

i=1

2(i−1)·λ · xi

homomorphically over the puzzles using the LHP.PEval algorithm. The effect of this evaluation
is that the resultant puzzle Z∗ embeds the λ-bit values of (x1, x2, . . . , xn). The LHP.BatchPSol
algorithm proceeds to solve the resultant puzzle Z∗ in time T to obtain the n values encoded as
λ-bit values.

However, both of the above constructions only support bounded batching as they require the
size of each puzzle Zi (the v component) to scale linearly with the maximum batch size. Also, since
the domain extension factor s has to be fixed at puzzle generation time, it determines an upper
bound on the input size of the function f and therefore the number of puzzles we can batch solve
later.

4.3 Unbounded Batching of TLPs

In this section we present a new TLP scheme with batched solving where overcome both drawbacks
of the scheme above. Namely, our new construction allows for batching where the size of the time-
lock puzzles output by puzzle generation algorithm are independent of the number of puzzles to be
batched. As a consequence, we have unbounded batching (bounded above by a super polynomial
2ω(log λ)) meaning that any polynomial number of puzzles can be batched with a fixed one-time
setup.

Our construction uses the following ingredients:
– A linearly homomorphic TLP scheme LHP := (LHP.PSetup, LHP.PGen, LHP.PSol, LHP.PEval)

where the homomorphism is over Zq.

– A puncturable PRF (Setup,KGen,Punc,F) denoted in short by F.

– An indistinguishable obfuscator iO for circuits.

– A γ-almost key-homomorphic puncturable PRF (Setup,KGen,Punc,F) (denoted in short by Fi)
with key space Zn

q and where the noise bound is γ such that p = 2ω(log λ) · γ.
We set N = 2ω(log λ) denote an upper bound on the number of participants.

Our construction (PSetup,PGen,BatchPSol) is shown in Fig. 1. For simplicity we consider the
messages encoded to be in {0, 1}, and argue that its straightforward to extend the construction for
multiple bits.

A puzzle in our case is an obfuscation of the program P which has the message m, a PRF F
key k, and the public parameters pp hardwired in it. The program P takes as input three values:
n indicating number of puzzles to be batched, i “index” of the current puzzle and j “index” of
other puzzles. It is important to note that the exact indices for each puzzle are only set later during
batch solving. Let i be the symbolic index of the puzzle being generated now (whose concrete
value will be set during batch solving). The program internally generates the PRF key k for the
key-homomorphic puncturable PRF which then is embedded inside the LHP puzzle Z. In case the
indices i and j are the same, a ciphertext c is set to encrypt the message m using the value F(k, j) as
the masking factor. In any other case, c encrypts 0 with F(k, j) as the masking factor. The program
returns the puzzle Z and the ciphertext c.

The batch solving algorithm in the beginning, locally indexes the n puzzles in some order based
on some rule (e.g., lexicographic ordering). We have them now ordered (Z1, . . . , Zn) where the i-th
puzzle is an obfuscated program denoted by Zi := P̃i. Then, for all i ∈ [n], we execute the program
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- PSetup(1λ,T):

• Run ppLHP ← LHP.PSetup(1λ,T).

• Run ppF ← Setup(1λ) and ppF ← Setup(1λ).

• Return pp := (ppLHP, ppF, ppF).

- PGen(pp,m):
• Generate k ← KGen(ppF).

• Define Pm,k,pp(n, i, j) as the following circuit:a

∗ Ensure i, j ∈ [n].

∗ Compute (r, r)← F(k, (n, i)).

∗ Compute k ← KGen(ppF; r).

∗ Compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).

• Return P̃ := iO(1λ,Pm,k,pp).

- BatchPSol(pp, Z1, . . . , Zn):
• For each i ∈ [n],

∗ Parse Zi := P̃i.

∗ For each j ∈ [n], compute (Z∗
i , ci,j)← P̃i(n, i, j).

∗ Define ci = (ci,1, . . . , ci,n) ∈ Zn
p .

• Set Z∗ ← LHP.PEval(+, pp, Z∗
1 , . . . , Z

∗
n).

• Compute k∗ ← LHP.PSol(pp, Z∗).

• Compute f∗ =
(
F(k∗, 1), . . . ,F(k∗, n)

)
• Compute c∗ =

∑n
i=1 ci.

• Return c∗ − f∗ rounded component-wise.

a The circuit is padded to the maximum size of the circuits among those defined in the security proof. We refer the reader
to the end of this Section for a discussion on the size of this circuit.

Fig. 1: Our construction for TLP with unbounded batch solving.

P̃i on values (n, i, j) for all j ∈ [n]. In the end we obtain a LHP time-lock puzzle Z∗
i and ciphertexts

ci,j for each j ∈ [n]. Recall that when i = j the program P̃i sets ci,j to encrypt the message mi

(where mi is the message inside puzzle Zi), and for all i ̸= j, the ciphertext ci,j encrypts 0. We
then obtain a LHP puzzle Z∗ by homomorphically adding the puzzles Z∗

i for all i ∈ [n] and solving
Z∗ returns a PRF key k∗ of the key-homomorphic puncturable PRF. We retrieve the message mj

(for all j ∈ [n]) by doing the following: (1) compute c∗j =
∑n

i=1 ci,j , (2) evaluate F(k
∗, j), (3) set mj

as the rounding of
(
c∗j − F(k∗, j)

)
. The correctness and security of our construction is formalized

in the theorems below and the formal proofs are deferred to App. B.

Theorem 1. Let LHP be a linearly homomorphic TLP scheme where the homomorphism is over
Zq, let F be a puncturable PRF, let iO be an indistinguishable obfuscator for circuits and let F be
a γ-almost key-homomorphic puncturable PRF with key space Zn

q and where the noise bound is γ
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such that p = 2ω(log λ) ·γ. If all the above primitives are perfectly correct, then the TLP scheme with
batch solving from Fig. 1 is perfectly correct.

Theorem 2. Let LHP be secure against depth Tε(λ)-bounded adversaries with sub-exponential ad-
vantage, F be a sub-exponentially secure puncturable PRF, F be a sub-exponentially secure γ-almost
key-homomorphic puncturable PRF and iO be a sub-exponentially secure indistinguishable obfus-
cator. Then, the construction from Fig. 1 is a secure time-lock puzzle with batch solving against all
depth Tε(λ)-bounded adversaries.

Size of the obfuscated circuit. Observe that at any point in the proof, we only hardwire
information of size bounded by a fixed polynomial in the security parameter, and in particular
independent of the number of parties. Since the size of the obfuscated circuit must be padded to
the maximum size of the circuit at any point in the security proof, it follows that the overhead is
also independent of the number of parties.

Instantiations and Setup assumptions. We can instantiate: the linearly homomorphic time-
lock puzzle LHP with the Class group based scheme from [49]. We can instantiate the puncturable
PRF F with the GGM based PRF [46,27], the iO scheme with the scheme from [32], and the
γ-almost key-homomorphic puncturable PRF with the scheme from [10]. Notice that the above
instantiations, do not require trusted setups and therefore our TLP scheme does not require a
trusted setup and instead only requires a one-time transparent public-coin setup (for the LHP
from [49]).

TLP runtime. The runtime of PGen is dominated by the obfuscation of the circuit P which is
polynomial in λ and size of P. Moreover, the size of P is independent of the batch size n or the
number of users. Thus, the total runtime is polynomial in λ and size of the time-locked message.
The BatchPSol involves executing n obfuscated circuits, combining their outputs homomorphically
using LHP.PEval, and solving the resulting TLP using LHP.PSol. The runtime of the first two
operations is poly(λ, n), whereas the last operation is poly(λ, T ).

Verifiable TLPs. We can support verifiability for our puzzles where the puzzle generator along
with the puzzle also outputs a proof, that convinces a verifier that the puzzle is well-formed. In
applications of our TLP scheme (including the ones in later sections), verifying whether a puzzle
is in the support of the PGen is paramount for the correctness (Definition 13) of batched solving
to hold. To provide such verifiability, we can add two new interfaces: PProve(Z,m, r) run by the
puzzle generator that outputs a proof π to ascertain a puzzle Z is well-formed (with message m
and randomness r), and PVer(Z, π) run by a verifier that validates the proof w.r.t. the puzzle. In
terms properties we want that a verifier shouldn’t be convinced of a malformed puzzle and that
the proof does not help in solving the puzzle any faster. For a formal definition and a discussion
on concrete instantiations, we refer the reader to App. C.

Non-committing TLPs. A non-committing TLP lets a simulator generate a puzzle first and
later “explain” the puzzle as committing to a message m by opening it to reveal m. Note that a
TLP is committing to the message once the puzzle is generated. Cohen et al. [15] showed a generic
approach to build such non-committing TLPs in the programmable random oracle model (PROM)
and we can transform our TLP scheme into one that is non-committing in the same way. The idea
is to run Z ′ ← PGen(pp, x) for some random r, and the final puzzle Z is set as Z := (Z ′, c) where
c := H(r) ⊕m. The simulator when required to equivocate Z as a puzzle embedding the message
m, sets the value H(r) := c ⊕ m on the fly, as H() is modeled as a PROM. We can modify the
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construction from §4.3 by having letting PGen run as before, but output (P̃, H(r)⊕m) as the final
puzzle, where P̃ := iO(λ,Pr,k,pp). Specifically this means that the PROM computation is outside
the iO.

5 Application 1: Byzantine Broadcast

In this section, we present our generic efficiency preserving compiler to transform any Byzantine
Broadcast (BB) protocol secure against weakly adaptive adversaries to one that is secure against
strongly adaptive adversaries.

5.1 Model and Definitions

In our setting, there are n nodes, numbered 1 to n, running a distributed protocol where the identity
of each node is known to one another through a PKI.

Communication model. We consider the standard synchronous model of communication where
there is a known upper bound on the message delay (∆). Moreover, we also assume that each node
has access to a shared global clock and all parties are connected by a pairwise reliable channel.
Also, each node has access to the functionalities: RECEIVE to receive messages and SEND to send
messages to any recipient.

Synchronous protocol. We consider the protocols that are executed in a round-based fashion,
where the duration of each round is ∆. Any message sent by an honest node in a round reaches
all other honest nodes by the beginning of the next round. Moreover, we also assume that each
round is sufficiently long enough to perform standard cryptographic operations except BatchPSol
and PSol.

Let P be the set of possible internal states of a node and M be the set of possible messages
that can be sent and received by a node.

Definition 14 (∆-secure Synchronous protocol). Let Fn denote the family of transition func-
tions such that:

Fn = {fr,u : P ×Mn → P ×Mn : u ∈ [n], r ∈ Z}

A synchronous protocol Πsync is executed by n nodes and proceeds in rounds. In every round r,
every node u ∈ [n], reads the messages addressed to it using the RECEIVE functionality, updates its
state and computes the messages to be sent using fr,u, and sends the messages to intended recipients
using the SEND functionality.

Protocol Πsync(λ,∆)

Setup.
– Let S0,u be the initial state of node u ∈ [n]

– Generate and publish public parameters

Protocol. A node u ∈ [n], for each round r:
– Fetch messages from each sender: m := (m1, . . . ,mn)← RECEIVE()

– Compute next state and messages: (Sr+1,u,m
′ := (m′

1, . . . ,m
′
n))← fr,u(Sr,u,m)

– Send messages: SEND(m′, recipients)
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Adversary model. The adversary can make at most t out of n nodes to arbitrarily deviate from
the protocol execution, where t < n. Moreover, we assume that the adversary controls the delivery
of all the messages in the network.
– We consider a strongly adaptive adversary that can corrupt nodes on the fly and perform after-

the-fact removal.

– Whereas, a weakly adaptive adversary can only corrupt nodes on the fly, but cannot prevent
the delivery of any message that was already sent.
Additionally, we consider a rushing adversary that can inspect the messages sent by any honest

node before delivering it to the other nodes. Moreover, we assume that honest nodes can irrecov-
erably erase (part of) its state and memory at any time.

Computational model. All honest nodes are sequential, random access ppt, but the adversary
is a non-uniform probabilistic parallel machine with polynomially bounded parallelism running in
polynomially bounded parallel steps.

5.2 Protocol

For an n node protocol Π, we define a deterministic function called output derivation function
for each node u ∈ [n]. This function allows a node to compute its output bit for Π based on the
transcript of public messages exchanged by the participants and public parameters.

Definition 15 (Output derivation function). Let Π be an n node protocol and Y denote the
public transcript space of the protocol Π, then Gn denote the family output derivation functions
such that:

Gn = {gu : Y → {0, 1} : u ∈ [n]}

Functions in Gn, despite being deterministic, may not be efficiently computable without a party’s
keys.

We recall the definition of a secure Byzantine broadcast protocol below.

Definition 16 ((∆, t)-secure Byzantine broadcast). Let λ be the security parameter, ∆ be the
known upper-bound on the network delay, and node d ∈ [n] be the designated sender. A protocol
Π executed by n nodes with specified family of functions Gn, where the designated sender holds
an input bit b ∈ {0, 1}, is a (∆, t)-secure broadcast protocol tolerating at most t corruptions if it
satisfies the following properties with probability 1− negl(λ):
• Consistency: If two honest nodes output bit bi and bj respectively, then bi = bj.

• Validity: If the designated sender is honest, then every honest node outputs the designated sender’s
input bit b.

• Termination: Every honest node u outputs a bit from gu(transcript), where transcript is the tran-
script from running Π.

If the protocol can tolerate corruptions by a strongly adaptive and a weakly adaptive adversary, then
it is strongly adaptive (∆, t)-secure and weakly adaptive (∆, t)-secure, respectively.

Let Πbb−wa be a weakly adaptive protocol, we formally describe Πbb−sa below:

Protocol Πbb−sa(λ,∆,Πbb−wa,Gn)
Text in gray indicates the instructions from Πbb−wa.

Setup.
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– Let S0,u be the initial state of node u ∈ [n]

– For each round r, pp← PSetup(1λ, ∆)

– Generate and publish public parameters

Input.
– Let b ∈ {0, 1}
– If designated sender, d, then S0,d := S0,d ∪ b

Protocol. A node u ∈ [n], for each round r:
– Fetch messages from each sender: m := (m1, . . . ,mn)← RECEIVE()

– Parse message mv as puzzle Zv, ciphertext Cv, proof of well-formed πv for all v ∈ [n]

– Check πv’s to verify if Zv’s are well-formed by PVer(pp, Zv, πv)

– Extract the individual solutions (s1, . . . , sn)← BatchPSol(pp, Z1, . . . , Zn)

– Decrypt Cv’s, set mv := Cv ⊕H(sv) for all v ∈ [n], and m := (m1, . . . ,mn)

– Set internal state for round r as Sr,u := mu

– Compute next state and messages: (Sr+1,u,m
′ := (m′

1, . . . ,m
′
n))← fr,u(Sr,u,m)

– Pick s ∈ S, Z ← PGen(pp, s), and compute π to prove that Z is well-formed.

– Reassign m′
u := (Z, Sr+1,u ⊕H(s), π) and m′

v := (Z,m′
v ⊕H(s), π) for all v ∈ [n] \ {u}

– Set output messages as m′ := (m′
1, . . . ,m

′
n) and erase Sr+1,u, s, π

– Send messages: SEND(m′, recipients)

Output.
– Let transcript be the public transcript of the protocol execution

– Return b← gu(transcript)

Theorem 3. Let Πbb−wa be a weakly adaptive (∆, t)-secure Byzantine broadcast protocol with out-
put derivation functions Gn and Πbb−sa be the compiled strongly adaptive (δ, t)-secure protocol with
output derivation functions Gn, such that ∆ = 2δ. If an A violates Πbb−sa with probability at least
p, then there exists an adversary B that violates Πbb−wa with probability at least p.

Analysis. Suppose ∃ an A that can break Πbb−sa, then we build another adversary B that breaks
Πbb−wa. At a high level, we show that every attack by A on Πbb−sa can be translated to an attack
on Πbb−wa. Observe that B is as powerful as A, except B cannot perform after-the-fact removal.
Thus, to translate the after-the-fact removal, B must know whether A delivers or removes messages
in Πbb−sa. B can know this only by waiting for δ steps to see A’s actions! Hence, B starts the
simulation δ steps ahead of Πbb−wa. But, when the simulation begins, B doesn’t yet have the real-
world messages from Πbb−wa that can be copied to Πbb−sa. So B sends non-committing TLPs to
equivocate the contents of the puzzle (possible because of PROM). When A solves the TLP and
queries the RO, actual messages from Πbb−wa will be available, and B programs the RO to open the
corresponding message from Πbb−wa. Since the duration between when the messages are sent and
the contents learned by the honest nodes should be the same in the simulation and the real-world,
we set ∆ = 2δ. Thus, asymptotically, Πbb−sa is round preserving (as ∆ = 2δ) and communication
preserving (due to compactness of our TLP). We present the detailed analysis in App. D.

Expected constant-round Byzantine broadcast. Wan et al. proposed an expected constant
round BB protocol under a weakly adaptive and dishonest majority setting [51]. Thus, using the
compiler presented in the §5.2, we can obtain resilience in the strongly adaptive setting!
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6 Application 2: Nakamoto Consensus Secure Against a Mobile Sluggish
Adversary

In this section, we first show an attack against the Nakamoto consensus in the mobile sluggish
model and later show how to secure the Nakamoto consensus using our TLP.

6.1 Attack on Nakamoto Consensus in the Mobile Sluggish Model.

In Nakamoto consensus, a chain forks when two distinct blocks extend the same parent block.
Forks are inherently bad for security as it splits the honest mining efforts across the two branches
of the tree. A benign example is when two blocks are mined less than ∆ time apart. Since the
messages take ∆ to reach others, the winner of the second block would not have been aware of the
previous block. Nakamoto consensus is parameterized in a way that the inter-arrival time between
two blocks is much longer than the time to transmit between any two farthest nodes in the system.
The security threat posed by forks is the exact reason the Nakamoto consensus is secure only in
the synchronous model.
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Fig. 2: Double spend attack: This plot depicts average block arrival times. Assuming 52 honest nodes (51 prompt +
1 sluggish) and 48 adversarial nodes, the average inter-arrival time of honest blocks and adversarial blocks in Bitcoin
is 19.2 and 20.8 minutes, respectively. Observe that over 19.2× 2 minutes, even though the honest nodes have mined
two blocks, due to sluggishness, the honest chain has grown only by one block.

The mobile sluggish model allows a subset of messages to be delayed for an arbitrary time. Since
the sluggishness can be mobile, any node can be sluggish during the protocol execution. Thus,
whenever an honest node mines a block, the adversary can simply delay the block propagation
until another block extends the same header (see Fig. 2). At this point, the adversary can release
both the blocks simultaneously to split the honest mining efforts. The adversary can sustain the
forks as long as it has sufficient sluggish budget. Since the adversary is responsible for message
delivery and sluggishness can be mobile, it could perform this attack repeatedly. In the meantime,
adversarial nodes will continue to extend their chain in private. Using this strategy, even a single
mobile sluggish fault has the ability to reduce the honest mining rate by half ! Thus, an honest
majority assumption may not be sufficient to get consistency and liveness in this model. In App.
E, we detail the attack illustrated in Fig. 2.

6.2 Model

Let n be the total number of nodes, d be the maximum number of sluggish nodes, and t be the
maximum number of adversarial nodes. Thus, there are at least n − t honest nodes and at least
n− d− t prompt nodes.

Sluggish network model. We assume that the time proceeds in rounds. Moreover, we assume
that the adaptivity of the adversary is static. That is before the protocol execution, the adversary
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picks the set of nodes to corrupt. Moreover, we also assume that every node has access to a shared
global clock and a pairwise reliable channel between any two parties.

The standard (lock-step) model of synchrony assumes that any message sent in round r reaches
other nodes by r + 1. We consider a generalization of this model called the mobile sluggish model.
In this model, if a node is prompt at round r, then any message sent by the node in round ≤ r
reaches all the nodes that are prompt in round r + 1 by round ≤ r + 1. Due to mobility of the
sluggishness, set of prompt nodes in any two adjacent rounds need not be the same.

The adversary is responsible for message delivery. Thus, an adversary can reorder or delay mes-
sages (according to prompt and sluggish delay requirement), but cannot delete messages. Moreover,
any message sent to a prompt node by a prompt or an adversarial node reaches all prompt nodes.
We can relax this assumption by assuming that nodes gossip/echo any message they receive [41,
See footnote 4]. The adversary inspects all messages (including puzzles and blocks) first before
delivering to any node.

Round duration. We assume that the duration of a round is O(∆). Specifically, we assume that
a round is sufficiently long enough to send/receive messages and perform cryptographic opera-
tions (such as verifying a hash of a message, generating and verifying a zero-knowledge proof of
well-formedness of a TLP, computing PGen/PEval, and signing and verifying a signature), except
PSol,BatchPSol, and RO invocations to mine a block or a decoy.

Computational model. We adopt the flat model of computation introduced by Garay et al. [21].
In this model, all nodes are assumed to have the same computational power. Moreover, any node
can make at most q proofs-of-work invocations to the RO in a round. Thus, the adversary can
perform t · q RO queries in each round. We remark that each node has an unlimited number of
proof-of-work verification queries to the RO [21].

Additionally, we assume that all honest nodes are sequential, random access ppt, but the
adversary is a non-uniform probabilistic parallel machine with polynomially bounded parallelism
running in polynomially bounded parallel steps.

6.3 Protocol

Super-round. Since our protocol proceeds in two phases: (1) Mine phase (m rounds) and (2)
Solve phase (D rounds), a super-round consists of a mine phase followed by a solve phase. Thus,
the duration is (m+D) rounds.

Mobile Sluggish Nakamoto Protocol

Input.
– pp, TLP public parameters with T as one round

– m, duration of mine phase

– D, duration of solve phase

– q, maximum number of RO queries per round

– T , difficulty threshold to mine a block

– Tc, difficulty threshold to mine a decoy where T < Tc

Initialize. Chain C containing agreed-upon genesis block C[0]

Protocol. Every super-round R (which consists of (m+D) rounds)
– Get the payload from the environment
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– Let h−1 := H(C[−1]) be the hash of the last block on the longest chain C

– Let B = ⊥ be an empty block

– For m rounds of mine phase:
• For q RO queries:

∗ Pick random η ∈ {0, 1}λ and compute h := H(h−1, payload, η)

∗ If h < Tc (mined a decoy)
· Overwrite B := (h−1, payload, η)

∗ If h < T (mined a block)
· Overwrite B := (h−1, payload, η)

· Set C := C||B
· Break out of the q and m loop

– If B ̸= ⊥
• Compute the TLP Z := PGen(pp, B)

• Compute proof of well-formed π := PProve(pp, Z,B)

– Solve phase for D = 2 rounds:
• First round, multicast (Z, π) (if one exists), receive all the w puzzles from the network

Z1, . . . , Zw, and check their well-formedness.

• Second round, batch solve (s1, . . . , sw) := BatchPSol(Z1, . . . , Zw).

– Update the chain C based on output from the solve phase

Assumptions. Let a block mined in a super-round R be a prompt block, if mined by an honest
node and the node was prompt at the beginning of solving phase of both R−1 and R. Moreover, let
f be the probability of one or more prompt blocks were mined in a super-round, c be the probability
of every honest node mining at least one decoy in a super-round, ε, δ ∈ (0, 1) be parameters, and p
be the probability of a RO query mining a block. Our analysis assumes that:

(m+D)t+md

cm(n− 2d− t)
≤ (1− δ) (1)

ε+ f < δ/3 (2)

pqm(n− 2d− t) < 1/2 (3)

2ε

1− ε
< δ2 (4)

Analysis. At a high level, our analysis extends the formal tools proposed by Garay et al. [21]. But
there are several differences due to mobile sluggish faults and the use of TLPs:

1. The adversary can deviate from the protocol and invoke RO queries even during the solve
phase. Intuitively, Eq. 1 quantifies the required advantage of the prompt nodes over sluggish
and adversarial nodes for our protocol to be secure. Specifically, the numerator captures the
computational advantage enjoyed by the adversarial nodes due to additional RO queries during
the solve phase (the term (m+D)t) and the loss in honest mining efforts due to sluggish nodes
(the term md). Large values of D decreases t (assuming other values can remain the same). But,
due to the batch solving property of our TLP, D = 2 in our protocol. Thus, the impact of D is
minimal.

2. The mobility of the sluggishness provides the adversary timing based opportunities to reduce
the contributions to the “prompt” chain. The adversary with d sluggish budget can toggle the
sluggishness of 2d nodes. If the adversary toggles the sluggishness when the honest nodes release
TLPs at the end of the mining phase, it can reduce the number of nodes contributing to the
prompt chain to (n− 2d− t). This is because the d nodes that are sluggish through the mining
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phase of a super-round may not be mining on the longest chain, and at the end of the mining
phase, the adversary can use its mobility to make d prompt node sluggish (See Remark 1).

3. The sluggish nodes can inadvertently contribute to the adversarial chain. This is because the
sluggish nodes may only have access to the view provided to them by the adversary.

4. Coordinated release of TLPs. Observe that from Eq. 3, large values of m decreases p, thus
reducing the block arrival frequency. But, a bounded p ensures that the honest nodes do not
fork one another and there are sufficient “convergence opportunities” to resolve forks [21,41].
Moreover, no prior permissionless protocol is secure under mobile-sluggish faults even under
reduced performance.

5. Impact of decoys. In Eq. 1, the security impact of mining decoys by honest nodes is captured by
c. We set the probability of mining a decoy such that honest nodes can mine sufficiently many
decoys while simultaneously bounding the total number of decoys mined. Recall that our batch
solvable TLP allows simultaneously opening a polynomial number of puzzles.

Notice that our analysis is a generalization of [21], thus by substituting m = 1, c = 1, d = 0,
and D = 0, our analysis, in principle, collapses to [21]’s analysis. We prove liveness and consistency
by assuming that the mining-hardness parameter is appropriately set in Eqs. 1 to 4. We present a
complete analysis of the protocol in App. F.
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A More Related Work

Dolev and Strong showed that it is possible to have a deterministic Byzantine Broadcast (BB)
protocol that terminates in t + 1 rounds even if t < n nodes are corrupt assuming PKI and a
synchronous model of communication [17]. Since the seminal work by Dolev and Strong, numerous
works have studied the round complexity of BB under various settings and assumptions. Notably,
these approaches use randomized protocols [19] to overcome the linear round complexity barrier
from [17].

Under the dishonest majority setting, prior works in BB can be categorized into: (1) weakly
adaptive protocols or (2) strongly adaptive protocols. In the weakly adaptive setting, Garay et
al. [23] showed the feasibility of BB in the atomic message delivery. Later, Chan et al. proposed the
first expected sublinear-round complexity protocol [13]. Their protocol takes polylogarithmic (in
security parameter) rounds. Subsequently, Wan et al. proposed the state-of-the-art protocol, which
takes an expected constant number of rounds to achieve BB [51].

In the strongly adaptive setting, Hirt and Zikas showed that it is impossible to achieve BB
assuming just PKI [31]. Garay et al. [22] and Fitzi et al. proposed an expected constant-round
protocol when t = n/2 + O(1) [20]. Unfortunately, for any arbitrary t = n/2 + k, Garay et al.
requires O(k2) rounds [22] and Fitzi et al. requires O(k) rounds [20]. Thus, their protocols can
provide expected constant-round complexity only in a narrow regime.

Subsequently, Wan et al. proposed the first expected sub-linear round protocol in the strongly
adaptive setting using PKI and time-lock puzzles [50]. Their protocol takes polylogarithmic number
of rounds even when the t = (1 − ε)n, where ε ∈ (0, 1). Subsequently, Cohen, Garay, and Zikas
[15, Theorem 5] explored the feasibility of fair broadcast in the strongly adaptive setting for both
property-based definition and simulation-based definition under different assumptions (PKI, TLP,
and RO). Moreover, their work uses a non-committing time-lock encryption primitive to overcome
the BB impossibility for a simulation based definition.

B Correctness and Security Analysis of Our TLP Construction

Proof (Thm. 1). We have for each i ∈ [n], the tuple (Z∗
i , ci) where Z∗

i ← LHP.PGen(ppLHP, ki; ri)
and ci = (ci,1, . . . , ci,n) where for all j ̸= i, we have ci,j = F(ki, j) and we have ci,i = F(ki, i) +mi ·
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⌈p/2⌋ (mod p). By the correctness of LHP we have:

Z∗ = LHP.PGen(pp,
n∑

i=1

ki) = LHP.PEval(+, pp, Z∗
1 , . . . , Z

∗
n)

and k∗ =
∑n

i=1 ki = LHP.PSol(pp, Z∗). Let c∗ = (c∗1, . . . , c
∗
n) and we have

c∗j =
n∑

i=1

ci,j =
n∑

i=1,i ̸=j

ci,j + cj,j =
n∑

i=1,i ̸=j

F(ki, j) + F(kj , j) +mj · ⌈p/2⌋ (mod p)

=

n∑
i=1

F(ki, j) +mj · ⌈p/2⌋ (mod p)

≤ F

(
n∑

i=1

ki, j

)
+ γ · n+mj · ⌈p/2⌋ (mod p) (key-homomorphism of F )

= F(k∗, j) + γ · n+mj · ⌈p/2⌋ (mod p)

(
where k∗ =

n∑
i=1

ki

)

By definition f∗ = (F(k∗, 1), . . . ,F(k∗, n)) and therefore

c∗j − F(k∗, j) = γ · n+mj · ⌈p/2⌋ (mod p)

Since n is at most a polynomial and p = 2ω(log λ) · γ, we have that γ · n is always smaller than p/4.
Therefore rounding of the value to 0 or 1, if mj = 0 we get 0 := Round(γ ·n (mod p)) and if mj = 1
we get 1 := Round(γ · n+ ⌈p/2⌋ (mod p)).

⊓⊔

Proof (Thm. 2). The proof follows by a hybrid argument, where we define a (sub-exponentially long)
series of hybrids and we argue about the indistinguishability of the neighbouring distributions. The
changes in the execution in a hybrid compared to the previous hybrid is highlighted in red.

Hybℓ(0 ≤ ℓ ≤ N): In Hybℓ we change the program that we obfuscate to the following circuit.

Pℓ
m,k,pp(n, i, j):

∗ Ensure i, j ∈ [n].

∗ Compute (r, r)← F(k, (n, i)).

∗ Compute k ← KGen(ppF; r).

∗ Compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i and n ≤ ℓ set c = F(k, j) + 0 (mod p).

∗ Else if j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).
Clearly HybN corresponds to the distribution where b = 0 and Hyb0 is the execution where

b = 1. To prove indistinguishability between Hybℓ−1 and Hybℓ (for 1 ≤ ℓ ≤ N) we design the
following sub-hybrids.

Hybℓ−1,ρ, (ρ ∈ [ℓ]): Is defined as the same execution as Hybℓ−1 except that we further modify the

obfuscated circuit.
Pℓ−1,ρ

m,k,pp(n, i, j):
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∗ Ensure i, j ∈ [n].

∗ Compute (r, r)← F(k, (n, i)).

∗ Compute k ← KGen(ppF; r).

∗ Compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i and n ≤ ℓ− 1 set c = F(k, j) + 0 (mod p).

∗ Else If j = i and i ≤ ρ and n = ℓ set c = F(k, j) + 0 (mod p).

∗ Else if j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).
It is easy to see that hybrid Hybℓ−1,0 is identical to Hybℓ−1 and hybrid Hybℓ−1,ℓ is identical

to Hybℓ. We defer the indistinguishability between Hybℓ−1,ρ−1 and Hybℓ−1,ρ to Lemma 1. By a
standard hybrid argument we have that hybrid Hybℓ−1,0 and hybrid Hybℓ−1,ℓ are indistinguishable
for all depth Tε(λ)-bounded adversaries. This proves that Hybℓ−1 and Hybℓ are indistinguishable
and by a standard hybrid argument we have that hybrid Hyb0 and HybN are indistinguishable for
all depth bounded adversaries. This concludes the proof. ⊓⊔

Lemma 1. Hybrid executions Hybℓ−1,ρ−1 and Hybℓ−1,ρ are indistinguishable for any depth Tε-
bounded adversary.

Proof. Consider the following set of sub-hybrids:

Hyb1ℓ−1,ρ−1: Is defined as the same execution as Hybℓ−1,ρ−1 except that value (r
∗, r∗)← F(k, (ℓ, ρ)) is

hardwired in Pℓ−1,ρ−1
m,k,pp (n, i, j) and the PRF F is punctured at position (ℓ, ρ) and the corresponding

punctured key k(ℓ,ρ) ← Punc(k, (ℓ, ρ)) is hardwired in the program. The resultant program is defined
below.
Pℓ−1,ρ−1,1

r∗,r,m,k(ℓ,ρ),pp
(n, i, j):

∗ Ensure i, j ∈ [n].

∗ If (n, i) ̸= (ℓ, ρ) then compute (r, r) ← F(k(ℓ,ρ), (n, i)), else if (n, i) = (ℓ, ρ) then compute
(r, r) = (r∗, r∗).

∗ Compute k ← KGen(ppF; r).

∗ Compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i and n ≤ ℓ− 1 set c = F(k, j) + 0(mod p).

∗ Else If j = i and i ≤ ρ− 1 and n = ℓ set c = F(k, j) + 0(mod p).

∗ Else if j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).
The indistinguishability between Hybℓ−1,ρ−1 and Hyb1ℓ−1,ρ−1 is computational and follows from

the security of iO. Notice that the only difference between the executions is the obfuscated circuits.
The two circuits are functionally equivalent given the PRF F is functionality preserving under
puncturing. Therefore a distinguisher between the two hybrids can be used to violate the security
of the iO scheme.

Hybrid Hyb2ℓ−1,ρ−1: Is defined as the same execution as Hyb1ℓ−1,ρ−1 except that the value (r∗, r∗) is

sampled uniformly.
The indistinguishability between Hyb1ℓ−1,ρ−1 and Hyb2ℓ−1,ρ−1 is computational and follows from

the pseudorandomness of the PRF F. Notice that the only difference between the hybrids is in how
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(r∗, r∗) is generated (either using PRF F or sampled uniformly at random). Therefore a distinguisher
between the hybrids can be used to violate the pseudorandomness at the punctured point of the
PRF F.

Hyb3ℓ−1,ρ−1 Is defined as the same execution as Hyb2ℓ−1,ρ−1 except now the puzzle

Z ′ ← LHP.PGen(ppLHP, k; r) is hardwired in the program. The new program is defined below.

Pℓ−1,ρ−1,3
r∗,r,m,k(ℓ,ρ),Z

′,pp(n, i, j)

∗ Ensure i, j ∈ [n].

∗ If (n, i) ̸= (ℓ, ρ) then compute (r, r) ← F(k(ℓ,ρ), (n, i)), else if (n, i) = (ℓ, ρ) then compute
(r, r) = (r∗, r∗).

∗ Compute k ← KGen(ppF; r).

∗ If (n, i) = (ℓ, ρ) compute Z := Z ′.

∗ Else compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i and n ≤ ℓ− 1 set c = F(k, j) + 0(mod p).

∗ Else If j = i and i ≤ ρ− 1 and n = ℓ set c = F(k, j) + 0(mod p).

∗ Else if j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).

The indistinguishability between Hyb2ℓ−1,ρ−1 and Hyb3ℓ−1,ρ−1 is computational and follows from
the security of iO. Notice that the only difference between the executions is the obfuscated cir-
cuits. The two circuits are functionally equivalent as the only difference is in the hardwiring of Z ′.
Therefore a distinguisher between the two hybrids can be used to violate the security of the iO
scheme.

Hyb4ℓ−1,ρ−1: Is defined as the same execution as Hyb3ℓ−1,ρ−1 except now the puzzle Z ′ embeds the

all 0 string rather than the key k. The new program is defined below.

Pℓ−1,ρ−1,4
r∗,r,m,k(ℓ,ρ),Z

′,pp(n, i, j)

∗ Ensure i, j ∈ [n].

∗ If (n, i) ̸= (ℓ, ρ) then compute (r, r) ← F(k(ℓ,ρ), (n, i)), else if (n, i) = (ℓ, ρ) then compute
(r, r) = (r∗, r∗).

∗ Compute k ← KGen(ppF; r).

∗ If (n, i) = (ℓ, ρ) compute Z := Z ′.

∗ Else compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i and n ≤ ℓ− 1 set c = F(k, j) + 0(mod p).

∗ Else If j = i and i ≤ ρ− 1 and n = ℓ set c = F(k, j) + 0(mod p).

∗ Else if j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).

The indistinguishability between Hyb3ℓ−1,ρ−1 and Hyb4ℓ−1,ρ−1 is against depth Tε-bounded ad-
versaries. Notice that the only difference between the hybrids is in the puzzle Z ′ that is output
by the respective circuits. This immediately reduces to the security of the linearly homomorphic
time-lock puzzle LHP against depth Tε bounded adversaries.

Hyb5ℓ−1,ρ−1: Is defined as the same execution as Hyb4ℓ−1,ρ−1 except now the value s∗ ← F(k, ρ) and

s∗ +m · ⌈p/2⌋ is hardwired in the program where k ← KGen(ppF; r
∗) and the corresponding key k
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is punctured at the position ρ and the corresponding punctured key kρ ← Punc(k, ρ) is hardwired
in the program. The new program is defined below.
Pℓ−1,ρ−1,5

r∗,r,m,k(ℓ,ρ),kρ,s
∗+m·⌈p/2⌋,pp(n, i, j)

∗ Ensure i, j ∈ [n].

∗ If (n, i) ̸= (ℓ, ρ) then compute (r, r) ← F(k(ℓ,ρ), (n, i)), else if (n, i) = (ℓ, ρ) then compute
(r, r) = (r∗, r∗).

∗ If (n, i) ̸= (ℓ, ρ) then compute k ← KGen(ppF; r), else if (n, i) = (ℓ, ρ) then compute k = kρ.

∗ If (n, i) = (ℓ, ρ) compute Z ← LHP.PGen(ppLHP, 0
λ; r).

∗ Else compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i and n ≤ ℓ− 1 set c = F(k, j) + 0(mod p).

∗ Else If j = i and i ≤ ρ− 1 and n = ℓ set c = F(k, j) + 0(mod p).

∗ Else if j = i and i = ρ and n = ℓ set c = s∗ +m · ⌈p/2⌋ (mod p).

∗ Else if j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).
To establish the indistinguishability between the two hybrids, we first establish that the punc-

tured programs are, with all but negligible probability, functionally equivalent.

Lemma 2. Assuming PRF F is functionality computationally preserving against sub-exponential
adversaries [10], there exists no position i∗ ∈ [n] \ ρ, such that F(k, i∗) ̸= F(kρ, i

∗), where kρ ←
Punc(k, ρ).

Proof. The functionality preservation property of PRF F states that there exists a negligible func-
tion negl , for all sub-exponential adversary A, and it holds that

Pr

[
i∗ ̸= ρ ∧

F(k, i∗) ̸= F(kρ, i
∗)

: i∗ ← AF(k,·)(1λ, kρ)

]
≤ negl(λ)

where kρ ← Punc(k, ρ) and A gets to choose position ρ before obtaining kρ.
Suppose there exists a point i∗ ∈ [n] \ ρ, then since n ∈ [N ] where N = 2ω(log λ), an adversary

can query the oracle F, at most n times (with queries (1, . . . , n)) to find i∗ since the adversary
can run in sub-exponential time. Clearly the adversary violates the assumption with non-negligible
probability.

⊓⊔

We now argue that if hybrids Hyb4ℓ−1,ρ−1 and Hyb5ℓ−1,ρ−1 are distinguishable, we can construct
a reduction against the security of iO. Notice that the only difference between the two hybrids is in
the obfuscated programs. More specifically, in Hyb5ℓ−1,ρ−1, we puncture the key k at position ρ (if
(n, i) = (ℓ, ρ)). By Lemma 2, we see that it is computationally infeasible to find a point i∗ ∈ [n] \ ρ
such that the evaluation of the PRF F is different with the normal key k and the punctured key
kρ. Therefore the behavior of the two circuits is functionally equivalent and we can reduce the
indistinguishability of the hybrids to the security of iO against sub-exponential adversaries.

Hyb6ℓ−1,ρ−1: Is defined as the same execution as Hyb5ℓ−1,ρ−1 except the value s
∗ is sampled uniformly

from the output space of the PRF F and is hardwired in the program. The new program is denoted by
Pℓ−1,ρ−1,6

r∗,r,m,k(ℓ,ρ),kρ,s
∗+m·⌈p/2⌋,pp(n, i, j) which is syntactically the same circuit as defined for Hyb5ℓ−1,ρ−1.
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The indistinguishability between Hyb5ℓ−1,ρ−1 and Hyb6ℓ−1,ρ−1 is computational and follows from

the pseudorandomness of PRF F.

Hyb7ℓ−1,ρ−1: Is defined as the same execution as Hyb6ℓ−1,ρ−1 except that when j = i and i ≤ ρ and

n = ℓ, we set c = s∗ + 0 in the program. The new program is defined below.
Pℓ−1,ρ−1,7

r∗,r,m,k(ℓ,ρ),kρ,s
∗,pp

(n, i, j)

∗ Ensure i, j ∈ [n].

∗ If (n, i) ̸= (ℓ, ρ) then compute (r, r) ← F(k(ℓ,ρ), (n, i)), else if (n, i) = (ℓ, ρ) then compute
(r, r) = (r∗, r∗).

∗ If (n, i) ̸= (ℓ, ρ) then compute k ← KGen(ppF; r), else if (n, i) = (ℓ, ρ) then compute k = kρ.

∗ If (n, i) = (ℓ, ρ) compute Z ← LHP.PGen(ppLHP, 0
λ; r).

∗ Else compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i and n ≤ ℓ− 1 set c = F(k, j) + 0(mod p).

∗ Else If j = i and i ≤ ρ− 1 and n = ℓ set c = F(k, j) + 0(mod p).

∗ Else if j = i and i = ρ and n = ℓ set c = s∗ + 0 (mod p).

∗ Else if j = i set c = F(k, j) +m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).

∗ Return (Z, c).
The executions in both hybrids Hyb6ℓ−1,ρ−1 and Hyb7ℓ−1,ρ−1 are identically distributed as the

only change is when j = i, i = ρ and n = ℓ and given s∗ is a string chosen uniformly at random.
Notice that for i ≤ ρ and n ≤ ℓ, the ciphertext c encrypts b = 0. This is almost what we have

in the execution of Hybℓ−1,ρ. If we keep what we have in hybrid Hyb7ℓ−1,ρ−1 and undo the changes

starting from Hyb6ℓ−1,ρ−1 to Hyb1ℓ−1,ρ−1, we end up with an execution where the obfuscated program

is exactly Pℓ−1,ρ
m,k,pp(n, i, j) from the hybrid Hybℓ−1,ρ. The same indistinguishability arguments hold

while doing the undo process over these hybrids. This implies the indistinguishability between the
hybrids Hybℓ−1,ρ−1 and Hybℓ−1,ρ. This concludes the proof of the Lemma. ⊓⊔

C Verifiable TLPs

Definition 17 (Verifiable TLP with Batch Solving). A TLP scheme with batch solving
(PSetup,PGen,PSol,BatchPSol) is verifiable with the aid of the following interfaces:
- π ← PProve(pp, Z,m, r): a PPT algorithm that takes as input the public parameters pp, a puzzle
Z, a message m, and the randomness r used in puzzle generation, and outputs a proof π.

- 0/1 ← PVer(pp, Z, π): a deterministic algorithm that takes as input the public parameters pp, a
puzzle Z and a proof π, and outputs 1 if the puzzle is well-formed according to π, and 0 otherwise.

Definition 18 (Verifiability). A verifiable TLP scheme with batch solving (PSetup,PGen,PSol,
BatchPSol,PProve,PVer) satisfies verifiability if for all λ ∈ N, all polynomials T in λ, all pp in the
support of PSetup, all (Z, π), such that Z is not in the support of PGen(pp, ·), then it holds that
Pr[PVer(pp, Z, π) = 1] = 0.

In terms of secrecy, we want that the secrecy property (Definition 3) except now the adversary
additionally gets the proof π ← PProve(pp, Z, sb, r) for the challenge puzzle Z. The adversary as
before is required to guess b correctly with the additional information of π. We omit the formal
definition since the extension is straightforward.
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Construction. Verifiability can be achieved by augmenting the constructions from §4.2 and §4.3
with PProve and PVer algorithms. In both cases, we can instantiate PProve with a perfectly sound
non-interactive zero-knowledge (NIZK) proof, for e.g., the one from [28], that certifies that the
puzzle is in the support of PGen. That is, PProve internally runs the NIZK prover for the language
L := {Z : ∃s ∈ S, r ∈ {0, 1}λ, s.t . Z ← PGen(pp, s; r)}, where S is the solution space of the TLP
scheme. Correspondingly, PVer internally runs the NIZK verifier which verifies the NIZK proof π
for the language L and outputs 0 or 1. In protocols, before batch solving puzzles, parties may run
PVer to verify each of the puzzles are well-formed for a correct execution of BatchPSol. We require a
NIZK with perfect soundness for the notion of verifiability we defined in Definition 17. However we
could also have used a computationally sound variant of the NIZK (even a zk-SNARK) by changing
the definition of verifibiality appropriately for computational adversaries.

D Byzantine Broadcast: Analysis

Proof (Thm. 3). Assume that Πbb−sa is not (δ, t)-secure protocol secure against A, then we build
adversary B that uses A to show that Πbb−wa is not (∆, t)-secure. At a high-level, the simulator B:

1. Simulates honest nodes to A in the execution of Πbb−sa

2. Sends the honest messages in the simulation identical to the messages sent by the honest nodes
in Πbb−wa.

3. Transforms every attack on Πbb−sa by A in the simulation to an attack on Πbb−wa.

4. Observes the order, delay, contents of the messages sent by corrupted nodes in the simulation
and replicates the same behavior in the execution of Πbb−wa.

B accomplishes this by:

• Using non-committing time-lock encryption and programming the RO to explain the contents
of message while decryption;

• Using a smaller network delay parameter δ in the simulation and starting the simulation δ
time-steps ahead of Πbb−wa.

Observe that the compiled protocol Πbb−sa sends and receives same messages as Πbb−wa, except
that the messages in Πbb−sa are encrypted. Hence, it is necessary for B to send the honest messages
in the simulation identical to the messages sent by the honest nodes in Πbb−wa.

Let the upper bound on the network delay in Πbb−wa be ∆ = 2δ and the TLP hardness in
Πbb−sa be T = δ. Recall that B is as powerful as A, except A can perform after-the-fact removal
in the execution of Πbb−sa, which cannot be performed by B in the execution of Πbb−wa. Thus,
attacks by A is translated by B as follows:

• General corruptions: Whenever, A corrupts a node in the simulation, B corrupts the corre-
sponding node in the execution of Πbb−wa. Specifically, B hands A: all private coins (including
the secret keys) of the corrupted node. Since honest nodes in Πbb−sa securely erase the internal
state , A has to wait for T time-steps to learn the internal state of the corrupted node.

• After-the-fact removal: B handles this attack by starting the simulation δ time-steps ahead
of the execution of Πbb−wa. Whenever A deletes any message in-flight sent by an honest node
in Πbb−sa, B corrupts the corresponding node in Πbb−wa. Since the simulation is δ time-steps
ahead, the corresponding round in Πbb−wa is yet to begin. Thus, the honest node in Πbb−wa is
corrupted even before it sends any messages.
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Let honest denote the set of nodes currently honest in the execution of Πbb−sa. The simulation
works as follows (Fig. 3):
For every k ∈ {0, 1, 2, . . . } :
– At t = 2kδ:
• If t = 0, B starts the simulation of Πbb−sa

• If t ̸= 0, every honest node in the simulation opens the cv,k−1’s to mv,k−1’s for all v ∈ honest

• B sends non-committing TLPs as:
For every v ∈ honest:
∗ Pick xv,k ← S and cv,k ← C
∗ Zv,k ← PGen(pp, xv,k), computes πv,k as the proof of “well-formed-ness” of Zv,k, and
send (Zv,k, cv,k, πv,k)

Since A is rushing, it learns all the messages instantaneously, checks πv,k’s, combines all
valid puzzles into a single puzzle, and starts solving the puzzle.

– At t = (2k + 1)δ
• If t = δ, B starts the execution of Πbb−wa

• As B is rushing, it can learn all the messages that are sent by the honest nodes in Πbb−wa.

• A delivers the messages to all honest nodes in the simulation. Also, every honest node checks
πv,k’s, combines all valid puzzles into a single puzzle, and starts solving the puzzle.

• Since δ time has elapsed since A started solving the puzzle, A solves the individual solutions
(sv,k)∀v∈honest from the puzzle, and performs (H(sv,k))∀v∈honest.

• As B learnt the honest messages (mv,k)∀v∈honest, it programs H(sv,k) to return wv,k, where
wv,k = cv,k ⊕mv,k.

– At every time step,
• B identically maps the order, delay, contents of the messages sent by corrupted nodes in the
simulation to the behavior of the corrupted nodes in execution of Πbb−wa.

• If A corrupts an honest party or removes a message from an honest sender, B marks the
corresponding node as corrupted in Πbb−wa and transfers all private coins of the corrupted
node to A.

Using the above simulation, B can transform any attack on Πbb−sa by A into an attack on
Πbb−wa. From the strategy of A, honest parties in Πbb−sa determine their outputs based on the
same values as what the honest parties see in the execution of Πbb−wa. Moreover, by construction,
the honest parties infer their outputs in the execution of Πbb−sa deterministically using the same
output derivation gu from Πbb−wa. Recall that the function gu’s are fully defined by a parties public
values at the beginning of the protocol. It follows that honest parties in the execution of Πbb−wa

output the same as in the execution of Πbb−sa. Thus, if Πbb−sa is not (δ, t)-secure secure against A
with probability p, then Πbb−wa is also not (∆, t)-secure against B with probability p. ⊓⊔

E Illustrating an Attack on Nakamoto Consensus under a Mobile Sluggish
Adversary

Nakamoto consensus in a nutshell. Nakamoto consensus is a permissionless protocol that uses
proof-of-work. Every node in the network continuously tries to add a new block to the chain. The
protocol is surprisingly straightforward: at any point, every node picks the longest chain it has seen
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Πbb−sa

Πbb−wa

0 2kδ (2k + 1)δ 2(k + 1)δ r

B learns all messages

B corrupts A’s victims

Honest nodes solve Zk−1

B equivocates (Zv,k, cv,k)

Honest nodes solve Zk

B equivocates (Zv,k+1, cv,k+1)

B programs RO

A solves Zk

(Zv,k, cv,k) reach all

Fig. 3: Timing of execution and messages in the simulation by B

so far (breaks ties arbitrarily), tries to extend the chain by solving a proof-of-work puzzle, and if a
node succeeds, it sends out the latest block right away.

Double spend attack. To illustrate this attack, consider the idealized example depicted in the
Fig. 2. Say there are 100 in nodes in total with identical computational power, 52 are honest (51
prompt and 1 sluggish), and 48 are adversarial nodes. Assume that the average inter-arrival time
between two blocks in the system is 10 minutes. Thus, the average inter-arrival time of honest
blocks and adversarial blocks is 19.2 and 20.8 minutes, respectively. Moreover, assume that prompt
nodes do not have any network delay. Let k be the height of the block Bk The adversarial strategy
is as follows:

– Say the adversary wants to double spend a transaction txn with txn′, it sends out the txn to the
entire network at t = 0 and in-private it mines chain that includes txn′.

– Since the honest computational power is more than the computation power of the adversarial
nodes, honest nodes are likely to mine Bk with txn before the adversarial nodes mine Ak with
txn′.

– When an honest node mines B′
k+1, the adversary makes the block winner sluggish. Thus, the

rest of the honest nodes will spend their efforts on extending Bk.

– Eventually, when an honest node mines the block Bk+1, the adversary decides to release this
block to the network as it does not have the budget to make both Bk+1 and B′

k+1 sluggish.
Thus, all nodes receive Bk+1.

– In the meantime, the adversary continues to mine its private chain. Since the adversary’s com-
putational power is not wasted on orphan blocks, despite having less computational power, the
adversary can grow its chain faster than the honest chain.

– The adversary can continue this attack repeatedly every time when honest nodes mine a block.

Eventually, the adversary’s chain will be longer than the honest chain. At this point, the adversary
can release its longer private chain to discard the honest mining efforts. Observe that 38.4 minutes
after Bk, honest nodes have mined B′

k+1 and Bk+1, but the honest chain has grown only by one
block. Thus, even a single mobile sluggish fault has the ability to reduce the honest mining rate by
half !

Other attack strategies. Rather than releasing only Bk+1, the adversary can additionally release
B′
k+1 such that honest nodes are split across Bk+1 and B′

k+1. Moreover, the adversary can tactically
release its private chain to further divide the honest computational power. For instance, the adver-
sary can release Ak+1 along with Bk+1 and B′

k+1 to create a three-way fork. The attack vector with
sluggish faults also opens the possibility of a history rewrite attack. Say at an arbitrary time T the
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λ Security parameter
T Hiding duration of a time-lock puzzle. Set to one round.
m Duration of the mining phase
D Duration of the batch solving phase (= 2 in our protocol)
R An index to denote a super-round
|R| Duration of a super-round is (m+D)
p Probability of a RO query mining a block
pc Probability of a RO query mining a decoy
q Number of RO queries that can be made a node in a round
n Total number of nodes
d, t At any time, maximum number of sluggish nodes and adversarial nodes, respectively
c Probability of every honest node mining at least one decoy in a super-round
f Probability of one or more prompt blocks were mined in a super-round
δ A constant in (0, 1)
ε Concentration inequality parameter
pp All public parameters including parameters from the TLPs
π NIZK proof of well-formedness of the TLP
T Target hash value to mine a block
Tc Target hash value to mine a decoy

Table 2: List of notations used in the analysis.

adversary decides to build an alternate chain from genesis. Since the sluggish fault can reduce the
honest mining rate by half, the adversary can eventually create a longer chain from genesis, with
sufficiently many adversarial nodes.

F Mobile Sluggishness in Permissionless Setting: Analysis

We analyze the protocol presented in §6.3. We adopt the framework and formal tools proposed by
Garay et al. [21] and later improved by Li et al. to formally analyze our protocol [36]. For the sake
for clarity, we exhaustively define all the variables used in our analysis in Table 2.

Definitions. Let:

p = T/2λ pc = Tc/2
λ

c′ = 1− (1− pc)
qm c = (c′)(n−t) = (1− (1− pc)

qm)(n−t) (5)

where,
– p and pc are the probabilities of a RO query mining a block and decoy, respectively

– c′ is the probability of an honest node mining at least one decoy in a super-round

– c is the probability of every honest node mining at least one decoy in a super-round
Recall that due to the mobility of sluggishness, an honest node can toggle between being prompt

and sluggish throughout the execution. Thus, we define a block mined in a super-round R as:
– A prompt block, if mined by an honest node and the node was prompt at the beginning of solving

phase of both R − 1 and R. Recall that in our protocol (§6.3), in the first round of the solve
phase, nodes send and receive puzzles. Thus, intuitively, being prompt at the beginning of the
solve phase of both R − 1 and R implies that a prompt block extends the longest chain in the
view of the prompt nodes and all prompt nodes receive this block before the mining phase of
the next super-round.

– A sluggish block, if mined by an honest node, but not a prompt block.
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– An honest block, if it is a prompt or a sluggish block.

– An adversarial block, if mined by an adversarial node.

We define the random variables X,Y, Z,W, T as follows:

In super-round R,

X[R] =

1,
at least one prompt block was mined and

all honest nodes mined a decoy

0, otherwise

Y [R] =

1,
exactly one prompt block was mined and

all honest nodes mined a decoy

0, otherwise

W [R] =

{
1, at least one sluggish block was mined

0, otherwise

Z[R] = Number of adversarial blocks mined

T [R] = Z[R] +W [R]

Overview of the random variables. Since the adversary can make d nodes sluggish, if an
honest node does not mine a decoy, then the probability of the adversary guessing the block winner
increases. Thus, in order hide the prompt block winner, all honest nodes have to mine decoys. This
requirement is captured by the term c in variables X[R] and Y [R].

At a high-level, the variable X[R] captures the rate of growth of prompt chains after account-
ing for the probability of all honest nodes mining a decoy. Similarly, Y [R] captures the uniquely
successful super-round for prompt nodes. The variable Y [R] is analogous to the notion of uniquely
successful rounds/convergence opportunities proposed in the prior works [21,41]. A uniquely suc-
cessful super-round guarantees that all prompt nodes have the opportunity to converge on a chain.

Despite being disconnected from the majority of the network sluggish nodes can build a chain
amongst themselves. Since d sluggish nodes are honest, they do not collude amongst themselves
when they invoke the RO. This, is captured by W [R].

Random variable T [R] captures the maximum length by which any non-prompt node can in-
crease its chain. Since, the adversary controls the messages received by sluggish nodes, potentially,
the adversary can trick the sluggish nodes to extend the adversary’s chain. Thus, the sluggish nodes
can inadvertently extend the adversarial chain.

However, observe that in our mining procedure, honest nodes abruptly stop mining in a super-
round if they have mined a block in the super-round. Thus, each honest node (sluggish or prompt)
mines at most one block in a super-round. Since, the honest nodes invoke the RO without colluding,
if two honest nodes mine a block in a super-round, then they cannot extend one another.

Remark 1 (Impact of sluggishness on the prompt chain). Observe that there are (n−d− t) prompt
nodes, however because of the mobility of the sluggishness, effectively only (n − 2d − t) prompt
nodes work on extending the longest prompt chain. This is because the adversary has a budget of
d sluggish nodes at any given time. Thus, an adversary can toggle the sluggishness of at most 2d
honest nodes. Say d sluggish nodes have been trying to extend a shorter fork of the longest prompt
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chain. These sluggish nodes are unlikely to add any useful work to the longest prompt chain as
they are working on the staler chain. When the honest nodes send out the puzzles at the end of
the mining process, the adversary can make a disjoint subset of d honest nodes sluggish. Thus,
effectively removing the mining efforts of d nodes from (n − d − t) prompt nodes. Newly prompt
nodes send and receive the backlog of all messages. However, since they were on the minority fork,
the network will discard their prior efforts to extend the shorter chain.

Expectation of random variables. Let

f = 1− (1− p)qm(n−2d−t) ≤ pqm(n− 2d− t) (6)

where f is the probability of one or more prompt blocks were mined in a super-round. Since the
probability of mining one or more prompt blocks is independent of the probability of all honest
nodes mining a decoy, E[X[R]] = c(1 − (1 − p)qm(n−2d−t)). Similarly, the probability of mining
exactly one prompt block is independent of the probability of all honest nodes mining a decoy.
Thus, E[Y [R]] = cqm(n− 2d− t)p(1− p)qm(n−2d−t)−1.

E[Z[R]] = pq(m+D)t

E[W [R]] = 1− (1− p)qmd

E[T [R]] = E[Z[R] +W [R]]

By linearity of expectations,

E[T [R]] = E[Z[R]] + E[W [R]]

Since the adversary can eclipse the view for the sluggish nodes, the adversary can trick the sluggish
nodes into extending the adversary’s chain. Thus, the mining advantage of adversarial nodes is at
most the sum of Z[R] +W [R].

To summarize,

E[X[R]] = c(1− (1− p)qm(n−2d−t)) X[S,R] =

R−1∑
i=S

X[i]

E[Y [R]] = cqm(n− 2d− t)p(1− p)qm(n−2d−t)−1 Y [S,R] =

R−1∑
i=S

Y [i]

E[T [R]] = E[Z[R]] + E[W [R]] T [S,R] =

R−1∑
i=S

T [i]

We compute bounds on the random variables X,Y, T as follows:

Upper bound on E[X[R]]

Using Eq. 6

cf ≤ cpqm(n− 2d− t)

E[X[R]] ≤ cpqm(n− 2d− t)
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Lower bound on E[X[R]]

f

1− f
=

1− (1− p)qm(n−2d−t)

1− 1 + (1− p)qm(n−2d−t)
=

1− (1− p)qm(n−2d−t)

(1− p)qm(n−2d−t)

= (1− p)−qm(n−2d−t) − 1 =
1

(1− p)qm(n−2d−t)
− 1

Since, (1− p)(1 + p) < 1, where p ̸= 0

> (1 + p)qm(n−2d−t) − 1

Using Bernoulli’s inequality (1 + x)r ≥ 1 + rx, where x > −1 and r ≥ 1

f

1− f
> pqm(n− 2d− t) (7)

Multiply by c

cf

1− f
> cpqm(n− 2d− t)

E[X[r]] = cf > (1− f)cpqm(n− 2d− t) (8)

(1− f)cpqm(n− 2d− t) < E[X[r]] = cf ≤ cpqm(n− 2d− t)

Lower bound on E[Y [R]]

E[Y [R]] = cqm(n− 2d− t)p(1− p)qm(n−2d−t)−1

Using Bernoulli’s inequality (1 + x)r ≥ 1 + rx, where x > −1 and r ≥ 1

≥ cpqm(n− 2d− t)(1− pqm(n− 2d− t) + p)

> cpqm(n− 2d− t)(1− pqm(n− 2d− t))

> cf(1− f) (9)

Let g(x) = x(1 − x). Notice that g(x) is increasing when x ∈ [0, 1/2]. From Eq. 3 and Eq. 6,
1/2 > pqm(n− 2d− t) ≥ f , thus Eq. 9 is true.

Rate of non-prompt vs prompt mining.

E[T [R]] = pq(m+D)t+ 1− (1− p)qmd

≤ pq(m+D)t+ pqmd

Multiply and divide by (n− 2d− t) and m

≤ pq
(m+D)t+md

m(n− 2d− t)
m(n− 2d− t)

From Eq. 1

≤ (1− δ)cpqm(n− 2d− t)

From Eq. 8

<
(1− δ)

(1− f)
E[X[R]]

From Eq. 2, δ > f ⇒ 1− δ < 1− f ⇒ 1−δ
1−f < 1

E[T [R]] < E[X[R]] (10)
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Also, note that

E[T [R]] ≤ pq
(m+D)t+md

m(n− 2d− t)
m(n− 2d− t)

Using Eq. 7

<
(m+D)t+md

m(n− 2d− t)

f

(1− f)
(11)

Below we define typical execution events for the blockchain. Informally, typical execution guarantees
that random variables X,Y, T are close to expected values.

Definition 19 (Typical execution). For all integers 1 ≤ S < R and ε ∈ (0, 1), let

E[S,R] = E1[S,R] ∩ E2[S,R] ∩ E3[S,R]

where

E1[S,R] := (1− ε)E[X[S,R]] < X[S,R] < (1 + ε)E[X[S,R]] (12)

E2[S,R] := (1− ε)E[Y [S,R]] < Y [S,R] (13)

E3[S,R] := T [S,R] < E[T [S,R]] + εE[X[S,R]] (14)

Typical execution properties. Under typical execution, the following properties hold true.

Lemma 3.

(1− ε)cf(R− S) < X[S,R] < (1 + ε)cf(R− S) (15)(
1− δ

3

)
cf(R− S) < (1− ε)cf(1− f)(R− S) < Y [S,R] (16)

T [S,R] < E[T [S,R]] + εE[X[S,R]] <

(
1− 2δ

3

)
cf(R− S) (17)

T [S,R] <

(
1 +

δ

2

)
(m+D)t+md

cm(n− 2d− t)
X[S,R] + εE[X[S,R]]

<

(
1− δ

2

)
X[S,R] (18)

T [S,R] < Y [S,R] (19)

Proof. We prove the lemma as follows:

For Eq. 15. Substituting the expectation of X[S,R] in Eq. 12 to get Eq. 15.

For Eq. 16. This can be proved as follows:

(1− ε)(1− f) > (1− ε− f + εf) > 1− ε− f >

(
1− δ

3

)
For Eq. 17. First inequality follows the proof of Eq. 14.

For second inequality, it is sufficient to verify the following:
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Using upper bound of T [S,R] from Eq. 11

(m+D)t+md

m(n− 2d− t)

f

(1− f)
(R− S) + εcf(R− S)

?
<

(
1− 2δ

3

)
cf(R− S)

From Eq. 1

(1− δ)cf

(1− f)
+ εcf

?
<

(
1− 2δ

3

)
cf ⇒ (1− δ)

(1− f)
+ ε

?
<

(
1− 2δ

3

)
(1− δ) + ε(1− f)

?
<

(
1− 2δ

3

)
(1− f) (20)

The upper bound of LHS of Eq. 20 can be simplified as:

(1− δ) + ε(1− f) < 1− δ + ε

The lower bound of RHS of Eq. 20 can be simplified as:(
1− 2δ

3

)
(1− f) > 1− 2δ

3
− f

To verify Eq. 20, it is enough to check:

1− δ + ε
?
< 1− 2δ

3
− f ⇒ −3δ + 3ε+ 3f

?
< −2δ ⇒ 3ε+ 3f < 3δ − 2δ = δ

For Eq. 18 (first inequality). It is sufficient to verify the following:

(m+D)t+md

m(n− 2d− t)

f

(1− f)
(R− S) + εE[X[S,R]]

?
<

(
1 +

δ

2

)
(m+D)t+md

cm(n− 2d− t)
X[S,R] + εE[X[S,R]]

Using first inequality of Eq. 15, f(R− S) < X[S,R]/(c(1− ε))

(m+D)t+md

cm(n− 2d− t)

1

(1− ε)(1− f)

?
<

(m+D)t+md

cm(n− 2d− t)

(
1− δ

2

)
1

(1− ε)(1− f)

?
<

(
1 +

δ

2

)

Since 1− δ
3 < (1− ε)(1− f), to verify the above, it is sufficient to check the following:

1
?
<

(
1− δ

3

)(
1 +

δ

2

)
⇒ 1

?
< 1− δ

3
+

δ

2
− δ2

6
⇒ 1

?
< 1 +

δ

6
− δ2

6

Since δ ∈ (0, 1), 1
6δ(1− δ) > 0. Thus, first inequality in Eq. 18 is true.

For Eq. 18 (second inequality). It is sufficient to verify the following:(
1 +

δ

2

)
(m+D)t+md

cm(n− 2d− t)
X[S,R] + εE[X[S,R]]

?
<

(
1− δ

2

)
X[S,R]
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From Eq. 1: (
1 +

δ

2

)
(1− δ)X[S,R] + εE[X[S,R]]

?
<

(
1− δ

2

)
X[S,R]

Using second inequality of Eq. 15, E[X[S,R]] = cf(R− S) < X[S,R]/(1− ε)(
1 +

δ

2

)
(1− δ)X[S,R] +

ε

1− ε
X[S,R]

?
<

(
1− δ

2

)
X[S,R]

1 +
δ

2
− δ − δ2

2
+

ε

1− ε

?
< 1− δ

2
⇒ 1− δ

2
− δ2

2
+

ε

1− ε

?
< 1− δ

2

From Eq. 4, 2ε
1−ε < δ2, thus the above equation is true.

For Eq. 19.

From Eq. 16 and Eq. 17(
1− δ

3

)
cf(R− S) < Y [S,R]T [S,R] <

(
1− 2δ

3

)
cf(R− S)⇒

T [S,R] < Y [S,R]

⊓⊔

Theorem 4. An execution is typical according to Definition 19 with probability 1− 4e−
ε2

6
cf(R−S).

Proof.

Pr[E[S,R]] = 1− Pr[Ec[S,R]]

≥ 1− Pr[Ec
1[S,R]]− Pr[Ec

2[S,R]]− Pr[Ec
3[S,R]]

Pr[Ec
1[S,R]] = Pr

[
|X[S,R]− E[X[S,R]]| ≥ εE[X[S,R]]

]
Using Eq. 27

≤ 2e−
ε2

3
cf(R−S)

Pr[Ec
2[S,R]] = Pr

[
Y [S,R] ≤ (1− ε)E[Y [S,R]]

]
Using Eq. 26

≤ e−
ε2

3
cf(1−f)(R−S)

From Eq. 3, f < 1/2⇒ 1/2 < (1− f)

< e−
ε2

6
cf(R−S)

Pr[Ec
3[S,R]] = Pr

[
T [S,R] ≥ E[T [S,R]] + εE[X[S,R]]

]
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Using Eq. 10

≤ Pr
[
T [S,R] ≥ E[T [S,R]] +

ε

2
E[T [S,R]] +

ε

2
E[X[S,R]]

]
≤ Pr

[
T [S,R] ≥ (1 +

ε

2
)E[T [S,R]] +

ε

2
E[X[S,R]]

]
Using Eq. 28

=
E[euT [S,R]]

eu
(
(1+ ε

2
)E[T [S,R]]+ ε

2
E[X[S,R]]

)
Let β = pq((m+D)t+md)(R− S)

Since T [S,R] = X[S,R] + W [S,R], using Eq. 31, E[euT [S,R]] = E[euZ[S,R]] × E[euW [S,R]]. Observe
that E[Z[R]] is a Binomial random variable and E[W [R]] is a Bernoulli random variable, thus using
Eq. 29 and Eq. 30:

≤
(
1 + p(eu − 1)

)q(m+D)t(R−S) ·
(
1 + pqmd(eu − 1)

)(R−S)

eu
(
(1+ ε

2
)β+ ε

2
cf(R−S)

)
Note that (1 + x) ≤ ex. Thus, (1 + p(eu − 1)) ≤ ep(e

u−1) and (1 + pqmd(eu − 1)) ≤ epqmd(eu−1)

≤ e(e
u−1)β

eu
(
(1+ ε

2
)β+ ε

2
cf(R−S)

)
≤ e(e

u−1)β−u
(
(1+ ε

2
)β+ ε

2
cf(R−S)

)
≤ e

(
eu−1−u(1+ ε

2
)
)
β−u ε

2
cf(R−S)

Let u = log(1 + ε
2)

≤ e

(
1+ ε

2
−1−log(1+ ε

2
)(1+ ε

2
)
)
β− ε

2
log(1+ ε

2
)cf(R−S)

≤ e

(
ε
2
−log(1+ ε

2
)(1+ ε

2
)
)
β− ε

2
log(1+ ε

2
)cf(R−S)

(1 + x) log(1 + x) > x,∀x > 0

≤ e

(
ε
2
− ε

2

)
β− ε

2
log(1+ ε

2
)cf(R−S)

≤ e−
ε
2
log(1+ ε

2
)cf(R−S)

For x > −1, x
1+x ≤ log(1 + x)

≤ e
− ε

2

ε
2

1+ ε
2
cf(R−S) ≤ e−

ε
2

ε
2+ε

cf(R−S)

Since 0 < ε < 1⇒ ε
3 < ε

2+ε

< e−
ε2

6
cf(R−S)

Pr[Ec
1[S,R]] ≤ 2e−

ε2

3
cf(R−S) < 2e−

ε2

6
cf(R−S)

Pr[Ec
2[S,R]] < e−

ε2

6
cf(R−S)

Pr[Ec
3[S,R]] < e−

ε2

6
cf(R−S)
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Thus,

Pr[E[S,R]] > 1− 4e−
ε2

6
cf(R−S)

⊓⊔

Uppper bound on decoys. Let, pc = k
q(m+D) , where k < q(m + D). Moreover, let k = log n

and z be the random variable to denote the number of decoys mined by the adversarial nodes in a
super-round.

E[z] =
k

q(m+D)
· t · q(m+D) = kt

Pr[z ≥ (1 + ε)E[z]] ≤ e
−ε2kt

3 ≤ e−Ω(ε2n logn)

Since n is polynomial in λ, the probability of adversary overwhelming honest nodes with decoys is
low.

Probability of honest nodes mining a decoy. Let, pc =
k

q(m+D) , where k < q(m +D). From
Eq. 5, c is the probability of every honest node mining at least one decoy in a super-round.

c = (1− (1− pc)
qm)(n−t) = (1− (1− k

q(m+D)
)qm)(n−t)

> (1− (1− k

qm
)qm)(n−t)

(1− w/x)x ≤ e−w

> (1− e−k)(n−t)

> (1− e−k)n

Recall, that k = log n.

> (1− e− logn)n

Let a = 1
ln 2 > 1, we compute the limit:

lim
n→∞

(1− e− logn)n = lim
n→∞

(1− e−
lnn
ln 2 )n = lim

n→∞

(
1−

(
elnn

)−a
)n

= lim
n→∞

(1− 1

na
)n = 1

F.1 Consistency and Liveness

A blockchain C is an ordered sequence of blocks. Let:

• C[0] be the commonly agreed genesis block and |C| be the length of the chain

• C⌈k denote the chain obtained by removing the last k blocks from C

• C ⪯ C′ to denote that C is a prefix of the chain C′

• C[−i :] be the last i blocks of C inclusive of C[−i] and the last block of C
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Blockchain properties. We adapt the commonly used definitions of chain growth, chain quality,
and common prefix for our setting [21,41,42]. Recall that a super-round is a consecutive sequence
of rounds of block mining and batch-solving of puzzles.

Definition 20 (Chain Growth). For any sequence of consecutive super-rounds in [S,R), the
length of a chain held by a node which is prompt at the beginning of the solve phase of R has grown
by at least τ · (R− S) since the super-round S, where τ ∈ [0, 1] and R ∈ N.

Definition 21 (Chain Quality). For any sequence of at least k consecutive blocks in a chain
held by a prompt node, the ratio of blocks mined by honest nodes is at least µ · k, where µ ∈ [0, 1]
and k ∈ N.

Definition 22 (Common Prefix). Let C1 and C2 be the chain adopted by any two prompt nodes
at the beginning of super-rounds R1 and R2, respectively, such that R1 ≤ R2. The chain obtained

by removing last k blocks of C1 is a prefix of the chain C2, C
⌈k
1 ⪯ C2, where k ∈ N.

Lemma 4. Suppose an honest node at the beginning of super-round S has a chain of length k,
which was prompt at the beginning of the solve phase of S − 1. Then, by the beginning of super-
round R > S, every honest node which was prompt at super-round R − 1 will have a chain of at
least k +X[S,R].

Proof. We prove this using induction.
– Base case (R = S+1): We assume that prompt nodes implicitly echo all the messages (including

adversarial messages). This implies that a node prompt at round r will be up to date with
prompt and adversarial messages sent before r. Thus, in every super-round, nodes prompt at
the beginning of the solve phase, will have a chain of identical length by the end of solve phase.
Since the boolean random variable X[S] indicates whether at least one prompt block was mined
in super-round S (and all honest nodes mined a decoy), then by the start of super-round S +1
all prompt nodes (at the beginning of solve phase of S) will have a chain of length at least
k +X[S] after batch solving the puzzles at the end of S.

– Induction step: Assume that the hypothesis is true for super-round R−1. Thus, at the beginning
of R − 1, all prompt nodes will have a chain of length at least k + X[S,R − 1]. Observe that
X[S,R] = X[S,R − 1] + X[R − 1]. When X[R − 1] = 1, it implies that at least one or more
prompt block was mined in R − 1. Thus, all prompt nodes (during the solve phase of R − 1)
would have received this block in a TLP puzzle. By the end of R − 1 all prompt nodes would
have opened the puzzle to extend the chain. Thus, the new length of the prompt chain is at
least k +X[S,R]. ⊓⊔

Lemma 5. Under the event E[S,R] as described in Definition 19 and k ≥ 2cf(R−S), every node’s
last k consecutive blocks at the beginning of super-round R must have been mined after super-round
S.

Proof. The upper bound of chain growth is:

From Eq. 15 and Eq. 17

X[S,R] + T [S,R] < (1 + ε)cf(R− S) + (1− 2δ

3
)cf(R− S) (21)

< (2 + ε− 2δ

3
)cf(R− S) (22)
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From Eq. 2, 6ε+ 6f < 2δ ⇒ 3ε+ 6f < 2δ ⇒ ε− 2δ/3 < −2f
< (2− 2f)cf(R− S) < (1− f)2cf(R− S) (23)

< k (24)

⊓⊔

Theorem 5 (Chain Growth). Under the event E[S,R] and (R−S) > 2
cf , the length of the chain

of every node prompt at the beginning of solve phase of R − 1 grows by at least (1 − ε)cf(R − S)
after the beginning of super-round S.

Proof. From Eq. 15, we know that the length of a prompt chain grows by at least (1− ε)cf(R−S).
Say, the length of the chain adopted by a prompt node at the beginning of super-round S is k.
Then, by Lemma 4 all prompt nodes would have chain of length at least k+X[S,R] at beginning of
super-round R. Since the duration (R−S) > 2/cf is sufficiently long, typical execution is applicable.
Thus, every prompt chain grows by at least (1− ε)cf(R− S). ⊓⊔

Theorem 6 (Chain Quality). Say a node which was prompt at the end of beginning of solve
phase of R−1 has chain of more than k at the beginning of super-round R. Under the event E[S,R]
and k ≥ 2cf(R− S), the ratio of prompt blocks in the last k consecutive blocks is at least δ

2 .

Proof. Let,

– C be the chain adopted by a prompt node at the beginning of super-round R such that |C| > k.

– C[−k′] be the last prompt block before C[−k] such that k′ > k. If no such block exists, then
C[−k′] = C[0].

– L = |C| − k′ + 1 be the length of the chain C[−k′ + 1 :]

– R′ be the super-round in which C[−k′] was mined by a prompt node

– x be the number of prompt blocks in C[−k :]

Observe that the number of prompt blocks in C[−k′ + 1 :] is also x. Since k ≥ 2cf(R − S) and
k′ > k, then by Lemma 5, R′ < S and typical execution is applicable in super-rounds [R′ + 1, R).
Thus:

L− x < T [S,R] < (1− δ/2)X[S,R] < (1− δ/2)L < L− Lδ

2
< L− kδ

2
⇒ x >

δ

2
k

The second inequality is from Eq. 18, the third inequality is from Thm. 5, and the fourth inequality
uses the fact that k < L. ⊓⊔

Lemma 6. Suppose the k-th block B of C is a prompt block mined in a uniquely successful super-
round. Then, the k-th block B′ of C′ is either B or a non-prompt block (sluggish or adversarial).

Proof. Say B′(̸= B) is another prompt block at the k-th position. However, since B was mined
in a uniquely successful super-round, B′ could not have been mined in the same super-round, by
definition. Say, the block B was mined in an earlier super-round R before B′ was mined. Since, B
is a prompt block, all prompt nodes would have adopted a chain of length at least k by the end of
super-round R. This contradicts the assumption that B′ was mined as the k-th block in a chain by
a prompt node, as all prompt nodes would be extending a chain of length k by the end of R. ⊓⊔
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Theorem 7 (Common Prefix). Let C1 be the chain adopted by any honest node at the beginning
of super-round R1 (which was prompt at the beginning of the solve phase of R1 − 1) and C2 be the
chain adopted by any honest node at beginning of super-round R2 (which was prompt at the beginning
of the solve phase of R2 − 1). Under event E[S,R1], k ≥ 2cf(R1 − S), and R2 ≥ R1, the chain

obtained by removing last k blocks of C1 is a prefix of the chain C2, i.e., C
⌈k
1 ⪯ C2.

Proof. We prove this by contradiction. Assume that C
⌈k
1 ̸⪯ C2. Let R be the earliest super-round

after R1 in which a prompt node P adopted a chain C′
2 such that C

⌈k
1 ̸⪯ C′

2 and R ≥ R1. Thus, by
definition R2 ≥ R ≥ R1. Moreover, let C′

1 be the longest chain held by P at R− 1 before adopting
C′
2. Thus, by definition C1 ⪯ C′

1.

Let R∗ be the super-round in which the last common prompt block between C′
1 and C′

2 was
mined. Observe that all chains share a common genesis block, thus R∗ is well-defined. Since the

C
⌈k
1 ̸⪯ C′

2 and k ≥ 2cf(R1 − S), thus by Lemma 5, S > R∗.

After the protocol execution from R∗+1 to R, the chain obtained by removing the last k blocks
from C′

1 is not a prefix of the chain C′
2. Thus, we make the following claim:

T [R∗ + 1, R] ≥ Y [R∗ + 1, R]

To see why this claim is valid when the prefix doesn’t match, we count the number of non-
prompt (adversarial + sluggish) blocks mined whenever there is a uniquely successful super-round
in [R∗, R). For a uniquely successful round U ∈ [R∗, R), let jU be the position of the corresponding
block in the chain from the genesis.

J := {jU : U is a super-round where Y [U ] = 1 ∧ U ∈ [R∗ + 1, R)}

Note that both C′
1 and C′

2 has a block at every j ∈ J . Since the block winner of a j is the sole
winner in that super-round and the block winner was prompt at the end of m rounds of mining,
the time-lock encrypted block reaches all other prompt nodes by the beginning of the solve phase.
Hence, by the end of solve phase and super-round, all other prompt nodes would have solved the
time-lock puzzle to obtain the block and adopted the longer chain. This implies that |C′

1| ≥ max J
and since P adopts C′

2 in super-round R, |C′
2| ≥ |C′

1|.
Now we argue that for all j ∈ J , the j-th block in C′

1 or in C′
2 can either be identical or different.

If the blocks are identical, then the block is adversarial or sluggish by the definition of R∗. On the
other hand, if the blocks are different, then both blocks cannot be prompt. This follows from
Lemma 6. Thus, by counting the number of non-prompt blocks mined during uniquely successful
super-rounds in each of the above possibilities, it is evident that T [R∗ + 1, R] ≥ Y [R∗ + 1, R].

However, since R2 ≥ R ≥ R1 > S > R∗ and k ≥ 2cf(R1 − S) ⇒ 2cf(R − R∗ − 1) > 2cf(R1 −
S), the conditions required for typical execution E[R∗ + 1, R] is applicable. Under E[R∗ + 1, R],
T [R∗ + 1, R] < Y [R∗ + 1, R] from the proof of Eq. 19. Thus, this contradicts the assumption that

C
⌈k
1 ̸⪯ C2. ⊓⊔

F.2 Well-Known Facts used in the Analysis

Proposition 1 (Chernoff Bounds). Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and
Xi = 0 with probability 1 − pi, and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then,
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∀δ ∈ (0, 1),

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/2 (25)

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/3 (26)

Pr[|X − µ| ≥ δµ] ≤ 2e−δ2µ/3 (27)

Pr[X ≥ a] ≤ E[euX ]

eua
,∀u > 0 (28)

Proposition 2 (Moment-Generating Function [52]). Moment Generating Function of ran-
dom variable X, denoted as MX(u), is:

MX(u) = E[euX ] = (1 + p(eu − 1))m where X ∼ Bin(m, p) (29)

MX(u) = E[euX ] = (1 + p(eu − 1)) where X ∼ Bernoulli(p) (30)

as long as this expectation exists for v in some neighborhood of 0. That is, there is an v > 0 such
that for all u in −v < u < v, E[euX ] exists [52].

Moreover, if X =
∑n

i=1 aiXi, where Xi are independent random variables and ai are constants,
then:

MX(u) = MX1(a1u)MX2(a2u) · · ·MXn(anu) (31)
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